JP2016100968A - Initial charging method of interconnection inverter - Google Patents

Initial charging method of interconnection inverter Download PDF

Info

Publication number
JP2016100968A
JP2016100968A JP2014235632A JP2014235632A JP2016100968A JP 2016100968 A JP2016100968 A JP 2016100968A JP 2014235632 A JP2014235632 A JP 2014235632A JP 2014235632 A JP2014235632 A JP 2014235632A JP 2016100968 A JP2016100968 A JP 2016100968A
Authority
JP
Japan
Prior art keywords
charger
transformer
inverter
capacitor
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014235632A
Other languages
Japanese (ja)
Other versions
JP6531375B2 (en
Inventor
博 篠原
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014235632A priority Critical patent/JP6531375B2/en
Publication of JP2016100968A publication Critical patent/JP2016100968A/en
Application granted granted Critical
Publication of JP6531375B2 publication Critical patent/JP6531375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid an excessive excitation rush current during initial charging of a DC capacitor and at the power-on of an interconnection transformer to a power system with an inexpensive charger that is as simple as possible and suppresses loss.SOLUTION: In an interconnection inverter, including a wattless power compensator that is constituted of a voltage inverter having a DC capacitor and interconnected to a power system via an interconnection transformer, an AC output side of a charger constituted of a switch, current limiting resistor, and isolating transformer is connected to an AC side of the interconnection inverter; an AC input side of the charger is connected to a charging AC power source; the charger is powered on to perform initial charging of the DC capacitor and excite the interconnection transformer from a secondary side; and the interconnection transformer is powered-on at the time of completion of charging of the DC capacitor.SELECTED DRAWING: Figure 1

Description

本発明は、直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータおよび系統連系用インバータの初期充電方法に関する。   The present invention relates to a grid interconnection inverter such as a reactive power compensator which is constituted by a voltage source inverter having a DC capacitor and is linked to a power system through a linkage transformer, and an initial charging method for the grid connection inverter. About.

直流コンデンサを含み電力系統に変圧器を介して連系される系統連系用インバータは、例えば無効電力補償装置として使用される。インバータの直流側に接続されている直流コンデンサに充電器を接続することにより、直流コンデンサの初期充電を行うことは公知である(例えば、特許文献1および特許文献2参照)。   A grid interconnection inverter including a DC capacitor and linked to a power system via a transformer is used as, for example, a reactive power compensator. It is known to perform initial charging of a DC capacitor by connecting a charger to a DC capacitor connected to the DC side of the inverter (see, for example, Patent Document 1 and Patent Document 2).

図3は、この種の充電器を備えた系統連系用インバータの従来の実施例を示す。例えば無効電力補償装置を構成する系統連系用インバータ4は、図4に示されているように、IGBTやGTOなどの半導体スイッチング素子8a〜8fおよびダイオード9a〜9fからなるインバータブリッジと、そのインバータブリッジの直流端子間に接続された直流コンデンサ5とから構成されている。インバータ4の交流側、即ちインバータブリッジ3相交流端子は連系変圧器3の2次側に接続されており、連系変圧器3の1次側は遮断器2を介して電力系統1に接続可能である。直流コンデンサ4の初期充電のためにインバータ4の直流側に充電器6が接続され、充電器6の入力側はコンタクタ13を介して充電用電源7に可能である。充電器6は、図5に示すように、限流抵抗10と、絶縁変圧器11と、ダイオード12a〜12fからなる整流器とから構成することができる。   FIG. 3 shows a conventional example of a grid interconnection inverter provided with this type of charger. For example, as shown in FIG. 4, the grid interconnection inverter 4 constituting the reactive power compensator includes an inverter bridge including semiconductor switching elements 8 a to 8 f and diodes 9 a to 9 f such as IGBT and GTO, and the inverter It consists of a DC capacitor 5 connected between the DC terminals of the bridge. The AC side of the inverter 4, that is, the inverter bridge three-phase AC terminal is connected to the secondary side of the interconnection transformer 3, and the primary side of the interconnection transformer 3 is connected to the power system 1 via the circuit breaker 2. Is possible. For the initial charging of the DC capacitor 4, a charger 6 is connected to the DC side of the inverter 4, and an input side of the charger 6 can be a charging power source 7 via a contactor 13. As shown in FIG. 5, the charger 6 can be composed of a current limiting resistor 10, an insulation transformer 11, and a rectifier including diodes 12 a to 12 f.

インバータ4を起動する際には、先ずコンタクタ13を閉じて充電器6を用いることで電源7から直流コンデンサ5の初期充電を行う。充電完了後にインバータ4から電圧を出力することで連系変圧器3を励磁する。遮断器2により連系変圧器3を電力系統1に投入する際に、連系変圧器3の過大な励磁突入電流が起こり得る。その過大な励磁突入電流を抑制するために、インバータ4の交流側に接続された連系変圧器3の1次側電圧Viと、電力系統1の電圧Vsとが同一振幅および同一位相となった時点で、遮断器2を閉路して連系変圧器3を電力系統1に投入する。この方法は例えば、特許文献1および特許文献2により公知である。遮断器2を閉路して連系変圧器3を電力系統1に投入する際に、コンタクタ13が開かれて充電器6の充電動作が終了する。   When starting up the inverter 4, first, the contactor 13 is closed and the charger 6 is used to initially charge the DC capacitor 5 from the power supply 7. After completion of charging, the voltage is output from the inverter 4 to excite the interconnection transformer 3. When the interconnection transformer 3 is put into the power system 1 by the circuit breaker 2, an excessive magnetizing inrush current of the interconnection transformer 3 may occur. In order to suppress the excessive magnetizing inrush current, the primary side voltage Vi of the interconnection transformer 3 connected to the AC side of the inverter 4 and the voltage Vs of the power system 1 have the same amplitude and the same phase. At that time, the circuit breaker 2 is closed and the interconnection transformer 3 is put into the power system 1. This method is known, for example, from US Pat. When the circuit breaker 2 is closed and the interconnection transformer 3 is inserted into the electric power system 1, the contactor 13 is opened and the charging operation of the charger 6 is completed.

しかし、この同期投入方法の場合には、同期投入条件の確立がインバータ4の制御にて行われるために、同期投入条件の確立に時間を要する。従って、その期間中、充電器6は、電力系統1よりも低圧(例えば、400V、200Vなど)の電源7から、昇圧して直流に変換することでコンデンサ5を充電するとともに、充電されたコンデンサ5からインバータ4が電圧を出力し、従って連系変圧器3を電力系統1に接続するまでの間、インバータ4と連系変圧器3の損失を供給することになる。それゆえ、充電器6の容量は、同期投入条件の確立に要する最大時間を考慮して設計されなければならない。このため、充電器6の装置容量が大きくなって、このことがコスト高の要因となる。   However, in the case of this synchronous input method, since establishment of the synchronous input condition is performed by the control of the inverter 4, it takes time to establish the synchronous input condition. Therefore, during that period, the charger 6 charges the capacitor 5 by boosting the voltage from a power source 7 having a lower voltage (for example, 400V, 200V, etc.) than the power system 1 and converting it to DC, and the charged capacitor 5 until the inverter 4 outputs a voltage, and thus the loss of the inverter 4 and the interconnection transformer 3 is supplied until the interconnection transformer 3 is connected to the power system 1. Therefore, the capacity of the charger 6 must be designed in consideration of the maximum time required for establishing the synchronous input condition. For this reason, the device capacity of the charger 6 becomes large, and this becomes a factor of high cost.

また、変圧器の励磁突入電流を抑制する方法として、遮断器を開放して変圧器を停止した時の電圧の位相を記録しておき、次に変圧器を運転する際に、電力系統の電圧が、記録した位相となった時点で変圧器を投入する方法が知られている(例えば、特許文献3参照)。この方法によれは、変圧器を開放してから、次回に投入するまでの間に時間が経過している場合に、その間に残留磁束が変化して、同じ位相で投入しても過大な励磁突入電流が流れる可能性があり、十分な抑制効果が得られないことがある。また、この特許文献3は、系統連系用インバータおよびそのインバータの直流コンデンサの初期充電に関する技術については開示していない。   In addition, as a method of suppressing the magnetizing inrush current of the transformer, record the phase of the voltage when the circuit breaker is opened and the transformer is stopped. However, a method is known in which a transformer is inserted when the recorded phase is reached (see, for example, Patent Document 3). According to this method, if time has elapsed between the time when the transformer is opened and the next time it is turned on, the residual magnetic flux will change during that time, and even if it is turned on at the same phase, excessive excitation will occur. An inrush current may flow, and a sufficient suppression effect may not be obtained. Moreover, this patent document 3 does not disclose the technology relating to the initial charging of the grid interconnection inverter and the DC capacitor of the inverter.

また、変圧器の励磁突入電流を抑制する別の方法として、変圧器を停止する際に、インバータからなる磁束制御装置によって変圧器の残留磁束を低減する方法が知られている(例えば、特許文献4参照)。この方法によれば、変圧器の開放後に変圧器の残留磁束は低減されているので、変圧器を運転する時に直ちに変圧器を投入しても過大な励磁突入電流を防止することができる。しかし、例えばインバータ保護機能の作動時には変圧器が残留磁束を低減する操作なしに遮断されることになるので、このような場合にも再投入時の変圧器の励磁突入電流を抑制するためには、別の手段、例えば図3〜図5で説明した充電器が必要となる。   Further, as another method for suppressing the magnetizing inrush current of the transformer, a method of reducing the residual magnetic flux of the transformer by a magnetic flux control device including an inverter when the transformer is stopped is known (for example, patent document). 4). According to this method, since the residual magnetic flux of the transformer is reduced after the transformer is opened, an excessive excitation inrush current can be prevented even if the transformer is immediately turned on when the transformer is operated. However, for example, when the inverter protection function is activated, the transformer is cut off without any operation to reduce the residual magnetic flux. In such a case, in order to suppress the inrush current of the transformer at the time of reactivation, Another means, for example, the charger described in FIGS. 3 to 5 is required.

特開平10−42475号明細書Japanese Patent Laid-Open No. 10-42475 特開2008−125169号明細書JP 2008-125169 A Specification 特開平11−353969号明細書Japanese Patent Application Laid-Open No. 11-353969 特開2012−196124号明細書JP 2012-196124 A

本発明の課題は、できるだけ簡単で損失が少ない安価な充電器によって、直流コンデンサの初期充電と、電力系統への連系変圧器の投入時の過大な励磁突入電流の抑制を可能にする系統連系用インバータの初期充電方法を提供することにある。   An object of the present invention is to provide a grid connection that enables initial charging of a DC capacitor and suppression of an excessive excitation inrush current when an interconnection transformer is turned on to a power system by an inexpensive charger that is as simple as possible and has little loss. An object of the present invention is to provide an initial charging method for a system inverter.

上記課題は、本発明による系統連系用インバータの第1の初期充電方法によれば、直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと限流抵抗と絶縁変圧器とで構成した充電器の交流出力側を系統連系用インバータの交流側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行うとともに連系変圧器を2次側から励磁し、直流コンデンサの充電完了時点で連系変圧器を電力系統に投入することを特徴とする系統連係用インバータの初期充電方法によって解決される。   According to the first initial charging method of the grid interconnection inverter according to the present invention, the above-described problem is a reactive power composed of a voltage source inverter having a DC capacitor and linked to the power system via a grid transformer. In a grid interconnection inverter such as a compensation device, connect the AC output side of the charger composed of a switch, current limiting resistor, and insulation transformer to the AC side of the grid interconnection inverter, and connect the AC input side of the charger to Connect to the AC power supply for charging, charge the initial DC capacitor by turning on the charger, excite the interconnection transformer from the secondary side, and insert the interconnection transformer into the power system when the DC capacitor is fully charged This is solved by the initial charging method of the grid linking inverter.

さらに、上記課題は、本発明による系統連系用インバータの第2の初期充電方法によれば、直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと限流抵抗と絶縁変圧器とで構成した充電器の交流出力側を系統連系用インバータの交流側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行うとともに連系変圧器を2次側から励磁し、直流コンデンサの充電完了時点で充電器を開放し、その開放したときの充電器の電圧位相を記憶しておき、電力系統の電圧位相が記憶した位相になった時点で連系変圧器を電力系統に投入すること系統連係用インバータの初期充電方法によっても解決される。   Further, according to the second initial charging method of the grid interconnection inverter according to the present invention, the above-described problem is constituted by a voltage source inverter having a DC capacitor, and is linked to the power system via the interconnection transformer. In a grid interconnection inverter such as a reactive power compensator, connect the AC output side of the charger, which is composed of a switch, current limiting resistor, and insulation transformer, to the AC side of the grid interconnection inverter. Connect the AC power supply to the AC power supply for charging, charge the DC capacitor initially by charging the charger, excite the interconnection transformer from the secondary side, and open the charger when the DC capacitor is fully charged. The voltage phase of the charger at the time of storage is stored, and when the voltage phase of the power system reaches the stored phase, the connection transformer is inserted into the power system. Also it solved.

さらに、上記課題は、本発明による系統連系用インバータの第3の初期充電方法によれば、直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと電圧可変手段で構成した充電器の交流出力側を系統連系用インバータの交流出力側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行った後に、電圧可変手段により充電器の出力電圧を零に低下させてから充電器を開放して、連系変圧器を電力系統に投入すること系統連係用インバータの初期充電方法によっても解決される。   Further, according to the third initial charging method of the grid interconnection inverter according to the present invention, the above problem is constituted by a voltage source inverter having a DC capacitor and linked to the power system via a grid transformer. For grid interconnection inverters such as reactive power compensators, connect the AC output side of the charger composed of switches and voltage variable means to the AC output side of the grid interconnection inverter, and charge the AC input side of the charger for charging After connecting the AC power supply and performing the initial charging of the DC capacitor by turning on the charger, the output voltage of the charger is reduced to zero by the voltage variable means and then the charger is opened to power the interconnection transformer. It can also be solved by the initial charging method of the grid linking inverter.

前記電圧可変手段は、スライダックと絶縁変圧器、又はタップ付き絶縁変圧器で構成することができ、あるいは整流器とインバータと絶縁変圧器で構成することができる。   The voltage variable means can be composed of a slidac and an insulating transformer, or an insulating transformer with a tap, or can be composed of a rectifier, an inverter, and an insulating transformer.

本発明による系統連系用インバータの初期充電方法によれば、充電器の交流出力側を系統連系用インバータの交流側、即ち連系変圧器の2次側に接続し、充電器の交流入力側を充電用交流電源に接続することにより、充電器の投入により、充電用交流電源から直流コンデンサを充電すると同時に連系変圧器を励磁することができる。充電器は交流入力および交流出力であるので、簡単な構成の充電器、特にスイッチと限流抵抗と絶縁変圧器とで構成した充電器を使用することができる。充電用交流電源の電圧が電力系統の電圧と同期している場合、上記第1の初期充電方法に従って、直流コンデンサの初期充電完了時点で、過大な励磁突入電流なしに、電力系統に連系変圧器を投入することができる。従って、充電完了後に最短時間で連系変圧器を電力系統に投入できるので、充電器は、従来のように同期投入条件確立までの期間における電力損失を見込んで充電器の容量設計をする必要がなく、従って格別に安価な充電器とすることができる。   According to the initial charging method of the grid interconnection inverter according to the present invention, the AC output side of the charger is connected to the AC side of the grid interconnection inverter, that is, the secondary side of the grid transformer, and the AC input of the charger is connected. By connecting the side to the charging AC power supply, the connection transformer can be excited simultaneously with charging the DC capacitor from the charging AC power supply by turning on the charger. Since the charger is an AC input and an AC output, it is possible to use a charger having a simple configuration, particularly a charger constituted by a switch, a current limiting resistor, and an insulation transformer. When the voltage of the AC power supply for charging is synchronized with the voltage of the power system, according to the first initial charging method, when the initial charging of the DC capacitor is completed, there is no excessive excitation inrush current. Can be loaded. Therefore, since the interconnection transformer can be put into the power system in the shortest time after charging is completed, it is necessary for the charger to design the capacity of the charger in anticipation of power loss in the period until the synchronous charging condition is established as in the past. Therefore, it can be a particularly inexpensive charger.

さらに、本発明の利点は、充電用電源と電力系統とが同期していなくても、本発明による第2の初期充電方法に従って、直流コンデンサの充電が完了した時点で充電器を開放し、この開放時点での充電器電圧の位相を記憶しておき、その後に電力系統の電圧位相が記憶した位相になった時点で連系変圧器を電力系統に投入することによって、過大な励磁突入電流なしに連系変圧器の投入を実行することができる。この場合に、直流コンデンサの充電が完了した時点で充電器は開放されるので、その時点から連系変圧器の投入時点までの期間に充電器で損失が発生することはないので、充電器は、従来のように同期投入条件確立までの期間における電力損失を見込んで充電器の容量設計をする必要がなく、従って格別に安価な充電器とすることができる。   Furthermore, the advantage of the present invention is that, even if the charging power source and the power system are not synchronized, the charger is opened when the charging of the DC capacitor is completed according to the second initial charging method according to the present invention. By storing the phase of the charger voltage at the time of opening, and then inserting the interconnection transformer into the power system when the voltage phase of the power system reaches the stored phase, there is no excessive inrush current It is possible to carry out the input of the interconnection transformer. In this case, since the charger is opened when the charging of the DC capacitor is completed, there is no loss in the charger during the period from that point to the time when the interconnection transformer is turned on. Thus, unlike the conventional case, it is not necessary to design the capacity of the charger in consideration of the power loss in the period until the establishment of the synchronous input condition.

さらに、本発明による第3の初期充電方法に従って、スイッチと電圧可変手段で構成した充電器の交流出力側を系統連系用インバータの交流出力側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行った後に、電圧可変手段により充電器の出力電圧を零に低下させてから充電器を開放して、連系変圧器を電力系統に投入することによって、過大な励磁突入電流なしに連系変圧器の投入を実行することができる。この場合にも、直流コンデンサの充電が完了した時点で充電器は開放されるので、その時点から連系変圧器の投入時点までの期間に充電器で損失が発生することはないので、充電器は、従来のように同期投入条件確立までの期間における電力損失を見込んで充電器の容量設計をする必要がなく、従って格別に安価な充電器を構成することができる。   Further, according to the third initial charging method of the present invention, the AC output side of the charger constituted by the switch and the voltage varying means is connected to the AC output side of the grid interconnection inverter, and the AC input side of the charger is used for charging. After connecting the AC power supply and performing the initial charging of the DC capacitor by turning on the charger, the output voltage of the charger is reduced to zero by the voltage variable means and then the charger is opened to power the interconnection transformer. By putting it in the system, it is possible to execute the connection transformer without excessive excitation inrush current. Also in this case, since the charger is opened when the charging of the DC capacitor is completed, there is no loss in the charger during the period from that point to the time when the interconnection transformer is turned on. Therefore, unlike the conventional case, it is not necessary to design the capacity of the charger in consideration of the power loss in the period until the establishment of the synchronous input condition, and thus a particularly inexpensive charger can be configured.

図1は本発明による初期充電方法を実施するための装置の構成例を示す回路図である。FIG. 1 is a circuit diagram showing a configuration example of an apparatus for carrying out an initial charging method according to the present invention. 図2は本発明による初期充電方法を実施するための装置の他の構成例を示す回路図である。FIG. 2 is a circuit diagram showing another configuration example of an apparatus for carrying out the initial charging method according to the present invention. 図3は従来の初期充電方法を実施するための装置の構成例を示す回路図である。FIG. 3 is a circuit diagram showing a configuration example of an apparatus for carrying out a conventional initial charging method. 図4は系統連系用インバータの構成例を示す回路図である。FIG. 4 is a circuit diagram showing a configuration example of the grid interconnection inverter. 図5は初期充電用の充電器の従来の構成例を示す回路図である。FIG. 5 is a circuit diagram showing a conventional configuration example of a charger for initial charging.

本発明の実施例が概略的に示されている図面を参照して本発明を更に詳細に説明する。図において、互いに対応する構成要素には同じ符号が付されている。   The invention is explained in more detail with reference to the drawings, in which embodiments of the invention are schematically shown. In the figure, constituent elements corresponding to each other are denoted by the same reference numerals.

図1に示す本発明による系統連系用インバータ4は、例えば、電力系統1に遮断器2および連系変圧器3を介して連系される無効電力補償装置もしくはその一部である。系統連系用インバータ4は、従来例と同様に図4に示すように、IGBTやGTOなどの半導体スイッチング素子8a〜8fおよびダイオード9a〜9fからなるインバータブリッジと、そのインバータブリッジの直流端子間に接続された直流コンデンサ5とから構成されている直流コンデンサ5を有する電圧形インバータとして構成されている。   The grid interconnection inverter 4 according to the present invention shown in FIG. 1 is, for example, a reactive power compensator linked to the power grid 1 via the circuit breaker 2 and the grid transformer 3 or a part thereof. As shown in FIG. 4, similarly to the conventional example, the grid interconnection inverter 4 includes an inverter bridge composed of semiconductor switching elements 8a to 8f and diodes 9a to 9f such as IGBT and GTO, and a DC terminal of the inverter bridge. It is configured as a voltage source inverter having a DC capacitor 5 constituted by a connected DC capacitor 5.

直流コンデンサ5の初期充電のための充電器15は、図3に示す従来例と同様に、コンタクタ13を介して充電用交流電源7に接続されている。しかし充電器15の出力側は、図3に示す従来の充電器6のように直流コンデンサ5が接続されているインバータの直流側に接続されるのではなくて、インバータ4の交流側、すなわち連系変圧器3の2次側に接続されている。そのために、充電器15は、図5に示す従来例と同様に、充電電流を制限するための限流抵抗10および昇圧のための絶縁変圧器11を有するが、しかし図5の従来例に示すダイオード整流器12a〜12fを持たず、その代わりに遮断器14を有する。   The charger 15 for initial charging of the DC capacitor 5 is connected to the charging AC power source 7 via the contactor 13 as in the conventional example shown in FIG. However, the output side of the charger 15 is not connected to the DC side of the inverter to which the DC capacitor 5 is connected as in the conventional charger 6 shown in FIG. It is connected to the secondary side of the system transformer 3. For this purpose, the charger 15 has a current limiting resistor 10 for limiting the charging current and an insulating transformer 11 for boosting, as in the conventional example shown in FIG. 5, but shown in the conventional example in FIG. It does not have the diode rectifiers 12a to 12f, but has a circuit breaker 14 instead.

このような充電器15の接続構成によれば、連系変圧器3の1次側を遮断器2により電力系統1へ投入する前に、コンタクタ13および遮断器14からなるスイッチにより充電器15を投入することによって、交流電源7から、充電器15内の限流抵抗10および絶縁変圧器14と、インバータ4内のダイオード9a〜9fとを介して、直流コンデンサ5に充電電流が供給されると同時に、連系変圧器3の2次側に励磁電流が供給される。   According to such a connection configuration of the charger 15, before the primary side of the interconnection transformer 3 is put into the power system 1 by the circuit breaker 2, the charger 15 is connected by the switch composed of the contactor 13 and the circuit breaker 14. When charging is performed, charging current is supplied from the AC power source 7 to the DC capacitor 5 via the current limiting resistor 10 and the insulating transformer 14 in the charger 15 and the diodes 9a to 9f in the inverter 4. At the same time, an exciting current is supplied to the secondary side of the interconnection transformer 3.

充電用交流電源7を、例えば電力系統1から他の変圧器を介して取り出すことにより、充電用交流電源7が電力系統1に同期しているならば、充電用交流電源7によって2次側から励磁される連系変圧器3の1次側電圧Viを電力系統1の電圧Vsと同相とし、かつ絶縁変圧器11の適切な変圧比により同振幅とすることができる。従って、この場合には、充電器15の投入による中間コンデンサ5の初期充電が完了した時点で、過大な励磁突入電流を生じさせることなく連系変圧器3を遮断器2により電力系統1へ投入し、充電器15を遮断器14により開放することができる。その後、系統連系インバータ4は、電力系統に同期した公知の連系制御によって運転を開始させられる。   If the charging AC power supply 7 is synchronized with the power grid 1 by, for example, taking out the charging AC power supply 7 from the power grid 1 through another transformer, the charging AC power supply 7 is connected from the secondary side. The primary voltage Vi of the interconnected transformer 3 to be excited can be in phase with the voltage Vs of the power system 1 and can have the same amplitude due to an appropriate transformation ratio of the insulating transformer 11. Therefore, in this case, when the initial charging of the intermediate capacitor 5 by the charging of the charger 15 is completed, the interconnection transformer 3 is input to the power system 1 by the circuit breaker 2 without causing an excessive magnetizing inrush current. The charger 15 can be opened by the circuit breaker 14. Thereafter, the grid interconnection inverter 4 is started to operate by a known grid control synchronized with the power system.

このように、充電完了時点で、従来のように同期投入条件確立のための制御動作を行う必要がなく、直ちに連系変圧器を電力系統に投入できる。従って、充電器15は、従来のように同期投入条件確立までの期間の電力損失を見込んだ容量設計をする必要がなく、コンデンサ5の充電電流と連系変圧器3の励磁電流を供給するだけなので、格別に安価な充電器とすることができる。   In this way, when the charging is completed, it is not necessary to perform a control operation for establishing a synchronous charging condition as in the prior art, and the interconnection transformer can be immediately input to the power system. Therefore, it is not necessary for the charger 15 to design the capacity in consideration of the power loss in the period until the establishment of the synchronous input condition as in the conventional case, and only the charging current of the capacitor 5 and the exciting current of the interconnection transformer 3 are supplied. Therefore, it can be a particularly inexpensive charger.

本発明による上述の初期充電方法は、充電用交流電源7が電力系統1に同期していない場合にも適用できるように発展させることができる。そのために、背景技術おいて示した特許文献3による従来技術を利用することができる。即ち、先ず、上述の初期充電方法と同様に、図1に示した充電器15の接続構成を用いて、充電器15の投入により直流コンデンサ5の初期充電を行うと同時に連系変圧器3を2次側から励磁する。それから特許文献3による従来技術に基づいて、直流コンデンサの充電完了時点で遮断器14により充電器15を開放し、その開放したときの充電器15の電圧位相(従って、連系変圧器3の電圧Viの位相)を記録しておき、電力系統1の電圧Vsの位相が記憶した位相になった時点で、遮断器2により連系変圧器3を電力系統1に投入する。これによって、連系変圧器3の投入時の過大な突入励磁電流を回避することができる。連系変圧器3の投入後に系統連系インバータ4の運転が開始される。   The above-described initial charging method according to the present invention can be developed so as to be applicable even when the charging AC power supply 7 is not synchronized with the power system 1. For this purpose, the conventional technique disclosed in Patent Document 3 shown in the background art can be used. That is, first, similarly to the above-described initial charging method, using the connection configuration of the charger 15 shown in FIG. Excited from the secondary side. Then, based on the prior art disclosed in Patent Document 3, the charger 15 is opened by the circuit breaker 14 when the charging of the DC capacitor is completed, and the voltage phase of the charger 15 (that is, the voltage of the interconnection transformer 3 when it is opened). (Phase of Vi) is recorded, and when the phase of the voltage Vs of the power system 1 becomes the stored phase, the interconnection transformer 3 is inserted into the power system 1 by the circuit breaker 2. Thereby, an excessive inrush excitation current at the time of turning on the interconnection transformer 3 can be avoided. After the interconnection transformer 3 is turned on, the operation of the grid interconnection inverter 4 is started.

この場合にも、直流コンデンサ15の充電が完了した時点で充電器15は開放されるので、その時点から連系変圧器3の投入時点までの期間に充電器15で損失が発生することはない。それゆえ充電器15は、従来のように同期投入条件確立までの期間の電力損失を見込んだ容量設計をする必要がなく、コンデンサ5の充電電流と連系変圧器3の励磁電流を供給するだけなので格別に安価な充電器とすることができる。   Also in this case, since the charger 15 is opened when the charging of the DC capacitor 15 is completed, no loss occurs in the charger 15 during the period from that time to the time when the interconnection transformer 3 is turned on. . Therefore, it is not necessary for the charger 15 to design the capacity in consideration of the power loss in the period until the synchronous input condition is established as in the conventional case, and only the charging current of the capacitor 5 and the exciting current of the interconnection transformer 3 are supplied. Therefore, it can be a particularly inexpensive charger.

図2は初期充電のための充電器を備えた系統連系用インバータの本発明による他の実施例を示す。充電器15がスイッチと電圧可変手段で構成されている。スイッチは遮断器14(およびコンタクタ13)からなり、電圧可変手段は、ここでは可変変圧器16と絶縁変圧器11とで構成されている。可変変圧器16は、スライダックとも呼ばれ、出力電圧を可変にすることが可能な変圧器である。この種の電圧可変手段は、タップ付き絶縁変圧器で構成することもでき、あるいは整流器とインバータと絶縁変圧器で構成することもできる。   FIG. 2 shows another embodiment according to the present invention of an inverter for grid interconnection provided with a charger for initial charging. The charger 15 is composed of a switch and a voltage variable means. The switch comprises a circuit breaker 14 (and a contactor 13), and the voltage variable means is composed of a variable transformer 16 and an insulation transformer 11 here. The variable transformer 16 is also called a slidac and is a transformer capable of making the output voltage variable. This type of voltage varying means can be composed of a tapped insulation transformer, or can be composed of a rectifier, an inverter, and an insulation transformer.

系統連系用インバータ4を起動する際には、先ずスイッチ13および14を閉じることによって充電器15を投入する。可変変圧器16の出力電圧を零から定格値まで変化させ、絶縁変圧器11で昇圧し、インバータ4内のダイオード9a〜9fを介して直流コンデンサ5を充電する。直流コンデンサ5の充電が完了した時点で可変変圧器16の出力を零に低下させることで連系変圧器3の残留磁束を減少させ、しかる後にスイッチ13および14を開いて充電器15を開放してから、遮断器2を閉じて連系変圧器3を電力系統1に投入する。これによって、連系変圧器3の投入時の過大な突入励磁電流を回避することができる。系用変圧器3の投入後に系統連系インバータ4の運転が開始される。   When starting up the grid interconnection inverter 4, the charger 15 is first turned on by closing the switches 13 and 14. The output voltage of the variable transformer 16 is changed from zero to the rated value, boosted by the insulation transformer 11, and the DC capacitor 5 is charged via the diodes 9 a to 9 f in the inverter 4. When the charging of the DC capacitor 5 is completed, the residual magnetic flux of the interconnection transformer 3 is decreased by reducing the output of the variable transformer 16 to zero, and then the switches 13 and 14 are opened to open the charger 15. After that, the circuit breaker 2 is closed and the interconnection transformer 3 is put into the power system 1. Thereby, an excessive inrush excitation current at the time of turning on the interconnection transformer 3 can be avoided. After the system transformer 3 is turned on, the operation of the grid interconnection inverter 4 is started.

この場合にも、直流コンデンサ15の充電が完了して可変変圧器16の出力を零に低下させた時点で充電器15は開放されるので、充電器15は、従来のように同期投入条件確立までの期間の電力損失を見込んだ容量設計をする必要がなく、コンデンサ5の充電電流と連系変圧器3の励磁電流を供給するだけなので、格別に安価な充電器とすることができる。   Also in this case, the charger 15 is opened when the charging of the DC capacitor 15 is completed and the output of the variable transformer 16 is reduced to zero. It is not necessary to design the capacity in anticipation of power loss in the period up to this time, and only the charging current of the capacitor 5 and the exciting current of the interconnection transformer 3 are supplied, so that a particularly inexpensive charger can be obtained.

1 電力系統
2 遮断器
3 連系変圧器
4 系統連系用インバータ
5 直流コンデンサ
7 充電用交流電源
8a〜8f 半導体スイッチ
9a〜8f ダイオード
10 限流抵抗
11 絶縁変圧器
13 コンタクタ
14 遮断器
15 充電器
16 可変変圧器(スライダック)
DESCRIPTION OF SYMBOLS 1 Electric power system 2 Circuit breaker 3 Connection transformer 4 System connection inverter 5 DC capacitor 7 Charging AC power supply 8a-8f Semiconductor switch 9a-8f Diode 10 Current limiting resistance 11 Insulation transformer 13 Contactor 14 Circuit breaker 15 Charger 16 Variable transformer (Slidac)

Claims (6)

直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと限流抵抗と絶縁変圧器とで構成した充電器の交流出力側を系統連系用インバータの交流側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行うとともに連系変圧器を2次側から励磁し、直流コンデンサの充電完了時点で連系変圧器を電力系統に投入することを特徴とする系統連係用インバータの初期充電方法。   Consists of a voltage-type inverter with a DC capacitor, and is connected to a power system via a connection transformer, such as a reactive power compensator, etc., and includes a switch, a current limiting resistor, and an insulation transformer Connect the AC output side of the charger to the AC side of the grid connection inverter, connect the AC input side of the charger to the AC power supply for charging, and perform initial charging of the DC capacitor by connecting the charger and connect An initial charging method for an inverter for grid connection, wherein the transformer is excited from the secondary side and the grid transformer is inserted into the power system when the charging of the DC capacitor is completed. 直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと限流抵抗と絶縁変圧器とで構成した充電器の交流出力側を系統連系用インバータの交流側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行うとともに連系変圧器を2次側から励磁し、直流コンデンサの充電完了時点で充電器を開放し、その開放したときの充電器の電圧位相を記憶しておき、電力系統の電圧位相が記憶した位相になった時点で連系変圧器を電力系統に投入すること系統連係用インバータの初期充電方法。   Consists of a voltage-type inverter with a DC capacitor, and is connected to a power system via a connection transformer, such as a reactive power compensator, etc., and includes a switch, a current limiting resistor, and an insulation transformer Connect the AC output side of the charger to the AC side of the grid connection inverter, connect the AC input side of the charger to the AC power supply for charging, and perform initial charging of the DC capacitor by connecting the charger and connect Energize the transformer from the secondary side, open the charger when the DC capacitor is fully charged, store the voltage phase of the charger when it is opened, and the voltage phase of the power system becomes the stored phase The initial charging method of the inverter for grid connection is to put the interconnection transformer into the power system at the moment. 直流コンデンサを有する電圧形インバータで構成され、電力系統に連系変圧器を介して連系される無効電力補償装置等の系統連系用インバータにおいて、スイッチと電圧可変手段で構成した充電器の交流出力側を系統連系用インバータの交流出力側に接続し、充電器の交流入力側を充電用交流電源に接続し、充電器の投入により直流コンデンサの初期充電を行った後に、電圧可変手段により充電器の出力電圧を零に低下させてから充電器を開放して、連系変圧器を電力系統に投入すること系統連係用インバータの初期充電方法。   In a grid-connected inverter, such as a reactive power compensator, which is composed of a voltage-type inverter having a DC capacitor and is linked to the power system via a grid transformer, the AC of the charger composed of a switch and voltage variable means Connect the output side to the AC output side of the grid interconnection inverter, connect the AC input side of the charger to the AC power supply for charging, and after charging the DC capacitor by turning on the charger, An initial charging method for an inverter for grid connection, in which the output voltage of the charger is lowered to zero and then the charger is opened, and the grid transformer is inserted into the power system. 前記電圧可変手段が、スライダックと絶縁変圧器で構成されていることを特徴とする請求項3記載の系統連係用インバータの初期充電装置。   4. The initial charging device for an inverter for system linkage according to claim 3, wherein said voltage varying means comprises a slidac and an insulating transformer. 前記電圧可変手段が、タップ付き絶縁変圧器で構成されていることを特徴とする請求項3記載の系統連係用インバータの初期充電装置。   4. The initial charging device for an inverter for system linkage according to claim 3, wherein said voltage varying means is constituted by a tapped insulation transformer. 前記電圧可変手段が、整流器とインバータと絶縁変圧器で構成されていることを特徴とする請求項3記載の系統連係用インバータの初期充電装置。   4. The initial charging device for an inverter for system linkage according to claim 3, wherein said voltage varying means is constituted by a rectifier, an inverter, and an insulating transformer.
JP2014235632A 2014-11-20 2014-11-20 Initial charging method of inverter for grid connection Active JP6531375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014235632A JP6531375B2 (en) 2014-11-20 2014-11-20 Initial charging method of inverter for grid connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235632A JP6531375B2 (en) 2014-11-20 2014-11-20 Initial charging method of inverter for grid connection

Publications (2)

Publication Number Publication Date
JP2016100968A true JP2016100968A (en) 2016-05-30
JP6531375B2 JP6531375B2 (en) 2019-06-19

Family

ID=56078227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235632A Active JP6531375B2 (en) 2014-11-20 2014-11-20 Initial charging method of inverter for grid connection

Country Status (1)

Country Link
JP (1) JP6531375B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915888B1 (en) * 2017-04-27 2018-11-06 건국대학교 산학협력단 Method of operating water resources information and apparatuses performing the same
CN110445219A (en) * 2019-08-21 2019-11-12 深圳睿蚁科技有限公司 A kind of intelligent charger
CN111510030A (en) * 2020-05-21 2020-08-07 华为技术有限公司 Motor drive system and vehicle
CN112305317A (en) * 2020-11-12 2021-02-02 保定天威保变电气股份有限公司 Method for measuring loss of structural part under AC/DC hybrid excitation condition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118441A (en) * 1997-06-26 1999-01-22 Nissin Electric Co Ltd Method of initially charging dc capacitor of inverter
JPH11353969A (en) * 1998-06-09 1999-12-24 Kansai Electric Power Co Inc:The Breaker closing control device
JP2006014445A (en) * 2004-06-24 2006-01-12 Hitachi Ltd Distribution line voltage fluctuation compensator
JP2006129572A (en) * 2004-10-27 2006-05-18 Fuji Electric Systems Co Ltd Device for suppressing rush current in power conversion equipment
JP2012100507A (en) * 2010-11-05 2012-05-24 Nissin Electric Co Ltd Power supply system and power conversion device
JP2012196124A (en) * 2011-02-28 2012-10-11 Toshiba Mitsubishi-Electric Industrial System Corp Magnetic flux control device for transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118441A (en) * 1997-06-26 1999-01-22 Nissin Electric Co Ltd Method of initially charging dc capacitor of inverter
JPH11353969A (en) * 1998-06-09 1999-12-24 Kansai Electric Power Co Inc:The Breaker closing control device
JP2006014445A (en) * 2004-06-24 2006-01-12 Hitachi Ltd Distribution line voltage fluctuation compensator
JP2006129572A (en) * 2004-10-27 2006-05-18 Fuji Electric Systems Co Ltd Device for suppressing rush current in power conversion equipment
JP2012100507A (en) * 2010-11-05 2012-05-24 Nissin Electric Co Ltd Power supply system and power conversion device
JP2012196124A (en) * 2011-02-28 2012-10-11 Toshiba Mitsubishi-Electric Industrial System Corp Magnetic flux control device for transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915888B1 (en) * 2017-04-27 2018-11-06 건국대학교 산학협력단 Method of operating water resources information and apparatuses performing the same
CN110445219A (en) * 2019-08-21 2019-11-12 深圳睿蚁科技有限公司 A kind of intelligent charger
CN110445219B (en) * 2019-08-21 2020-12-04 深圳睿蚁科技有限公司 Intelligent charger
CN111510030A (en) * 2020-05-21 2020-08-07 华为技术有限公司 Motor drive system and vehicle
CN111510030B (en) * 2020-05-21 2022-04-12 华为数字能源技术有限公司 Motor drive system and vehicle
CN112305317A (en) * 2020-11-12 2021-02-02 保定天威保变电气股份有限公司 Method for measuring loss of structural part under AC/DC hybrid excitation condition

Also Published As

Publication number Publication date
JP6531375B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6190059B2 (en) Uninterruptible power system
TWI568139B (en) Uninterruptible power source device
US9337689B2 (en) Power supply system and method for controlling the same
US10326395B2 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
JP6261491B2 (en) Power converter
US7880343B2 (en) Drive isolation transformer controller and method
JP6531375B2 (en) Initial charging method of inverter for grid connection
CN107872090B (en) Energy storage battery pre-charging circuit and pre-charging method
JP2011109801A (en) Initial charging circuit of three-level power conversion device
JP5805118B2 (en) Power converter
EP2945246B1 (en) Voltage adjusting apparatus
JP5288954B2 (en) Uninterruptible power system
JPWO2008084617A1 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP2003070255A (en) Three-level power converter
CN113644829A (en) Pre-charging method of cascade frequency converter and cascade frequency converter
JP2016127782A (en) Power conversion device
JP2013034276A (en) Electric power unit and nuclear reactor control rod control apparatus using the same
JP6618210B2 (en) Uninterruptible power system
US11201539B2 (en) DC link capacitor pre-charge method utilizing series boost converter
WO2017122317A1 (en) Power conversion device
JP2011239581A (en) Power storage device
JPH1118441A (en) Method of initially charging dc capacitor of inverter
JP2006129571A (en) Initial charger for power conversion equipment
JP2003037938A (en) Power conversion system
Serebryakov Developing the algorithm and device for automatic connection of an out-of-phase standby power-supply system without a disruption of load powering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250