JP2016099094A - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP2016099094A
JP2016099094A JP2014238601A JP2014238601A JP2016099094A JP 2016099094 A JP2016099094 A JP 2016099094A JP 2014238601 A JP2014238601 A JP 2014238601A JP 2014238601 A JP2014238601 A JP 2014238601A JP 2016099094 A JP2016099094 A JP 2016099094A
Authority
JP
Japan
Prior art keywords
solution
pressure
low
regenerator
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238601A
Other languages
Japanese (ja)
Other versions
JP6463954B2 (en
Inventor
浩伸 川村
Hironobu Kawamura
浩伸 川村
藤居 達郎
Tatsuro Fujii
達郎 藤居
武田 伸之
Nobuyuki Takeda
伸之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014238601A priority Critical patent/JP6463954B2/en
Publication of JP2016099094A publication Critical patent/JP2016099094A/en
Application granted granted Critical
Publication of JP6463954B2 publication Critical patent/JP6463954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a two-stage absorption cycle absorption refrigerator that can operate continuously even if a solution flows into a high-pressure side cycle from a low-pressure side cycle.SOLUTION: An absorption refrigerator comprises: a low-pressure side cycle including an evaporator, a low-pressure absorber, and a low-pressure regenerator; and a high-pressure side cycle including a high-pressure absorber, a high-pressure regenerator, and a condenser. The absorption refrigerator has a structure in which refrigerant vapor generated from the low-pressure regenerator is absorbed in a solution of the high-pressure absorber, and performs control so that the liquid level of a solution stored in a bottom part of the low-pressure regenerator is kept at a predetermined value or higher.SELECTED DRAWING: Figure 1

Description

本発明は、2つの再生器へ熱源媒体を供給する二段吸収サイクルの吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having a two-stage absorption cycle for supplying a heat source medium to two regenerators.

二段吸収サイクルの吸収式冷凍機は、蒸発器、低圧吸収器及び低圧再生器からなる低圧側サイクルと、高圧吸収器、高圧再生器及び凝縮器からなる高圧側サイクルと、を含み、低圧再生器において熱源媒体で溶液を加熱し蒸発した冷媒蒸気を、高圧吸収器の溶液に吸収させることで低圧側サイクルと高圧側サイクルを連結したサイクルとなっている。二段吸収サイクルの吸収式冷凍機は、一般に、単効用の吸収式冷凍機に比べて低温の熱源で駆動できることが知られている。   The absorption refrigerator of the two-stage absorption cycle includes a low-pressure side cycle consisting of an evaporator, a low-pressure absorber and a low-pressure regenerator, and a high-pressure side cycle consisting of a high-pressure absorber, a high-pressure regenerator and a condenser, and low-pressure regeneration The refrigerant vapor obtained by heating and evaporating the solution with the heat source medium in the vessel is absorbed into the solution of the high pressure absorber, thereby connecting the low pressure side cycle and the high pressure side cycle. It is known that an absorption refrigerator having a two-stage absorption cycle can be driven by a heat source having a temperature lower than that of a single-effect absorption refrigerator.

特開2004−211979号公報(特許文献1)には、二段吸収サイクルの吸収式冷凍機として、低圧側サイクルとなる低圧吸収器と低圧再生器とを循環する溶液と、高圧側サイクルとなる高圧吸収器と高圧再生器とを循環する溶液とが、混合することなく独立して高圧側サイクル及び低圧側サイクルを循環するサイクルフロー図が記載されている。   In JP 2004-211979 (Patent Document 1), as an absorption refrigerator of a two-stage absorption cycle, a solution circulating through a low-pressure absorber and a low-pressure regenerator serving as a low-pressure side cycle and a high-pressure side cycle are disclosed. A cycle flow diagram is described in which the solution circulating through the high-pressure absorber and the high-pressure regenerator circulates independently through the high-pressure side cycle and the low-pressure side cycle without mixing.

特開2004−211979号公報JP 2004-211979 A

二段吸収サイクルでは、低圧吸収器と低圧再生器とを循環する低圧側サイクルの溶液と、高圧吸収器と高圧再生器とを循環する高圧側サイクルの溶液とが、独立して循環している。そのため、冷媒を水、溶液を臭化リチウム水溶液とした場合、運転条件によって溶液濃度が変化しても、臭化リチウムの量は変化しない。つまり、低圧側サイクルと高圧側サイクルの溶液濃度は運転条件によって決まり、蒸発器内に溜められる冷媒量は溶液濃度によって調整され変化することになる。したがって、二段吸収サイクルの吸収式冷凍機では、運転条件によって溶液濃度が変化しても問題ないように冷媒量及び溶液量が決定され封入される。   In the two-stage absorption cycle, the solution in the low-pressure side cycle circulating through the low-pressure absorber and the low-pressure regenerator and the solution in the high-pressure side cycle circulating through the high-pressure absorber and the high-pressure regenerator are circulated independently. . Therefore, when the refrigerant is water and the solution is a lithium bromide aqueous solution, the amount of lithium bromide does not change even if the solution concentration changes depending on the operating conditions. That is, the solution concentration of the low-pressure side cycle and the high-pressure side cycle is determined by the operating conditions, and the amount of refrigerant stored in the evaporator is adjusted and changed according to the solution concentration. Therefore, in the absorption refrigerator of the two-stage absorption cycle, the refrigerant amount and the solution amount are determined and sealed so that there is no problem even if the solution concentration changes depending on the operating conditions.

一方、低圧側サイクルと高圧側サイクルを連結している低圧再生器と高圧吸収器では、低圧再生器で蒸発した冷媒蒸気が高圧吸収器内の溶液に吸収される。一般に、低圧再生器及び高圧吸収器の内部は、複数本の伝熱管を有する熱交換器が収容され、熱交換器の上部に配置される散布ユニットから溶液が散布されるようになっている。散布された溶液は、熱交換器の上部から伝熱管の外面の上部に流下し、伝熱管の外面の下部から離脱することを繰り返すため、細かい液滴が生じる。このとき、冷凍能力を増加させる条件では、冷媒蒸気量が増加するため、冷媒蒸気の流速が増加し、低圧再生器で生じた細かい液滴が冷媒蒸気流に随伴して高圧吸収器内に流入することが考えられる。   On the other hand, in the low pressure regenerator and the high pressure absorber connecting the low pressure side cycle and the high pressure side cycle, the refrigerant vapor evaporated in the low pressure regenerator is absorbed by the solution in the high pressure absorber. Generally, a heat exchanger having a plurality of heat transfer tubes is accommodated inside the low-pressure regenerator and the high-pressure absorber, and the solution is sprayed from a spraying unit disposed on the top of the heat exchanger. Since the sprayed solution repeatedly flows down from the upper part of the heat exchanger to the upper part of the outer surface of the heat transfer tube and separates from the lower part of the outer surface of the heat transfer tube, fine droplets are generated. At this time, under the condition of increasing the refrigerating capacity, the amount of refrigerant vapor increases, so the flow velocity of refrigerant vapor increases, and fine droplets generated in the low pressure regenerator flow into the high pressure absorber along with the refrigerant vapor flow. It is possible to do.

低圧側サイクルの溶液が高圧側サイクルに流入すると、低圧側サイクルでは臭化リチウム量が減少するため濃度を維持しようと溶液量が減少し、高圧側サイクルでは臭化リチウム量が増加するため濃度を維持しようと溶液量が増加する。   When the solution in the low-pressure side cycle flows into the high-pressure side cycle, the amount of lithium bromide decreases in the low-pressure side cycle, so the amount of solution decreases to maintain the concentration, and in the high-pressure side cycle, the amount of lithium bromide increases, so the concentration increases. Increased solution volume to maintain.

このため、低圧側サイクルでは、徐々に溶液量が減少し、低圧再生器や低圧吸収器において溶液不足によって液面が低下し連続した運転ができなくなることが考えられる。   For this reason, in the low-pressure side cycle, the amount of solution gradually decreases, and it is considered that the liquid level is lowered due to a lack of solution in the low-pressure regenerator or low-pressure absorber, and continuous operation cannot be performed.

本発明の目的は、低圧側サイクルから高圧側サイクルに溶液が流入しても、連続した運転が可能な二段吸収サイクルの吸収式冷凍機を得ることにある。   An object of the present invention is to obtain an absorption refrigerator having a two-stage absorption cycle capable of continuous operation even when a solution flows from the low pressure side cycle to the high pressure side cycle.

本発明の吸収式冷凍機は、蒸発器、低圧吸収器及び低圧再生器を含む低圧側サイクルと、高圧吸収器、高圧再生器及び凝縮器を含む高圧側サイクルと、を備え、低圧再生器から発生する冷媒蒸気は、高圧吸収器の溶液に吸収される構成を有し、低圧再生器の底部に溜められる溶液の液面高さが所定値以上に維持されるように制御する。   The absorption refrigerator of the present invention includes a low-pressure side cycle including an evaporator, a low-pressure absorber and a low-pressure regenerator, and a high-pressure side cycle including a high-pressure absorber, a high-pressure regenerator and a condenser. The generated refrigerant vapor is absorbed by the solution in the high pressure absorber, and is controlled so that the liquid level of the solution stored at the bottom of the low pressure regenerator is maintained at a predetermined value or more.

本発明によれば、低圧側サイクルから高圧側サイクルに溶液が流入しても、連続した運転が可能な二段吸収サイクルの吸収式冷凍機を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, even if a solution flows in into a high voltage | pressure side cycle from a low pressure side cycle, the absorption refrigerator of the two-stage absorption cycle which can be operated continuously can be obtained.

本発明の吸収式冷凍機を示す概略構成図である。It is a schematic block diagram which shows the absorption refrigerator of this invention. 図1の楕円の破線で囲んだ部分を変形した実施例を示す部分断面図である。It is a fragmentary sectional view which shows the Example which deform | transformed the part enclosed with the broken line of the ellipse of FIG. 図1の楕円の破線で囲んだ部分を変形したもう一つの実施例を示す部分断面図である。It is a fragmentary sectional view which shows another Example which deform | transformed the part enclosed with the broken line of the ellipse of FIG.

以下、本発明の具体的な実施例について図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.

図1は、本発明の実施例1の吸収式冷凍機を示すサイクル系統図である。   FIG. 1 is a cycle system diagram showing an absorption refrigerator according to a first embodiment of the present invention.

先ず、図1により本実施例の全体構成を説明する。吸収式冷凍機は、蒸発器1(E)、低圧吸収器9(LA)、低圧再生器17(LG)及び低圧側溶液熱交換器16からなる低圧側サイクルの熱交換器要素と、高圧吸収器24(HA)、高圧再生器33(HG)、凝縮器41(C)及び高圧側溶液熱交換器31からなる高圧側サイクルの熱交換器要素と、を備えている。このほか、吸収式冷凍機は、冷媒ポンプ6、溶液ポンプ14、22、29、38なども備えている。   First, the overall configuration of this embodiment will be described with reference to FIG. The absorption refrigerator includes a heat exchanger element of a low pressure side cycle including an evaporator 1 (E), a low pressure absorber 9 (LA), a low pressure regenerator 17 (LG), and a low pressure side solution heat exchanger 16, and a high pressure absorption. And a high-pressure side cycle heat exchanger element including a high-pressure side regenerator 33 (HG), a condenser 41 (C), and a high-pressure side solution heat exchanger 31. In addition, the absorption refrigerator includes a refrigerant pump 6, solution pumps 14, 22, 29, 38, and the like.

蒸発器1においては、蒸発器1の下部に溜められた冷媒が冷媒ポンプ6により冷媒配管7を通して散布ユニット2に導かれ、熱交換器3の伝熱管外に散布される。散布された冷媒は、熱交換器3の伝熱管内を流れる冷水により加熱され、一部は冷媒蒸気となり、エリミネータ8を介して低圧吸収器9に導かれる。このときに、冷媒が蒸発する際の蒸発潜熱を利用して熱交換器3の伝熱管内を流れる冷水が冷却される。熱交換器3には、冷水配管4、5が接続され、負荷側に冷熱を供給するための冷水が通水される。   In the evaporator 1, the refrigerant stored in the lower part of the evaporator 1 is guided to the distribution unit 2 through the refrigerant pipe 7 by the refrigerant pump 6 and is distributed outside the heat transfer tube of the heat exchanger 3. The dispersed refrigerant is heated by the cold water flowing in the heat transfer tube of the heat exchanger 3, and a part of the refrigerant becomes refrigerant vapor and is led to the low pressure absorber 9 through the eliminator 8. At this time, the cold water flowing through the heat transfer tubes of the heat exchanger 3 is cooled using the latent heat of evaporation when the refrigerant evaporates. Cold water pipes 4 and 5 are connected to the heat exchanger 3, and cold water for supplying cold heat to the load side is passed through.

低圧吸収器9においては、低圧再生器17で濃縮された溶液が散布ユニット10から熱交換器11の伝熱管外に散布される。散布された溶液は、蒸発器1からの冷媒蒸気を吸収し、濃度が薄くなる。その後、この溶液は、溶液配管15の途中に設置された溶液ポンプ14により低圧側溶液熱交換器16を通して低圧再生器17に導かれる。熱交換器11の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器11には、冷却水配管12、13が接続されている。   In the low pressure absorber 9, the solution concentrated in the low pressure regenerator 17 is sprayed from the spray unit 10 to the outside of the heat transfer tube of the heat exchanger 11. The sprayed solution absorbs the refrigerant vapor from the evaporator 1 and becomes thin in concentration. Thereafter, the solution is guided to the low-pressure regenerator 17 through the low-pressure side solution heat exchanger 16 by the solution pump 14 installed in the middle of the solution pipe 15. Cooling water is passed through the heat transfer tubes of the heat exchanger 11 in order to remove the absorbed heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 12 and 13 are connected to the heat exchanger 11.

低圧再生器17においては、低圧吸収器9で濃度の薄くなった溶液が散布ユニット18から熱交換器19の伝熱管外に散布される。散布された溶液は、熱交換器19の伝熱管内を流れる熱源媒体で加熱され、濃度の濃い溶液と冷媒蒸気とに分離される。濃度の濃い溶液は、溶液配管23の途中に設置した溶液ポンプ22により、低圧側溶液熱交換器16を通され低圧吸収器9に導かれる。濃度の濃い溶液から分離した冷媒蒸気は、エリミネータ32を介して高圧吸収器24に導かれる。熱交換器19には、熱源媒体配管20、21が接続されている。   In the low-pressure regenerator 17, the solution having a low concentration in the low-pressure absorber 9 is sprayed from the spray unit 18 to the outside of the heat transfer tube of the heat exchanger 19. The sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 19 and separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the low pressure absorber 9 through the low pressure side solution heat exchanger 16 by the solution pump 22 installed in the middle of the solution pipe 23. The refrigerant vapor separated from the concentrated solution is guided to the high-pressure absorber 24 via the eliminator 32. Heat source medium pipes 20 and 21 are connected to the heat exchanger 19.

高圧吸収器24においては、高圧再生器33で濃縮された溶液が散布ユニット25から熱交換器26の伝熱管外に散布される。散布された溶液は、低圧再生器17からの冷媒蒸気を吸収して濃度が薄くなる。その後、溶液配管30の途中に設置した溶液ポンプ29により高圧側溶液熱交換器31を通して高圧再生器33に導かれる。熱交換器26の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器26には、冷却水配管27、28が接続されている。   In the high pressure absorber 24, the solution concentrated in the high pressure regenerator 33 is sprayed from the spray unit 25 to the outside of the heat transfer tube of the heat exchanger 26. The sprayed solution absorbs the refrigerant vapor from the low-pressure regenerator 17 and decreases in concentration. Thereafter, the solution is led to the high pressure regenerator 33 through the high pressure side solution heat exchanger 31 by the solution pump 29 installed in the middle of the solution pipe 30. Cooling water is passed through the heat transfer tubes of the heat exchanger 26 in order to remove the absorbed heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 27 and 28 are connected to the heat exchanger 26.

高圧再生器33においては、高圧吸収器24で濃度の薄くなった溶液が散布ユニット34から熱交換器37の伝熱管外に散布される。散布された溶液は、熱交換器37の伝熱管内を流れる熱源媒体で加熱され、濃度の濃い溶液と冷媒蒸気とに分離される。濃度の濃い溶液は、溶液配管39の途中に設置した溶液ポンプ38により高圧側溶液熱交換器31を通して高圧吸収器24に導かれる。濃度の濃い溶液から分離した冷媒蒸気は、バッフル40を介して凝縮器41に導かれる。熱交換器37には、熱源媒体配管35、36が接続されている。   In the high pressure regenerator 33, the solution whose concentration has been reduced by the high pressure absorber 24 is sprayed from the spray unit 34 to the outside of the heat transfer tube of the heat exchanger 37. The sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 37 and separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the high pressure absorber 24 through the high pressure side solution heat exchanger 31 by the solution pump 38 installed in the middle of the solution pipe 39. The refrigerant vapor separated from the concentrated solution is guided to the condenser 41 through the baffle 40. Heat source medium pipes 35 and 36 are connected to the heat exchanger 37.

凝縮器41においては、高圧再生器33で濃度の濃い溶液から分離した冷媒蒸気は、熱交換器42の伝熱管内を流れる冷却水により冷却され、凝縮液化する。凝縮液化した冷媒は、冷媒配管45を通して蒸発器1に導かれる。熱交換器42には、冷却水配管43、44が接続されている。   In the condenser 41, the refrigerant vapor separated from the high-concentration solution by the high-pressure regenerator 33 is cooled by the cooling water flowing in the heat transfer pipe of the heat exchanger 42 and is condensed and liquefied. The condensed and liquefied refrigerant is guided to the evaporator 1 through the refrigerant pipe 45. Cooling water pipes 43 and 44 are connected to the heat exchanger 42.

以上のように、本発明の構成は、蒸発器1、低圧吸収器9及び低圧再生器17で構成された低圧側サイクルと、高圧吸収器24、高圧再生器33及び凝縮器41で構成された高圧側サイクルとからなる二段吸収サイクルとなっている。通常、低圧側サイクル内を循環する溶液と、高圧側サイクル内を循環する溶液とは、混合することはない。一方、冷媒は、蒸発器1、低圧吸収器9、低圧再生器17、高圧吸収器24、高圧再生器33、凝縮器41の順に移動する。また、器内圧力は、それぞれが同じ筐体で構成する蒸発器1と低圧吸収器9、低圧再生器17と高圧吸収器24、高圧再生器33と凝縮器41がほぼ同じになる。   As described above, the configuration of the present invention includes the low-pressure side cycle including the evaporator 1, the low-pressure absorber 9, and the low-pressure regenerator 17, the high-pressure absorber 24, the high-pressure regenerator 33, and the condenser 41. It is a two-stage absorption cycle consisting of a high-pressure side cycle. Usually, the solution circulating in the low pressure side cycle and the solution circulating in the high pressure side cycle are not mixed. On the other hand, the refrigerant moves in the order of the evaporator 1, the low pressure absorber 9, the low pressure regenerator 17, the high pressure absorber 24, the high pressure regenerator 33, and the condenser 41. Further, the internal pressure of the evaporator 1 and the low-pressure absorber 9, the low-pressure regenerator 17 and the high-pressure absorber 24, and the high-pressure regenerator 33 and the condenser 41 are the same.

なお、本実施例においては、溶液(吸収剤)として臭化リチウム水溶液を使用し、また冷媒として水を使用している。   In this embodiment, an aqueous lithium bromide solution is used as the solution (absorbent), and water is used as the refrigerant.

次に、本発明に係る構成について図1を用いて説明する。   Next, a configuration according to the present invention will be described with reference to FIG.

低圧再生器17内には、底部に溜まる溶液の液面高さを検出するフロート式液面センサ50を設置する。さらに、溶液ブロー弁52を設けた溶液ブロー配管51を、高圧吸収器24と接続する溶液配管30の途中のA点と、低圧再生器17の下部に接続した構成とした。   In the low pressure regenerator 17, a float type liquid level sensor 50 for detecting the liquid level of the solution accumulated at the bottom is installed. Further, the solution blow pipe 51 provided with the solution blow valve 52 is connected to the point A in the middle of the solution pipe 30 connected to the high pressure absorber 24 and the lower part of the low pressure regenerator 17.

次に、本発明に係る動作と効果について説明する。   Next, operations and effects according to the present invention will be described.

吸収式冷凍機においては、冷凍能力に比例して蒸発器1で発生する冷媒蒸気量が増加する。これにより、同等の圧力になる低圧再生器17及び高圧吸収器24においても、低圧再生器17で発生した冷媒蒸気量が増加し、エリミネータ32を通過する冷媒蒸気の流速が増加する。このとき、低圧再生器17においては、散布ユニット18から散布された溶液が熱交換器19の伝熱管外を着脱を繰り返しながら流下し、伝熱管内を流れる熱源媒体に加熱されて冷媒蒸気を発生し、濃度の濃くなった溶液が下部に一旦溜められる。また、熱交換器19の伝熱管外を流下する溶液からは、伝熱管外を着脱を繰り返すことから、細かい液滴が発生する。このとき、発生する溶液の液滴の大半はエリミネータ32で捕捉できると考えるが、溶液の細かい液滴が冷媒蒸気流に随伴して、高圧吸収器24内に流入する可能性がある。   In the absorption refrigerator, the amount of refrigerant vapor generated in the evaporator 1 increases in proportion to the refrigerating capacity. Thereby, also in the low-pressure regenerator 17 and the high-pressure absorber 24 having the same pressure, the amount of refrigerant vapor generated in the low-pressure regenerator 17 increases, and the flow velocity of the refrigerant vapor passing through the eliminator 32 increases. At this time, in the low-pressure regenerator 17, the solution sprayed from the spray unit 18 flows down and out of the heat transfer tube of the heat exchanger 19 while being repeatedly attached and detached, and is heated by the heat source medium flowing in the heat transfer tube to generate refrigerant vapor. The concentrated solution is once stored in the lower part. Further, from the solution flowing down outside the heat transfer tube of the heat exchanger 19, since the outside of the heat transfer tube is repeatedly attached and detached, fine droplets are generated. At this time, it is considered that most of the generated droplets of the solution can be captured by the eliminator 32, but there is a possibility that fine droplets of the solution flow into the high-pressure absorber 24 along with the refrigerant vapor flow.

二段吸収サイクルにおいては、低圧側サイクルの低圧吸収器9と低圧再生器17とを循環する溶液と、高圧側サイクルの高圧吸収器24と高圧再生器33とを循環する溶液とは、別々の経路で循環している。このため、最初に封入した溶液に溶け込んでいる臭化リチウムの量は、運転中に変化することがないようになっている。しかし、運転中に細かい液滴が発生する場合には、低圧再生器17の溶液が高圧吸収器24内に流入することになり、臭化リチウム量のバランスが封入時と変化する。   In the two-stage absorption cycle, the solution circulating through the low pressure absorber 9 and the low pressure regenerator 17 in the low pressure side cycle and the solution circulating through the high pressure absorber 24 and the high pressure regenerator 33 in the high pressure side cycle are different. It is circulating in the route. For this reason, the amount of lithium bromide dissolved in the initially sealed solution does not change during operation. However, when fine droplets are generated during operation, the solution in the low-pressure regenerator 17 flows into the high-pressure absorber 24, and the balance of the lithium bromide amount changes from that at the time of encapsulation.

具体的には、低圧再生器17内の溶液が高圧吸収器内24内に流入するので、低圧サイクル側の臭化リチウム量が減少し、高圧サイクル側の臭化リチウム量が増加する。これにより、低圧再生器17においては、溶液濃度を維持する方向となるため、溶液に含まれる冷媒の量が減少し、低圧側サイクルを循環する溶液量が徐々に減少する。一方、高圧吸収器24においては、溶液濃度を維持する方向となるため、溶液に含まれる冷媒量が増加し、高圧側サイクルを循環する溶液量が徐々に増加する。これらが徐々に進行すると、低圧側サイクルの溶液不足となり、低圧再生器17の液面が低下し、運転ができなくなる可能性がある。   Specifically, since the solution in the low pressure regenerator 17 flows into the high pressure absorber 24, the amount of lithium bromide on the low pressure cycle side decreases and the amount of lithium bromide on the high pressure cycle side increases. Thereby, in the low pressure regenerator 17, since the solution concentration is maintained, the amount of the refrigerant contained in the solution is reduced, and the amount of the solution circulating in the low pressure side cycle is gradually reduced. On the other hand, in the high pressure absorber 24, since the solution concentration is maintained, the amount of refrigerant contained in the solution increases, and the amount of solution circulating in the high pressure side cycle gradually increases. If these gradually progress, the solution of the low-pressure side cycle becomes insufficient, and the liquid level of the low-pressure regenerator 17 is lowered, and there is a possibility that the operation cannot be performed.

そこで、本実施例においては、低圧再生器17の下部にフロート式液面センサ50が設けてある。このフロート式液面センサ50の検出データを制御ユニット(図示せず)に送り、溶液ブロー配管51の溶液ブロー弁52を制御するようにしている。   Therefore, in this embodiment, a float type liquid level sensor 50 is provided below the low pressure regenerator 17. The detection data of the float type liquid level sensor 50 is sent to a control unit (not shown) to control the solution blow valve 52 of the solution blow pipe 51.

制御ユニットにおいては、予め液面の高さに関する第一の所定値及び第二の所定値を設定しておく。第二の所定値は、第一の所定値より高くなるように設定する。これにより、低圧再生器17の溶液の液面が低下し、第一の所定値より低くなったときには、制御ユニットからの信号により溶液ブロー弁52を開け、高圧側サイクルの溶液を低圧再生器17内に導入する。一方、溶液の液面高さが第二の所定値に達したときには、制御ユニットからの信号により溶液ブロー弁52を閉じるようにする。これにより、液面高さは、第一の所定値と第二の所定値との間の範囲内に調整される。   In the control unit, a first predetermined value and a second predetermined value relating to the height of the liquid level are set in advance. The second predetermined value is set to be higher than the first predetermined value. As a result, when the liquid level of the solution in the low pressure regenerator 17 decreases and becomes lower than the first predetermined value, the solution blow valve 52 is opened by a signal from the control unit, and the solution in the high pressure side cycle is removed from the low pressure regenerator 17. Introduce in. On the other hand, when the liquid level of the solution reaches the second predetermined value, the solution blow valve 52 is closed by a signal from the control unit. Thereby, the liquid level height is adjusted within a range between the first predetermined value and the second predetermined value.

上記の制御により、低圧側サイクル及び高圧側サイクルにおける臭化リチウムの量を適正に保つことができる。よって、低圧再生器17の溶液が高圧吸収器24内に流入しても、低圧側サイクルで溶液不足になることはなく、連続した運転をすることができる。   With the above control, the amount of lithium bromide in the low-pressure side cycle and the high-pressure side cycle can be maintained appropriately. Therefore, even if the solution of the low-pressure regenerator 17 flows into the high-pressure absorber 24, the solution does not become insufficient in the low-pressure side cycle, and continuous operation can be performed.

なお、蒸発器1及び低圧吸収器9、並びに高圧再生器33及び凝縮器41は、それぞれ、器内圧力が同等になるが、従来の単効用サイクルの吸収式冷凍機と同様の構成と動作となることから、蒸発器1で発生する冷媒蒸気量の増加に伴い、二段吸収サイクルで連続運転ができなくなる不具合が生じることはない。   The evaporator 1 and the low-pressure absorber 9, and the high-pressure regenerator 33 and the condenser 41 have the same internal pressure, but have the same configuration and operation as those of a conventional single-effect cycle absorption refrigerator. Therefore, with the increase in the amount of refrigerant vapor generated in the evaporator 1, there is no problem that the continuous operation cannot be performed in the two-stage absorption cycle.

図2は、実施例1とは異なる実施例であり、図1の楕円の破線で囲んだ部分を変形したものである。   FIG. 2 is an embodiment different from the first embodiment, and is obtained by modifying a portion surrounded by an elliptical broken line in FIG.

図2においては、図1に示すフロート式液面センサ50の代わりに、低圧再生器17に下位電極棒54及び上位電極棒53を設けている。下位電極棒54は、第一の所定値に対応する液面高さに設置し、上位電極棒53は、第二の所定値に対応する液面高さに設置している。   In FIG. 2, a lower electrode bar 54 and an upper electrode bar 53 are provided in the low pressure regenerator 17 instead of the float type liquid level sensor 50 shown in FIG. The lower electrode bar 54 is installed at a liquid level corresponding to the first predetermined value, and the upper electrode bar 53 is installed at a liquid level corresponding to the second predetermined value.

吸収式冷凍機の運転中において、低圧再生器17の溶液の液面が低下し、下位電極棒54が溜まっている溶液に接触していないことを検知した場合、制御ユニット(図示せず)によって溶液ブロー配管51の溶液ブロー弁52を開ける。一方、低圧再生器17の溶液の液面が上昇し、上位電極棒53が溜まっている溶液に接触したことを検知した場合、制御ユニット(図示せず)によって溶液ブロー配管51の溶液ブロー弁52を閉じる。   During operation of the absorption chiller, when it is detected that the liquid level of the solution in the low pressure regenerator 17 has dropped and the lower electrode bar 54 is not in contact with the accumulated solution, a control unit (not shown) The solution blow valve 52 of the solution blow pipe 51 is opened. On the other hand, when it is detected that the liquid level of the solution in the low-pressure regenerator 17 has risen and the upper electrode rod 53 has come into contact with the accumulated solution, the solution blow valve 52 of the solution blow pipe 51 is detected by a control unit (not shown). Close.

上記の制御により、実施例1と同様の作用及び効果を得ることができる。   By the above control, the same operations and effects as those of the first embodiment can be obtained.

また、液面を検知する手段としては、図2においては電極棒を用いたが、液面を検知できれば電極棒に限定されるものではなく、例えば温度センサでも温度の違いによって検知することができ、同様の作用及び効果を得ることができる。   In addition, as the means for detecting the liquid level, the electrode rod is used in FIG. 2, but it is not limited to the electrode rod as long as the liquid level can be detected. For example, even a temperature sensor can be detected by the difference in temperature. The same operation and effect can be obtained.

図3は、実施例1及び2とは異なる実施例であり、図1の楕円の破線で囲んだ部分を変形したものである。   FIG. 3 is an embodiment different from the first and second embodiments, and is obtained by modifying a portion surrounded by an elliptical broken line in FIG.

図3においては、図1に示すフロート式液面センサ50の代わりに、低圧再生器17と高圧吸収器24とを仕切る壁に潜り堰55を設けている。また、潜り堰55を覆い、潜り堰55の上方の隙間部分を介して液滴(溶液ミスト)が低圧再生器17と高圧吸収器24との間で流通しないようにするため、ミスト遮断部56を設けている。   In FIG. 3, instead of the float type liquid level sensor 50 shown in FIG. 1, a diving weir 55 is provided on a wall that partitions the low pressure regenerator 17 and the high pressure absorber 24. Further, in order to cover the dive weir 55 and prevent the liquid droplet (solution mist) from flowing between the low pressure regenerator 17 and the high pressure absorber 24 through the gap portion above the dive weir 55, the mist blocking unit 56. Is provided.

潜り堰55の高さHは、吸収式冷凍機の運転中において低圧再生器17における第一の所定値の液面高さ(実施例1及び実施例2に示すものと同様である。)となるときの高圧吸収器24の液面高さに設定する。   The height H of the dive weir 55 is the same as the liquid level height of the first predetermined value in the low-pressure regenerator 17 during the operation of the absorption chiller (similar to that shown in the first and second embodiments). Is set to the liquid level of the high-pressure absorber 24.

これにより、封入初期の低圧サイクル側と高圧側サイクルとの臭化リチウム量のバランスとは異なるが、低圧再生器17において、吸収式冷凍機の運転に最低限必要な液面高さが確保することができる。   Thereby, although it is different from the balance of the lithium bromide amount between the low-pressure cycle side and the high-pressure side cycle in the initial stage of filling, the low-pressure regenerator 17 ensures the minimum liquid level required for the operation of the absorption chiller. be able to.

低圧側サイクルの低圧再生器17内の溶液が高圧側サイクルの高圧吸収器24内に流入した場合に、低圧側サイクルの臭化リチウム量が徐々に減少し、低圧再生器17では溶液不足による液面低下が進行し、運転が不可能になるおそれがあるが、本発明によれば、低圧再生器17内の溶液の液面高さを検知し、高圧側サイクルの溶液を低圧側サイクルに流入するように制御することにより、減少した臭化リチウム量を回復できるため、連続した運転が可能になる。   When the solution in the low-pressure regenerator 17 in the low-pressure side cycle flows into the high-pressure absorber 24 in the high-pressure side cycle, the amount of lithium bromide in the low-pressure side cycle gradually decreases. However, according to the present invention, the liquid level of the solution in the low pressure regenerator 17 is detected, and the solution in the high pressure side cycle flows into the low pressure side cycle. By controlling so that the reduced amount of lithium bromide can be recovered, continuous operation becomes possible.

1:蒸発器、2、10、18、25、34:散布ユニット、3、11、19、26、37、42:熱交換器、4、5:冷水配管、6:冷媒ポンプ、7、45:冷媒配管、8、32:エリミネータ、9:低圧吸収器、12、13、27、28、43、44:冷却水配管、14、22、29、38:溶液ポンプ、15、23、30、39:溶液配管、16:低圧側溶液熱交換器、17:低圧再生器、20、21、35、36:熱源媒体配管、24:高圧吸収器、31:高圧側溶液熱交換器、33:高圧再生器、40:バッフル、41:凝縮器、50:フロート式液面センサ、51:溶液ブロー配管、52:溶液ブロー弁、53:上位電極棒、54:下位電極棒、55:潜り堰、56:ミスト遮断部。   1: Evaporator 2, 10, 18, 25, 34: Spreading unit 3, 11, 19, 26, 37, 42: Heat exchanger, 4, 5: Cold water piping, 6: Refrigerant pump, 7, 45: Refrigerant piping, 8, 32: Eliminator, 9: Low pressure absorber, 12, 13, 27, 28, 43, 44: Cooling water piping, 14, 22, 29, 38: Solution pump, 15, 23, 30, 39: Solution piping, 16: Low pressure side solution heat exchanger, 17: Low pressure regenerator, 20, 21, 35, 36: Heat source medium piping, 24: High pressure absorber, 31: High pressure side solution heat exchanger, 33: High pressure regenerator 40: baffle, 41: condenser, 50: float type liquid level sensor, 51: solution blow piping, 52: solution blow valve, 53: upper electrode rod, 54: lower electrode rod, 55: submerged weir, 56: mist Blocking part.

Claims (6)

蒸発器、低圧吸収器及び低圧再生器を含む低圧側サイクルと、高圧吸収器、高圧再生器及び凝縮器を含む高圧側サイクルと、を備え、
前記低圧再生器から発生する冷媒蒸気は、前記高圧吸収器の溶液に吸収される構成を有し、
前記低圧再生器の底部に溜められる溶液の液面高さが所定値以上に維持されるように制御する、吸収式冷凍機。
A low pressure side cycle including an evaporator, a low pressure absorber and a low pressure regenerator, and a high pressure side cycle including a high pressure absorber, a high pressure regenerator and a condenser,
The refrigerant vapor generated from the low-pressure regenerator has a configuration that is absorbed by the solution of the high-pressure absorber,
An absorption refrigerator that controls the liquid level of the solution stored at the bottom of the low-pressure regenerator to be maintained at a predetermined value or higher.
前記液面高さが所定値以下になったときには、前記低圧再生器に前記高圧側サイクルの溶液の導入をする制御をする、請求項1記載の吸収式冷凍機。   The absorption refrigerator according to claim 1, wherein when the liquid level becomes equal to or lower than a predetermined value, control is performed to introduce the solution of the high-pressure side cycle into the low-pressure regenerator. 前記液面高さが所定の範囲内に維持されるように前記低圧再生器に前記高圧側サイクルの溶液の導入をし、又はその導入を停止する制御をする、請求項1記載の吸収式冷凍機。   2. The absorption refrigeration according to claim 1, wherein control is performed to introduce or stop introduction of the solution of the high-pressure side cycle into the low-pressure regenerator so that the liquid level is maintained within a predetermined range. Machine. 前記所定の範囲は、第一の所定値と第二の所定値との間の範囲であり、前記第二の所定値は、前記第一の所定値より高く設定され、
前記低圧再生器の底部には、前記液面高さを検出する液面検出部が付設され、
前記液面検出部により前記液面高さが前記第一の所定値以下であることを検出したときには、前記高圧吸収器から前記低圧再生器に溶液を送るバイパス配管の弁を開け、前記液面検出部により前記液面高さが前記第二の所定値に達したときには、前記弁を閉じる制御をする、請求項3記載の吸収式冷凍機。
The predetermined range is a range between a first predetermined value and a second predetermined value, and the second predetermined value is set higher than the first predetermined value,
At the bottom of the low pressure regenerator, a liquid level detection unit for detecting the liquid level height is attached,
When the liquid level detection unit detects that the liquid level is equal to or lower than the first predetermined value, the valve of a bypass pipe that sends the solution from the high pressure absorber to the low pressure regenerator is opened, The absorption refrigerator according to claim 3, wherein when the liquid level height reaches the second predetermined value by the detection unit, the valve is controlled to close.
前記低圧再生器と前記高圧吸収器とを仕切る壁には、潜り堰が設けられ、
前記高圧吸収器の底部に溜められる溶液の液面高さが前記潜り堰より高くなったときには、前記高圧吸収器の溶液が前記低圧再生器に流入する構成とした、請求項1〜3のいずれか一項に記載の吸収式冷凍機。
The wall that partitions the low-pressure regenerator and the high-pressure absorber is provided with a submerged weir,
4. The structure according to claim 1, wherein when the liquid level of the solution stored at the bottom of the high pressure absorber becomes higher than the diving weir, the solution of the high pressure absorber flows into the low pressure regenerator. The absorption refrigerator according to claim 1.
前記潜り堰の上方には、ミスト遮断部が付設されている、請求項5記載の吸収式冷凍機。   The absorption chiller according to claim 5, wherein a mist blocking portion is provided above the diving weir.
JP2014238601A 2014-11-26 2014-11-26 Absorption refrigerator Active JP6463954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238601A JP6463954B2 (en) 2014-11-26 2014-11-26 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238601A JP6463954B2 (en) 2014-11-26 2014-11-26 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2016099094A true JP2016099094A (en) 2016-05-30
JP6463954B2 JP6463954B2 (en) 2019-02-06

Family

ID=56076776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238601A Active JP6463954B2 (en) 2014-11-26 2014-11-26 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP6463954B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103239A (en) * 1973-02-05 1974-09-30
JPS50125348A (en) * 1974-03-22 1975-10-02
JPS5728868B2 (en) * 1974-03-26 1982-06-18
JPS61110853A (en) * 1984-11-05 1986-05-29 キヤリア・コ−ポレイシヨン Absorption heat pump/refrigeration system
JPH08105661A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Absorption chilled and warm water generator and controlling method therefor
JP2001082825A (en) * 1999-09-08 2001-03-30 Sanyo Electric Co Ltd Absorption heat pump
JP2001133071A (en) * 1999-11-02 2001-05-18 Tokyo Gas Co Ltd Absorption cold and hot water machine
JP2004144394A (en) * 2002-10-24 2004-05-20 Ebara Corp Multi-stage absorption freezing machine and freezing system
JP2004270994A (en) * 2003-03-06 2004-09-30 Sanyo Electric Co Ltd Absorption heat pump device
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103239A (en) * 1973-02-05 1974-09-30
JPS50125348A (en) * 1974-03-22 1975-10-02
JPS5728868B2 (en) * 1974-03-26 1982-06-18
JPS61110853A (en) * 1984-11-05 1986-05-29 キヤリア・コ−ポレイシヨン Absorption heat pump/refrigeration system
JPH08105661A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Absorption chilled and warm water generator and controlling method therefor
JP2001082825A (en) * 1999-09-08 2001-03-30 Sanyo Electric Co Ltd Absorption heat pump
JP2001133071A (en) * 1999-11-02 2001-05-18 Tokyo Gas Co Ltd Absorption cold and hot water machine
JP2004144394A (en) * 2002-10-24 2004-05-20 Ebara Corp Multi-stage absorption freezing machine and freezing system
JP2004270994A (en) * 2003-03-06 2004-09-30 Sanyo Electric Co Ltd Absorption heat pump device
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine

Also Published As

Publication number Publication date
JP6463954B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
US2465904A (en) Absorption refrigeration apparatus and method including absorption liquid concentration control
US2426044A (en) Heat transfer device with liquid lifting capillary surface
KR102017436B1 (en) Absorption Chiller
JP6463954B2 (en) Absorption refrigerator
US2986906A (en) Absorption refrigerating machine
JP6437354B2 (en) Absorption refrigerator
JP2015025629A (en) Temperature rise type absorption heat pump
US2432978A (en) Gas purger and solution regulator in vacuum type absorption refrigerating apparatus
JP2014199150A (en) Absorption type heat source device
US6564562B1 (en) Generator solution outlet box for an absorption chiller
JP6337056B2 (en) Absorption heat pump
JP2013231577A (en) Absorption heat pump and operation method of absorption heat pump
JP2015025610A (en) Three-stage temperature rising type absorption heat pump
JP2005291576A (en) Absorption refrigerator
JP6337055B2 (en) Absorption heat pump
JPS5811549B2 (en) Multiple effect absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JP2006214597A (en) Regenerator in ammonia absorption type refrigerator
JP2011033261A (en) Absorption type refrigerating machine
JPS6040590B2 (en) Multiple effect absorption refrigerator
CN104006580A (en) Falling-film evaporation device
JP2568801B2 (en) Absorption refrigeration equipment
JP3241498B2 (en) Absorption refrigerator
JP2006200851A (en) Absorption type refrigerator
JPS5825949B2 (en) Multiple effect absorption refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6463954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150