JP2016095174A - Battery control device and secondary battery system using battery control device - Google Patents

Battery control device and secondary battery system using battery control device Download PDF

Info

Publication number
JP2016095174A
JP2016095174A JP2014230293A JP2014230293A JP2016095174A JP 2016095174 A JP2016095174 A JP 2016095174A JP 2014230293 A JP2014230293 A JP 2014230293A JP 2014230293 A JP2014230293 A JP 2014230293A JP 2016095174 A JP2016095174 A JP 2016095174A
Authority
JP
Japan
Prior art keywords
battery control
battery
control device
control board
shunt resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230293A
Other languages
Japanese (ja)
Other versions
JP6430218B2 (en
Inventor
本田 光利
Mitsutoshi Honda
光利 本田
鈴木 睦三
Mutsumi Suzuki
睦三 鈴木
睦 菊地
Mutsumi Kikuchi
睦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014230293A priority Critical patent/JP6430218B2/en
Publication of JP2016095174A publication Critical patent/JP2016095174A/en
Application granted granted Critical
Publication of JP6430218B2 publication Critical patent/JP6430218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery control device capable of reducing a stress and a strain applied to a connecting part between a shunt resistance and a battery control board without increasing the area of the connecting part and capable of improving accuracy of information to be obtained.SOLUTION: To solve the problem, a battery control device of the present invention has a battery control board which is connected to a battery and on which a detection unit detecting a voltage is disposed; and a shunt resistance in which a current of the battery flows and which is connected to the battery control board, the shunt resistance having a mechanical fixed part connected to the battery control board and a detection terminal connected to the battery control board.SELECTED DRAWING: Figure 5

Description

本発明は、電池制御装置、およびそれを用いた二次電池システムに関する。   The present invention relates to a battery control device and a secondary battery system using the same.

現在、地球環境問題が大きくクローズアップされる中、地球温暖化防止の為に、あらゆる場面で炭酸ガスの排出削減が求められており、炭酸ガスの大きな排出源となっているガソリンエンジンの自動車については、ハイブリッド電気自動車や電気自動車などへの代替が始まっている。   Currently, as global environmental problems are greatly highlighted, in order to prevent global warming, there is a need to reduce carbon dioxide emissions in every situation. About gasoline engine cars, which are a major source of carbon dioxide emissions. Has begun to be replaced by hybrid electric vehicles and electric vehicles.

ハイブリッド電気自動車や電気自動車の動力用電源に代表される大型二次電池は、高出力で大容量であることが必要である為、それを構成する電池モジュールは複数の電池を直並列接続して構成する。   Large secondary batteries represented by power sources for hybrid electric vehicles and electric vehicles need to have high output and large capacity. Configure.

二次電池であるリチウムイオン電池は、高電圧充電の防止や過放電による性能低下の防止などの適切な二次電池の使いこなしが必要となる。このため、ハイブリッド電気自動車や電気自動車に搭載される二次電池システムには、電池の状態である電圧、電流、温度などを検出する電池制御装置がある。   Lithium ion batteries, which are secondary batteries, require appropriate use of secondary batteries, such as prevention of high voltage charging and deterioration of performance due to overdischarge. For this reason, a secondary battery system mounted on a hybrid electric vehicle or an electric vehicle includes a battery control device that detects voltage, current, temperature, and the like, which are battery states.

図1に、ハイブリッド電気自動車や電気自動車に搭載される二次電池システム800の構成を示す。この図に示すように、1つまたは複数の単電池10で構成された電池群11が電池制御装置850と接続され、電池制御装置850が1つまたは複数の単電池10で構成された電池群11の状態を検出する。さらに、この電池情報から電池容量(SOC:State of Charge)や電池劣化状態(SOH:State of Health)を演算し、車両制御コントローラ810等に演算結果を通知する。車両制御コントローラは、この演算結果に基づいてリレーボックスを介して接続されるインバータ830や、インバータ830と接続されるモータ840を制御する。   FIG. 1 shows a configuration of a secondary battery system 800 mounted on a hybrid electric vehicle or an electric vehicle. As shown in this figure, a battery group 11 composed of one or more single cells 10 is connected to a battery control device 850, and the battery control device 850 is composed of one or more single cells 10. 11 states are detected. Further, a battery capacity (SOC: State of Charge) and a battery deterioration state (SOH: State of Health) are calculated from the battery information, and the calculation result is notified to the vehicle controller 810 and the like. The vehicle controller controls the inverter 830 connected via the relay box and the motor 840 connected to the inverter 830 based on the calculation result.

この電池群11には、電池群11に流れる電流を検知するための電流センサ(シャント抵抗等)が直列に接続されている(図1には図示せず)。この電流センサは、マイコン等が実装される電池制御基板上に配置される。特にこの電流センサから得られる情報は、電池のSOCやSOHを演算するのに用いられるため、正確である必要がある。   The battery group 11 is connected in series with a current sensor (such as a shunt resistor) for detecting the current flowing through the battery group 11 (not shown in FIG. 1). This current sensor is arranged on a battery control board on which a microcomputer or the like is mounted. In particular, the information obtained from the current sensor is used to calculate the SOC and SOH of the battery, and therefore needs to be accurate.

図2(a)は特許文献1に記載のシャント抵抗100近傍の上面図、図2(b)は図2(a)のA−A断面図を示したものである。特許文献1には、に示すように、電池に流れる電流を検知するためのシャント抵抗の検出端子150が、電池制御基板200に4箇所で固定される構成が開示されている。このような構成にすることにより、シャント抵抗と電池制御基板間の距離を最小限に出来るので、通電により生じるノイズを小さくすることができる。そのため、電流センサから得られる情報がより高精度なものとなる。   2A is a top view in the vicinity of the shunt resistor 100 described in Patent Document 1, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. Patent Document 1 discloses a configuration in which a shunt resistor detection terminal 150 for detecting a current flowing through a battery is fixed to the battery control board 200 at four locations, as shown in FIG. With this configuration, the distance between the shunt resistor and the battery control board can be minimized, so that noise generated by energization can be reduced. Therefore, the information obtained from the current sensor becomes more accurate.

特表2003−513596号公報JP-T-2003-513596

特許文献1に記載の発明のように、電池とシャント抵抗間をバスバーやハーネスにより接続する場合には、シャント抵抗の端部にはバスバーやハーネスが接続される。そのため、バスバーやハーネスの自重等で電池とシャント抵抗間の接続部に応力がかかり、シャント抵抗と電池制御基板間の接続部にトルクや歪が発生する。シャント抵抗と電池制御基板間の接続部にトルクや歪が発生した場合には、電流センサから得られる情報にノイズがのってしまい、得られる情報の精度が低下してしまう恐れがある。   When the battery and the shunt resistor are connected by a bus bar or harness as in the invention described in Patent Document 1, the bus bar or harness is connected to the end of the shunt resistor. Therefore, stress is applied to the connection portion between the battery and the shunt resistor due to the weight of the bus bar and the harness, and torque and distortion are generated in the connection portion between the shunt resistor and the battery control board. When torque or distortion occurs at the connection between the shunt resistor and the battery control board, noise may be added to the information obtained from the current sensor, and the accuracy of the obtained information may be reduced.

一方で、この歪を小さくするためにシャント抵抗と電池制御基板間の接続部の面積を大きくさせると電流ノイズの低減効果が小さくなり、得られる情報の精度が低下してしまうという問題が生じる。   On the other hand, if the area of the connection portion between the shunt resistor and the battery control board is increased in order to reduce this distortion, the effect of reducing current noise is reduced, resulting in a problem that the accuracy of information obtained is lowered.

本発明は、上記課題に基づき、シャント抵抗と電池制御基板間の接続部の面積を大きくすることなく接続部にかかる応力や歪を低減し、得られる情報の精度を向上させた電池制御装置を提供することを目的とする。   Based on the above problems, the present invention provides a battery control device that reduces the stress and strain applied to the connecting portion without increasing the area of the connecting portion between the shunt resistor and the battery control board, and improves the accuracy of the obtained information. The purpose is to provide.

上記課題を解決するために、本発明の電池制御装置は以下の構成を持つ。   In order to solve the above problems, the battery control device of the present invention has the following configuration.

一つまたは複数個の単電池を備える電池群に接続されて用いられる電池制御装置であって、前記電池制御装置は、電圧を検出する検出部が配置された電池制御基板と、前記電池群の電流が流れ、かつ前記電池制御基板と接続されるシャント抵抗とを有し、前記シャント抵抗は、前記電池制御基板と接続される機械固定部と、前記電池制御基板と接続される検出端子を有することを特徴とする電池制御装置。   A battery control device used by being connected to a battery group including one or a plurality of single cells, wherein the battery control device includes a battery control board on which a detection unit for detecting a voltage is disposed, and the battery group A shunt resistor connected to the battery control board, and a shunt resistor having a machine fixing part connected to the battery control board and a detection terminal connected to the battery control board. A battery control device.

本発明を用いることによって、バスバーとシャント抵抗素子間にトルクがかかった時、検出端子にかかる応力を低減することができ、基板とシャント抵抗間の接合強度低下によるノイズの抑制が出来る。   By using the present invention, when a torque is applied between the bus bar and the shunt resistance element, the stress applied to the detection terminal can be reduced, and noise can be suppressed due to a decrease in bonding strength between the substrate and the shunt resistance.

電池システムの概略図。Schematic of a battery system. (a)は特許文献1に記載のシャント抵抗近傍の上面図、(b)は(a)のA−A断面図。(A) is a top view of the shunt resistance vicinity of patent document 1, (b) is AA sectional drawing of (a). 電池群及びそれに接続される電池制御装置の構造を示す図。The figure which shows the structure of a battery group and the battery control apparatus connected to it. 二次電池システムの構成の一部を示す図。The figure which shows a part of structure of a secondary battery system. シャント抵抗100の近傍の概略を示す図。The figure which shows the outline of the vicinity of the shunt resistance 100. FIG. (a)〜(e)は図6を用いてシャント抵抗100に電池制御基板200を固定するまでの手順を説明する図。(A)-(e) is a figure explaining the procedure until it fixes the battery control board 200 to the shunt resistance 100 using FIG. 第一の実施形態の第一の変形例。The 1st modification of 1st embodiment. 第一の実施形態の第二の変形例。The 2nd modification of 1st embodiment. 第一の実施形態の第三の変形例。The 3rd modification of 1st embodiment. (a)は第二の実施形態にかかる電池制御基板周辺の上面図、(b)は(a)のA−A断面図(A) is a top view of the periphery of the battery control board according to the second embodiment, and (b) is a cross-sectional view taken along line AA of (a). (a)は第二の実施形態の変形例の電池制御基板周辺の上面図、(b)は(a)のA−A断面図(A) is a top view of the periphery of the battery control board of the modification of the second embodiment, (b) is a cross-sectional view taken along line AA of (a).

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部材には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that in all the drawings for explaining the embodiments, the same members are denoted by the same reference numerals, and the repeated explanation thereof is omitted.

<第一の実施形態>
本発明の実施例である電池制御装置850の構成を以下に述べる。
<First embodiment>
The configuration of the battery control device 850 according to the embodiment of the present invention will be described below.

図3に、電池群11及びそれに接続される電池制御装置850の構造を示す。電池制御装置850は、各単電池10のセル電圧を検出するセル電圧検出部20、電池群11の電圧を検出する総電圧検出部30、電池群11に流れる電流を検出するシャント抵抗100、シャント抵抗100に流れる電流を検出する電流検出部40、並びにセル電圧検出部20、総電圧検出部30及び電流検出部40で得られた情報を元に電池状態の推定を行い、車両制御コントローラ810に情報を出力するマイコン50を有する。シャント抵抗100は電池群11と直列に接続されることによって、電池群11に流れる電流を検出できるようになっている。   FIG. 3 shows the structure of the battery group 11 and the battery control device 850 connected thereto. The battery control device 850 includes a cell voltage detection unit 20 that detects a cell voltage of each unit cell 10, a total voltage detection unit 30 that detects a voltage of the battery group 11, a shunt resistor 100 that detects a current flowing through the battery group 11, and a shunt. The battery state is estimated based on information obtained by the current detection unit 40 that detects the current flowing through the resistor 100, the cell voltage detection unit 20, the total voltage detection unit 30, and the current detection unit 40, and the vehicle controller 810 It has the microcomputer 50 which outputs information. The shunt resistor 100 is connected in series with the battery group 11 so that the current flowing through the battery group 11 can be detected.

電池制御装置850には、電池群11は含まれない。   The battery control device 850 does not include the battery group 11.

なお、セル電圧検出部20、総電圧検出部30、電流検出部40、マイコン50及びシャント抵抗100の一部は一つの電池制御基板200上に配置される。   The cell voltage detection unit 20, the total voltage detection unit 30, the current detection unit 40, the microcomputer 50, and a part of the shunt resistor 100 are arranged on one battery control board 200.

図4に、本実施例の電池制御装置850を用いた二次電池システム800の構成例の一部を示す。この二次電池システム800は、一つまたは複数の単電池10を有する電池群11、シャント抵抗100、シャント抵抗100に取り付けられる電池制御基板200、及びこれらを覆う筐体300から構成される。   FIG. 4 shows a part of a configuration example of a secondary battery system 800 using the battery control device 850 of this embodiment. The secondary battery system 800 includes a battery group 11 having one or a plurality of unit cells 10, a shunt resistor 100, a battery control board 200 attached to the shunt resistor 100, and a casing 300 that covers these.

電池群11は複数個直列に接続された単電池10を有し、各単電池10はバスバー400を介して接続される。また、単電池10の一部はバスバー400でシャント抵抗100と接続されている。この時、単電池10同士の接続方向とシャント抵抗100の長手方向は互いに垂直方向である。   The battery group 11 includes a plurality of unit cells 10 connected in series, and each unit cell 10 is connected via a bus bar 400. A part of the unit cell 10 is connected to the shunt resistor 100 by the bus bar 400. At this time, the connection direction of the cells 10 and the longitudinal direction of the shunt resistor 100 are perpendicular to each other.

単電池10としては、リチウムイオン二次電池、ニッケル水素電池等二次電池に加え、燃料電池やキャパシタを搭載した場合並びにこれらを組み合わせた場合のいずれの場合にも適用できる。また、本実施形態では、バスバーでシャント抵抗を接続した例を示すが、ハーネス、ケーブル、コネクタのいずれで接続してもよい。また、図4では、電池群11として単電池10を複数個使用したものを示しているが、1個の単電池10で構成される電池群11あっても構わない。   The unit cell 10 can be applied to any case where a fuel cell or a capacitor is mounted or a combination thereof, in addition to a secondary battery such as a lithium ion secondary battery or a nickel metal hydride battery. Moreover, although the example which connected shunt resistance with the bus bar is shown in this embodiment, you may connect with any of a harness, a cable, and a connector. FIG. 4 shows a battery group 11 using a plurality of unit cells 10, but a battery group 11 composed of one unit cell 10 may be used.

本明細書においては、電池群11とは、1つまたは複数の単電池10を備えたものと定義する。   In this specification, the battery group 11 is defined as including one or a plurality of unit cells 10.

図5に、シャント抵抗100の近傍の概略を示す。シャント抵抗100は、バスバー400を介して単電池10と接続される電池接続部110、筺体300と接続される筺体接続部120、電池制御基板200と機械的に接続する機械固定部130、電池制御基板200とはんだ140で電気的に接続される検出端子150の4箇所を有する。この図では、筺体300としてベース310及びカバー320を設け、両者にシャント抵抗100を接続する例を示すが、ベースとカバーのいずれかのみでシャント抵抗を固定しても構わない。   FIG. 5 schematically shows the vicinity of the shunt resistor 100. The shunt resistor 100 includes a battery connection part 110 connected to the unit cell 10 via the bus bar 400, a case connection part 120 connected to the case 300, a machine fixing part 130 mechanically connected to the battery control board 200, and a battery control. There are four detection terminals 150 electrically connected to the substrate 200 by solder 140. In this figure, an example is shown in which a base 310 and a cover 320 are provided as the housing 300 and the shunt resistor 100 is connected to both of them, but the shunt resistor may be fixed only by either the base or the cover.

また、図5では、シャント抵抗100と筺体300、シャント抵抗100と電池制御基板200との固定はいずれもネジ止めにより接続しているが、溶接等の別の接続方法を用いてもよいし、シャント抵抗100とバスバー400及びハーネスが一体化したものでもよい。   In FIG. 5, the shunt resistor 100 and the housing 300, and the shunt resistor 100 and the battery control board 200 are all fixed by screws, but another connection method such as welding may be used. The shunt resistor 100, the bus bar 400, and the harness may be integrated.

電池制御基板200とシャント抵抗100との間には、バスバー400とシャント抵抗100が接続される際、又は使用時の振動等によってせん断力が働くことがある。本発明では、電池制御基板200とシャント抵抗100との接続が、検出端子150だけでなく機械固定部130によっても行われている。そのため、シャント抵抗100がバスバー400に取り付けられる際や、使用時の振動等によって生じる力を、検出端子150で受けるのではなく、機械固定部130で受けることができ、検出端子150と電池制御基板200を接続するはんだ140の割れや剥離を防止できる。従って、電流検出の際に、検出端子150の接続不良によるノイズ等を防止することができ、電流値を高精度に検出することができる。   A shearing force may act between the battery control board 200 and the shunt resistor 100 when the bus bar 400 and the shunt resistor 100 are connected or due to vibration during use. In the present invention, the connection between the battery control board 200 and the shunt resistor 100 is performed not only by the detection terminal 150 but also by the machine fixing unit 130. Therefore, when the shunt resistor 100 is attached to the bus bar 400, the force generated by vibration during use or the like can be received not by the detection terminal 150 but by the machine fixing portion 130, and the detection terminal 150 and the battery control board can be received. It is possible to prevent cracking and peeling of the solder 140 connecting the 200. Therefore, noise and the like due to poor connection of the detection terminal 150 can be prevented during current detection, and the current value can be detected with high accuracy.

また、本発明では検出端子150よりも機械固定部130の方が電池接続部110に近い構成となっている。言い換えると、検出端子150と電池接続部110との間に機械固定部130が配置される構成となっている。このような構成にすることによって、電池接続部110に大きなトルクが加わった場合、検出端子150のはんだ140に力が加わる前に、機械固定部130で確実に力を受けることができる。そのため、よりはんだ140の割れや剥離を防止することが出来る。   In the present invention, the machine fixing portion 130 is closer to the battery connection portion 110 than the detection terminal 150. In other words, the mechanical fixing unit 130 is disposed between the detection terminal 150 and the battery connection unit 110. With such a configuration, when a large torque is applied to the battery connection portion 110, the force can be reliably received by the machine fixing portion 130 before a force is applied to the solder 140 of the detection terminal 150. Therefore, cracking and peeling of the solder 140 can be further prevented.

また、本発明では検出端子150の径よりも機械固定部130の径の方が大きい構成となっている。そのため、電池接続部110に大きなトルクや力が加わった場合、検出端子150のはんだ140で力を受ける前に、機械固定部130で確実に力を受けることができる。さらに、機械固定部130の径を大きくしたことによって、機械固定部130の強度自体も増す。そのため、よりはんだ140の割れや剥離を防止することが出来る構造となる。   In the present invention, the diameter of the machine fixing portion 130 is larger than the diameter of the detection terminal 150. Therefore, when a large torque or force is applied to the battery connection portion 110, the force can be reliably received by the machine fixing portion 130 before the force is received by the solder 140 of the detection terminal 150. Furthermore, by increasing the diameter of the machine fixing part 130, the strength of the machine fixing part 130 is also increased. Therefore, it becomes a structure which can prevent the crack and peeling of the solder 140 more.

続いて図6を用いてシャント抵抗100に電池制御基板200を固定するまでの手順を説明する。まず図6(a)に示すように、電池制御基板200に電流検出部40、セル電圧検出部20(本図では不図示)、総電圧検出部30(本図では不図示)に相当する部品を実装する。次に図6(b)に示すように、部品実装した電池制御基板200とシャント抵抗100を、機械固定部130でネジ止めにより接続する。この状態でシャント抵抗100と電池制御基板200の位置が固定される。そして図6(c)に示すように、シャント抵抗100上に設けた検出端子150と電池制御基板200がはんだ140により局所的に接続される。このような手順によって電池制御基板200とシャント抵抗100は接続される。続いて図6(d)に示すように、シャント抵抗100にカバー320及びベース310が筺体接続部120で固定され、筺体300が形成される。最後に図6(e)に示すように、電池接続部110を介してシャント抵抗100にバスバー400が接続される。このようにしてシャント抵抗100に電池制御基板200が設けられ、さらに筺体300が形成されたものが完成する。   Next, a procedure until the battery control board 200 is fixed to the shunt resistor 100 will be described with reference to FIG. First, as shown in FIG. 6A, components corresponding to the current detection unit 40, the cell voltage detection unit 20 (not shown in the figure), and the total voltage detection unit 30 (not shown in the figure) on the battery control board 200. Is implemented. Next, as shown in FIG. 6B, the battery control board 200 mounted with the component and the shunt resistor 100 are connected to each other by screwing at the machine fixing portion 130. In this state, the positions of the shunt resistor 100 and the battery control board 200 are fixed. Then, as shown in FIG. 6C, the detection terminal 150 provided on the shunt resistor 100 and the battery control board 200 are locally connected by solder 140. The battery control board 200 and the shunt resistor 100 are connected by such a procedure. Subsequently, as shown in FIG. 6 (d), the cover 320 and the base 310 are fixed to the shunt resistor 100 by the housing connecting part 120, and the housing 300 is formed. Finally, as shown in FIG. 6 (e), the bus bar 400 is connected to the shunt resistor 100 via the battery connection part 110. In this way, the battery control board 200 is provided on the shunt resistor 100 and the casing 300 is further formed.

以上のように、ネジ止めによる機械固定部130と検出端子150の2箇所により電池制御基板200とシャント抵抗100を接続することで、力学的な固定の役割を検出端子150に任せる必要が無くなる。そのため、検出端子150の径を小さくできるので電流ノイズを低減することができる。さらに、検出端子150は径が小さく、局所的なはんだ接合により電気的な接続が可能となるので、電池制御基板200上の部品に熱ストレスを与えずにシャント抵抗100を電池制御基板200に接続できる。   As described above, the battery control board 200 and the shunt resistor 100 are connected to each other at the two positions of the machine fixing portion 130 and the detection terminal 150 by screwing, so that it is not necessary to leave the mechanical fixing role to the detection terminal 150. Therefore, since the diameter of the detection terminal 150 can be reduced, current noise can be reduced. Further, since the detection terminal 150 has a small diameter and can be electrically connected by local soldering, the shunt resistor 100 is connected to the battery control board 200 without applying thermal stress to components on the battery control board 200. it can.

さらに、本実施例の構成によれば、筐体接続部120が、機械固定部130と電池接続部110との間に配置されているため、組立てやすいという効果がある。すなわち、筐体接続部120がこのように配置されているために、図6の手順に示した通り、電池制御基板200とシャント抵抗100とを接続・固定した後に、筐体300内に設置することが可能になる。   Further, according to the configuration of the present embodiment, since the housing connection part 120 is disposed between the machine fixing part 130 and the battery connection part 110, there is an effect that it is easy to assemble. That is, since the housing connection part 120 is arranged in this way, as shown in the procedure of FIG. 6, the battery control board 200 and the shunt resistor 100 are connected and fixed and then installed in the housing 300. It becomes possible.

続いて本実施形態の第一の変形例を図7に示す。図7は、シャント抵抗100に筺体300を接続せずに、電池制御基板200とバスバー400のみをシャント抵抗100に接続させた時の電池制御装置850を示す図である。この時、バスバーに矢印の方向で力Fが加わると、シャント抵抗100が図7の下方向に凸に変形する。そのため、端子の細い検出端子150に応力がかかり、検出端子150のはんだ140の接合部が破断する危険性がある。   Then, the 1st modification of this embodiment is shown in FIG. FIG. 7 is a diagram showing the battery control device 850 when only the battery control board 200 and the bus bar 400 are connected to the shunt resistor 100 without connecting the housing 300 to the shunt resistor 100. At this time, when a force F is applied to the bus bar in the direction of the arrow, the shunt resistor 100 is deformed to protrude downward in FIG. For this reason, there is a risk that stress is applied to the thin detection terminal 150 and the joint of the solder 140 of the detection terminal 150 is broken.

本変形例では、筺体300が無かったとしてもシャント抵抗100を機械固定部130で固定しているため、検出端子150にかかる応力を低減することができ、検出端子150のはんだ140の接合部の破断を抑制することができる。   In this modification, even if the housing 300 is not provided, the shunt resistor 100 is fixed by the machine fixing portion 130, so that the stress applied to the detection terminal 150 can be reduced, and the solder 140 of the detection terminal 150 can be joined. Breakage can be suppressed.

また、これは変形例に限ったことではないが、本実施例では機械固定部130が、電池制御基板200と密着する頭部130a及びシャント抵抗100と密着する固定部130bを有しており、頭部130aと固定部130bによって電池制御基板200とシャント抵抗100とが挟持されているため、シャント抵抗100の反りが機械固定部130で食い止められることになる。従って、検出端子150のはんだ140の接合部の破断をより抑制することができる。なお、固定部130bはシャント抵抗100と密着する構造とするのが最も好ましいが、シャント抵抗100の反りを規制できる程度であれば、多少シャント抵抗100の表面と離れていたとしても問題ない。   In addition, this is not limited to the modified example, but in this embodiment, the machine fixing unit 130 includes a head 130a that is in close contact with the battery control board 200 and a fixing unit 130b that is in close contact with the shunt resistor 100. Since the battery control board 200 and the shunt resistor 100 are sandwiched between the head portion 130a and the fixing portion 130b, the warpage of the shunt resistor 100 is stopped by the mechanical fixing portion 130. Therefore, it is possible to further suppress the breakage of the joint portion of the solder 140 of the detection terminal 150. It is most preferable that the fixed portion 130b has a structure that is in close contact with the shunt resistor 100. However, as long as the warpage of the shunt resistor 100 can be regulated, there is no problem even if it is slightly separated from the surface of the shunt resistor 100.

続いて本実施形態の第二の変形例について説明する。第二の変形例では、電池制御基板の構造を凸形状とし、凸部に検出端子150及び機械固定部130を設けている。   Then, the 2nd modification of this embodiment is demonstrated. In the second modification, the structure of the battery control board has a convex shape, and the detection terminal 150 and the machine fixing portion 130 are provided on the convex portion.

図8は本実施形態の第二の変形例にかかる電池制御装置850を用いた、二次電池システムの一部を示す図である。実施形態は、上述したように電池制御基板210の一部に凸部210aを設けた点を特徴としている。   FIG. 8 is a diagram showing a part of the secondary battery system using the battery control device 850 according to the second modification of the present embodiment. The embodiment is characterized in that a protrusion 210a is provided on a part of the battery control board 210 as described above.

凸部210aにはシャント抵抗100の検出端子150、及び機械固定部130が配置される。図4と同様に、シャント抵抗、電池制御基板、電池が配列した構成であり、電池同士の接続方向とシャント抵抗の長手方向は互いに垂直方向である。しかし、本変形例では、シャント抵抗の大きさが電池の大きさに比べ小さい構造としている。このため、電池制御基板210に凸部210aを設け、凸部210aにシャント抵抗100を配置することとした。このような構造にすることによって、電池のサイズがシャント抵抗と大きく異なる場合でも電池制御装置850を組み上げることができる。   The detection terminal 150 of the shunt resistor 100 and the machine fixing part 130 are arranged on the convex part 210a. Similar to FIG. 4, the shunt resistor, the battery control board, and the battery are arranged, and the connection direction between the batteries and the longitudinal direction of the shunt resistor are perpendicular to each other. However, in this modification, the shunt resistance is smaller than the battery. For this reason, the convex part 210a is provided in the battery control board 210, and the shunt resistor 100 is arranged on the convex part 210a. With this structure, the battery control device 850 can be assembled even when the size of the battery is significantly different from the shunt resistance.

なお、凸部210aの形状は図8の形状に限定されるものではなく、例えば図10に示したようにL字形であってもよい。あるいは、6角形や円形の電池制御基板200に凸部210aを設けた形状であってもよい。これらの形状であっても上記の効果を得ることができる。   In addition, the shape of the convex part 210a is not limited to the shape of FIG. 8, For example, it may be L-shaped as shown in FIG. Or the shape which provided the convex part 210a in the hexagonal or circular battery control board 200 may be sufficient. Even if it is these shapes, said effect can be acquired.

続いて本実施形態の第三の変形例について説明する。第三の変形例では、電池制御基板200を単電池10の側面に配置している。   Then, the 3rd modification of this embodiment is demonstrated. In the third modification, the battery control board 200 is disposed on the side surface of the unit cell 10.

図9は本実施形態の第三の変形例に係る二次電池システムの一部を示す図である。本変形例の単電池10は、立方体形状又は直方体形状をしており、上面10a、底面10b、上面10a及び底面10bに繋がる側面10cを有している。本変形例では、電池制御基板200を単電池10の上面から突出させるのではなく、電池制御基板200を単電池10の側面10cに接着した。このような構造にすることによって、電池制御基板200を単電池10から突出させて配置する必要がなくなるため、余分なスペースを設けることなくコンパクトにシャント抵抗100を配置することが出来る。   FIG. 9 is a diagram showing a part of a secondary battery system according to a third modification of the present embodiment. The unit cell 10 of this modification has a cubic shape or a rectangular parallelepiped shape, and has a top surface 10a, a bottom surface 10b, a top surface 10a, and a side surface 10c connected to the bottom surface 10b. In this modification, the battery control board 200 is not protruded from the upper surface of the unit cell 10, but the battery control board 200 is bonded to the side surface 10c of the unit cell 10. By adopting such a structure, it is not necessary to arrange the battery control board 200 so as to protrude from the unit cell 10, so that the shunt resistor 100 can be arranged in a compact manner without providing an extra space.

なお、シャント抵抗100の電池接続部110を単電池10の端子に直接接続するよう、シャント抵抗の電池接続部と筺体接続部の間に90°傾斜をつけた構造とすることにより、本変形例の二次電池システムを作成することができる。   In this modification, the battery connecting portion 110 of the shunt resistor 100 is inclined by 90 ° between the battery connecting portion of the shunt resistor and the housing connecting portion so as to be directly connected to the terminal of the unit cell 10. The secondary battery system can be created.

<第二の実施形態>
続いて第二の実施形態の電池制御装置850について説明する。本実施形態が第一の実施形態と異なる点は、セル電圧検出部20、総電圧検出部30、及びマイコン50を磁気遮蔽板500で覆った点が、第一の実施形態と異なる。なお、第一の実施形態と同様の構成については、第一の実施形態で用いた図面番号と同様の図面番号を用いている。
<Second Embodiment>
Next, the battery control device 850 of the second embodiment will be described. This embodiment is different from the first embodiment in that the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50 are covered with a magnetic shielding plate 500. In addition, about the structure similar to 1st embodiment, the drawing number similar to the drawing number used in 1st embodiment is used.

図10(a)は本実施形態にかかる電池制御基板200の周辺を上面から見た図である。シャント抵抗100と電池制御基板200との接続、シャント抵抗100と筺体300との接続については第一の実施形態と特に変わらない。しかし、本実施形態では、セル電圧検出部20、総電圧検出部30、及びマイコン50が磁気遮蔽板500で覆う構成としている。シャント抵抗100に通電するとシャント抵抗100の周囲に電流による磁界が発生し、電池制御基板200上に搭載したセル電圧検出部20、電池群11の総電圧を計測する総電圧検出部30、総電圧検出部30で得た情報をもとに電池の状態を推定するマイコン50に悪影響を及ぼす可能性がある。特に、セル電圧検出部20は数mV単位で電圧を観測する必要があるため、シャント抵抗100から発生する磁界の影響による電圧誤差が非常に大きくなるものと考えられる。本実施例では磁界の影響を回避するため、セル電圧検出部20、総電圧検出部30、及びマイコン50を覆うように磁気遮蔽板500を設けた。   FIG. 10A is a view of the periphery of the battery control board 200 according to the present embodiment as viewed from above. The connection between the shunt resistor 100 and the battery control board 200 and the connection between the shunt resistor 100 and the housing 300 are not particularly different from the first embodiment. However, in the present embodiment, the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50 are configured to be covered with the magnetic shielding plate 500. When the shunt resistor 100 is energized, a magnetic field is generated around the shunt resistor 100, the cell voltage detector 20 mounted on the battery control board 200, the total voltage detector 30 for measuring the total voltage of the battery group 11, and the total voltage. There is a possibility that the microcomputer 50 that estimates the state of the battery based on the information obtained by the detection unit 30 may be adversely affected. In particular, since the cell voltage detector 20 needs to observe the voltage in units of several mV, it is considered that the voltage error due to the influence of the magnetic field generated from the shunt resistor 100 becomes very large. In this embodiment, in order to avoid the influence of the magnetic field, the magnetic shielding plate 500 is provided so as to cover the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50.

図10(b)に図10(a)のA−A断面図を示すものである。図10(b)に図示するように、磁気遮蔽板500は筺体300の外周に配置される構造となっている。磁気遮蔽板500は、例えば筺体300に設けられた仕切り板300aに磁気遮蔽板500の突出部500aが接続されることによって固定される。また、本構造の場合、筺体300と仕切り板300aで作る閉空間の中にセル電圧検出部20、総電圧検出部30、及びマイコン50が収納され、さらにその閉空間を覆うように磁気遮蔽板500が配置される構造となっている。そのため、磁界に対する遮蔽を二重で行える構造となっており、よりセンサへの磁界の影響を少なくすることが出来る。   FIG. 10B shows a cross-sectional view taken along the line AA in FIG. As illustrated in FIG. 10B, the magnetic shielding plate 500 has a structure that is disposed on the outer periphery of the housing 300. For example, the magnetic shielding plate 500 is fixed by connecting the protruding portion 500 a of the magnetic shielding plate 500 to a partition plate 300 a provided in the housing 300. In the case of this structure, the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50 are housed in a closed space formed by the casing 300 and the partition plate 300a, and further, a magnetic shielding plate so as to cover the closed space. 500 is arranged. For this reason, the magnetic field can be shielded in a double manner, and the influence of the magnetic field on the sensor can be further reduced.

磁気遮蔽板500には、磁化率(χ)が10以上の材料を用いる。本明細書では、磁化率χが10以上の材料を磁性体と呼ぶ。磁化率χの材料は、比透磁率μr=(χ+1)になる。すなわち、磁化率が10以上の材料(磁性体)では、空気中や非磁性体材料と比べて磁束を11倍以上通しやすい性質を持つ。このため、磁化率が10以上の材料を磁気遮蔽板500として用いることにより、上記の効果を得ることが出来る。   A material having a magnetic susceptibility (χ) of 10 or more is used for the magnetic shielding plate 500. In the present specification, a material having a magnetic susceptibility χ of 10 or more is called a magnetic body. A material having a magnetic susceptibility χ has a relative permeability μr = (χ + 1). That is, a material (magnetic material) having a magnetic susceptibility of 10 or more has a property that it can easily pass a magnetic flux 11 times or more compared to air or a non-magnetic material. For this reason, the above effect can be obtained by using a material having a magnetic susceptibility of 10 or more as the magnetic shielding plate 500.

磁気遮蔽板500の材料には、例えば鉄(χ=5000)、珪素鋼(χ=7000)、パーマロイ(χ=40000〜100000)、ミューメタル(χ=100000)等を用いるとよい。本実施例では、価格が安く製作が容易な鉄を用いた。   As a material of the magnetic shielding plate 500, for example, iron (χ = 5000), silicon steel (χ = 7000), permalloy (χ = 40000 to 100,000), mu metal (χ = 100000) or the like may be used. In this embodiment, iron that is inexpensive and easy to manufacture is used.

また、磁気遮蔽板を筺体と一体のものとして設置することも可能である。図11(a)は磁気遮蔽板500と筺体300とを一体のものとして設置した場合の電池制御基板200の周辺図の上面図である(図10の変形例)。磁気遮蔽板500が筺体300と一体となり、筺体300の内部側に配置されている点が図10の構造と異なる。図10と同様に、セル電圧検出部20、総電圧検出部30、及びマイコン50が、筺体300と一体となった磁気遮蔽板500で、シャント抵抗からの磁気の影響を遮断している。   It is also possible to install the magnetic shielding plate as an integral part of the housing. FIG. 11A is a top view of a peripheral view of the battery control board 200 when the magnetic shielding plate 500 and the casing 300 are installed as an integrated body (modified example of FIG. 10). The magnetic shielding plate 500 is different from the structure of FIG. 10 in that the magnetic shielding plate 500 is integrated with the housing 300 and arranged on the inner side of the housing 300. Similarly to FIG. 10, the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50 block the influence of magnetism from the shunt resistor with the magnetic shielding plate 500 integrated with the housing 300.

図11(b)は図11(a)に示した図のA−A断面図である。図11(b)に示すように、磁気遮蔽板500は筺体300の内部で一体化されており、セル電圧検出部20、総電圧検出部30、及びマイコン50を覆っている。なお、磁気遮蔽板500は、突出部500aを有しており、突出部500aの先端は電池制御基板200と接触するように配置される。このような配置、つまりセル電圧検出部20、総電圧検出部30、及びマイコン50が電池制御基板200と磁気遮蔽板500で作る閉空間に収納される配置をとることよって、磁気遮蔽板500の使用量を図10の構造よりも抑えつつ、確実に磁界の影響を抑えることが可能となる。   FIG.11 (b) is AA sectional drawing of the figure shown to Fig.11 (a). As shown in FIG. 11B, the magnetic shielding plate 500 is integrated inside the housing 300 and covers the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50. The magnetic shielding plate 500 has a protrusion 500a, and the tip of the protrusion 500a is disposed so as to contact the battery control board 200. By adopting such an arrangement, that is, an arrangement in which the cell voltage detection unit 20, the total voltage detection unit 30, and the microcomputer 50 are housed in a closed space formed by the battery control board 200 and the magnetic shielding plate 500, the magnetic shielding plate 500 It is possible to reliably suppress the influence of the magnetic field while suppressing the amount used compared to the structure of FIG.

以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. A part of the configuration of a certain example can be replaced with the configuration of another example, and the configuration of another example can be added to the configuration of a certain embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10・・・単電池
11・・・電池群
100・・・シャント抵抗
110・・・電池接続部
120・・・筺体接続部
130・・・機械的固定部
140・・・はんだ
150・・・検出端子
200・・・電池制御基板
300・・・筺体
310・・・ベース
320・・・カバー
800・・・二次電池システム
850・・・電池制御装置
10 ... cell 11 ... battery group 100 ... shunt resistor 110 ... battery connection part 120 ... housing connection part 130 ... mechanical fixing part 140 ... solder 150 ... detection Terminal 200 ... Battery control board 300 ... Housing 310 ... Base 320 ... Cover 800 ... Secondary battery system 850 ... Battery control device

Claims (11)

一つまたは複数個の単電池を備える電池群に接続されて用いられる電池制御装置であって、
前記電池制御装置は、
電圧を検出する検出部が配置された電池制御基板と、
前記電池群の電流が流れ、かつ前記電池制御基板と接続されるシャント抵抗とを有し、
前記シャント抵抗は、前記電池制御基板と接続される機械固定部と、前記電池制御基板と接続される検出端子を有することを特徴とする電池制御装置。
A battery control device used by being connected to a battery group including one or a plurality of single cells,
The battery control device includes:
A battery control board on which a detection unit for detecting voltage is arranged;
A current of the battery group flows and a shunt resistor connected to the battery control board;
The battery control device, wherein the shunt resistor includes a machine fixing portion connected to the battery control board and a detection terminal connected to the battery control board.
請求項1に記載の電池制御装置において、
前記機械固定部の径は、前記検出端子の径よりも大きいことを特徴とする電池制御装置。
The battery control device according to claim 1,
The battery control device according to claim 1, wherein a diameter of the mechanical fixing portion is larger than a diameter of the detection terminal.
請求項2に記載の電池制御装置において、
前記シャント抵抗は、前記電池と電気的に接続される電池接続部を有し、
前記機械固定部は前記検出端子と前記電池接続部との間に配置されることを特徴とする電池制御装置。
The battery control device according to claim 2,
The shunt resistor has a battery connection part electrically connected to the battery,
The battery control device, wherein the machine fixing part is disposed between the detection terminal and the battery connection part.
請求項3に記載の電池制御装置において、
前記電池制御装置は筐体を備え、
前記シャント抵抗は、前記筐体に固定する筐体接続部を有し、
前記筐体接続部は、前記機械固定部と前記電池接続部との間に配置されることを特徴とする電池制御装置。
The battery control device according to claim 3, wherein
The battery control device includes a housing,
The shunt resistor has a housing connection part fixed to the housing,
The battery control device, wherein the housing connection part is disposed between the machine fixing part and the battery connection part.
請求項3に記載の電池制御装置において、
前記機械固定部は、前記電池制御基板と密着する頭部と、前記シャント抵抗と密着する固定部を有し、
前記電池制御基板と前記シャント抵抗は前記頭部と前記固定部により挟持されていることを特徴とする電池制御装置。
The battery control device according to claim 3, wherein
The machine fixing portion has a head portion that is in close contact with the battery control board, and a fixing portion that is in close contact with the shunt resistor,
The battery control device, wherein the battery control board and the shunt resistor are sandwiched between the head and the fixing portion.
請求項3又は4に記載の電池制御装置において、
前記電池制御基板は凸部を有し、
前記凸部に前記機械固定部、及び前記検出端子が配置されることを特徴とする電池制御装置。
The battery control device according to claim 3 or 4,
The battery control board has a convex portion,
The battery control device, wherein the mechanical fixing portion and the detection terminal are arranged on the convex portion.
請求項1乃至3のいずれかに記載の電池制御装置において、
前記検出部は筺体の中に配置され、さらに磁化率が10以上の材料で構成される磁気遮蔽板で覆われることを特徴とする電池制御装置。
The battery control device according to any one of claims 1 to 3,
The battery control device according to claim 1, wherein the detection unit is disposed in a housing and is covered with a magnetic shielding plate made of a material having a magnetic susceptibility of 10 or more.
請求項7に記載の電池制御装置において、
前記筺体は仕切り板を有し、
前記検出部は前記筺体と前記仕切り板とで形成される閉空間の中に配置され、
前記閉空間を覆うように前記磁気遮蔽板が配置されることを特徴とする電池制御装置。
The battery control device according to claim 7,
The housing has a partition plate,
The detection unit is disposed in a closed space formed by the housing and the partition plate,
The battery control device, wherein the magnetic shielding plate is disposed so as to cover the closed space.
請求項7に記載の電池制御装置において、
前記磁気遮蔽板は突出部を有し、
前記突出部は前記電池制御基板と接触するように配置され、前記磁気遮蔽板と前記電池制御基板とで閉空間を形成し、
前記検出部は前記へ行く空間に配置されることを特徴とする電池制御装置。
The battery control device according to claim 7,
The magnetic shielding plate has a protrusion,
The protrusion is disposed so as to contact the battery control board, and forms a closed space between the magnetic shielding plate and the battery control board,
The battery control device according to claim 1, wherein the detection unit is disposed in a space that goes to the detection unit.
一つまたは複数の単電池を備えた電池群と、請求項1乃至9のいずれかに記載の電池制御装置とを備えた二次電池システム。   The secondary battery system provided with the battery group provided with the 1 or several cell, and the battery control apparatus in any one of Claims 1 thru | or 9. 請求項10に記載の二次電池システムにおいて、
前記単電池は上面、底面、並びに前記上面及び前記底面と接続される側面を有し、
前記電池制御基板は前記側面に配置されることを特徴とする二次電池システム。
The secondary battery system according to claim 10,
The unit cell has a top surface, a bottom surface, and side surfaces connected to the top surface and the bottom surface,
The secondary battery system, wherein the battery control board is disposed on the side surface.
JP2014230293A 2014-11-13 2014-11-13 Battery control device and secondary battery system using the same Active JP6430218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230293A JP6430218B2 (en) 2014-11-13 2014-11-13 Battery control device and secondary battery system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230293A JP6430218B2 (en) 2014-11-13 2014-11-13 Battery control device and secondary battery system using the same

Publications (2)

Publication Number Publication Date
JP2016095174A true JP2016095174A (en) 2016-05-26
JP6430218B2 JP6430218B2 (en) 2018-11-28

Family

ID=56071792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230293A Active JP6430218B2 (en) 2014-11-13 2014-11-13 Battery control device and secondary battery system using the same

Country Status (1)

Country Link
JP (1) JP6430218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150931A1 (en) * 2018-01-30 2019-08-08 株式会社Gsユアサ Management device and power storage device
US11493013B2 (en) 2017-04-28 2022-11-08 Gs Yuasa International Ltd. Current detector, management device, battery for starting engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188935A (en) * 2003-12-24 2005-07-14 Auto Network Gijutsu Kenkyusho:Kk Voltage-drop type current measuring device
US7381101B2 (en) * 2006-08-25 2008-06-03 Lear Corporation Battery post connector
JP2009146574A (en) * 2007-12-11 2009-07-02 Furukawa Electric Co Ltd:The Battery sensor module
JP2009236641A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Current sensor device
JP2015145813A (en) * 2014-02-03 2015-08-13 コーア株式会社 Resistor and current detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188935A (en) * 2003-12-24 2005-07-14 Auto Network Gijutsu Kenkyusho:Kk Voltage-drop type current measuring device
US7381101B2 (en) * 2006-08-25 2008-06-03 Lear Corporation Battery post connector
JP2009146574A (en) * 2007-12-11 2009-07-02 Furukawa Electric Co Ltd:The Battery sensor module
JP2009236641A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Current sensor device
JP2015145813A (en) * 2014-02-03 2015-08-13 コーア株式会社 Resistor and current detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493013B2 (en) 2017-04-28 2022-11-08 Gs Yuasa International Ltd. Current detector, management device, battery for starting engine
WO2019150931A1 (en) * 2018-01-30 2019-08-08 株式会社Gsユアサ Management device and power storage device

Also Published As

Publication number Publication date
JP6430218B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR101968038B1 (en) An electric bus bar comprising a sensor unit
US9024572B2 (en) Battery module, battery system and electric vehicle
JP2000228178A (en) Battery device for mounting mobile body
KR102258813B1 (en) Hybrid type current measuring device
US10332678B2 (en) Power storage module
JP5617278B2 (en) Current detector
JP5630691B2 (en) Current detector
JP6539441B2 (en) Detector for output current and ground fault resistance
JP7401180B2 (en) current sensor
JP2022130395A (en) battery module
JP6973221B2 (en) Current sensor
JP2013096782A (en) Current detector
JP6430218B2 (en) Battery control device and secondary battery system using the same
US9759775B2 (en) Method for monitoring a battery, evaluation device, and measuring system
JP2018101502A (en) Battery pack
US11333687B2 (en) Sensor unit
JP7127633B2 (en) sensor unit
JP2013096881A (en) Current detector
JP2018032520A (en) Power storage device
JP2015012627A (en) Junction box
WO2015186421A1 (en) Battery state measuring device and battery provided with same
JP6135343B2 (en) Wiring module and power storage module
JP5605335B2 (en) Battery pack and vehicle
JP7447428B2 (en) Power storage device
JP6020332B2 (en) Fuel cell unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250