JP2016098367A - Method for freezing pva aqueous solution, method for manufacturing pva gel, and method for manufacturing pva gel laminate - Google Patents

Method for freezing pva aqueous solution, method for manufacturing pva gel, and method for manufacturing pva gel laminate Download PDF

Info

Publication number
JP2016098367A
JP2016098367A JP2014239214A JP2014239214A JP2016098367A JP 2016098367 A JP2016098367 A JP 2016098367A JP 2014239214 A JP2014239214 A JP 2014239214A JP 2014239214 A JP2014239214 A JP 2014239214A JP 2016098367 A JP2016098367 A JP 2016098367A
Authority
JP
Japan
Prior art keywords
pva
aqueous solution
gel
freezing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014239214A
Other languages
Japanese (ja)
Other versions
JP6388530B2 (en
Inventor
鈴木 淳史
Junji Suzuki
淳史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2014239214A priority Critical patent/JP6388530B2/en
Publication of JP2016098367A publication Critical patent/JP2016098367A/en
Application granted granted Critical
Publication of JP6388530B2 publication Critical patent/JP6388530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a PVA gel and a method for manufacturing a PVA gel laminate having higher structural strength than conventional products.SOLUTION: [1] Provided is a method for gradually freezing a PVA aqueous solution 1 from a first side toward a second side, wherein the PVA aqueous solution is gradually cooled from the first side toward the second side such that a normal line to a solidification surface where the freezing of the PVA aqueous solution progresses is parallel to a direction of freezing which proceeds from the first side toward the second side. [2] In the above-mentioned freezing method, a vessel 2 containing the PVA aqueous solution is gradually immersed into a cooling liquid 3 of a temperature below 0°C to gradually freeze the PVA aqueous solution in the vessel upward from the bottom. [3] In the above-mentioned freezing method, the vessel is gradually immersed into the cooling liquid such that the height of the solidification surface of the PVA aqueous solution is positioned in an area of water solidification temperatures at the liquid level of the cooling liquid or directly below the liquid level.SELECTED DRAWING: Figure 1

Description

本発明は、PVA水溶液の凍結方法、PVAゲルの製造方法およびPVAゲル積層体の製造方法に関する。   The present invention relates to a method for freezing a PVA aqueous solution, a method for producing a PVA gel, and a method for producing a PVA gel laminate.

ポリビニルアルコール(PVA)溶液を凍結及び融解することにより、PVAが物理架橋したPVAゲルを製造する方法が従来知られている。   A method for producing a PVA gel in which PVA is physically cross-linked by freezing and thawing a polyvinyl alcohol (PVA) solution is conventionally known.

K. Tamura, O. Ike, S. Hitomi, J. Isobe, Y. Shimizu, M. Nambu, A New Hydrogel and Its Medical Application, ASAIO Trans. 32 (1986) 605-609.K. Tamura, O. Ike, S. Hitomi, J. Isobe, Y. Shimizu, M. Nambu, A New Hydrogel and Its Medical Application, ASAIO Trans. 32 (1986) 605-609.

従来の凍結融解法で得られるPVAゲルの構造的強度は、医療用途において生体機能を代替する材料として使用する程には十分ではなく、優れた構造的強度を有するPVAゲルの製造方法が求められている。   The structural strength of PVA gel obtained by the conventional freeze-thaw method is not sufficient to be used as a material that substitutes for biological functions in medical applications, and a method for producing PVA gel having excellent structural strength is required. ing.

本発明は上記事情に鑑みてなされたものであり、優れた構造的強度を有するPVAゲルを簡便に製造するためのPVA水溶液の凍結方法、その凍結方法を用いたPVAゲルの製造方法及びPVAゲル積層体の製造方法の提供を課題とする。   This invention is made | formed in view of the said situation, The freezing method of the PVA aqueous solution for manufacturing easily the PVA gel which has the outstanding structural strength, the manufacturing method of PVA gel using the freezing method, and PVA gel It is an object to provide a method for manufacturing a laminate.

[1]PVA水溶液を第一の側から第二の側に向けて徐々に凍結する方法であって、前記PVA水溶液の凍結が進行する凝固面の法線が、前記第一の側から第二の側へ向かう凍結方向と平行であるように、前記PVA水溶液を前記第一の側から第二の側へ徐々に冷却することを特徴とするPVA水溶液の凍結方法。
[2]PVA水溶液が入った容器を0℃未満の冷却液体中に徐々に挿入することにより、前記容器中のPVA水溶液を下方から上方にむけて徐々に凍結することを特徴とする前記[1]に記載のPVA水溶液の凍結方法。
[3]前記容器中のPVA水溶液の凝固面の高さが、前記冷却液体の液面又は前記液面直下の水の凝固温度の領域に位置するように、前記容器を前記冷却液体中に徐々に挿入することを特徴とする前記[2]に記載のPVA水溶液の凍結方法。
[4]前記容器が板状であり、その長手方向に0.01mm/秒〜0.10mm/秒の速度で前記容器を前記冷却液体中に挿入することを特徴とする前記[3]に記載のPVA水溶液の凍結方法。
[5]前記容器の長手方向に直交する、PVA水溶液の厚みが0.5mm〜10mmであることを特徴とする前記[4]に記載のPVA水溶液の凍結方法。
[6]前記PVA水溶液と前記冷却液体とを隔てる、前記容器の肉厚が1.0mm〜10mmであることを特徴とする前記[5]に記載のPVA水溶液の凍結方法。
[7]前記容器を構成する材料が、PVA水溶液と熱物性が略同程度の合成樹脂であることを特徴とする前記[6]に記載のPVA水溶液の凍結方法。
[8]前記[1]〜[7]の何れか一項に記載の方法によってPVA水溶液を凍結する第一工程と、前記第一工程で得られたPVA水溶液の凍結体を0℃以上の雰囲気中で解凍することによってPVAゲルを得る第二工程と、を含むことを特徴とするPVAゲルの製造方法。
[9]前記第二工程において、得られたPVAゲルを再び凍結し、その後解凍する凍結解凍サイクルを1回以上行うことを特徴とする前記[8]に記載のPVAゲルの製造方法。
[10]前記第二工程で得られたPVAゲルを水中に浸漬して膨潤させる第三工程を有することを特徴とする前記[8]又は[9]に記載のPVAゲルの製造方法。
[11]前記[8]〜[10]の何れか一項に記載の製造方法で得られたPVAゲルからなるシートを2枚以上積層することにより、PVAゲル積層体を得ることを特徴とするPVAゲル積層体の製造方法。
[12]前記シートを複数枚重ねて積層する際、各シートが有する繊維構造の向きを非平行にして積層することを特徴とする前記[11]に記載のPVAゲル積層体の製造方法。
[13]前記シートを複数枚重ねて積層する際、各シートを予め水で膨潤させておき、各シート間にPVA水溶液を塗布して積層し、乾燥させることを特徴とする前記[12]に記載のPVAゲル積層体の製造方法。
[1] A method of gradually freezing the PVA aqueous solution from the first side toward the second side, wherein the normal line of the solidified surface where the freezing of the PVA aqueous solution proceeds is from the first side to the second side. A method for freezing a PVA aqueous solution, characterized in that the PVA aqueous solution is gradually cooled from the first side to the second side so as to be parallel to the freezing direction toward the side.
[2] The above-mentioned [1], wherein the container containing the aqueous PVA solution is gradually inserted into a cooling liquid of less than 0 ° C., whereby the aqueous PVA solution in the container is gradually frozen upward from below. ] The freezing method of the PVA aqueous solution of description.
[3] Gradually put the container in the cooling liquid so that the solidified surface height of the PVA aqueous solution in the container is located in the region of the solidification temperature of the liquid level of the cooling liquid or water just below the liquid level. The method for freezing an aqueous PVA solution as described in [2] above, wherein
[4] The above [3], wherein the container is plate-shaped, and the container is inserted into the cooling liquid at a speed of 0.01 mm / second to 0.10 mm / second in the longitudinal direction. Freezing method of PVA aqueous solution.
[5] The method for freezing a PVA aqueous solution according to [4] above, wherein the thickness of the PVA aqueous solution orthogonal to the longitudinal direction of the container is 0.5 mm to 10 mm.
[6] The method for freezing a PVA aqueous solution according to the above [5], wherein a thickness of the container that separates the PVA aqueous solution from the cooling liquid is 1.0 mm to 10 mm.
[7] The method for freezing a PVA aqueous solution according to [6], wherein the material constituting the container is a synthetic resin having substantially the same thermophysical properties as the PVA aqueous solution.
[8] The first step of freezing the PVA aqueous solution by the method according to any one of [1] to [7] above, and the frozen body of the PVA aqueous solution obtained in the first step in an atmosphere of 0 ° C. or higher And a second step of obtaining a PVA gel by thawing in. A method for producing a PVA gel, comprising:
[9] The method for producing a PVA gel as described in [8] above, wherein in the second step, the obtained PVA gel is frozen again and then freeze-thaw cycle is performed once or more.
[10] The method for producing a PVA gel according to [8] or [9], further including a third step of immersing and swelling the PVA gel obtained in the second step.
[11] A PVA gel laminate is obtained by laminating two or more sheets made of the PVA gel obtained by the production method according to any one of [8] to [10]. A method for producing a PVA gel laminate.
[12] The method for producing a PVA gel laminate according to [11], wherein when stacking a plurality of the sheets, the sheets are stacked in a non-parallel orientation of the fiber structure of each sheet.
[13] In the above [12], when laminating a plurality of the sheets, each sheet is swollen with water in advance, a PVA aqueous solution is applied between the sheets, laminated, and dried. The manufacturing method of the PVA gel laminated body of description.

本発明のPVA水溶液の凍結方法及びPVAゲルの製造方法によれば、PVA水溶液を凍結する方向(例えば、PVA水溶液を入れた容器の長手方向)に揃った平行な繊維構造が表面及び内部に形成された、構造的異方性を有するPVAゲルが簡便に得られる。このPVAゲルは、繊維構造に沿う方向へ負荷を掛けても容易に破断しない構造的強度を有するため、従来のPVAゲルよりも高い構造的強度が要求される用途に好適である。   According to the PVA aqueous solution freezing method and the PVA gel manufacturing method of the present invention, parallel fiber structures aligned in the direction in which the PVA aqueous solution is frozen (for example, the longitudinal direction of the container containing the PVA aqueous solution) are formed on the surface and inside. The obtained PVA gel having structural anisotropy is easily obtained. Since this PVA gel has a structural strength that does not easily break even when a load is applied in the direction along the fiber structure, it is suitable for applications that require a higher structural strength than conventional PVA gels.

本発明のPVAゲル積層体(以下では、単に「積層体」ということがある。)の製造方法によれば、任意の枚数のPVAゲルからなるシートを重ねることによって、用途に応じて必要な任意の厚さを積層体に付与することができる。また、積層体を構成する所定の層に機能性物質を含有させることができる。この場合、各層の機能性物質の濃度を層ごとに徐々に変化させて、積層体全体として含有する機能性物質の濃度勾配をつくる(濃度の傾斜化)こと、あるいは積層体内の特定の層にのみ機能性物質を担持させることが容易にできる。   According to the method for producing a PVA gel laminate of the present invention (hereinafter sometimes simply referred to as “laminate”), any number of sheets required to be used depending on the application can be obtained by stacking sheets made of any number of PVA gels. Can be imparted to the laminate. Moreover, a functional substance can be contained in a predetermined layer constituting the laminate. In this case, the concentration of the functional substance in each layer is gradually changed for each layer to create a concentration gradient of the functional substance contained in the entire laminate (concentration gradient), or to a specific layer in the laminate Only functional materials can be easily carried.

PVA水溶液1を入れた板状容器2を、第一の側である第一端部2aから第二の側である第二端部2bへ向けて、速度vで、低温恒温水槽で−26℃に設定されたエタノール水溶液3中に徐々に挿入する様子を示した模式図である。The plate-like container 2 containing the PVA aqueous solution 1 is moved from the first end portion 2a which is the first side to the second end portion 2b which is the second side, at a speed v, in a low temperature water bath at -26 ° C. It is the schematic diagram which showed a mode that it inserts gradually in the ethanol aqueous solution 3 set to (1). 図1の板状容器2の正面から見た、容器内の凝固面の高さdを示す模式図である。It is a schematic diagram which shows the height d of the solidification surface in a container seen from the front of the plate-shaped container 2 of FIG. 図1の板状容器2内のPVA水溶液1を、高さ方向と直交する厚み方向から見た模式的な断面図である。It is typical sectional drawing which looked at the PVA aqueous solution 1 in the plate-shaped container 2 of FIG. 1 from the thickness direction orthogonal to a height direction. 本発明に係るPVA水溶液の凍結方法及びPVAゲルの製造方法によって作製されたPVAゲルの模式的な斜視図である。繊維構造がX方向に揃っている様子を示す。It is a typical perspective view of the PVA gel produced by the freezing method of the PVA aqueous solution which concerns on this invention, and the manufacturing method of PVA gel. The state where the fiber structure is aligned in the X direction is shown. PVA水溶液の凍結方法の第二実施形態における容器12及びPVA水溶液11の模式的な断面図である。It is typical sectional drawing of the container 12 and the PVA aqueous solution 11 in 2nd embodiment of the freezing method of PVA aqueous solution. 所定の容器の挿入速度vにおける、冷却溶液の液面を基準としたPVA水溶液の凝固面の高さdと時間の関係を示すグラフである。It is a graph which shows the relationship between the height d of the solidification surface of PVA aqueous solution on the basis of the liquid level of a cooling solution, and time at the insertion speed v of a predetermined container. PVA水溶液の凝固面の高さdが一定に落ち着いた状態(PVA水溶液の凝固速度がvに一致した状態)における、当該高さdと凍結速度(容器の挿入速度)の関係を示すグラフである。It is a graph which shows the relationship between the said height d and the freezing speed (insertion speed of a container) in the state (state in which the solidification speed of PVA aqueous solution corresponded to v) where the solidification surface height d of PVA aqueous solution settled constant. . エタノール水溶液の液面を基準として、温度と当該液面からの距離の関係を示すグラフである。グラフ中、正の距離は液面から上方の位置を示し、負の距離は液面から下方の液中の位置を示す。エタノール水溶液の内部では設定温度−26℃に等しく、液面では約0℃でその内部では急激に温度が低下し、水の凝固点(過冷却)以下に達する。It is a graph which shows the relationship between temperature and the distance from the said liquid level on the basis of the liquid level of ethanol aqueous solution. In the graph, a positive distance indicates a position above the liquid level, and a negative distance indicates a position in the liquid below the liquid level. The inside of the ethanol aqueous solution is equal to the set temperature of −26 ° C., the liquid level is about 0 ° C., and the temperature rapidly decreases inside the water and reaches below the freezing point (supercooling) of water. (a)JIS K−6251−8規格のダンベルカッターの寸法を模式的に示す斜視図である。(b)(a)に示すダンベルカッターの平面図である。寸法を表す数値単位はmmである。(A) It is a perspective view which shows typically the dimension of the dumbbell cutter of JIS K-6251-8 standard. (B) It is a top view of the dumbbell cutter shown to (a). A numerical unit representing a dimension is mm. 実施例で作製したPVAゲルの凍結速度(容器の挿入速度)と最大応力の関係を示すグラフである。It is a graph which shows the relationship between the freezing speed (insertion speed of a container) and the maximum stress of the PVA gel produced in the Example. 実施例で作製したPVAゲルの凍結速度(容器の挿入速度)と最大ひずみの関係を示すグラフである。It is a graph which shows the relationship of the freezing speed (insertion speed of a container) and the maximum strain of the PVA gel produced in the Example. 実施例で作製したPVAゲルの凍結速度(容器の挿入速度)と初期弾性率の関係を示すグラフである。It is a graph which shows the freezing speed (insertion speed of a container) of the PVA gel produced in the Example, and the relationship between initial stage elastic modulus. 実施例で作製したPVAゲルの凍結速度(容器の挿入速度)と質量膨潤比の関係を示すグラフである。It is a graph which shows the relationship between the freezing speed (insertion speed of a container) of the PVA gel produced in the Example, and mass swelling ratio. 従来方法で凍結解凍を4回繰り返して作製したFT4ゲルのSEM写真である。It is a SEM photograph of FT4 gel produced by repeating freeze-thaw 4 times by the conventional method. 実施例で作製した異方性ゲル(凍結速度:0.01mm/秒、ゲル厚み2mm)のSEM写真である。It is a SEM photograph of the anisotropic gel (freezing rate: 0.01 mm / second, gel thickness 2 mm) produced in the Example.

以下、好適な実施の形態に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on preferred embodiments.

≪PVA水溶液の凍結方法≫
本発明の第一態様のPVA水溶液の凍結方法は、PVA水溶液を第一の側から第二の側に向けて徐々に凍結する方法であって、前記PVA水溶液の凍結が進行する又は開始される凝固面の法線が、前記第一の側から第二の側に向かう凍結方向と平行であるように、前記PVA水溶液を前記第一の側から第二の側へ徐々に冷却する方法である。
≪Freezing method of PVA aqueous solution≫
The method for freezing a PVA aqueous solution according to the first aspect of the present invention is a method of gradually freezing a PVA aqueous solution from a first side toward a second side, and the freezing of the PVA aqueous solution proceeds or is started. In this method, the PVA aqueous solution is gradually cooled from the first side to the second side so that the normal line of the solidified surface is parallel to the freezing direction from the first side to the second side. .

<第一実施形態>
PVA水溶液の凍結方法の第一実施形態として、例えば図1に例示するように、PVA水溶液1が入った板状容器2を0℃未満の冷却液体3中に徐々に挿入することにより、容器2中のPVA水溶液1を下方から上方にむけて徐々に凍結する方法が挙げられる。板状容器2の底辺部から上辺部に向けてPVA水溶液1が徐々に凍結される様子は、PVA水溶液1の下方の白濁した凍結領域が上方の透明な未凍結領域へ徐々に上昇していく様子として観察される。白濁した凍結領域と透明な未凍結領域との界面を目視で観察することが可能であり、この界面を凝固面(凍結面)と呼ぶ。
<First embodiment>
As a first embodiment of the method for freezing an aqueous PVA solution, for example, as illustrated in FIG. 1, the plate-like container 2 containing the PVA aqueous solution 1 is gradually inserted into a cooling liquid 3 of less than 0 ° C. There is a method of gradually freezing the PVA aqueous solution 1 inside from the bottom to the top. The manner in which the PVA aqueous solution 1 is gradually frozen from the bottom side to the upper side of the plate-like container 2 is that the cloudy frozen region below the PVA aqueous solution 1 gradually rises to the transparent unfrozen region above. Observed as a state. It is possible to visually observe the interface between the cloudy frozen region and the transparent unfrozen region, and this interface is called a solidified surface (frozen surface).

凍結に際して容器2を冷却液体3の中に徐々に挿入するので、凝固面の上昇が容器2の降下によって相殺されて、凝固面が一定の高さを維持するように凍結を進行させることができる。このことを、図2を参照して説明する。図2は図1の容器2を正面から見た模式図である。冷却液体3の液面を高さの基準(高さゼロ)とすると、容器2を比較的遅い速度v1で徐々に挿入した場合、その凝固面の高さd1は冷却液体3の液面よりも高い位置で維持される。これは、PVA水溶液の凝固速度がv1より大きいためである。一方、容器2を比較的速い速度v2で徐々に挿入した場合、その凝固面の高さd2は冷却液体3の液面よりも低い位置、即ち冷却液体中で維持される。これは、PVA水溶液の凝固速度がv2より小さいためである。従って、容器2の挿入速度v(以下、凍結速度と呼ぶことがある。)を適宜調整することによって、凝固面の高さdを調整することができる。   Since the container 2 is gradually inserted into the cooling liquid 3 at the time of freezing, the rise of the solidified surface is offset by the lowering of the container 2, and the freezing can proceed so that the solidified surface maintains a constant height. . This will be described with reference to FIG. FIG. 2 is a schematic view of the container 2 of FIG. 1 as viewed from the front. Assuming that the liquid level of the cooling liquid 3 is a reference of height (zero height), when the container 2 is gradually inserted at a relatively slow speed v1, the solid surface height d1 is higher than the liquid level of the cooling liquid 3. Maintained in a high position. This is because the solidification rate of the PVA aqueous solution is larger than v1. On the other hand, when the container 2 is gradually inserted at a relatively fast speed v2, the solidified surface height d2 is maintained at a position lower than the liquid surface of the cooling liquid 3, that is, in the cooling liquid. This is because the solidification rate of the PVA aqueous solution is smaller than v2. Therefore, the height d of the solidified surface can be adjusted by appropriately adjusting the insertion speed v of the container 2 (hereinafter sometimes referred to as the freezing speed).

本実施形態においては、容器2中のPVA水溶液1の凝固面の高さdが、冷却液体3の液面、又はその液面直下の水の凝固温度(0℃)の領域、若しくはその液面下における前記領域の直上に位置するように、容器2を冷却液体3中に徐々に挿入することが好ましい。つまり、冷却溶液の温度を室温から−26℃の範囲に設定し、容器2の材質と厚さを選定し、試料の厚さを容器2の材質の厚さと同程度にした場合、PVA水溶液の凍結において、凝固面の高さdがゼロであるかゼロに近い液面直下であることが好ましい。   In this embodiment, the height d of the solidified surface of the PVA aqueous solution 1 in the container 2 is the liquid surface of the cooling liquid 3 or the region of the solidification temperature (0 ° C.) of water immediately below the liquid surface, or the liquid surface thereof. It is preferable to gradually insert the container 2 into the cooling liquid 3 so as to be located immediately above the lower region. That is, when the temperature of the cooling solution is set in the range of room temperature to −26 ° C., the material and thickness of the container 2 are selected, and the thickness of the sample is set to be approximately the same as the thickness of the material of the container 2, In freezing, it is preferable that the solid surface height d is zero or just below the liquid level.

このようにPVA水溶液を下方(第一の側)から上方(第二の側)に向けて徐々に凍結することによって、凝固面の法線が下方から上方へ向かう凍結方向と平行になる精度を高めることができる。その結果、後で得られるPVAゲルの内部にはサブミクロンサイズの複数の繊維が束ねられた繊維構造が形成されるとともに、その繊維構造の向きを前記凍結方向と平行に揃えることができる。繊維構造の向きが平行に揃ったPVAゲルは、その繊維構造の向きに対して優れた構造的強度を有する。   Thus, by gradually freezing the PVA aqueous solution from the lower side (first side) to the upper side (second side), the accuracy of the normal of the solidified surface becomes parallel to the freezing direction from the lower side to the upper side. Can be increased. As a result, a fiber structure in which a plurality of submicron fibers are bundled is formed inside the PVA gel obtained later, and the direction of the fiber structure can be aligned in parallel with the freezing direction. A PVA gel in which the orientation of the fiber structure is aligned in parallel has an excellent structural strength with respect to the orientation of the fiber structure.

図3を参照して、凝固面の高さdと凝固面の構造の関係を考察する。図3は、板状容器2内のPVA水溶液を、高さ方向と直交する厚み方向に見た模式的な断面図である。   With reference to FIG. 3, the relationship between the height d of the solidified surface and the structure of the solidified surface will be considered. FIG. 3 is a schematic cross-sectional view of the PVA aqueous solution in the plate-like container 2 as seen in the thickness direction orthogonal to the height direction.

比較的遅い速度v1で容器2を挿入すると、冷却液体3の液面に達する前に、下方の既に凍結したPVA水溶液に熱が伝導して凝固温度以下に降温することによって上方のPVA水溶液の凍結が開始するため、凝固面の高さは液面よりも上方に位置する。この場合、温かい壁面に近いPVA水溶液の周縁部よりも、芯部の方が先に凍結するため、凝固面は上方に凸の放物面になり易い。従って、凝固面の法線(図3の矢印)は、周縁部においては凍結方向(液面に対する垂線)と非平行になり易い。この結果、凝固面の法線が指す方向に従って形成される前記繊維構造の方向は、同一ゲルの芯部と周縁部とでそれぞれ異なる。   When the container 2 is inserted at a relatively slow speed v1, before the liquid level of the cooling liquid 3 is reached, heat is conducted to the already frozen PVA aqueous solution below and the temperature is lowered below the solidification temperature, thereby freezing the upper PVA aqueous solution. Therefore, the height of the solidified surface is located above the liquid level. In this case, since the core portion freezes earlier than the peripheral edge portion of the PVA aqueous solution close to the warm wall surface, the solidified surface tends to be an upwardly convex paraboloid. Therefore, the normal to the solidified surface (arrow in FIG. 3) tends to be non-parallel to the freezing direction (perpendicular to the liquid surface) at the periphery. As a result, the direction of the fiber structure formed according to the direction indicated by the normal line of the solidified surface is different between the core portion and the peripheral portion of the same gel.

逆に、比較的速い速度v2で容器2を挿入すると、冷却液体3の液面下に挿入された後も、上方の未だ凍結していない領域から熱が伝導することによって液面下のPVA水溶液の冷却が遅延するため、凝固面の高さは液面よりも下方に位置する。この場合、冷却液体3によって冷やされた壁面に近いPVA水溶液の周縁部の方が芯部よりも先に凍結するため、凝固面は下方に凸の放物面になり易い。従って、凝固面の法線(図3の矢印)は、周縁部においては凍結方向(液面に対する垂線)と非平行になり易い。この結果、凝固面の法線が指す方向に従って形成される前記繊維構造の方向は、同一ゲルの芯部と周縁部とでそれぞれ異なる。   On the contrary, when the container 2 is inserted at a relatively high speed v2, the PVA aqueous solution below the liquid level is obtained by conducting heat from the region that has not been frozen yet after being inserted below the liquid level of the cooling liquid 3. Since the cooling of the liquid is delayed, the height of the solidified surface is located below the liquid level. In this case, since the peripheral portion of the PVA aqueous solution near the wall surface cooled by the cooling liquid 3 freezes before the core portion, the solidified surface tends to be a downwardly convex paraboloid. Therefore, the normal to the solidified surface (arrow in FIG. 3) tends to be non-parallel to the freezing direction (perpendicular to the liquid surface) at the periphery. As a result, the direction of the fiber structure formed according to the direction indicated by the normal line of the solidified surface is different between the core portion and the peripheral portion of the same gel.

一方、凝固面の高さと冷却液体3の液面とがほぼ一致する速度v3で容器2を挿入すると、下方の既に凍結した領域から伝導される低温と、上方の未だ凍結していない領域から伝導される高温が、冷却液体3の液面付近で拮抗する。この場合、容器2の壁面に近いPVA水溶液の周縁部とそれよりも中心側の芯部とがほぼ同時に凍結するため、凝固面は水平な平面になり易い。従って、凝固面の法線(図3の矢印)は、周縁部及び芯部において凍結方向(液面に対する垂線)と平行になり易い。この結果、凍結方向に従って形成される前記繊維構造の方向は、同一ゲルの芯部と周縁部とで同じ方向に揃う。   On the other hand, when the container 2 is inserted at a speed v3 at which the height of the solidified surface and the liquid level of the cooling liquid 3 substantially coincide with each other, the low temperature conducted from the already frozen region below and the conduction from the region not yet frozen above. The high temperature is antagonized near the liquid level of the cooling liquid 3. In this case, the peripheral portion of the PVA aqueous solution near the wall surface of the container 2 and the core portion closer to the center are frozen almost simultaneously, so that the solidified surface tends to be a horizontal plane. Therefore, the normal line of the solidified surface (arrow in FIG. 3) tends to be parallel to the freezing direction (perpendicular to the liquid surface) at the peripheral edge and the core. As a result, the direction of the fiber structure formed in accordance with the freezing direction is aligned in the same direction in the core portion and the peripheral portion of the same gel.

上記のように凝固面と冷却液体3の高さとの関係を好適な位置に調整する方法として、例えば、図1に示すように、板状の内部空間を有する板状容器2を使用して、前記内部空間にPVA水溶液1を入れた状態で、板状容器2の底辺から上辺に向かう長手方向に沿って、0.01mm/秒〜0.10mm/秒の挿入速度で容器2を0℃未満の冷却液体中に挿入する方法が挙げられる。
前記挿入速度は、0.02mm/秒〜0.08mm/秒が好ましく、0.02mm/秒〜0.06mm/秒がより好ましく、0.02mm/秒〜0.04mm/秒が更に好ましい。上記範囲の挿入速度であると、平行に揃った繊維構造をPVAゲル内に容易に形成することができる。
As a method for adjusting the relationship between the solidification surface and the height of the cooling liquid 3 to a suitable position as described above, for example, as shown in FIG. 1, using a plate-like container 2 having a plate-like internal space, With the PVA aqueous solution 1 placed in the internal space, the container 2 is placed below 0 ° C. at an insertion speed of 0.01 mm / second to 0.10 mm / second along the longitudinal direction from the bottom side to the top side of the plate-like container 2. There is a method of inserting into the cooling liquid.
The insertion speed is preferably 0.02 mm / second to 0.08 mm / second, more preferably 0.02 mm / second to 0.06 mm / second, and still more preferably 0.02 mm / second to 0.04 mm / second. When the insertion speed is in the above range, a fiber structure aligned in parallel can be easily formed in the PVA gel.

挿入速度が0.01mm/秒以上0.10mm/秒であることにより、繊維の配向方向の構造的強度が高く、従来の等方的な物理架橋PVAゲルよりも低い膨潤度を有し、従来の高強度PVAゲルよりも高い膨潤度を有するPVAゲルを容易に製造することができる。凍結速度が0.08mm/秒以下であることにより、PVAゲルの繊維構造に沿う方向の破断応力を高めることができる。ここで破断応力とは、PVAゲルが外力により破断されずにもちこたえる限界の最大応力を意味する。   When the insertion speed is 0.01 mm / second or more and 0.10 mm / second, the structural strength in the fiber orientation direction is high, and the swelling degree is lower than that of the conventional isotropic physical cross-linked PVA gel. The PVA gel having a higher degree of swelling than the high-strength PVA gel can be easily produced. When the freezing rate is 0.08 mm / second or less, the breaking stress in the direction along the fiber structure of the PVA gel can be increased. Here, the breaking stress means the maximum stress that is the limit that the PVA gel can hold without being broken by an external force.

図4に、直方体状に切り出したPVAゲルの模式的な斜視図を示す。X方向がPVAからなる繊維構造に沿った方向であり、Y方向及びZ方向がPVAからなる繊維に垂直な方向である。本明細書において、PVAからなる繊維に沿う方向の破断応力とは、X方向にゲルを引張り(引き伸ばし)、破断されずにもちこたえる限界の最大応力をいう。つまり、当該繊維構造を分断するために要する力を意味する。また、PVAからなる繊維に垂直な方向の破断応力とは、Y方向又はZ方向にゲルを引張り(引き伸ばし)、破断されずにもちこたえる限界の最大応力をいう。つまり、当該繊維構造を構成する繊維同士を引き剥がすために要する力を意味する。   FIG. 4 shows a schematic perspective view of a PVA gel cut into a rectangular parallelepiped shape. The X direction is a direction along the fiber structure made of PVA, and the Y direction and the Z direction are directions perpendicular to the fiber made of PVA. In this specification, the breaking stress in the direction along the fiber made of PVA refers to the maximum stress that can be held without stretching (stretching) the gel in the X direction. That is, it means the force required to break the fiber structure. The breaking stress in the direction perpendicular to the fiber made of PVA refers to the maximum stress that can be held without being broken by pulling (stretching) the gel in the Y or Z direction. That is, it means the force required to peel off the fibers constituting the fiber structure.

凍結時にPVA水溶液を入れる容器の形状は特に限定されず、長手方向及び短手方向に対応する長さを有する容器として、例えば、板状、筒状、棒状、箱状、回転楕円体状などの形状の容器が挙げられる。ここで、容器の形状はPVA水溶液を満たす空間の形状を意味する。従って、前記容器に入れたPVA水溶液及び作製するPVAゲルの形状は、その容器の形状に従う。   The shape of the container in which the PVA aqueous solution is put at the time of freezing is not particularly limited. Examples of the container having a length corresponding to the longitudinal direction and the short direction include a plate shape, a cylindrical shape, a rod shape, a box shape, and a spheroid shape. Shaped containers can be mentioned. Here, the shape of the container means the shape of the space that fills the PVA aqueous solution. Therefore, the PVA aqueous solution put in the container and the shape of the PVA gel to be produced follow the shape of the container.

例えば前記容器として板状容器を用いる場合、その板の厚み方向が短手方向であり、その板の縦方向及び横方向が長手方向である。この場合、PVA水溶液を入れた板状容器を長手方向に0℃未満の冷却液体に挿入するとは、板状容器の縦方向又は横方向に挿入することを意味する。本発明の効果を得るうえで、その挿入方向は縦方向であってもよいし、横方向であってもよい。本発明の効果を得るうえで大事なことは、PVA水溶液を第一の端部(第一の側)から第二の端部(第二の側)へ徐々に冷却して、凝固面の法線が凍結方向に対して平行になるように凍結することである。この凍結方向の一例として、冷却液体の液面の法線が指す方向が挙げられる。上記のように凍結すると、PVA水溶液中のPVAが物理的に架橋したPVAゲルが形成される際、そのゲル内部に第一の端部から第二の端部へ向けた一方向に沿って、平行な繊維構造が形成される。   For example, when a plate-shaped container is used as the container, the thickness direction of the plate is the short direction, and the vertical direction and the horizontal direction of the plate are the longitudinal direction. In this case, inserting the plate-like container containing the PVA aqueous solution into the cooling liquid having a longitudinal direction of less than 0 ° C. means inserting the plate-like container in the vertical direction or the horizontal direction of the plate-like container. In obtaining the effects of the present invention, the insertion direction may be the vertical direction or the horizontal direction. What is important in obtaining the effects of the present invention is that the aqueous PVA solution is gradually cooled from the first end (first side) to the second end (second side) to obtain a solidified surface method. Freezing so that the line is parallel to the freezing direction. An example of this freezing direction is the direction indicated by the normal of the liquid level of the cooling liquid. When frozen as described above, when a PVA gel in which PVA in the PVA aqueous solution is physically cross-linked is formed, along the one direction from the first end to the second end inside the gel, Parallel fiber structures are formed.

前記板状容器の厚み(即ち、凍結時に板状であるPVA水溶液の厚み)は、0.5mm以上が好ましく、0.5mm〜10mmがより好ましく、0.5mm〜5.0mmが更に好ましく、1.0mm〜3.0mmが特に好ましい。
前記厚みが0.5mm〜10mmであることにより、凍結時に第一の端部から第二の端部へ向けた一方向の凍結効率と、厚み方向の凍結効率とが高まり、その一方向に沿った平行な繊維構造を容易に形成することができる。
The thickness of the plate-like container (that is, the thickness of the PVA aqueous solution that is plate-like when frozen) is preferably 0.5 mm or more, more preferably 0.5 mm to 10 mm, still more preferably 0.5 mm to 5.0 mm. 0.0 mm to 3.0 mm is particularly preferable.
When the thickness is 0.5 mm to 10 mm, the freezing efficiency in one direction from the first end portion to the second end portion during freezing and the freezing efficiency in the thickness direction are increased, and along the one direction. Parallel fiber structures can be easily formed.

前記板状容器の縦及び横の長さは特に制限されず、例えば、縦×横=10cm×15cm、縦×横=15cm×10cm、縦×横=50cm×50cm、縦×横=100cm×10cm等の組み合わせが挙げられる。これらの縦×横のサイズは、上述した好適な厚みのサイズと組み合わせることができる。   The length and width of the plate-like container are not particularly limited. For example, length × width = 10 cm × 15 cm, length × width = 15 cm × 10 cm, length × width = 50 cm × 50 cm, length × width = 100 cm × 10 cm And the like. These vertical × horizontal sizes can be combined with the preferred thickness sizes described above.

前記PVA水溶液と前記冷却液体とを隔てる前記容器の肉厚は特に限定されないが、1.0mm〜10mmが好ましく、1.0mm〜5.0mmがより好ましく、1.0mm〜3.0mmが更に好ましい。上記範囲であると、冷却液体とPVA水溶液間の熱の伝導効率が適度となる。   The wall thickness of the container separating the aqueous PVA solution and the cooling liquid is not particularly limited, but is preferably 1.0 mm to 10 mm, more preferably 1.0 mm to 5.0 mm, and still more preferably 1.0 mm to 3.0 mm. . Within the above range, the heat conduction efficiency between the cooling liquid and the PVA aqueous solution becomes appropriate.

前記容器を構成する材料は特に限定されず、合成樹脂、ガラス、金属等が適用可能であるが、合成樹脂であることが好ましい。合成樹脂製の容器であると、容器の壁面における熱の伝導効率が適度となる。合成樹脂の種類は特に限定されず、公知の樹脂が適用可能であり、例えば、ポリ(メタ)アクリル系樹脂、ポリビニル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等が挙げられる。これらの中でも、凍結面の様子を観察し易い透明な樹脂がより好ましい。   The material constituting the container is not particularly limited, and synthetic resin, glass, metal, and the like can be applied, but synthetic resin is preferable. When the container is made of a synthetic resin, the heat conduction efficiency on the wall surface of the container becomes appropriate. The kind of the synthetic resin is not particularly limited, and a known resin can be used. Examples thereof include poly (meth) acrylic resin, polyvinyl resin, polyester resin, polyamide resin, and polycarbonate resin. Among these, a transparent resin that allows easy observation of the frozen surface is more preferable.

前記合成樹脂の熱物性が凍結するPVA水溶液の熱物性と略同程度に類似していると、冷却時の熱の伝導効率が適度になり、一層優れた強度を有する繊維構造を形成することができるため好ましい。ここで、熱物性は、熱伝導率及び熱容量のうち少なくとも一方を意味する。   If the thermophysical properties of the synthetic resin are similar to the thermophysical properties of the frozen PVA aqueous solution, the heat conduction efficiency during cooling will be moderate, and a fiber structure with even better strength may be formed. This is preferable because it is possible. Here, the thermophysical property means at least one of thermal conductivity and heat capacity.

前記冷却液体の温度は、PVA水溶液を凍結させることが可能な温度であれば特に限定されず、前記繊維構造をゲル内部に成長させながら凍結することが容易になる観点から、−80℃以上0℃未満が好ましく、−60℃以上0℃未満がより好ましく、−30℃以上−10℃以下が最も好ましい。   The temperature of the cooling liquid is not particularly limited as long as it is a temperature at which the aqueous PVA solution can be frozen. From the viewpoint of easy freezing while growing the fiber structure inside the gel, the temperature of the cooling liquid is not lower than −80 ° C. or higher. It is preferably less than ℃, more preferably from -60 ℃ to less than 0 ℃, and most preferably from -30 ℃ to -10 ℃.

前記冷却液体の種類は特に制限されず、設定する温度を実現可能な液体を適宜選択すればよい。上記好適な温度範囲を得るためには、メタノール、エタノール、イソプロパノール等のアルコール系有機溶媒を含む水溶液を用いることが簡便である。   The kind of the cooling liquid is not particularly limited, and a liquid that can realize the set temperature may be selected as appropriate. In order to obtain the preferable temperature range, it is convenient to use an aqueous solution containing an alcohol-based organic solvent such as methanol, ethanol, or isopropanol.

PVA水溶液の材料であるPVA(ポリビニルアルコール)は、ケン化度が95%以上、且つ、重合度が1000以上であることが好ましい。
PVAのケン化度の上限値は100%であるが、PVAの溶解度を高める観点から、100%未満であることが好ましい。
PVAの重合度が1000以上であることにより、高い構造的強度のPVAゲルが得られる。その重合度の上限値は特に制限されないが、溶解度を高める観点から、8000以下が好ましく、5000以下がより好ましく、4000以下が更に好ましく、3000以下が特に好ましい。通常、使用するPVAの重合度が高い程、得られるPVAゲルの構造的強度が高くなる傾向がある。PVAゲルの破断応力を高める観点から、PVAの重合度は1700以上が好ましく、2400以上がより好ましく、4000以上が更に好ましい。ここで例示した物性をもつPVAは市販品としても購入可能である。
PVA (polyvinyl alcohol), which is a material of the PVA aqueous solution, preferably has a saponification degree of 95% or more and a polymerization degree of 1000 or more.
The upper limit of the saponification degree of PVA is 100%, but it is preferably less than 100% from the viewpoint of increasing the solubility of PVA.
When the degree of polymerization of PVA is 1000 or more, a high structural strength PVA gel can be obtained. The upper limit of the degree of polymerization is not particularly limited, but is preferably 8000 or less, more preferably 5000 or less, still more preferably 4000 or less, and particularly preferably 3000 or less from the viewpoint of increasing solubility. Usually, the higher the degree of polymerization of the PVA used, the higher the structural strength of the resulting PVA gel. From the viewpoint of increasing the breaking stress of the PVA gel, the polymerization degree of PVA is preferably 1700 or more, more preferably 2400 or more, and further preferably 4000 or more. The PVA having the physical properties exemplified here can be purchased as a commercial product.

PVA水溶液に含まれるPVAの濃度は特に限定されず、好ましくは5〜25質量%、より好ましくは15〜20質量%である。
上記範囲の濃度であると、形成される物理架橋の密度が十分に高まり、PVAゲルに十分な構造的強度を付与することができる。また、PVA水溶液の粘度が増して、容器内に注入し難くなること、低温での保存中にPVA水溶液のゲル化が進行してしまうことを防ぐことができる。
The density | concentration of PVA contained in PVA aqueous solution is not specifically limited, Preferably it is 5-25 mass%, More preferably, it is 15-20 mass%.
When the concentration is in the above range, the density of the physical crosslink formed is sufficiently increased, and sufficient structural strength can be imparted to the PVA gel. Moreover, it can prevent that the viscosity of PVA aqueous solution increases and it becomes difficult to inject | pour into a container, and gelatinization of PVA aqueous solution advances during the preservation | save at low temperature.

PVA水溶液には、それがPVAの物理架橋を妨げる物質でなければ、種々の薬剤や機能性物質を含有してもよい。例えば、PVA水溶液に、予め機能性物質を混合、分散、又は溶解させておくことにより、形成するPVAゲル中に機能性物質を担持させることができる。   The PVA aqueous solution may contain various drugs and functional substances as long as it does not interfere with physical cross-linking of PVA. For example, the functional substance can be supported in the PVA gel to be formed by previously mixing, dispersing, or dissolving the functional substance in the PVA aqueous solution.

前記機能性物質としては、二酸化チタン等の無機微粒子や、多糖類及びタンパク質等の有機分子、N−イソプロピルアクリルアミド等の熱応答性高分子が例示できる。
前記機能性物質は、天然由来の物質であっても、化学合成されたものであってもよい。
また、前記有機分子は、低分子化合物であっても、高分子ポリマーであってもよい。
Examples of the functional substance include inorganic fine particles such as titanium dioxide, organic molecules such as polysaccharides and proteins, and thermoresponsive polymers such as N-isopropylacrylamide.
The functional substance may be a naturally derived substance or a chemically synthesized substance.
The organic molecule may be a low molecular compound or a high molecular polymer.

前記機能性物質の前記PVA水溶液中の濃度としては、使用する機能性物質の大きさや物性にも依るが、例えば1〜20容量%程度にすることができる。   The concentration of the functional substance in the aqueous PVA solution can be, for example, about 1 to 20% by volume, although it depends on the size and physical properties of the functional substance to be used.

<第二実施形態>
PVA水溶液の凍結方法の第二実施形態として、例えば図5に例示するように、ペルチェ素子(不図示)に接続された金属製台座13にPVA水溶液11を入れた容器12を載置して、容器12の底面12aの全体を−20℃〜−15℃程度に冷却することによって、PVA水溶液11の底部から上部へ向けて(図5の矢印方向)徐々に冷却する方法が挙げられる。この際、PVA水溶液の水面11aと容器の底面12aとの差を1mm〜10mm程度に設定することが好ましい。このように容器の底面に薄く広がった状態のPVA水溶液11は、容器12の側壁からの温度伝導の影響を受けがたく、容器12の底面からの冷却による温度伝導の影響が支配的に作用する。この結果、凝固面Fが容器の底面12a及びPVA水溶液の水面11aとほぼ平行になり、凝固面Fの法線が凍結方向(容器12の底面からPVA水溶液11の水面へ向かう方向、即ちPVA水溶液11の底部から上部へ向かう方向)に一致する。このようにPVA水溶液を凍結した後、ペルチェ素子を停止して解凍すると、ゲルの厚み方向(凍結方向、即ち、図5の矢印方向)に沿った平行な繊維構造が形成されたPVAゲルが得られる。ペルチェ素子による凍結及び解凍は、ペルチェ素子の電源をON及びOFFすることによって容易に制御することができるため、凍結及び解凍を繰り返し易い。
<Second embodiment>
As a second embodiment of the PVA aqueous solution freezing method, for example, as illustrated in FIG. 5, a container 12 containing the PVA aqueous solution 11 is placed on a metal base 13 connected to a Peltier element (not shown). A method of gradually cooling the entire bottom surface 12a of the container 12 to about −20 ° C. to −15 ° C. from the bottom to the top of the PVA aqueous solution 11 (in the direction of the arrow in FIG. 5) can be mentioned. At this time, the difference between the water surface 11a of the PVA aqueous solution and the bottom surface 12a of the container is preferably set to about 1 mm to 10 mm. Thus, the PVA aqueous solution 11 that is thinly spread on the bottom surface of the container is not easily affected by the temperature conduction from the side wall of the container 12, and the influence of the temperature conduction due to cooling from the bottom surface of the container 12 acts predominantly. . As a result, the solidified surface F becomes substantially parallel to the bottom surface 12a of the container and the water surface 11a of the PVA aqueous solution, and the normal line of the solidified surface F is in the freezing direction (the direction from the bottom surface of the container 12 toward the water surface of the PVA aqueous solution 11, that is, the PVA aqueous solution. 11 in the direction from the bottom to the top). After freezing the PVA aqueous solution in this way, when the Peltier element is stopped and thawed, a PVA gel in which parallel fiber structures are formed along the thickness direction of the gel (freezing direction, that is, the arrow direction in FIG. 5) is obtained. It is done. Freezing and thawing by the Peltier element can be easily controlled by turning on and off the power source of the Peltier element, so that the freezing and thawing are easily repeated.

≪PVAゲルの製造方法≫
本発明の第二態様のPVAゲルの製造方法は、以下の第一工程〜第二工程を含む。第一工程〜第二工程以外の補助的な工程を有していてもよい。
≪Method for producing PVA gel≫
The method for producing the PVA gel of the second aspect of the present invention includes the following first to second steps. You may have an auxiliary process other than a 1st process-a 2nd process.

<第一工程>
第一工程は、前述した第一態様のPVA水溶液の凍結方法によって、PVA水溶液を凍結する工程である。
<First step>
The first step is a step of freezing the PVA aqueous solution by the above-described method for freezing a PVA aqueous solution.

<第二工程>
第二工程は、第一工程で得られたPVA水溶液の凍結体を0℃以上の雰囲気中で解凍することによってPVAゲルを得る工程である。例えば、第一工程で凍結したPVA水溶液の入った容器を0℃以上の雰囲気中に取り出すことにより、凍結したPVA水溶液を解凍する方法が挙げられる。
第一工程で凍結したPVA水溶液を第二工程で解凍することにより、PVA水溶液中のPVAが物理架橋したPVAゲルが得られる。このようにして得られたPVAゲルは異方網目構造を有している。
<Second step>
The second step is a step of obtaining a PVA gel by thawing the frozen body of the PVA aqueous solution obtained in the first step in an atmosphere of 0 ° C. or higher. For example, a method of thawing the frozen PVA aqueous solution by taking out the container containing the PVA aqueous solution frozen in the first step into an atmosphere of 0 ° C. or higher can be mentioned.
By thawing the PVA aqueous solution frozen in the first step in the second step, a PVA gel in which the PVA in the PVA aqueous solution is physically cross-linked is obtained. The PVA gel thus obtained has an anisotropic network structure.

第二工程における前記0℃以上の雰囲気の上限の温度は、PVAゲルが安定に得られる温度であれば特に制限されず、通常、50℃以下が好ましく、30℃以下がより好ましく、10℃以下が更に好ましい。上限温度が50℃以下であると、目的のPVAゲルを安定に得ることができる。   The upper limit temperature of the atmosphere of 0 ° C. or higher in the second step is not particularly limited as long as the PVA gel can be stably obtained, and is usually preferably 50 ° C. or lower, more preferably 30 ° C. or lower, and more preferably 10 ° C. or lower. Is more preferable. When the upper limit temperature is 50 ° C. or lower, the target PVA gel can be obtained stably.

PVAゲルの形状を前記容器の形状に従わせるためには、容器内で凍結したPVA水溶液を容器の外に取り出さず、容器内に保持したまま解凍することが好ましい。容器は密閉容器であってもよいし、開放容器(無蓋容器)であってもよい。   In order to make the shape of the PVA gel conform to the shape of the container, it is preferable that the PVA aqueous solution frozen in the container is not taken out of the container and thawed while being held in the container. The container may be a closed container or an open container (non-covered container).

第二工程において解凍したPVA水溶液は既にゲル化しているが、このPVAゲル中の物理架橋の程度(密度)を高めて、その構造的強度を更に高める観点から、1回目の第二工程後、再び凍結し、その後解凍する凍結解凍サイクルを1回以上行うことが好ましい。具体例として、1回目の凍結後に解凍したPVAゲル(解凍体)を含む容器を、再び前記0℃未満の液体中に、同じ凍結方向で、同じ挿入速度で、同じ冷却液体中に挿入する方法が挙げられる。   Although the PVA aqueous solution thawed in the second step is already gelled, from the viewpoint of further increasing the structural strength by increasing the degree of physical crosslinking (density) in this PVA gel, after the first second step, It is preferable to perform one or more freeze-thaw cycles that freeze again and then thaw. As a specific example, a method of inserting a container containing a PVA gel (thawed body) thawed after the first freezing into the same cooling liquid in the same freezing direction at the same freezing speed in the liquid below 0 ° C again. Is mentioned.

凍結解凍サイクルを行う合計の回数は特に制限されないが、通常、2回以上が好ましく、3回以上がより好ましく、4回以上が更に好ましい。繰り返す回数を多くするに従い、PVAゲルの構造的強度が高まる傾向がある。繰り返す回数の上限は特に制限されないが、通常10回程度が上限回数として適当である。   The total number of freeze-thaw cycles is not particularly limited, but is usually preferably 2 times or more, more preferably 3 times or more, and still more preferably 4 times or more. As the number of repetitions increases, the structural strength of the PVA gel tends to increase. The upper limit of the number of repetitions is not particularly limited, but usually about 10 is appropriate as the upper limit number.

<第三工程>
第三工程は、第二工程後に得られたPVAゲルを水中に浸漬して膨潤させることによりPVAゲルを得る工程である。
第二工程後に得られたPVAゲルを水中に浸漬すると、PVAゲルが水を吸収して膨潤する。所定時間経過後、水中から取り出すことにより、充分に水を保持した湿潤なPVAゲル(PVAハイドロゲルと呼んでもよい。)が得られる。
<Third step>
The third step is a step of obtaining a PVA gel by immersing the PVA gel obtained after the second step in water to swell.
When the PVA gel obtained after the second step is immersed in water, the PVA gel absorbs water and swells. By removing from the water after a predetermined time has elapsed, a wet PVA gel sufficiently retaining water (may be referred to as PVA hydrogel) is obtained.

水中に浸漬させる時間は特に限定されず、PVAゲルが平衡膨潤に達するまで浸漬することが好ましい。PVAゲルが平衡膨潤に達して、PVAゲルがそれ以上膨潤しなくなった後も浸漬を続けても構わない。PVAゲルが平衡膨潤に達する時間は、PVAゲルの形状や体積にもよるが、通常、数時間〜数日間でよい。   The time to immerse in water is not specifically limited, It is preferable to immerse until PVA gel reaches equilibrium swelling. Immersion may continue even after the PVA gel reaches equilibrium swelling and the PVA gel no longer swells. The time for the PVA gel to reach equilibrium swelling is usually several hours to several days, although it depends on the shape and volume of the PVA gel.

PVAゲルを浸漬する水は、精製された純水であってもよいし、使用目的に応じて任意の成分を含む水溶液であってもよい。
PVAゲルを浸漬する水の温度は、PVAゲルの物理架橋が解除されない程度の温度であることが好ましく、例えば4〜40℃程度の水に浸漬することが好ましい。
The water in which the PVA gel is immersed may be purified pure water or an aqueous solution containing arbitrary components depending on the purpose of use.
The temperature of the water in which the PVA gel is immersed is preferably such a temperature that the physical crosslinking of the PVA gel is not released. For example, it is preferably immersed in water at about 4 to 40 ° C.

≪PVAゲル積層体の製造方法≫
第二態様のPVAゲルの製造方法において、PVA水溶液を板状容器に入れることにより、PVAゲルからなるシートを得ることができる。シートの厚みは、板状容器の厚みと同等である。このPVAゲルからなるシートを2枚以上積層することにより、PVAゲル積層体を得ることができる。
≪Method for producing PVA gel laminate≫
In the method for producing the PVA gel of the second aspect, a sheet made of PVA gel can be obtained by putting the PVA aqueous solution into a plate-like container. The thickness of the sheet is equivalent to the thickness of the plate-like container. By laminating two or more sheets made of this PVA gel, a PVA gel laminate can be obtained.

積層するシートの枚数は特に限定されず、製造する積層体の厚みに必要な任意の枚数を重ねることができる。
前記積層体の厚みは、積層体の機械的強度を高める観点から、1mm以上が好ましく、2mm〜20mmがより好ましく、2mm〜5mmが更に好ましい。
The number of sheets to be laminated is not particularly limited, and any number of sheets necessary for the thickness of the laminated body to be manufactured can be stacked.
From the viewpoint of increasing the mechanical strength of the laminate, the thickness of the laminate is preferably 1 mm or more, more preferably 2 mm to 20 mm, and still more preferably 2 mm to 5 mm.

前記シートを複数枚重ねて積層する際、各シートが有する繊維構造の向きを非平行にして積層することが好ましい。積層体の上面(上方)から見て、第一枚目のシートの繊維構造の向きと、その上に積層する第二枚目のシートの繊維構造の向きとのなす角は、例えば5〜90度の範囲で、使用目的と積層枚数に応じて適宜設定することができる。   When laminating and laminating a plurality of the sheets, it is preferable that the fiber structures of the sheets are laminated in a non-parallel direction. The angle formed by the fiber structure direction of the first sheet and the fiber structure direction of the second sheet laminated thereon is, for example, 5 to 90 when viewed from the upper surface (above) of the laminate. In the range of degrees, it can set suitably according to a use purpose and the number of lamination | stacking.

積層する複数のPVAゲルからなるシートが各々有する繊維構造の向きを互いに非平行にする、例えば互いに直交するように積層することによって、PVAゲル積層体の構造的強度を等方的にすることができる。これは、PVAゲルの引張強度が繊維に沿った方向に強いことを利用して、繊維構造の向きを複数の層間で互いに非平行(不揃い)にすることによって、従来のFTゲルよりも強い引張強度を示す向き(即ち、繊維構造に沿う向き)を、積層体の上面から全層を透視したときに、非平行又は等方的に配置することによって達成できる。このような積層体は、どの方向に引っ張った場合にも、従来の凍結融解法で得られたPVAからなるゲルよりも優れた構造的強度を有する。   The structural strength of the PVA gel laminate can be made isotropic by making the fiber structures of the sheets made of a plurality of laminated PVA gels non-parallel to each other, for example, by laminating them so as to be orthogonal to each other. it can. This is because the tensile strength of the PVA gel is strong in the direction along the fiber, and the fiber structure is made non-parallel (non-uniform) between multiple layers, thereby making the tensile strength stronger than that of the conventional FT gel. The direction showing the strength (that is, the direction along the fiber structure) can be achieved by arranging non-parallel or isotropically when all layers are seen through from the upper surface of the laminate. Such a laminate has a structural strength superior to that of a gel made of PVA obtained by a conventional freeze-thaw method, when pulled in any direction.

前記シートを複数枚重ねて積層する際、各シートを予め水で膨潤させておき、各シート間にPVA水溶液を塗布して積層し、乾燥させることが好ましい。このように、膨潤、積層及び乾燥を行うことにより、層間にPVAからなるネットワーク構造(接着面近傍におけるPVAの物理架橋)を形成し、層間の接着強度をより高めることができる。   When laminating and laminating a plurality of the sheets, it is preferable to swell each sheet in advance with water, apply and laminate a PVA aqueous solution between the sheets, and dry. Thus, by performing swelling, laminating and drying, a network structure composed of PVA (physical cross-linking of PVA in the vicinity of the adhesive surface) can be formed between the layers, and the adhesive strength between the layers can be further increased.

層間にPVAからなるネットワーク構造が形成される過程において、積層する前記シートの間隙にPVA水溶液を塗布して積層することにより、PVA水溶液を前記シートに浸透させることができる。この浸透が容易に起こる理由は、前記シート中に微結晶が繊維部分に凝集してゲル化しているため、前記シート中の繊維間のPVA網目中のPVA濃度が低下しているからである。PVA水溶液が前記シートに浸透した後、乾燥することにより、PVA水溶液中のPVA同士、および前記シートの繊維間のPVA間に、微結晶が形成されて、ネットワークが構築される。この結果、複数のシートが十分に接着されたPVAゲル積層体が得られる。   In the process of forming a network structure composed of PVA between layers, the PVA aqueous solution can be infiltrated into the sheet by applying and laminating the PVA aqueous solution in the gaps between the laminated sheets. The reason why this penetration easily occurs is that, since the microcrystals aggregate in the fiber portion and gel in the sheet, the PVA concentration in the PVA network between the fibers in the sheet is lowered. After the PVA aqueous solution penetrates into the sheet, it is dried to form microcrystals between the PVA in the PVA aqueous solution and between the PVA between the fibers of the sheet, thereby constructing a network. As a result, a PVA gel laminate in which a plurality of sheets are sufficiently bonded is obtained.

乾燥させて得られた乾燥状態の積層体を水中に浸漬させて再度膨潤させることにより、目的のPVAゲル積層体が得られる。   The target PVA gel laminate is obtained by immersing the dried laminate obtained by drying in water and swelling it again.

PVAゲルからなるシートおよびPVAゲル積層体を膨潤させる方法は特に限定されず、例えば平衡膨潤に達するまで水中に浸漬しておけばよい。   The method for swelling the sheet made of PVA gel and the PVA gel laminate is not particularly limited, and may be immersed in water until the equilibrium swelling is reached, for example.

前記シートを乾燥させる方法は特に制限されず、例えば風乾する方法、温風を吹き付ける方法、真空乾燥する方法等が挙げられる。   The method for drying the sheet is not particularly limited, and examples thereof include an air drying method, a method of blowing warm air, and a vacuum drying method.

各シート間に塗布するPVA水溶液のPVA濃度は、PVAゲルを作製する際の濃度と同じでもよいし、異なっていてもよい。   The PVA concentration of the aqueous PVA solution applied between the sheets may be the same as or different from the concentration at the time of producing the PVA gel.

積層体を構成するシートは前述した機能性物質を担持していてもよい。機能性物質を担持するシートの、PVAゲル積層体における位置は、任意の層に設定できる。
機能性物質を担持するシートは、PVAゲル積層体を構成する各シートのうち、いずれか一層を形成しても良いし、いずれかの複数の層を形成してもよい。
The sheet constituting the laminate may carry the above-described functional substance. The position of the sheet carrying the functional substance in the PVA gel laminate can be set to an arbitrary layer.
The sheet carrying the functional substance may form any one of the sheets constituting the PVA gel laminate, or may form any of a plurality of layers.

本発明のPVAゲル積層体の製造方法によれば、PVAゲルからなるシートを複数積層することにより、積層体の厚さを任意に制御できる。これに加えて、積層体を構成する各シート中の成分(例えば前記機能性物質)の組成を層ごとに変化させることによって、積層体における当該成分の濃度を段階的に傾斜させることができる。   According to the method for producing a PVA gel laminate of the present invention, the thickness of the laminate can be arbitrarily controlled by laminating a plurality of sheets made of PVA gel. In addition to this, by changing the composition of the component (for example, the functional substance) in each sheet constituting the laminated body for each layer, the concentration of the component in the laminated body can be gradually inclined.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

≪各試料の作製≫
<PVA水溶液の調製>
平均重合度1700、ケン化度98.00〜99.00%のPVA粉末(クラレ株式会社製、型番:PVA117)と、イオン交換水を蒸留した後さらにMilli−Qフィルターでイオン交換した超純水とを材料として使用した。
このPVA粉末と超純水をネジ口瓶に入れ、PVA濃度15.0重量%となるように調製し、2時間撹拌しながら90℃以上の温水中で湯煎した後、室温に戻すことにより、PVA粉末が完全に溶解したPVA水溶液を得た。
このPVA水溶液を用いて以下の方法で試料を作製した。
≪Preparation of each sample≫
<Preparation of PVA aqueous solution>
PVA powder (model number: PVA117, manufactured by Kuraray Co., Ltd.) having an average degree of polymerization of 1700 and a degree of saponification of 98.00 to 99.00%, and ultrapure water ion-exchanged with a Milli-Q filter after distillation of ion-exchanged water And were used as materials.
By putting this PVA powder and ultrapure water into a screw mouth bottle, preparing to have a PVA concentration of 15.0% by weight, boiling in hot water of 90 ° C. or higher with stirring for 2 hours, and then returning to room temperature, A PVA aqueous solution in which the PVA powder was completely dissolved was obtained.
Using this PVA aqueous solution, a sample was prepared by the following method.

<異方性ゲルの作製>
(1)厚さ2mm又は1mmのシリコンゴムからなるスペーサーを2枚のアクリル板で挟んで作製した板状容器に、PVA水溶液を流し入れた。
(2)図1に示すように、板状容器2の第一端部2a(底辺部)から第二端部2b(上辺部)に向けて、v=0.01〜0.10mm/秒から選択される一定速度で、低温恒温水槽で−26℃に設定されたエタノール水溶液3中に板状容器2を徐々に挿入し、第一端部から第二端部の一方向へ向けて徐々に凍結させた。この際、エタノール水溶液の液面と、容器内のPVA水溶液の底面及び水面とが水平になるように挿入した。板状容器を完全にエタノール溶液に沈めて、容器中のPVA水溶液が凍結した後、4℃雰囲気の恒温器に板状容器を移し、4℃で6時間以上保持して解凍させた。この凍結解凍サイクルを4回繰り返した。
(3)(2)で作製した試料を超純水中に3日間浸漬し、平衡膨潤させたPVAゲルを得た。この製法により得たPVAゲルを、以下では異方性ゲルと呼ぶ。
<Preparation of anisotropic gel>
(1) A PVA aqueous solution was poured into a plate-like container prepared by sandwiching a spacer made of silicon rubber having a thickness of 2 mm or 1 mm between two acrylic plates.
(2) As shown in FIG. 1, from the first end 2a (bottom side) of the plate-like container 2 toward the second end 2b (upper side), from v = 0.01 to 0.10 mm / sec. The plate-like container 2 is gradually inserted into the aqueous ethanol solution 3 set at −26 ° C. in the low temperature constant temperature water bath at a selected constant speed, and gradually from the first end to the second end. Frozen. Under the present circumstances, it inserted so that the liquid level of ethanol aqueous solution and the bottom face and water surface of PVA aqueous solution in a container might become horizontal. The plate-like container was completely submerged in an ethanol solution, and after the PVA aqueous solution in the container was frozen, the plate-like container was transferred to a thermostat in an atmosphere of 4 ° C. and kept at 4 ° C. for 6 hours or more to be thawed. This freeze-thaw cycle was repeated 4 times.
(3) The sample prepared in (2) was immersed in ultrapure water for 3 days to obtain an equilibrium swollen PVA gel. Hereinafter, the PVA gel obtained by this production method is referred to as an anisotropic gel.

<凝固面の高さの測定>
エタノール水溶液3の液面を高さの基準(高さゼロ)とすると、容器2を比較的遅い速度v1で徐々に降下させた場合、PVA水溶液1の凝固面の高さdはエタノール水溶液3の液面よりも高い位置で維持された。一方、容器2を比較的速い速度v2で徐々に降下させた場合、その凝固面の高さdはエタノール水溶液3の液面よりも低い位置、即ちエタノール水溶液中で維持された。具体的な結果を図6、図7に示す。
<Measurement of solidified surface height>
Assuming that the liquid level of the aqueous ethanol solution 3 is a reference of height (zero height), when the container 2 is gradually lowered at a relatively slow speed v1, the height d of the solidified surface of the aqueous PVA solution 1 is It was maintained at a position higher than the liquid level. On the other hand, when the container 2 was gradually lowered at a relatively high speed v2, the height d of the solidified surface was maintained at a position lower than the level of the aqueous ethanol solution 3, that is, in the aqueous ethanol solution. Specific results are shown in FIGS.

図6のグラフの横軸は、厚さ2.0mmのPVA水溶液1を入れた板状容器2を0.01〜0.10mm/秒の一定速度vで、低温恒温水槽で−26℃に設定されたエタノール水溶液3中に徐々に挿入し続けた時間を示し、縦軸は、板状容器2内の凝固面の高さdを示す。板状容器2の挿入を開始した時点(0分)から10分後には、速度0.01mm/秒の場合を除いて、凝固面の高さdがほぼ一定に維持される安定期に入った。高さdがほぼ一定になった際の、高さdと速度vの関係を図7に示す。   The horizontal axis of the graph of FIG. 6 is set to −26 ° C. in a low-temperature water bath at a constant speed v of 0.01 to 0.10 mm / sec for a plate-like container 2 containing a PVA aqueous solution 1 having a thickness of 2.0 mm. The time during which the ethanol aqueous solution 3 is gradually inserted is shown, and the vertical axis shows the height d of the solidified surface in the plate-like container 2. After 10 minutes from the start of the insertion of the plate-like container 2 (0 minutes), except for the case where the speed was 0.01 mm / second, a stable period in which the height d of the solidified surface was maintained almost constant was entered. . FIG. 7 shows the relationship between the height d and the speed v when the height d becomes substantially constant.

板状容器2内のPVA水溶液1の厚みが2.0mmの場合は、挿入速度が0.02超0.03mm/秒以下であると、凝固面の高さdが0〜±2mmの範囲に収まり、凝固面の高さがエタノール水溶液3の液面とほぼ同じ位置に維持された(図7参照)。
板状容器2内のPVA水溶液1の厚みが1.0mmの場合は、挿入速度が0.03以上0.06mm/秒以下であると、凝固面の高さdが0〜±2mmの範囲に収まり、凝固面の高さがエタノール水溶液3の液面とほぼ同じ位置に維持された(不図示)。
When the thickness of the PVA aqueous solution 1 in the plate-like container 2 is 2.0 mm, when the insertion speed is more than 0.02 and 0.03 mm / second or less, the solid surface height d is in the range of 0 to ± 2 mm. The solidified surface was kept at the same position as the liquid surface of the aqueous ethanol solution 3 (see FIG. 7).
When the thickness of the PVA aqueous solution 1 in the plate-like container 2 is 1.0 mm, when the insertion speed is 0.03 or more and 0.06 mm / second or less, the solid surface height d is in the range of 0 to ± 2 mm. The solidified surface was kept at the same position as the liquid surface of the aqueous ethanol solution 3 (not shown).

温度センサの先端を板状容器2の底面とみなして、その先端を所定速度で徐々にエタノール水溶液3の液面に接近させ、さらに先端をエタノール水溶液3中に挿入し、各位置における温度プロファイルを測定した。この温度プロファイルを図8に示す。図8の縦軸は、エタノール水溶液3の液面を基準として、液面から上方に離れた正の距離及び液面から下方に離れた負の距離を示し、横軸は各距離(各位置)における温度(センサ先端の温度)を示す。   The tip of the temperature sensor is regarded as the bottom surface of the plate-like container 2, the tip is gradually brought closer to the surface of the aqueous ethanol solution 3 at a predetermined speed, and the tip is inserted into the aqueous ethanol solution 3, and the temperature profile at each position is determined. It was measured. This temperature profile is shown in FIG. The vertical axis in FIG. 8 indicates a positive distance away from the liquid surface and a negative distance away from the liquid surface with reference to the liquid surface of the ethanol aqueous solution 3, and the horizontal axis indicates each distance (each position). The temperature at (the temperature at the tip of the sensor) is shown.

図8の結果から、何れの挿入速度においてもエタノール水溶液3の液面付近では約0℃を示している。低温恒温水槽で設定された−26℃よりはるかに高い温度を示している。これは、空気との間の液面が波打つことを避けるためにエタノール水溶液を撹拌しないことに起因している。実際の測定では、液面下3.8mmで−15℃以下に低下した。PVA水溶液は過冷却の効果もあり、界面ではなく、界面直下数ミリの範囲で凍結を開始することが分かる。したがって、PVA水溶液の凝固面の高さは理論的には液面下3.8mmになるべき、とも考えられる。しかし、温度センサの先端は、上方にあるセンサ上部(センサ本体)からの熱伝導が影響しており、先端の温度低下が若干遅延したと考えられるため、実際には3.8mmより短い範囲で凍結していると考えられる。一方、板状容器2内のPVA水溶液1を冷却する場合は、先行して凍結した下方の領域からの熱伝導(低温の伝導)があるため、温度センサ先端の場合よりも速く(高い位置で)冷却されている可能性がある。すなわち、エタノール水溶液3の液面直下で、PVA水溶液1が凍結しているため、目視では液面付近でPVA水溶液の白濁した凝固面が観察されていると考えられる。   From the result of FIG. 8, at any insertion speed, about 0 ° C. is shown near the liquid surface of the aqueous ethanol solution 3. It shows a temperature much higher than −26 ° C. set in the low temperature water bath. This is due to the fact that the aqueous ethanol solution is not stirred in order to avoid the wave of the liquid surface between the air. In actual measurement, the temperature dropped to −15 ° C. or lower at 3.8 mm below the liquid level. It can be seen that the PVA aqueous solution also has an effect of supercooling and starts freezing not in the interface but in the range of several millimeters immediately below the interface. Therefore, it is considered that the solidified surface height of the PVA aqueous solution should theoretically be 3.8 mm below the liquid surface. However, the tip of the temperature sensor is affected by heat conduction from the upper part of the sensor (sensor body) above, and it is thought that the temperature drop at the tip is slightly delayed, so in fact it is in a range shorter than 3.8 mm. It is considered frozen. On the other hand, when the PVA aqueous solution 1 in the plate-like container 2 is cooled, there is heat conduction (low-temperature conduction) from the previously frozen lower region, so that it is faster than at the tip of the temperature sensor (at a higher position). ) It may be cooled. That is, since the PVA aqueous solution 1 is frozen immediately below the liquid surface of the ethanol aqueous solution 3, it is considered that a cloudy solidified surface of the PVA aqueous solution is observed near the liquid surface.

≪各試料の力学試験≫
<引張試験>
下記の手順により、各試料の引張強度を測定した。
(1)JIS K−6251−8規格のダンベルカッター(図9参照)を用いて、超純水で平衡膨潤させた各試料から切り出した試験片を準備した。この際、異方性ゲルの繊維構造が引張方向に対して平行になるように試験片を切り出した。
(2)食紅を使用して試験片に標点を2つ付け、ノギスでその標点間距離を測定した。
(3)マイクロメータを使用して、試験片の幅と厚みを測定した。
(4)引張試験機(INSTRON5965)を用い、標点間距離の画像データを取得しながら、室温、大気中で試験した。
(5)画像データに基づいて、標点間距離の変化を測定した。
(6)得られたデータから、挿入速度(凍結速度)と、最大応力、最大ひずみ、及び初期弾性率との関係図を作成した。初期弾性率は応力−歪曲線(不図示)の初期の傾きから求めた。
≪Mechanical test of each sample≫
<Tensile test>
The tensile strength of each sample was measured by the following procedure.
(1) Using a JIS K-6251-8 standard dumbbell cutter (see FIG. 9), a test piece cut out from each sample that was equilibrated and swollen with ultrapure water was prepared. At this time, a test piece was cut out so that the fiber structure of the anisotropic gel was parallel to the tensile direction.
(2) Two test marks were attached to the test piece using food red, and the distance between the test marks was measured with a caliper.
(3) The width and thickness of the test piece were measured using a micrometer.
(4) Using a tensile tester (INSTRON 5965), the test was performed in the air at room temperature while acquiring the image data of the distance between the gauge points.
(5) Based on the image data, the change in distance between the gauge points was measured.
(6) From the obtained data, a relationship diagram between the insertion speed (freezing speed), the maximum stress, the maximum strain, and the initial elastic modulus was created. The initial elastic modulus was obtained from the initial slope of a stress-strain curve (not shown).

引張試験の試料として、前述した凍結方法によって作製した厚み2.0mmの異方性ゲルを使用した。図10、図11、図12に示す結果が得られた。
図10の縦軸は最大応力(Maximum Stress)(単位:MPa)を表し、横軸は挿入速度(凍結速度)を表す。図11の縦軸は最大ひずみ(Maximum Strain)(単位:なし)を表し、横軸は挿入速度(凍結速度)を表す。図12の縦軸は初期弾性率(Elastic Modulus)(単位:MPa)を表し、横軸は挿入速度(凍結速度)を表す。
As a sample for the tensile test, an anisotropic gel having a thickness of 2.0 mm prepared by the above-described freezing method was used. The results shown in FIGS. 10, 11 and 12 were obtained.
The vertical axis in FIG. 10 represents maximum stress (unit: MPa), and the horizontal axis represents insertion speed (freezing speed). The vertical axis of FIG. 11 represents the maximum strain (unit: none), and the horizontal axis represents the insertion speed (freezing speed). The vertical axis in FIG. 12 represents the initial elastic modulus (Elastic Modulus) (unit: MPa), and the horizontal axis represents the insertion speed (freezing speed).

以上の結果から、図7の凝固面の高さd=0±2mmになる挿入速度で凍結された異方性ゲルが、最大応力、最大ひずみ、及び初期弾性率に関して、最も優れた構造的強度を示した。これらの結果は、PVAゲル内に形成された繊維構造の向きが凍結方向(エタノール水溶液の液面に対して垂直の方向)に沿って均一にほぼ平行に揃っていることを反映していると考えられる。   From the above results, the anisotropic gel frozen at the insertion speed where the solidified surface height d = 0 ± 2 mm in FIG. 7 is the most excellent structural strength with respect to the maximum stress, the maximum strain, and the initial elastic modulus. showed that. These results reflect that the orientation of the fiber structure formed in the PVA gel is uniformly and substantially parallel along the freezing direction (direction perpendicular to the liquid surface of the ethanol aqueous solution). Conceivable.

図7に示す凝固面の高さdの絶対値が2mmを超える条件で作製された異方性ゲルにおいてもSEMで観察される繊維構造は形成されていたが、繊維構造の向きが凍結方向に対して傾きを有する領域が散見された。繊維構造が不揃いの領域が存在するため、構造的強度が劣っていると考えられる。   Although the fiber structure observed by the SEM was formed even in the anisotropic gel produced under the condition that the absolute value of the height d of the solidified surface shown in FIG. 7 exceeds 2 mm, the direction of the fiber structure is in the freezing direction. On the other hand, there are some regions with inclinations. It is considered that the structural strength is inferior because there is a region where the fiber structure is uneven.

以上の結果は、異方性ゲルの繊維構造が引張方向に対して平行になるように切り出した試験片を用いて得られた。これに代えて、異方性ゲルの繊維構造が引張方向に対して垂直になるように切り出した試験片を用いた実験を行った。ここで詳細な実験結果は示さないが、異方性ゲルの繊維構造に沿った平行方向の引張強度は、異方性ゲルの繊維構造に垂直な方向の引張強度(最大応力と最大ひずみ)よりも格段に大きいことが分かった。   The above results were obtained using a test piece cut out so that the fiber structure of the anisotropic gel was parallel to the tensile direction. Instead, an experiment was performed using a test piece cut out so that the fiber structure of the anisotropic gel was perpendicular to the tensile direction. Although detailed experimental results are not shown here, the tensile strength in the parallel direction along the fiber structure of the anisotropic gel is greater than the tensile strength (maximum stress and maximum strain) in the direction perpendicular to the fiber structure of the anisotropic gel. Was found to be much larger.

後述する従来方法によって凍結解凍サイクルを4回繰り返した凍結解凍ゲル(FT4ゲル)の最大応力を上記と同様に測定した。ここで詳細な実験結果は示さないが、異方性ゲルの繊維構造の方向に沿った最大応力よりも格段に劣る結果であった。FT4ゲル内には方向が揃った繊維構造が形成されていないことから、異方性ゲル内に形成される一方向に沿った均一に平行な繊維構造は、ゲルの構造的強度の向上に多いに寄与しているといえる。   The maximum stress of the freeze-thaw gel (FT4 gel) obtained by repeating the freeze-thaw cycle four times by the conventional method described later was measured in the same manner as described above. Although detailed experimental results are not shown here, the results were far inferior to the maximum stress along the direction of the fiber structure of the anisotropic gel. Since no uniform fiber structure is formed in the FT4 gel, a uniform parallel fiber structure formed in one direction in the anisotropic gel is often used to improve the structural strength of the gel. It can be said that it contributes to.

<質量膨潤比>
各異方性ゲルの膨潤特性を調べるため、質量膨潤比を測定した。まず、超純水で膨潤させた平衡膨潤ゲルを得て、この表面に付着した水分をペーパータオルで拭き取り、平衡膨潤質量Wtを測定した。このWtを、平衡膨潤させる前の乾燥状態における乾燥フィルムの質量(乾燥質量)Wdで割り、質量膨潤比Wt/Wdを算出した。
<Mass swelling ratio>
In order to examine the swelling characteristics of each anisotropic gel, the mass swelling ratio was measured. First, an equilibrium swollen gel swollen with ultrapure water was obtained, the water adhering to the surface was wiped off with a paper towel, and the equilibrium swollen mass Wt was measured. This Wt was divided by the mass (dry mass) Wd of the dry film in the dry state before the equilibrium swelling, and the mass swelling ratio Wt / Wd was calculated.

従来の凍結解凍法によって作製した凍結解凍ゲル(FTゲル)では、凍結解凍サイクルの繰り返し回数の増加とともに結晶化度が増大し、その質量膨潤比は減少する。前記FT4ゲルの質量膨潤比は6.5であった。一方、上記の様に作製した異方性ゲルはFT4ゲルよりも高い質量膨潤比を示すとともに、挿入速度(凍結速度)に依存する傾向が見られた。この結果を図13に示す。従来のFTゲルと比べて異方性ゲルが高い質量膨潤比を示す理由は、一方向に凍結する際の挿入速度を遅くすると、凝固面の高さdが負からゼロの範囲においては、PVA水溶液が凍結する際に形成される氷の結晶が大きく成長し、微結晶の凝集が進み、繊維間の微結晶による架橋密度が低下するので、水を吸収し易い多孔質構造が形成されると考えられる。すなわち、PVA繊維のマクロ構造が概ね一方向に沿って、疎密構造を形成しているので、質量膨潤比が大きくなったと考えられる。   In a freeze-thaw gel (FT gel) produced by a conventional freeze-thaw method, the degree of crystallinity increases and the mass swelling ratio decreases as the number of freeze-thaw cycles is increased. The mass swelling ratio of the FT4 gel was 6.5. On the other hand, the anisotropic gel produced as described above showed a higher mass swelling ratio than the FT4 gel and a tendency to depend on the insertion speed (freezing speed). The result is shown in FIG. The reason why anisotropic gels exhibit a higher mass swelling ratio than conventional FT gels is that if the insertion speed when freezing in one direction is slowed, the solidified surface height d is in the range from negative to zero, PVA When ice crystals formed when the aqueous solution freezes grow, the aggregation of microcrystals advances, and the crosslink density due to the microcrystals between the fibers decreases, so when a porous structure that easily absorbs water is formed Conceivable. That is, it is considered that the mass swelling ratio is increased because the macro structure of the PVA fiber forms a sparsely packed structure substantially along one direction.

<乾燥処理を加えた異方性ゲル(異方性Dゲル)の作製>
異方性ゲルの強度をさらに高めるために、以下の方法で乾燥処理を加えた異方性Dゲルを作製した。
(1)前述した異方性ゲルの作製の場合と同様に、凍結解凍サイクルを4回繰り返して得た異方性ゲルの外郭部(外周部)を接着剤により、アクリル板の平面に固定した。この異方性ゲルの質量が一定になるまで室温で乾燥した後、接着剤が付着した外郭部を切り落とすことにより、PVAからなる乾燥フィルムを得た。
(2)(1)で作製した乾燥フィルムを超純水中に3日間浸漬し、平衡膨潤させたゲルを得た。この製法により得たゲルを、以下では異方性Dゲルと呼ぶ。
<Production of anisotropic gel (anisotropic D gel) subjected to drying treatment>
In order to further increase the strength of the anisotropic gel, an anisotropic D gel subjected to a drying treatment by the following method was prepared.
(1) In the same manner as in the preparation of the anisotropic gel described above, the outer portion (outer peripheral portion) of the anisotropic gel obtained by repeating the freeze-thaw cycle four times was fixed to the plane of the acrylic plate with an adhesive. . After drying at room temperature until the mass of this anisotropic gel became constant, the outer part to which the adhesive adhered was cut off to obtain a dry film made of PVA.
(2) The dried film prepared in (1) was immersed in ultrapure water for 3 days to obtain a gel that had been swollen in equilibrium. The gel obtained by this production method is hereinafter referred to as anisotropic D gel.

作製した異方性Dゲルについて、前述した引張試験によって、最大応力、最大ひずみ、及び初期弾性率を評価した。ここで詳細な試験結果は示さないが、異方性Dゲルの構造的強度は乾燥処理を施していない異方性ゲルよりも格段に向上していた。
このように異方性Dゲルが高い構造的強度を有する理由として、ナノオーダーの構造変化が繊維構造間に起こっていることが考えられる。
About the produced anisotropic D gel, the maximum stress, the maximum strain, and the initial elastic modulus were evaluated by the tensile test described above. Although detailed test results are not shown here, the structural strength of the anisotropic D gel was significantly improved as compared with the anisotropic gel not subjected to the drying treatment.
As a reason why the anisotropic D gel has such high structural strength, it is considered that a nano-order structural change occurs between the fiber structures.

≪PVAゲルの作製における凍結解凍の回数を変化させた試験≫
前述した異方性ゲル及び異方性Dゲルの作製方法において、凍結解凍サイクルの回数を1〜8回の範囲で変化させて、それぞれのゲルを作製した。前述した測定方法によって各物性を測定したところ、ここで詳細な試験結果は示さないが、異方性ゲル及び異方性Dゲルの構造的強度を向上させる観点から、ゲル作製時の凍結解凍サイクルの回数NFTは、2回以上が好ましく、4回以上がより好ましく、6〜8回が更に好ましいことがわかった。
≪Test with varying number of freeze-thaw cycles in PVA gel production≫
In the method for producing the anisotropic gel and the anisotropic D gel described above, each gel was produced by changing the number of freeze-thaw cycles within a range of 1 to 8. When the physical properties were measured by the measurement methods described above, detailed test results are not shown here, but from the viewpoint of improving the structural strength of anisotropic gel and anisotropic D gel, the freeze-thaw cycle during gel preparation It has been found that the number of times N FT is preferably 2 times or more, more preferably 4 times or more, and further preferably 6 to 8 times.

≪PVAゲルの作製に使用するPVA水溶液のPVA濃度を変化させた試験≫
PVA水溶液のPVA濃度を7.5〜20質量%の範囲で変化させた材料溶液を使用して、前述したゲルの作製方法(凍結解凍サイクルの回数は4回)によって、異方性ゲル及び異方性Dゲルを作製した。前述した測定方法によって各物性を測定したところ、ここで詳細な試験結果は示さないが、異方性ゲル及び異方性Dゲルの膨潤比をある程度低く維持しつつ、構造的強度(力学的強度)を向上させる観点から、ゲル作製時のPVA濃度は、10質量%以上が好ましく、15質量%以上がより好ましいことがわかった。
≪Test in which PVA concentration of PVA aqueous solution used for preparation of PVA gel was changed≫
By using the material solution in which the PVA concentration of the PVA aqueous solution was changed in the range of 7.5 to 20% by mass, the gel preparation method (the number of freeze-thaw cycles was four) and the anisotropic gel and the different solution An isotropic D gel was prepared. Each physical property was measured by the measurement method described above, and detailed test results are not shown here. However, the structural strength (mechanical strength) is maintained while maintaining the swelling ratio of the anisotropic gel and the anisotropic D gel to some extent. ), The PVA concentration during gel preparation is preferably 10% by mass or more, more preferably 15% by mass or more.

<PVAゲル積層体の作製と構造的強度の評価>
(1)ポリエチレン製シャーレの中央部をくり抜いた、穴あきシャーレを用意した。
(2)水で平衡膨潤させた異方性ゲルを2個準備し、1枚目の異方性ゲルの中央部を穴あきシャーレの穴に位置合わせして、異方性ゲルの外郭部を穴あきシャーレの穴の辺縁部に接着して固定した。
(3)固定した1枚目の異方性ゲルの上面にPVA水溶液を塗り、2枚目の異方性ゲルをその上面に重ねて置いた。この際、1枚目のゲル内部の繊維構造の方向と、2枚目のゲル内部の繊維構造の方向とが互いに直交するように重ねた。
(4)室温で、試料の質量が一定になるまで乾燥した後、接着剤が付着した外郭部を切り落とすことにより、2枚重ねの乾燥フィルムを得た。
(5)(4)で作製した乾燥フィルムを超純水中に3日間浸漬し、平衡膨潤させたゲルをPVA積層体として得た。
<Preparation of PVA gel laminate and evaluation of structural strength>
(1) A holed petri dish was prepared by hollowing out the central part of a polyethylene petri dish.
(2) Prepare two anisotropic gels that are equilibrated and swollen with water, align the center of the first anisotropic gel with the hole in the petri dish, and It was adhered and fixed to the edge of the hole of the holed petri dish.
(3) A PVA aqueous solution was applied to the upper surface of the fixed first anisotropic gel, and the second anisotropic gel was placed on the upper surface. At this time, the fiber structure direction in the first gel was overlapped with the fiber structure direction in the second gel so as to be orthogonal to each other.
(4) After drying until the mass of the sample became constant at room temperature, the outer part to which the adhesive adhered was cut off to obtain a two-layer dry film.
(5) The dried film produced in (4) was immersed in ultrapure water for 3 days to obtain an equilibrium swollen gel as a PVA laminate.

得られたPVAゲル積層体の各層は充分に接着しており、引き剥がすことは困難であった。また、各シートが有する繊維構造は互いに直交しているため、PVAゲル積層体は、各層の繊維構造が延びる2方向に対して、従来のFT4ゲルよりも強い引張強度を示した。   Each layer of the obtained PVA gel laminate was sufficiently adhered, and it was difficult to peel off. Moreover, since the fiber structure which each sheet | seat has mutually orthogonally crossed, the PVA gel laminated body showed the tensile strength stronger than the conventional FT4 gel with respect to 2 directions where the fiber structure of each layer is extended.

<凍結解凍ゲル(FTゲル)の作製>
(1)ポリエチレン製シャーレに15gのPVA水溶液を流し込み、密閉した。
(2)シャーレを冷凍庫へ投入して−20℃で24時間凍結し、4℃で24時間解凍するサイクルを1〜4回繰り返した。
(3)(2)で作製した試料を超純水中に3日間浸漬し、平衡膨潤させたゲル(厚み:2mm)を得た。この製法により得たPVAからなるゲルを、本明細書では凍結解凍(FT)ゲルと呼ぶ。また、凍結解凍を繰り返した前記サイクル回数に応じて、サイクル1回で得たゲルをFT1ゲル、サイクル2回で得たゲルをFT2ゲルと呼ぶ。
<Preparation of freeze-thawing gel (FT gel)>
(1) A 15 g PVA aqueous solution was poured into a polyethylene petri dish and sealed.
(2) A cycle in which the petri dish was put into a freezer, frozen at −20 ° C. for 24 hours, and thawed at 4 ° C. for 24 hours was repeated 1 to 4 times.
(3) The sample produced in (2) was immersed in ultrapure water for 3 days to obtain an equilibrium swollen gel (thickness: 2 mm). A gel made of PVA obtained by this production method is referred to as a freeze-thaw (FT) gel in this specification. In addition, according to the number of cycles in which freeze-thaw is repeated, a gel obtained in one cycle is referred to as FT1 gel, and a gel obtained in two cycles is referred to as FT2 gel.

≪各試料の物性評価≫
<SEMによるゲル組織の観察>
FT4ゲルと異方性ゲルの表面の組織構造の違いをSEMにより観察した。使用装置は3Dリアルサーフェスビュー顕微鏡VE−8800(キーエンス社製)を用いた。各試料を室温で乾燥させた後、Au−Pt合金によってコーティングした。炭素テープを用いて試料をSEMの試料台に固定して、真空を引いて、観察を行った。
≪Evaluation of physical properties of each sample≫
<Observation of gel structure by SEM>
The difference in the surface structure between the FT4 gel and the anisotropic gel was observed by SEM. The apparatus used was a 3D real surface view microscope VE-8800 (manufactured by Keyence Corporation). Each sample was dried at room temperature and then coated with an Au-Pt alloy. The sample was fixed on the SEM sample stage using a carbon tape, and a vacuum was drawn for observation.

図14はFT4ゲル(厚み:2mm)のSEM写真であり、図15は異方性ゲルのSEM写真である。この異方性ゲルは、凍結速度v=0.01mm/秒、ゲル厚さ2.0mmの条件で一方向に凍結して作製した異方性ゲルである。ゲル内部によく発達した繊維構造が観察された。この繊維構造は凍結方向に概ね沿っているが、凍結速度0.02〜0.03mm/秒の条件(即ち、凝固面の高さdがほぼゼロになる条件)によって作製した別の異方性ゲルの繊維構造をSEMで別途撮像したところ、凍結方向に対してより均一に平行に揃っていることが観察された。   FIG. 14 is a SEM photograph of FT4 gel (thickness: 2 mm), and FIG. 15 is a SEM photograph of anisotropic gel. This anisotropic gel is an anisotropic gel prepared by freezing in one direction under conditions of a freezing rate v = 0.01 mm / second and a gel thickness of 2.0 mm. A well developed fiber structure was observed inside the gel. Although this fiber structure is generally along the freezing direction, another anisotropy produced under the conditions of a freezing speed of 0.02 to 0.03 mm / sec (that is, a condition where the height d of the solidified surface is almost zero). When the fiber structure of the gel was separately imaged with an SEM, it was observed that the gel was aligned more uniformly and parallel to the freezing direction.

上記のSEM写真等の結果から、異方性ゲルの表面及び内部には既存のFT4ゲルとは異なる繊維構造が形成されていることが確認された。FT4ゲルの表面及び内部には、個々の繊維がランダムな方向に延びたネットワークが形成されている。一方、異方性ゲルの表面及び内部には、各繊維が一方向に揃ったバンドル構造(繊維の束構造)が形成されている。また、SEM写真から、異方性ゲルが有する繊維構造の個々の太さは、マイクロメータサイズ(数μm程度)であることが分かる。この太さから、個々の繊維は単位断面積当たり100から1000個の微結晶の凝集体であると推測される。   From the results of the above SEM photograph and the like, it was confirmed that a fiber structure different from the existing FT4 gel was formed on the surface and inside of the anisotropic gel. A network in which individual fibers extend in random directions is formed on the surface and inside of the FT4 gel. On the other hand, on the surface and inside of the anisotropic gel, a bundle structure (fiber bundle structure) in which the fibers are aligned in one direction is formed. Moreover, it can be seen from the SEM photograph that the individual thicknesses of the fiber structure of the anisotropic gel are micrometer size (several micrometers). From this thickness, it is estimated that each fiber is an aggregate of 100 to 1000 microcrystals per unit cross-sectional area.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。   The configurations and combinations thereof in the embodiments described above are examples, and the addition, omission, replacement, and other modifications of the configurations can be made without departing from the spirit of the present invention.

1…PVA水溶液、2…アクリル板、3…エタノール水溶液、4…シリコンゴムのスペーサー、5…グリッパー、11…PVA水溶液、12…容器、13…ペルチェ素子に接続された金属製台座、F…PVA水溶液の凝固面 DESCRIPTION OF SYMBOLS 1 ... PVA aqueous solution, 2 ... Acrylic board, 3 ... Ethanol aqueous solution, 4 ... Silicon rubber spacer, 5 ... Gripper, 11 ... PVA aqueous solution, 12 ... Container, 13 ... Metal base connected to Peltier device, F ... PVA Solidified surface of aqueous solution

Claims (13)

PVA水溶液を第一の側から第二の側に向けて徐々に凍結する方法であって、
前記PVA水溶液の凍結が進行する凝固面の法線が、前記第一の側から第二の側へ向かう凍結方向と平行であるように、前記PVA水溶液を前記第一の側から第二の側へ徐々に冷却することを特徴とするPVA水溶液の凍結方法。
A method of gradually freezing an aqueous PVA solution from a first side toward a second side,
The PVA aqueous solution is moved from the first side to the second side so that the normal line of the solidification surface where the freezing of the PVA aqueous solution proceeds is parallel to the freezing direction from the first side to the second side. A method for freezing an aqueous PVA solution, characterized by gradually cooling the solution.
PVA水溶液が入った容器を0℃未満の冷却液体中に徐々に挿入することにより、前記容器中のPVA水溶液を下方から上方にむけて徐々に凍結することを特徴とする請求項1に記載のPVA水溶液の凍結方法。   2. The PVA aqueous solution in the container is gradually frozen from the bottom to the top by gradually inserting the container containing the PVA aqueous solution into a cooling liquid of less than 0 ° C. 2. Freezing method of PVA aqueous solution. 前記容器中のPVA水溶液の凝固面の高さが、前記冷却液体の液面又は前記液面直下の水の凝固温度の領域に位置するように、前記容器を前記冷却液体中に徐々に挿入することを特徴とする請求項2に記載のPVA水溶液の凍結方法。   The container is gradually inserted into the cooling liquid so that the solidified surface height of the PVA aqueous solution in the container is located in the region of the solidification temperature of the liquid level of the cooling liquid or water just below the liquid level. The method for freezing a PVA aqueous solution according to claim 2. 前記容器が板状であり、その長手方向に0.01mm/秒〜0.10mm/秒の速度で前記容器を前記冷却液体中に挿入することを特徴とする請求項3に記載のPVA水溶液の凍結方法。   The said container is plate shape, The said container is inserted in the said cooling liquid at the speed | rate of 0.01 mm / sec-0.10 mm / sec in the longitudinal direction, The PVA aqueous solution of Claim 3 characterized by the above-mentioned. Freezing method. 前記容器の長手方向に直交する、PVA水溶液の厚みが0.5mm〜10mmであることを特徴とする請求項4に記載のPVA水溶液の凍結方法。   The method for freezing a PVA aqueous solution according to claim 4, wherein the thickness of the PVA aqueous solution orthogonal to the longitudinal direction of the container is 0.5 mm to 10 mm. 前記PVA水溶液と前記冷却液体とを隔てる、前記容器の肉厚が1.0mm〜10mmであることを特徴とする請求項5に記載のPVA水溶液の凍結方法。   The method for freezing a PVA aqueous solution according to claim 5, wherein a thickness of the container that separates the PVA aqueous solution from the cooling liquid is 1.0 mm to 10 mm. 前記容器を構成する材料が、PVA水溶液と熱物性が略同程度の合成樹脂であることを特徴とする請求項6に記載のPVA水溶液の凍結方法。   The method for freezing a PVA aqueous solution according to claim 6, wherein the material constituting the container is a synthetic resin having substantially the same thermal properties as the PVA aqueous solution. 請求項1〜7の何れか一項に記載の方法によってPVA水溶液を凍結する第一工程と、
前記第一工程で得られたPVA水溶液の凍結体を0℃以上の雰囲気中で解凍することによってPVAゲルを得る第二工程と、を含むことを特徴とするPVAゲルの製造方法。
A first step of freezing the PVA aqueous solution by the method according to any one of claims 1 to 7;
And a second step of obtaining a PVA gel by thawing the frozen PVA aqueous solution obtained in the first step in an atmosphere of 0 ° C. or higher.
前記第二工程において、得られたPVAゲルを再び凍結し、その後解凍する凍結解凍サイクルを1回以上行うことを特徴とする請求項8に記載のPVAゲルの製造方法。   The method for producing a PVA gel according to claim 8, wherein in the second step, the obtained PVA gel is frozen again and then freeze-thaw cycle is performed once or more. 前記第二工程で得られたPVAゲルを水中に浸漬して膨潤させる第三工程を有することを特徴とする請求項8又は9に記載のPVAゲルの製造方法。   The method for producing a PVA gel according to claim 8 or 9, further comprising a third step of swelling the PVA gel obtained in the second step by dipping in water. 請求項8〜10の何れか一項に記載の製造方法で得られたPVAゲルからなるシートを2枚以上積層することにより、PVAゲル積層体を得ることを特徴とするPVAゲル積層体の製造方法。   Production of a PVA gel laminate, wherein a PVA gel laminate is obtained by laminating two or more sheets made of PVA gel obtained by the production method according to any one of claims 8 to 10. Method. 前記シートを複数枚重ねて積層する際、各シートが有する繊維構造の向きを非平行にして積層することを特徴とする請求項11に記載のPVAゲル積層体の製造方法。   12. The method for producing a PVA gel laminate according to claim 11, wherein when a plurality of the sheets are laminated and laminated, the fiber structures of each sheet are laminated in a non-parallel direction. 前記シートを複数枚重ねて積層する際、各シートを予め水で膨潤させておき、各シート間にPVA水溶液を塗布して積層し、乾燥させることを特徴とする請求項12に記載のPVAゲル積層体の製造方法。   13. The PVA gel according to claim 12, wherein when a plurality of the sheets are stacked and laminated, each sheet is previously swollen with water, a PVA aqueous solution is applied between the sheets, stacked, and dried. A manufacturing method of a layered product.
JP2014239214A 2014-11-26 2014-11-26 Method for freezing PVA aqueous solution, method for producing PVA gel, and method for producing PVA gel laminate Active JP6388530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239214A JP6388530B2 (en) 2014-11-26 2014-11-26 Method for freezing PVA aqueous solution, method for producing PVA gel, and method for producing PVA gel laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239214A JP6388530B2 (en) 2014-11-26 2014-11-26 Method for freezing PVA aqueous solution, method for producing PVA gel, and method for producing PVA gel laminate

Publications (2)

Publication Number Publication Date
JP2016098367A true JP2016098367A (en) 2016-05-30
JP6388530B2 JP6388530B2 (en) 2018-09-12

Family

ID=56077090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239214A Active JP6388530B2 (en) 2014-11-26 2014-11-26 Method for freezing PVA aqueous solution, method for producing PVA gel, and method for producing PVA gel laminate

Country Status (1)

Country Link
JP (1) JP6388530B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282584A1 (en) * 2009-09-22 2012-11-08 The University Of Western Ontario Surgical training aids and methods of fabrication thereof
US20130123371A1 (en) * 2005-03-30 2013-05-16 The University Of Western Ontario Anisotropic hydrogels
JP2015004059A (en) * 2013-05-24 2015-01-08 国立大学法人横浜国立大学 Manufacturing method of pva hydrogel, and manufacturing method of pva hydrogel laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130123371A1 (en) * 2005-03-30 2013-05-16 The University Of Western Ontario Anisotropic hydrogels
US20120282584A1 (en) * 2009-09-22 2012-11-08 The University Of Western Ontario Surgical training aids and methods of fabrication thereof
JP2015004059A (en) * 2013-05-24 2015-01-08 国立大学法人横浜国立大学 Manufacturing method of pva hydrogel, and manufacturing method of pva hydrogel laminate

Also Published As

Publication number Publication date
JP6388530B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP2015004059A (en) Manufacturing method of pva hydrogel, and manufacturing method of pva hydrogel laminate
He et al. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion
JP6961238B2 (en) Gels and nanocomposites containing ANFS
US10982054B2 (en) Polymer gel and preparation method therefor
JP5976009B2 (en) Optical element comprising an airgel without cracks
JP2011076035A5 (en) Organ model for surgical practice or for checking the sharpness of surgical resection tools
JP2008255298A (en) Fibroin sponge substance and its preparation
JPH0720544B2 (en) Manufacturing method of PVA hydrogel and MRI phantom
Pochivalov et al. Analysis of the thermal behavior of polypropylene–camphor mixtures for understanding the pathways to polymeric membranes via thermally induced phase separation
Zhang et al. Single ice crystal growth with controlled orientation during directional freezing
TW201925293A (en) Method for preparing porous membrane of fluorine-based resin and porous membrane of fluorine-based resin
JP6388530B2 (en) Method for freezing PVA aqueous solution, method for producing PVA gel, and method for producing PVA gel laminate
JP2015061900A (en) Composition, separator for lithium secondary battery, solid electrolyte for lithium secondary battery, and polyethylene product
Peng et al. Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics
Song et al. High-performance ionic liquid-based nanocomposite polymer electrolytes with anisotropic ionic conductivity prepared by coupling liquid crystal self-templating with unidirectional freezing
US11612162B2 (en) Methods for cryopreservation
Chen et al. Bioinspired tough organohydrogel dynamic interfaces enabled subzero temperature antifrosting, deicing, and antiadhesion
Miao et al. Bio-inspired slippery surfaces with multifunctional anti-icing performance
CN113484119B (en) Preparation method of airplane icing mechanical property test sample
CN115353741B (en) Preparation and application of porous PDMS (polydimethylsiloxane) impregnated organic oil gel ice-preventing and removing material
Gu et al. Preparation of the porous chitosan membrane by cryogenic induced phase separation
JP2010149024A (en) Method of manufacturing microcapsule, microcapsule and optical sheet and skin material
Chatterjee et al. How to select phase change materials for tuning condensation and frosting?
Fan et al. Nanocomposite hydrogels enhanced by cellulose nanocrystal-stabilized Pickering emulsions with self-healing performance in subzero environment
JPS60122007A (en) Ultrafiltration membrane and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6388530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250