JP2016100483A - Epitaxial wafer manufacturing method - Google Patents

Epitaxial wafer manufacturing method Download PDF

Info

Publication number
JP2016100483A
JP2016100483A JP2014236959A JP2014236959A JP2016100483A JP 2016100483 A JP2016100483 A JP 2016100483A JP 2014236959 A JP2014236959 A JP 2014236959A JP 2014236959 A JP2014236959 A JP 2014236959A JP 2016100483 A JP2016100483 A JP 2016100483A
Authority
JP
Japan
Prior art keywords
film thickness
wafer
epitaxial
silicon layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014236959A
Other languages
Japanese (ja)
Other versions
JP6287778B2 (en
Inventor
一成 須田
Kazunari Suda
一成 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014236959A priority Critical patent/JP6287778B2/en
Publication of JP2016100483A publication Critical patent/JP2016100483A/en
Application granted granted Critical
Publication of JP6287778B2 publication Critical patent/JP6287778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an epitaxial wafer having favorable flatness, which reduces a difference in growth rate of an epitaxial layer generated depending on a difference in crystal orientation.SOLUTION: In an epitaxial wafer manufacturing method of epitaxially growing a silicon layer by introducing a material gas to a silicon wafer with a principal surface of (100) or (110), epitaxial growth is performed at a temperature of 950-1150 degrees and at a material gas concentration within a range of 1.0×10-1.0×10mol/l and pressure is reduced to equal to or lower then 200 torr. By doing this, a difference in growth rate caused by a difference in crystal orientation is reduced and an epitaxial wafer with a favorable flatness can be manufactured.SELECTED DRAWING: Figure 4A

Description

本発明は、エピタキシャルウェーハの製造方法に関する。   The present invention relates to an epitaxial wafer manufacturing method.

気相成長法によりエピタキシャル層を成長させるシリコン単結晶基板の表面に原料ガスを導入してエピタキシャル層を成長させたシリコンエピタキシャルウェーハが知られる。このようなエピタキシャルウェーハの製造条件として、例えば、特許文献1〜4には種々の製造条件が開示される。通常のエピタキシャルウェーハでは、原料ガスの濃度を1×10−4〜1×10−2mоl/lにし、気相成長中の反応温度を950〜1150度にして2μm以上のエピタキシャル層を形成するのが一般的である。 A silicon epitaxial wafer is known in which an epitaxial layer is grown by introducing a source gas into the surface of a silicon single crystal substrate on which an epitaxial layer is grown by vapor phase growth. As manufacturing conditions for such an epitaxial wafer, for example, Patent Documents 1 to 4 disclose various manufacturing conditions. In a normal epitaxial wafer, the concentration of the source gas is set to 1 × 10 −4 to 1 × 10 −2 mol / l, the reaction temperature during vapor phase growth is set to 950 to 1150 degrees, and an epitaxial layer of 2 μm or more is formed. Is common.

原料ガスが上記範囲より低濃度になるとエピタキシャル層の成長速度が遅く生産性が低下し、上記範囲より高濃度になるとエピタキシャル層中の欠陥が増加する。また、気相成長中の反応温度が上記範囲より低温になるとエピタキシャル層中の欠陥が増加し、上記範囲より高温になるとスリップの発生や原料ガスの気相反応の影響が強まり、製造条件として相応しくない。よって、上記のような原料ガスの濃度、反応温度でエピタキシャル成長がなされる。   When the concentration of the source gas is lower than the above range, the growth rate of the epitaxial layer is slow and the productivity is lowered, and when the concentration is higher than the above range, defects in the epitaxial layer increase. In addition, when the reaction temperature during vapor phase growth is lower than the above range, defects in the epitaxial layer increase. Absent. Therefore, epitaxial growth is performed at the source gas concentration and reaction temperature as described above.

特公平06−38403号公報Japanese Patent Publication No. 06-38403 特開2000−100737号公報Japanese Patent Laid-Open No. 2000-100731 特開2005−183510号公報JP 2005-183510 A 特開平10−209054号公報Japanese Patent Laid-Open No. 10-209054

近年、直径300mm以上のシリコンウェーハを用いて作製されたエピタキシャルウェーハが微細化された電子デバイスに広く使用されることにともない、エピタキシャルウェーハの平坦度の改善が求められている。   In recent years, with the wide use of epitaxial wafers manufactured using silicon wafers having a diameter of 300 mm or more in miniaturized electronic devices, improvement in the flatness of the epitaxial wafers has been demanded.

このエピタキシャルウェーハの平坦度を悪化させる要因として、ウェーハの表面上における結晶方位の違いより生じる成長速度差が注目される。例えば、主表面が(100)のシリコンウェーハにエピタキシャル層(シリコン層)を成長させる場合を考える。このシリコンウェーハの主表面を上から見て、そのウェーハの中心から外周に向かう<100>方向(結晶方位の基準)におけるウェーハの周縁部ではエピタキシャル層の成長速度が遅くなる。その一方で、その結晶方位の基準(<100>方向)から、そのウェーハの中心を軸に45度ずれた<110>方向におけるウェーハの周縁部ではエピタキシャル層の成長速度が大きくなる。よって、エピタキシャルウェーハの周縁部では、<100>方向と<110>方向の間でエピタキシャル層の膜厚の高低差が増大し、エピタキシャルウェーハの平坦度を悪化させる。これと同様の現象は、主表面が(110)のシリコンウェーハでも生じる。   As a factor that deteriorates the flatness of the epitaxial wafer, attention is paid to a growth rate difference caused by a difference in crystal orientation on the surface of the wafer. For example, consider a case where an epitaxial layer (silicon layer) is grown on a silicon wafer having a main surface of (100). When the main surface of the silicon wafer is viewed from above, the growth rate of the epitaxial layer becomes slow at the peripheral edge of the wafer in the <100> direction (crystal orientation reference) from the center of the wafer toward the outer periphery. On the other hand, the growth rate of the epitaxial layer increases at the peripheral portion of the wafer in the <110> direction, which is deviated by 45 degrees about the center of the wafer from the crystal orientation reference (<100> direction). Therefore, in the peripheral portion of the epitaxial wafer, the difference in thickness of the epitaxial layer between the <100> direction and the <110> direction increases, and the flatness of the epitaxial wafer is deteriorated. A similar phenomenon occurs in a silicon wafer having a main surface of (110).

この結晶方位の違いにより生じるエピタキシャル層の成長速度差は、例えば直径300mm以上のエピタキシャルウェーハでは、次のような領域で特に顕著に現れる。エピタキシャルウェーハの外周端からそのウェーハの中心に向けて内側に2mm入った幅2mmの環状領域(ウェーハの周縁部)で成長速度差が顕著となり、ウェーハの平坦度(サイトフラットネス)に影響を及ぼす。また、気相成長中の反応温度や原料ガス濃度として、従来一般的とされた上述の気相成長中の温度範囲や原料ガスの濃度範囲でもエピタキシャル層の成長速度差が生じ、エピタキシャルウェーハの平坦度に影響を及ぼしている。   The difference in the growth rate of the epitaxial layer caused by this difference in crystal orientation appears particularly prominently in the following regions, for example, in an epitaxial wafer having a diameter of 300 mm or more. A difference in growth rate becomes noticeable in an annular region (peripheral edge of the wafer) having a width of 2 mm that is 2 mm inward from the outer peripheral edge of the epitaxial wafer toward the center of the wafer, and affects the flatness of the wafer (site flatness). . In addition, as the reaction temperature and source gas concentration during vapor phase growth, a difference in the growth rate of the epitaxial layer occurs even in the above-described conventional temperature range during vapor phase growth and concentration range of the source gas, and the epitaxial wafer is flattened. Influences the degree.

本発明の課題は、結晶方位の違いにより生じるエピタキシャル層の成長速度差を低減するとともに、平坦度が良好なエピタキシャルウェーハの製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of an epitaxial wafer with favorable flatness while reducing the growth rate difference of the epitaxial layer produced by the difference in crystal orientation.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のエピタキシャルウェーハの製造方法は、
主表面が(100)又は(110)のシリコンウェーハに原料ガスを導入してシリコン層をエピタキシャル成長するエピタキシャルウェーハの製造方法において、
温度を950〜1150度、原料ガスのガス濃度を1.0×10−4〜1.0×10−2mоl/lの範囲にするとともに、圧力を200tоrr以下にしてエピタキシャル成長をすることを特徴とする。
The method for producing an epitaxial wafer of the present invention includes:
In a method for producing an epitaxial wafer, wherein a raw material gas is introduced into a silicon wafer having a main surface of (100) or (110) to epitaxially grow a silicon layer,
The temperature is set to 950 to 1150 degrees, the gas concentration of the raw material gas is set in the range of 1.0 × 10 −4 to 1.0 × 10 −2 mol / l, and the pressure is set to 200 torr or less for epitaxial growth. To do.

本発明者は、エピタキシャル成長時におけるウェーハ(成長用基板)の周縁部で発生するエピタキシャル層の成長速度差を低減させるため、様々な条件でエピタキシャルウェーハを作製して成長速度差を調査した。この成長速度差を調査するにあたり、主表面が(100)のシリコンウェーハを上から見て、その外周から中心に向けて2mm内側に入った環状地点におけるエピタキシャル層(シリコン層)の膜厚の最大値をT1とした。また、T1の地点をウェーハの中心回りに±45度回転した移動地点の膜厚平均値をT2とし、移動地点をウェーハの中心に向けて3mm移動した地点の膜厚平均値をT3とした。そして、(T1−T2)/T3によりエピタキシャル層の成長速度差を定義した。その結果、成長速度差が0.5%より大きくなると、エピタキシャルウェーハに求められる近年の平坦度の要求に悪影響を及ぼすことが分かった。   The present inventor manufactured epitaxial wafers under various conditions and investigated the growth rate difference in order to reduce the growth rate difference of the epitaxial layer generated at the peripheral portion of the wafer (growth substrate) during epitaxial growth. When investigating this growth rate difference, the maximum thickness of the epitaxial layer (silicon layer) at the annular point entering the inside of 2 mm from the outer periphery to the center when the silicon wafer with the main surface of (100) is viewed from the top. The value was T1. In addition, the film thickness average value at a moving point obtained by rotating the point T1 around ± 45 degrees around the center of the wafer was T2, and the film thickness average value at a point moved 3 mm toward the center of the wafer was T3. And the growth rate difference of the epitaxial layer was defined by (T1-T2) / T3. As a result, it has been found that when the growth rate difference is larger than 0.5%, it has an adverse effect on the recent demand for flatness required for epitaxial wafers.

この成長速度差を0.5%以下に低減させるためには、一般的とされる原料ガスの濃度(1×10−4〜1×10−2mоl/l)、エピタキシャル成長中の反応温度(950〜1150度)を次のように調整すればよい。具体的には、上記範囲内でガス濃度を低濃度にするとともに、反応温度を高くすることで成長速度差を0.5%以下に低減させることは可能である。しかし、単に反応温度と原料ガスのガス濃度のみを調整すると、ウェーハの周縁部の膜厚が全体的に厚くなる傾向があり、エピタキシャルウェーハにおける近年の平坦度の要求を満足するものではない。 In order to reduce this growth rate difference to 0.5% or less, the concentration of a source gas that is generally used (1 × 10 −4 to 1 × 10 −2 mol / l), the reaction temperature during epitaxial growth (950) (˜1150 degrees) may be adjusted as follows. Specifically, it is possible to reduce the growth rate difference to 0.5% or less by lowering the gas concentration within the above range and increasing the reaction temperature. However, if only the reaction temperature and the gas concentration of the source gas are adjusted, the film thickness at the peripheral edge of the wafer tends to increase overall, and this does not satisfy the recent demand for flatness of the epitaxial wafer.

よって、本発明者は、成長用基板の周縁部に形成されたエピタキシャル層の膜厚変動を成長速度差とともに定義し、近年における平坦度の要求を満たすエピタキシャルウェーハを調査した。このような調査にあたり、シリコンウェーハの(100)主表面を上から見て、エピタキシャル層の外周からその中心に向けて2mm内側に入った第1環状地点のエピタキシャル層の膜厚平均値をT4とした。同様に、エピタキシャル層の外周からその中心に向けて5mm内側に入った第2環状地点の膜厚平均値をT5とした。そして、(T4−T5)/T5によりエピタキシャル層の周縁部の膜厚変動を定義した。その結果、常圧でエピタキシャル成長を行うと、成長速度差の低減と膜厚変動の低減を両立するのは困難であるとの事実に本発明者は直面した。   Therefore, the present inventor has defined the film thickness variation of the epitaxial layer formed on the peripheral portion of the growth substrate together with the growth rate difference, and investigated an epitaxial wafer that satisfies the demand for flatness in recent years. In such investigation, when the (100) main surface of the silicon wafer is viewed from above, the average thickness of the epitaxial layer at the first annular point that is 2 mm inside from the outer periphery to the center of the epitaxial layer is T4. did. Similarly, the film thickness average value at the second annular point that entered 5 mm toward the center from the outer periphery of the epitaxial layer was defined as T5. And the film thickness fluctuation | variation of the peripheral part of an epitaxial layer was defined by (T4-T5) / T5. As a result, the present inventors faced the fact that it is difficult to achieve both reduction in the growth rate difference and reduction in film thickness variation when epitaxial growth is performed at normal pressure.

この事実に直面した本発明者は、エピタキシャル成長における成長条件について試行錯誤する中で、エピタキシャル成長における圧力(反応炉内の圧力)が成長速度差と膜厚変動に大きく影響を与えるとの知見を得た。そして、更に鋭意検討を重ねた結果、反応炉内を低圧にすることで成長速度差と膜厚変動の低減を両立できるとの結論に到達した。   In the face of this fact, the present inventor obtained the knowledge that the pressure in the epitaxial growth (pressure in the reactor) greatly affects the growth rate difference and the film thickness variation in trial and error about the growth conditions in the epitaxial growth. . As a result of further intensive studies, the conclusion has been reached that it is possible to achieve both a growth rate difference and a reduction in film thickness variation by reducing the pressure in the reactor.

具体的には、温度を950〜1150度、原料ガスのガス濃度を1.0×10−4〜1.0×10−2mоl/lの範囲にするとともに、圧力を200tоrr以下にしてエピタキシャル成長をすることで、成長速度差と膜厚変動の低減できる。 Specifically, the temperature is set to 950 to 1150 degrees, the gas concentration of the raw material gas is set to a range of 1.0 × 10 −4 to 1.0 × 10 −2 mol / l, and the pressure is set to 200 torr or less for epitaxial growth. By doing so, the growth rate difference and film thickness variation can be reduced.

本発明の実施態様では、シリコンウェーハの主表面が(100)であり、
シリコン層の外周から中心に向けて2mm内側に入った第1環状地点のシリコン層の膜厚最大値をT1とし、主表面を上から見てT1の地点を中心回りに±45度回転した移動地点のシリコン層の膜厚平均値をT2とし、移動地点を中心に向けて3mm移動した地点の膜厚平均値をT3とし、(T1−T2)/T3で定義したシリコン層の成長速度差が0.5%以下であり、
第1環状地点の膜厚平均値をT4とし、第1環状地点から中心に向けて3mm内側に入った第2環状地点の膜厚平均値をT5とし、(T4−T5)/T5で定義したシリコン層の周縁部の膜厚変動の絶対値が1.3%以下にできる。そのため、平坦度が良好なエピタキシャルウェーハを提供できる(良好なフラットネス品質を達成できる)。
In an embodiment of the present invention, the main surface of the silicon wafer is (100),
The maximum thickness of the silicon layer at the first annular point that is 2 mm inward from the outer periphery to the center of the silicon layer is T1, and the main surface is viewed from the top and moved by turning ± 45 degrees around the T1 point. The film thickness average value of the silicon layer at the point is T2, the film thickness average value of the point moved 3 mm toward the center is T3, and the difference in the growth rate of the silicon layer defined by (T1-T2) / T3 is 0.5% or less,
The film thickness average value at the first annular point is defined as T4, and the film thickness average value at the second annular point entering 3 mm toward the center from the first annular point is defined as T5, which is defined by (T4-T5) / T5. The absolute value of film thickness fluctuation at the peripheral edge of the silicon layer can be reduced to 1.3% or less. Therefore, an epitaxial wafer with good flatness can be provided (good flatness quality can be achieved).

また、本発明の別の実施態様では、シリコンウェーハの主表面が(110)であり、
シリコン層の外周から中心に向けて2mm内側に入った第1環状地点のシリコン層の膜厚最大値をT1とし、主表面を上から見てT1の地点を中心回りに±90度回転した移動地点のシリコン層の膜厚平均値をT2とし、移動地点を中心に向けて3mm移動した地点の膜厚平均値をT3とし、(T1−T2)/T3で定義したシリコン層の成長速度差が0.5%以下であり、
第1環状地点の膜厚平均値をT4とし、第1環状地点から中心に向けて3mm内側に入った第2環状地点の膜厚平均値をT5とし、(T4−T5)/T5で定義したシリコン層の周縁部の膜厚変動の絶対値が1.3%以下にできる。そのため、平坦度が良好なエピタキシャルウェーハを提供できる(良好なフラットネス品質を達成できる)。
In another embodiment of the present invention, the main surface of the silicon wafer is (110),
The maximum thickness of the silicon layer at the first annular point that is 2 mm inside from the outer periphery to the center of the silicon layer is T1, and the main surface is viewed from the top and moved by ± 90 degrees around the T1 point. The film thickness average value of the silicon layer at the point is T2, the film thickness average value of the point moved 3 mm toward the center is T3, and the difference in the growth rate of the silicon layer defined by (T1-T2) / T3 is 0.5% or less,
The film thickness average value at the first annular point is defined as T4, and the film thickness average value at the second annular point entering 3 mm toward the center from the first annular point is defined as T5, which is defined by (T4-T5) / T5. The absolute value of film thickness fluctuation at the peripheral edge of the silicon layer can be reduced to 1.3% or less. Therefore, an epitaxial wafer with good flatness can be provided (good flatness quality can be achieved).

更に、本発明の実施態様では、原料ガスはトリクロロシラン又はジクロロシランを有する。また、シリコンウェーハの直径が300mm以上であると膜厚変動及び成長速度差を低減するのに効果的である。   Furthermore, in an embodiment of the present invention, the source gas comprises trichlorosilane or dichlorosilane. Further, when the diameter of the silicon wafer is 300 mm or more, it is effective to reduce the film thickness variation and the growth rate difference.

本発明に使用する気相成長装置の一例を示す模式部分断面図。The typical fragmentary sectional view which shows an example of the vapor phase growth apparatus used for this invention. 主表面が(100)のシリコンウェーハにおける結晶方位(<100>方向と<110>方向)を示すシリコンウェーハの主表面を上から見た平面模式図。The plane schematic diagram which looked at the main surface of the silicon wafer which shows the crystal orientation (<100> direction and <110> direction) in a silicon wafer whose main surface is (100). 主表面が(110)のシリコンウェーハにおける結晶方位(<100>方向と<110>方向)を示すシリコンウェーハの主表面を上から見た平面模式図。The plane schematic diagram which looked at the main surface of the silicon wafer which shows the crystal orientation (<100> direction and <110> direction) in a silicon wafer whose main surface is (110) from the top. エピタキシャルウェーハにおけるエピタキシャル層の膜厚を測定した測定箇所を示すエピタキシャルウェーハの平面模式図。The plane schematic diagram of the epitaxial wafer which shows the measurement location which measured the film thickness of the epitaxial layer in an epitaxial wafer. 実施例1と比較例1におけるエピタキシャル層の成長速度差とエピタキシャル層の膜厚変動を百分率(%)で示した表。The table | surface which showed the growth rate difference of the epitaxial layer in Example 1 and the comparative example 1, and the film thickness fluctuation | variation of the epitaxial layer in percentage (%). 実施例2と比較例2におけるエピタキシャル層の成長速度差とエピタキシャル層の膜厚変動を百分率(%)で示した表。The table | surface which showed the growth rate difference of the epitaxial layer in Example 2 and the comparative example 2, and the film thickness fluctuation | variation of the epitaxial layer in percentage (%). 実施例3と比較例3におけるエピタキシャル層の成長速度差とエピタキシャル層の膜厚変動を百分率(%)で示した表。The table | surface which showed the growth rate difference of the epitaxial layer in Example 3 and Comparative Example 3, and the film thickness fluctuation | variation of the epitaxial layer in percentage (%). 実施例4と比較例4におけるエピタキシャル層の成長速度差とエピタキシャル層の膜厚変動を百分率(%)で示した表。The table | surface which showed the growth rate difference of the epitaxial layer in Example 4 and Comparative Example 4, and the film thickness fluctuation | variation of the epitaxial layer in percentage (%).

図1は本発明で使用される一例の枚葉式の気相成長装置1を示す。気相成長装置1により、シリコン単結晶ウェーハ上にシリコン単結晶膜(エピタキシャル層)が気相成長され、シリコンエピタキシャルウェーハが製造される。シリコン単結晶基板としては、主表面が(100)又は(110)のシリコンウェーハが用いられ、主表面にエピタキシャル層が形成される。   FIG. 1 shows an example of a single wafer type vapor phase growth apparatus 1 used in the present invention. By the vapor phase growth apparatus 1, a silicon single crystal film (epitaxial layer) is vapor phase grown on the silicon single crystal wafer, and a silicon epitaxial wafer is manufactured. As the silicon single crystal substrate, a silicon wafer having a main surface of (100) or (110) is used, and an epitaxial layer is formed on the main surface.

気相成長装置1は、透明石英部材やステンレス等の金属部材等から構成された反応炉2(気相成長炉)を備える。反応炉2の内部にはサセプタ3と、サセプタ3を支持する支持部4と、支持部4を通じてサセプタ3を駆動させる駆動部5を備える。   The vapor phase growth apparatus 1 includes a reaction furnace 2 (vapor phase growth furnace) composed of a transparent quartz member, a metal member such as stainless steel, or the like. The reaction furnace 2 includes a susceptor 3, a support unit 4 that supports the susceptor 3, and a drive unit 5 that drives the susceptor 3 through the support unit 4.

サセプタ3はエピタキシャル層を気相成長させる成長用基板W(例えばシリコン単結晶ウェーハ)を略水平に支持するように円盤状に形成され、表面には凹状に窪んだポケット部3aが備わる。ポケット部3aは、成長用基板Wの直径(例えば300mm)より少し大きく、基板Wの厚みと同程度の深さにサセプタ3の上面からくり貫かれるように形成される。   The susceptor 3 is formed in a disk shape so as to substantially horizontally support a growth substrate W (for example, a silicon single crystal wafer) on which an epitaxial layer is grown in a vapor phase, and has a pocket portion 3a recessed in a concave shape on the surface. The pocket portion 3 a is formed to be slightly larger than the diameter (for example, 300 mm) of the growth substrate W and to be penetrated from the upper surface of the susceptor 3 to a depth similar to the thickness of the substrate W.

支持部4はサセプタ3の裏面側からサセプタ3を略水平に支持するように配置され、鉛直方向に伸びる支柱4aと、支柱4aの上部から斜め上方に延びて先端がサセプタ3裏面の周縁部に接続するアーム4bを備える。   The support portion 4 is disposed so as to support the susceptor 3 substantially horizontally from the back surface side of the susceptor 3, and has a support column 4 a extending in the vertical direction and extending obliquely upward from the upper portion of the support column 4 a, and a leading end at the peripheral portion of the susceptor 3 back surface The arm 4b to connect is provided.

支柱4aの下部には駆動部5が接続され、駆動部5は支柱4aを上下動、軸線O(鉛直方向)回りに回転駆動させることが可能なモーター等である。駆動部5により支柱4aが軸線O回りに回転するとサセプタ3も回転し、駆動部5により支柱4aが上下動するとサセプタ3も上下動する。   The drive unit 5 is connected to the lower part of the support column 4a, and the drive unit 5 is a motor or the like that can move the support column 4a up and down and rotate around the axis O (vertical direction). When the support 4 rotates around the axis O by the drive unit 5, the susceptor 3 also rotates. When the support 4 a moves up and down by the drive unit 5, the susceptor 3 also moves up and down.

反応炉2の水平方向における一端側には、反応炉2内に各種のガスを略水平に導入するガス導入管6が接続される。ガス導入管6は反応炉2内に通じるガス導入口6aから反応炉2内にガスを導入する。ガス導入管6は、気相成長時にはガス導入口6aから反応炉2内に気相成長ガスGを導入する。気相成長ガスGは、シリコン単結晶薄膜の原料となる原料ガスと、原料ガスを希釈するキャリアガスと、薄膜に導電型を付与するドーパントガスを含む。例えば、原料ガスとしてはトリクロロシラン(TCS)又はジクロロシラン(DCS)等のシラン系ガス、キャリアガスとしては水素ガス、ドーパントガスとしてはボロンやリンを含むガスが用いられる。   A gas introduction pipe 6 for introducing various gases into the reaction furnace 2 substantially horizontally is connected to one end side in the horizontal direction of the reaction furnace 2. The gas introduction pipe 6 introduces gas into the reaction furnace 2 from a gas introduction port 6 a communicating with the reaction furnace 2. The gas introduction pipe 6 introduces the vapor growth gas G into the reaction furnace 2 from the gas introduction port 6a at the time of vapor phase growth. The vapor growth gas G includes a source gas that is a raw material of the silicon single crystal thin film, a carrier gas that dilutes the source gas, and a dopant gas that imparts conductivity to the thin film. For example, a silane-based gas such as trichlorosilane (TCS) or dichlorosilane (DCS) is used as the source gas, a hydrogen gas is used as the carrier gas, and a gas containing boron or phosphorus is used as the dopant gas.

ガス導入管6の他端側には、反応炉2内からガス(成長用基板Wを通過した気相成長ガスG等)を排出するガス排出管7が接続される。ガス排出管7は、反応炉2内に通じるガス排出口7aから反応炉2内に導入された気相成長ガスG等を反応炉2の外に排出する。   Connected to the other end of the gas introduction pipe 6 is a gas discharge pipe 7 for discharging a gas (such as a vapor phase growth gas G that has passed through the growth substrate W) from the reaction furnace 2. The gas discharge pipe 7 discharges the vapor phase growth gas G and the like introduced into the reaction furnace 2 from the gas discharge port 7 a communicating with the reaction furnace 2 to the outside of the reaction furnace 2.

反応炉2の上下には、気相成長時に反応炉2内を加熱して反応炉2内の温度を調整できるヒーター8が備わる。   Above and below the reaction furnace 2 are provided heaters 8 that can heat the inside of the reaction furnace 2 and adjust the temperature in the reaction furnace 2 during vapor phase growth.

気相成長時に反応炉2内に導入する原料ガスのガス濃度、気相成長時の反応炉2内の反応温度、気相成長時の反応炉2内の圧力は図示しない制御部により制御される。気相成長時には、制御部により反応炉2内の温度(反応温度)、反応炉2内の原料ガスのガス濃度及び反応炉2内の圧力が調整される。例えば、気相成長時には、反応炉2内の反応温度が950〜1150度の範囲、原料ガスのガス濃度が1.0×10−4〜1.0×10−2mоl/lの範囲に調整され、反応炉2内の圧力が200tоrr以下に減圧される。 The gas concentration of the raw material gas introduced into the reaction furnace 2 during vapor phase growth, the reaction temperature within the reaction furnace 2 during vapor phase growth, and the pressure within the reaction furnace 2 during vapor phase growth are controlled by a control unit (not shown). . At the time of vapor phase growth, the temperature in the reaction furnace 2 (reaction temperature), the gas concentration of the raw material gas in the reaction furnace 2 and the pressure in the reaction furnace 2 are adjusted by the control unit. For example, during vapor phase growth, the reaction temperature in the reaction furnace 2 is adjusted to a range of 950 to 1150 degrees, and the gas concentration of the raw material gas is adjusted to a range of 1.0 × 10 −4 to 1.0 × 10 −2 mol / l. The pressure in the reactor 2 is reduced to 200 torr or less.

以上のように構成された気相成長装置1により成長用基板W(シリコンウェーハ)上にエピタキシャル層(シリコン層)を気相成長してシリコンエピタキシャルウェーハを製造する。主表面が(100)のシリコンウェーハにシリコン層を気相成長する場合、シリコンウェーハ上の特定の箇所でシリコン層の成長速度の差が顕著となる。図2Aは、主表面が(100)のシリコンウェーハを上から見た模式平面図を示し、図2Aを用いてエピタキシャル層(シリコン層)の成長速度差を説明する。図2Aに示すようにシリコンウェーハの中心から外周に向かう<100>方向におけるウェーハの周縁部ではエピタキシャル層の成長速度が遅くなる。その一方で、<100>方向からウェーハの中心を軸に角度θ(45度)ずれた<110>方向におけるウェーハの周縁部ではエピタキシャル層の成長速度が大きくなる。よって、<110>方向のウェーハの周縁部ではエピタキシャル層の膜厚が増大するのに対し、<100>方向のウェーハの周縁部ではエピタキシャル層の膜厚が減少する。それ故、エピタキシャルウェーハの周縁部では、<100>方向と<110>方向の間でエピタキシャル層の膜厚の高低差が増大し、エピタキシャルウェーハの平坦度を悪化させる。   The epitaxial layer (silicon layer) is vapor-phase grown on the growth substrate W (silicon wafer) by the vapor phase growth apparatus 1 configured as described above to manufacture a silicon epitaxial wafer. When a silicon layer is vapor-phase grown on a silicon wafer having a main surface of (100), the difference in the growth rate of the silicon layer becomes significant at specific locations on the silicon wafer. FIG. 2A shows a schematic plan view of a silicon wafer having a main surface of (100) as viewed from above, and the difference in growth rate of the epitaxial layer (silicon layer) will be described with reference to FIG. 2A. As shown in FIG. 2A, the growth rate of the epitaxial layer becomes slow at the peripheral portion of the wafer in the <100> direction from the center of the silicon wafer toward the outer periphery. On the other hand, the growth rate of the epitaxial layer increases at the peripheral edge of the wafer in the <110> direction, which is shifted from the <100> direction by an angle θ (45 degrees) about the center of the wafer. Therefore, the film thickness of the epitaxial layer increases at the peripheral portion of the wafer in the <110> direction, whereas the film thickness of the epitaxial layer decreases at the peripheral portion of the wafer in the <100> direction. Therefore, in the peripheral portion of the epitaxial wafer, the difference in thickness of the epitaxial layer between the <100> direction and the <110> direction increases, and the flatness of the epitaxial wafer is deteriorated.

同様の現象は主表面が(110)のシリコンウェーハにエピタキシャル層(シリコン層)を気相成長する場合でも生じる。但し、シリコンウェーハの主表面が(110)であるため、図2Bに示すように<100>方向と<110>方向はウェーハの中心回りに角度α(90度)ずれる。   A similar phenomenon occurs even when an epitaxial layer (silicon layer) is vapor-phase grown on a silicon wafer having a main surface of (110). However, since the main surface of the silicon wafer is (110), as shown in FIG. 2B, the <100> direction and the <110> direction are shifted by an angle α (90 degrees) around the center of the wafer.

本発明者の知見によると、平坦度が良好なエピタキシャルウェーハを作製するには、シリコンウェーハの周縁部におけるエピタキシャル層の成長速度差及び膜厚変動を両方とも低減させる必要がある。この成長速度差と膜厚変動は次のように定義される。   According to the knowledge of the present inventor, in order to produce an epitaxial wafer with good flatness, it is necessary to reduce both the growth rate difference and film thickness variation of the epitaxial layer at the peripheral edge of the silicon wafer. This growth rate difference and film thickness variation are defined as follows.

図3に示すように主表面が(100)のシリコンウェーハの外周Cから中心C0に向けて2mm内側に入った環状地点C1におけるエピタキシャル層の膜厚の最大値をT1(T1の地点をPT1)とした。また、シリコンウェーハを主表面から見てT1の地点PT1をそのウェーハの中心C0回りに±45度(シリコンウェーハの主表面が(110)ならば±90度)回転した移動地点P1、P2の膜厚平均値をT2とした。更に、移動地点P1、P2を中心C0に向けて3mm移動した地点P3、P4の膜厚平均値をT3とした。そして、(T1−T2)/T3によりエピタキシャル層の成長速度差D1を定義した。なお、膜厚平均値T2、T3はいずれもエピタキシャル層(シリコン層)の膜厚の平均値である。 As shown in FIG. 3, the maximum value of the film thickness of the epitaxial layer at the annular point C1 that enters 2 mm from the outer periphery C of the silicon wafer having a main surface of (100) toward the center C0 is defined as T1 (T1 is defined as P T1 ). Further, when the silicon wafer is viewed from the main surface, the point P T1 of T1 is moved around the center C0 of the wafer by ± 45 degrees (± 90 degrees if the main surface of the silicon wafer is (110)) and the moving points P1 and P2 are rotated. The film thickness average value was T2. Furthermore, the film thickness average value of the points P3 and P4 moved 3 mm from the moving points P1 and P2 toward the center C0 was defined as T3. Then, the growth rate difference D1 of the epitaxial layer was defined by (T1-T2) / T3. The film thickness average values T2 and T3 are both average film thickness values of the epitaxial layer (silicon layer).

また、第1環状地点C1のエピタキシャル層の膜厚平均値をT4とし、外周Cから中心C0に向けて5mm(第1環状地点C1から中心C0に向けて3mm)内側に入った第2環状地点C2の膜厚平均値をT5とした。そして、(T4−T5)/T5によりエピタキシャル層の周縁部の膜厚変動D2を定義した。   The average thickness of the epitaxial layer at the first annular point C1 is T4, and the second annular point is located 5 mm from the outer periphery C toward the center C0 (3 mm from the first annular point C1 toward the center C0). The film thickness average value of C2 was set to T5. And the film thickness fluctuation | variation D2 of the peripheral part of an epitaxial layer was defined by (T4-T5) / T5.

本発明者の知見によれば、従来一般的とされたエピタキシャル成長中の原料ガスの濃度(1×10−4〜1×10−2mоl/l)及び反応温度(950〜1150度)では、成長速度差D1と膜厚変動D2を低減させることが難しい。そこで、本発明者は、エピタキシャル成長時の圧力(反応炉2内の圧力)を調整することで、成長速度差D1と膜厚変動D2(膜厚変動の絶対値)をともに低減させ、平坦度が良好なエピタキシャルウェーハを作製できることを見出した。 According to the knowledge of the present inventor, at the concentration (1 × 10 −4 to 1 × 10 −2 mol / l) and the reaction temperature (950 to 1150 degrees) of the raw material gas during the epitaxial growth, which has been generally used conventionally, the growth is performed. It is difficult to reduce the speed difference D1 and the film thickness variation D2. Therefore, the present inventor reduces both the growth rate difference D1 and the film thickness fluctuation D2 (absolute value of film thickness fluctuation) by adjusting the pressure during epitaxial growth (pressure in the reaction furnace 2), and the flatness is reduced. It has been found that a good epitaxial wafer can be produced.

本発明の効果を確認するために以下に示す実験を行った。   In order to confirm the effect of the present invention, the following experiment was conducted.

(実施例)
実施例では、気相成長装置1により直径300mmのP型シリコン単結晶ウェーハ上にシリコン層を成膜し、シリコンエピタキシャルウェーハを作製した。そして、作製したエピタキシャルウェーハの成長速度差D1と膜厚変動D2を測定し、成長速度差D1と膜厚変動D2を百分率(%)で表した。即ち、測定した成長速度差D1及び膜厚変動D2の値にそれぞれ100を乗じた値を成長速度差の測定値、膜厚変動の測定値とした。
(Example)
In the example, a silicon layer was formed on a P-type silicon single crystal wafer having a diameter of 300 mm by the vapor phase growth apparatus 1 to produce a silicon epitaxial wafer. And the growth rate difference D1 and the film thickness fluctuation | variation D2 of the produced epitaxial wafer were measured, and the growth speed difference D1 and the film thickness fluctuation | variation D2 were represented by percentage (%). That is, a value obtained by multiplying the measured growth rate difference D1 and film thickness variation D2 by 100 was used as a measured value for growth rate difference and a measured value for film thickness variation.

実施例1では、主表面が(100)のシリコン単結晶ウェーハを用いるとともに、原料ガスにTCSを用いてエピタキシャル成長を行った。また、エピタキシャル成長中の原料ガスのガス濃度を9.4×10−4mоl/l、反応温度を1080度、及び反応炉2内の圧力を200tоrrにしてエピタキシャル成長を行った。同様に反応炉2内の圧力を100tоrrにした状態でもエピタキシャルウェーハを作製した。反応炉2内の圧力が200tоrrでは、成長速度差が0.49%、膜厚変動が−1.18%となった。また、反応炉2内の圧力が100tоrrでは、成長速度差が0.42%、膜厚変動が−0.80%となった。 In Example 1, a silicon single crystal wafer having a main surface of (100) was used, and epitaxial growth was performed using TCS as a source gas. Further, the epitaxial growth was performed with the gas concentration of the source gas during the epitaxial growth being 9.4 × 10 −4 mol / l, the reaction temperature being 1080 ° C., and the pressure in the reactor 2 being 200 torr. Similarly, an epitaxial wafer was produced even when the pressure in the reactor 2 was 100 torr. When the pressure in the reactor 2 was 200 torr, the growth rate difference was 0.49% and the film thickness variation was -1.18%. When the pressure in the reactor 2 was 100 torr, the growth rate difference was 0.42% and the film thickness variation was -0.80%.

実施例2では、実施例1の原料ガスをTCSからDCSに代える以外は同じ条件でエピタキシャルウェーハの作製を行った。反応炉2内の圧力が200tоrrでは、成長速度差が0.47%、膜厚変動が−1.14%となった。また、反応炉2内の圧力が100tоrrでは、成長速度差が0.41%、膜厚変動が−0.78%となった。   In Example 2, an epitaxial wafer was produced under the same conditions except that the source gas of Example 1 was changed from TCS to DCS. When the pressure in the reactor 2 was 200 torr, the growth rate difference was 0.47% and the film thickness variation was -1.14%. When the pressure in the reactor 2 was 100 torr, the growth rate difference was 0.41% and the film thickness variation was -0.78%.

実施例3では、実施例1の主表面が(100)のシリコン単結晶ウェーハを主表面が(110)のシリコン単結晶ウェーハに代える以外は同じ条件でエピタキシャルウェーハの作製を行った。反応炉2内の圧力が200tоrrでは、成長速度差が0.48%、膜厚変動が−1.25%となった。また、反応炉内の圧力が100tоrrでは、成長速度差が0.39%、膜厚変動が−0.88%となった。   In Example 3, an epitaxial wafer was manufactured under the same conditions except that the silicon single crystal wafer having the main surface of (100) in Example 1 was replaced with the silicon single crystal wafer having the main surface of (110). When the pressure in the reactor 2 was 200 torr, the growth rate difference was 0.48%, and the film thickness variation was -1.25%. When the pressure in the reactor was 100 torr, the growth rate difference was 0.39% and the film thickness variation was -0.88%.

実施例4では、実施例3の原料ガスをTCSからDCSに代える以外は同じ条件でエピタキシャルウェーハの作製を行った。反応炉2内の圧力が200tоrrでは、成長速度差が0.48%であり、膜厚変動が−1.22%となった。また、反応炉2内の圧力が100tоrrでは、成長速度差が0.39%、膜厚変動が−0.85%となった。   In Example 4, an epitaxial wafer was produced under the same conditions except that the raw material gas of Example 3 was changed from TCS to DCS. When the pressure in the reactor 2 was 200 torr, the growth rate difference was 0.48%, and the film thickness variation was −1.22%. When the pressure in the reactor 2 was 100 torr, the growth rate difference was 0.39% and the film thickness variation was -0.85%.

(比較例)
比較例として、反応炉2内の圧力以外は、実施例1〜4と同様にしてシリコンエピタキシャルウェーハを作製した。比較例1では、実施例1の反応炉2内の圧力200tоrr、100tоrrを760tоrr、400tоrrに代える以外は同じ条件でエピタキシャルウェーハを作製した。反応炉2内の圧力が760tоrrでは、成長速度差が1.32%、膜厚変動が−1.94%となった。また、反応炉2内の圧力が400tоrrでは、成長速度差が0.62%、膜厚変動が−1.64%となった。
(Comparative example)
As a comparative example, a silicon epitaxial wafer was produced in the same manner as in Examples 1 to 4 except for the pressure in the reaction furnace 2. In Comparative Example 1, an epitaxial wafer was produced under the same conditions except that the pressures 200 torr and 100 torr in the reaction furnace 2 of Example 1 were replaced with 760 torr and 400 torr. When the pressure in the reactor 2 was 760 torr, the growth rate difference was 1.32% and the film thickness variation was -1.94%. When the pressure in the reactor 2 was 400 torr, the growth rate difference was 0.62% and the film thickness variation was -1.64%.

比較例2では、実施例2の反応炉2内の圧力200tоrr、100tоrrを760tоrr、400tоrrに代える以外は同じ条件でエピタキシャルウェーハを作製した。反応炉2内の圧力が760tоrrでは、成長速度差が1.24%、膜厚変動が−1.95%となった。また、反応炉2内の圧力が400tоrrでは、成長速度差が0.60%であり、膜厚変動が−1.61%となった。   In Comparative Example 2, an epitaxial wafer was produced under the same conditions except that the pressures 200 torr and 100 torr in the reaction furnace 2 of Example 2 were changed to 760 torr and 400 torr. When the pressure in the reactor 2 was 760 torr, the growth rate difference was 1.24% and the film thickness variation was -1.95%. When the pressure in the reactor 2 was 400 torr, the growth rate difference was 0.60%, and the film thickness variation was −1.61%.

比較例3では、実施例3の反応炉2内の圧力200tоrr、100tоrrを760tоrr、400tоrrに代える以外は同じ条件でエピタキシャルウェーハを作製した。反応炉2内の圧力が760tоrrでは、成長速度差が1.22%、膜厚変動が−1.98%となった。また、反応炉2内の圧力が400tоrrでは、成長速度差が0.61%、膜厚変動が−1.71%となった。   In Comparative Example 3, an epitaxial wafer was produced under the same conditions except that the pressures 200 torr and 100 torr in the reaction furnace 2 of Example 3 were replaced with 760 torr and 400 torr. When the pressure in the reactor 2 was 760 torr, the growth rate difference was 1.22% and the film thickness variation was -1.98%. When the pressure in the reactor 2 was 400 torr, the growth rate difference was 0.61%, and the film thickness variation was -1.71%.

比較例4では、実施例4の反応炉2内の圧力200tоrr、100tоrrを760tоrr、400tоrrに代える以外は同じ条件でエピタキシャルウェーハを作製した。反応炉2内の圧力が760tоrrでは、成長速度差が1.18%、膜厚変動が−1.98%となった。また、反応炉2内の圧力が400tоrrでは、成長速度差が0.61%、膜厚変動が−1.70%となった。   In Comparative Example 4, an epitaxial wafer was produced under the same conditions except that the pressures 200 torr and 100 torr in the reactor 2 of Example 4 were changed to 760 torr and 400 torr. When the pressure in the reactor 2 was 760 torr, the growth rate difference was 1.18% and the film thickness variation was -1.98%. When the pressure in the reactor 2 was 400 torr, the growth rate difference was 0.61% and the film thickness variation was -1.70%.

図4A〜Dは、実施例1〜4と比較例1〜4の成長速度差D1と膜厚変動D2を示す。図4Aでは、実施例1と比較例1が対となったデータが示される。図4Bでは実施例2と比較例2、図4Cでは実施例3と比較例3、図4Dでは実施例4と比較例4が対となったデータが示される。図4A〜Dに示すように反応炉2内の圧力を200tоrr以下にすることで成長速度差が0.5%以下であるとともに、膜厚変動の絶対値が1.3%以下となり、平坦度が良好なエピタキシャルウェーハを提供できる。   4A to 4D show the growth rate difference D1 and film thickness variation D2 of Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 4A shows data in which Example 1 and Comparative Example 1 are paired. FIG. 4B shows data obtained by pairing Example 2 and Comparative Example 2, FIG. 4C shows Example 3 and Comparative Example 3, and FIG. 4D shows data obtained by pairing Example 4 and Comparative Example 4. As shown in FIGS. 4A to 4D, when the pressure in the reaction furnace 2 is set to 200 torr or less, the difference in growth rate is 0.5% or less, and the absolute value of the film thickness variation is 1.3% or less. Can provide a good epitaxial wafer.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1 気相成長装置 2 反応炉
3 サセプタ 4 支持部
5 駆動部 O 軸線
W 成長用基板 C 外周
C0 中心 C1 第1環状地点
C2 第2環状地点
DESCRIPTION OF SYMBOLS 1 Vapor growth apparatus 2 Reactor 3 Susceptor 4 Support part 5 Drive part O Axis W Growth substrate C Outer periphery C0 Center C1 First annular point C2 Second annular point

Claims (5)

主表面が(100)又は(110)のシリコンウェーハに原料ガスを導入してシリコン層をエピタキシャル成長するエピタキシャルウェーハの製造方法において、
温度を950〜1150度、前記原料ガスのガス濃度を1.0×10−4〜1.0×10−2mоl/lの範囲にするとともに、圧力を200tоrr以下にして前記エピタキシャル成長をすることを特徴とするエピタキシャルウェーハの製造方法。
In a method for producing an epitaxial wafer, wherein a raw material gas is introduced into a silicon wafer having a main surface of (100) or (110) to epitaxially grow a silicon layer,
The epitaxial growth is performed at a temperature of 950 to 1150 ° C., a gas concentration of the raw material gas in a range of 1.0 × 10 −4 to 1.0 × 10 −2 mol / l, and a pressure of 200 torr or less. An epitaxial wafer manufacturing method characterized by the above.
前記シリコンウェーハの主表面が(100)であり、
前記シリコン層の外周から中心に向けて2mm内側に入った第1環状地点の前記シリコン層の膜厚最大値をT1とし、前記主表面を上から見て前記T1の地点を前記中心回りに±45度回転した移動地点の前記シリコン層の膜厚平均値をT2とし、前記移動地点を前記中心に向けて3mm移動した地点の前記膜厚平均値をT3とし、(T1−T2)/T3で定義した前記シリコン層の成長速度差が0.5%以下であり、
前記第1環状地点の前記膜厚平均値をT4とし、前記第1環状地点から前記中心に向けて3mm内側に入った第2環状地点の前記膜厚平均値をT5とし、(T4−T5)/T5で定義した前記シリコン層の周縁部の膜厚変動の絶対値が1.3%以下である請求項1に記載のエピタキシャルウェーハの製造方法。
The main surface of the silicon wafer is (100),
The maximum value of the thickness of the silicon layer at the first annular point entering 2 mm from the outer periphery to the center of the silicon layer is T1, and the point of T1 around the center when the main surface is viewed from above is ± The film thickness average value of the silicon layer at the moving point rotated 45 degrees is T2, and the film thickness average value at the point moved 3 mm toward the center is T3, and (T1-T2) / T3 The defined growth rate difference of the silicon layer is 0.5% or less,
The film thickness average value of the first annular point is T4, and the film thickness average value of the second annular point entering 3 mm from the first annular point toward the center is T5, and (T4-T5) 2. The method for producing an epitaxial wafer according to claim 1, wherein an absolute value of a film thickness variation at a peripheral portion of the silicon layer defined by / T5 is 1.3% or less.
前記シリコンウェーハの主表面が(110)であり、
前記シリコン層の外周から中心に向けて2mm内側に入った第1環状地点の前記シリコン層の膜厚最大値をT1とし、前記主表面を上から見て前記T1の地点を前記中心回りに±90度回転した移動地点の前記シリコン層の膜厚平均値をT2とし、前記移動地点を前記中心に向けて3mm移動した地点の前記膜厚平均値をT3とし、(T1−T2)/T3で定義した前記シリコン層の成長速度差が0.5%以下であり、
前記第1環状地点の前記膜厚平均値をT4とし、前記第1環状地点から前記中心に向けて3mm内側に入った第2環状地点の前記膜厚平均値をT5とし、(T4−T5)/T5で定義した前記シリコン層の周縁部の膜厚変動の絶対値が1.3%以下である請求項1に記載のエピタキシャルウェーハの製造方法。
The main surface of the silicon wafer is (110),
The maximum value of the thickness of the silicon layer at the first annular point entering 2 mm from the outer periphery to the center of the silicon layer is T1, and the point of T1 around the center when the main surface is viewed from above is ± The film thickness average value of the silicon layer at the moving point rotated 90 degrees is T2, and the film thickness average value at the point moved 3 mm toward the center is T3, and (T1-T2) / T3 The defined growth rate difference of the silicon layer is 0.5% or less,
The film thickness average value of the first annular point is T4, and the film thickness average value of the second annular point entering 3 mm from the first annular point toward the center is T5, and (T4-T5) 2. The method for producing an epitaxial wafer according to claim 1, wherein an absolute value of a film thickness variation at a peripheral portion of the silicon layer defined by / T5 is 1.3% or less.
前記原料ガスはトリクロロシラン又はジクロロシランを有する請求項1ないし3のいずれか1項に記載のエピタキシャルウェーハの製造方法。   The method for producing an epitaxial wafer according to any one of claims 1 to 3, wherein the source gas includes trichlorosilane or dichlorosilane. 前記シリコンウェーハの直径が300mm以上である請求項1ないし4のいずれか1項に記載のエピタキシャルウェーハの製造方法。   The method for manufacturing an epitaxial wafer according to claim 1, wherein the silicon wafer has a diameter of 300 mm or more.
JP2014236959A 2014-11-21 2014-11-21 Epitaxial wafer manufacturing method Active JP6287778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236959A JP6287778B2 (en) 2014-11-21 2014-11-21 Epitaxial wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236959A JP6287778B2 (en) 2014-11-21 2014-11-21 Epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2016100483A true JP2016100483A (en) 2016-05-30
JP6287778B2 JP6287778B2 (en) 2018-03-07

Family

ID=56077496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236959A Active JP6287778B2 (en) 2014-11-21 2014-11-21 Epitaxial wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP6287778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256576B1 (en) * 2016-11-17 2018-01-10 株式会社Sumco Epitaxial wafer and method for manufacturing the same
JP2021082641A (en) * 2019-11-15 2021-05-27 信越半導体株式会社 Manufacturing method for epitaxial wafer and epitaxial wafer
CN113544817A (en) * 2018-12-27 2021-10-22 胜高股份有限公司 Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319093A (en) * 1999-05-07 2000-11-21 Toshiba Ceramics Co Ltd Vapor growing method
JP2007294942A (en) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 Method of manufacturing epitaxial wafer and production apparatus
JP2009270143A (en) * 2008-05-02 2009-11-19 Nuflare Technology Inc Susceptor, semiconductor manufacturing apparatus, and semiconductor method for manufacturing
JP2011018739A (en) * 2009-07-08 2011-01-27 Sumco Corp Epitaxial wafer and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319093A (en) * 1999-05-07 2000-11-21 Toshiba Ceramics Co Ltd Vapor growing method
JP2007294942A (en) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 Method of manufacturing epitaxial wafer and production apparatus
JP2009270143A (en) * 2008-05-02 2009-11-19 Nuflare Technology Inc Susceptor, semiconductor manufacturing apparatus, and semiconductor method for manufacturing
JP2011018739A (en) * 2009-07-08 2011-01-27 Sumco Corp Epitaxial wafer and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256576B1 (en) * 2016-11-17 2018-01-10 株式会社Sumco Epitaxial wafer and method for manufacturing the same
JP2018082072A (en) * 2016-11-17 2018-05-24 株式会社Sumco Epitaxial wafer and method of manufacturing the same
CN113544817A (en) * 2018-12-27 2021-10-22 胜高股份有限公司 Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
JP2021082641A (en) * 2019-11-15 2021-05-27 信越半導体株式会社 Manufacturing method for epitaxial wafer and epitaxial wafer
JP7457486B2 (en) 2019-11-15 2024-03-28 信越半導体株式会社 Method for manufacturing epitaxial wafer

Also Published As

Publication number Publication date
JP6287778B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
TWI727849B (en) Growth method of β-Ga2O3 system single crystal film and crystal laminated structure
JP6097681B2 (en) SiC epitaxial wafer manufacturing apparatus and SiC epitaxial wafer manufacturing method
TWI725910B (en) Wafer, epitaxial wafer and manufacturing method of the same
WO2017043282A1 (en) Method for producing sic epitaxial wafer and apparatus for producing sic epitaxial wafer
JP5910801B1 (en) Epitaxial wafer and method for manufacturing the same
JP6287778B2 (en) Epitaxial wafer manufacturing method
JPH05211126A (en) Epitaxial growth furnace
JP2014154666A (en) Silicon carbide semiconductor substrate manufacturing method and silicon carbide semiconductor device manufacturing method
JP6601956B2 (en) Wafer support, SiC epitaxial wafer manufacturing apparatus and method including the same
WO2019044392A1 (en) Vapor-phase deposition method
JP2009147105A (en) Epitaxial growth method
CN102644106B (en) Method for controlling uniform-thickness growth of epitaxial layer of single-wafer furnace
JP2010037157A (en) Film deposition method of single crystal
JP2015198213A (en) Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same
JP2016111043A (en) Wafer support table, chemical vapor deposition device, and epitaxial wafer
JP5589867B2 (en) Manufacturing method of silicon epitaxial wafer
JP2005072118A (en) Epitaxial growth device
JP2012094615A (en) Deposition method for silicon oxide film and manufacturing method for silicon epitaxial wafer
JP2013055231A (en) Epitaxial wafer manufacturing method
JP2012009581A (en) Method of manufacturing silicon epitaxial wafer
JP6117522B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP7457486B2 (en) Method for manufacturing epitaxial wafer
JP2010040607A (en) Susceptor for epitaxial growth and method of manufacturing epitaxial wafer
JP5942939B2 (en) Epitaxial wafer manufacturing method
JP6196859B2 (en) Wafer mounting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250