JP2016094067A - Tire air pressure lowering detection device, method and program - Google Patents

Tire air pressure lowering detection device, method and program Download PDF

Info

Publication number
JP2016094067A
JP2016094067A JP2014230562A JP2014230562A JP2016094067A JP 2016094067 A JP2016094067 A JP 2016094067A JP 2014230562 A JP2014230562 A JP 2014230562A JP 2014230562 A JP2014230562 A JP 2014230562A JP 2016094067 A JP2016094067 A JP 2016094067A
Authority
JP
Japan
Prior art keywords
wheel
resonance frequency
speed information
rotational speed
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230562A
Other languages
Japanese (ja)
Other versions
JP6475954B2 (en
Inventor
悠輔 前田
Yusuke Maeda
悠輔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014230562A priority Critical patent/JP6475954B2/en
Publication of JP2016094067A publication Critical patent/JP2016094067A/en
Application granted granted Critical
Publication of JP6475954B2 publication Critical patent/JP6475954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire air pressure lowering detection device which can improve the estimation accuracy of tire air pressure by removing an influence of noise which appears on left and right wheels in the same phases.SOLUTION: A tire air pressure lowering detection device comprises: a rotational speed information detection part which detects the rotational speed information of wheels of a vehicle; a resonance frequency estimation part which estimates a torsion-resonance frequency of the rotational speed information in time series from the rotational speed information which is obtained by the rotational speed information detection part; and a determination part which determines the lowering of the air pressure of a tire attached to each wheel on the basis of the estimated torsion-resonance frequency. The resonance frequency estimation part comprises: a difference acquisition part which takes a difference between the rotational speed information of the left wheel and that of the right wheel in order to eliminate noise appearing at the left and right wheels in the same phases; and a correction part which multiplies a difference coefficient based on an amplitude of the noise appearing at the left and right wheels in the same phases with the left-wheel rotational speed information or the right-wheel rotational speed information.SELECTED DRAWING: Figure 1

Description

本発明はタイヤ空気圧低下検出装置、方法及びプログラムに関する。さらに詳しくは、走行中の車両のタイヤの捻り共振周波数に基づいて当該タイヤの空気圧低下を検出するタイヤ空気圧低下検出装置、方法及びプログラムに関する。   The present invention relates to a tire pressure drop detection device, method, and program. More particularly, the present invention relates to a tire pressure drop detection device, method, and program for detecting a tire pressure drop based on a torsional resonance frequency of a tire of a running vehicle.

自動車が安全に走行できるための要素の1つとして、タイヤの空気圧をあげることができる。空気圧が適正値よりも低下すると、操縦安定性や燃費が悪くなり、タイヤバーストの原因となる場合がある。このため、タイヤ空気圧の低下を検出し、運転者に警報を出して適切な処置を促すタイヤ空気圧警報装置(Tire Pressure Monitoring System;TPMS)は、環境の保護や運転者の安全性の確保という見地から重要な技術である。   One of the factors that enable a car to travel safely is the tire air pressure. If the air pressure falls below an appropriate value, the steering stability and fuel consumption are deteriorated, which may cause tire bursts. For this reason, a tire pressure alarm system (TPMS) that detects a decrease in tire air pressure and issues an alarm to the driver to prompt appropriate measures is used to protect the environment and ensure the safety of the driver. It is an important technology.

従来の警報装置は、直接検知型と間接検知型の2つに分類できる。直接検知型は、タイヤホイール内部に圧力センサを組み込むことでタイヤの空気圧を直接計測するものである。空気圧の低下を高精度に検出することができる一方で、専用のホイールが必要となることや実環境での耐故障性能に問題があることなど、技術的、コスト的な課題を残している。   Conventional alarm devices can be classified into two types, a direct detection type and an indirect detection type. The direct detection type directly measures tire air pressure by incorporating a pressure sensor inside the tire wheel. While it is possible to detect a decrease in air pressure with high accuracy, there are technical and cost issues such as the need for a dedicated wheel and the problem of fault-tolerant performance in the actual environment.

一方、間接検知型はタイヤの回転情報から空気圧を推定する方法であり、動荷重半径(Dynamic Loaded Radius;DLR)方式と、共振周波数(Resonance Frequency Mechanism;RFM)方式に細分類することができる。このうち、RFM方式は、DLR方式における問題点(車輪回転速度の相対比較を基本原理とすることから、4輪同時減圧が検出できないなどの問題点)を解決できるものとして種々の技術が提案されている(例えば、特許文献1〜2参照)。   On the other hand, the indirect detection type is a method for estimating air pressure from tire rotation information, and can be subdivided into a dynamic load radius (DLR) method and a resonance frequency (RFM) method. Of these, the RFM method has been proposed as a technique that can solve the problems in the DLR method (problems such as the inability to detect simultaneous reduction of four wheels because of the relative principle of wheel rotation speed). (For example, refer to Patent Documents 1 and 2).

特許文献1〜2記載の発明などにおけるRFM方式は、タイヤの捻り共振周波数が減圧により低下するという特性を利用し、タイヤの回転速度情報又は回転加速度情報からタイヤの捻り共振周波数を時系列推定することにより当該タイヤの空気圧低下を検出するものである。   The RFM method in the inventions described in Patent Documents 1 and 2 uses the characteristic that the torsional resonance frequency of the tire is reduced by decompression, and estimates the torsional resonance frequency of the tire in time series from the rotation speed information or the rotation acceleration information of the tire. Thus, a decrease in the air pressure of the tire is detected.

ところが、車両の駆動輪においては、車速やギヤポジションなどによってタイヤの捻り共振周波数付近に周期ノイズが発生する場合がある。この場合、ARモデルなどで時系列推定された共振周波数は、かかる周期ノイズに引っ張られてしまい、本来のタイヤの捻り共振周波数とは異なる値となる。その結果、前記TPMSにおいて誤報や未警報となってしまう惧れがある。   However, in a driving wheel of a vehicle, periodic noise may occur near the torsional resonance frequency of the tire depending on the vehicle speed, gear position, and the like. In this case, the resonance frequency estimated in time series by the AR model or the like is pulled by the periodic noise and becomes a value different from the original torsional resonance frequency of the tire. As a result, there is a risk of false alarms or unalarmed in the TPMS.

そこで、このような周期ノイズの影響をなくすために、左右輪に生じる外乱の差分をとることが提案されている(例えば、非特許文献1参照)。非特許文献1記載のタイヤ空気圧推定法では、車速やギヤポジションにより発生するエンジンノイズが左輪と右輪とで同位相で現れることに鑑み、左右輪の外乱の差分をとっている。   Therefore, in order to eliminate the influence of such periodic noise, it has been proposed to take a difference between disturbances generated in the left and right wheels (see, for example, Non-Patent Document 1). In the tire pressure estimation method described in Non-Patent Document 1, the difference between the disturbances of the left and right wheels is taken in view of the fact that engine noise generated by the vehicle speed and gear position appears in the same phase in the left wheel and the right wheel.

すなわち、左右輪の外乱をそれぞれw、wとし、捻れ角をθとし、タイヤの捻りばね定数をKとし、減衰定数をDとし、ホイールが受けるトルク(左右同位相)をTとし、路面によるノイズをTとすると、左右輪それぞれの車輪速外乱は以下の式(1)〜(2)で表すことができる。 That is, the disturbance of the left and right wheels respectively w L, and w R, the twist angle theta, the torsion spring constant of the tire and K, the attenuation constant is D, the wheel is subjected torque (left and right in-phase) and T S, When the noise due to the road surface is Td , the wheel speed disturbance of each of the left and right wheels can be expressed by the following equations (1) to (2).

ここで、逐次的にタイヤ捻りばね定数K、Kと、減衰係数D、Dとを求める。TdL−TdRはホワイトノイズであるので、共振周波数の推定に与える影響は小さい。タイヤ捻りばね定数K、Kと、減衰係数D、Dと、タイヤ捻り共振周波数とは明確な関係があるため、当該タイヤ捻りばね定数K、Kと、減衰係数D、Dとを求めることで、タイヤの共振周波数を推定することができ、この推定された共振周波数と、予め求めておいた正常圧におけるタイヤの共振周波数とを比較することでタイヤが減圧しているか否かを推定することができる。 Here, sequentially obtains the tire torsional spring constant K L, and K R, the damping coefficient D L, and D R. Since T dL -T dR is white noise, the influence on the estimation of the resonance frequency is small. Tire torsion spring constant K L, and K R, the damping coefficient D L, D R and, because the tire torsional resonance frequency there is a clear relationship, the tire torsional spring constant K L, and K R, the damping coefficient D L, by obtaining a D R, it is possible to estimate the resonance frequency of the tire, and the estimated resonance frequency, the tire is depressurized by comparing the resonance frequency of the tire in normal pressure obtained in advance It can be estimated whether or not.

特開2010−023546号公報JP 2010-023546 A 特開2010−023673号公報JP 2010-023673 A

梅野孝治、「車輪速センサを用いたタイヤ空気圧推定法の開発」、豊田中央研究所R&Dレビュー、1997年12月、Vol.32、No.4、p.45−52Koji Umeno, “Development of Tire Pressure Estimation Method Using Wheel Speed Sensor”, Toyota Central R & D Review, December 1997, Vol. 32, no. 4, p. 45-52

しかし、ドライブシャフトの長さが左右で異なることから、左右輪の車輪速に同位相に現れるノイズであっても、それらの振幅が互いに異なる場合がある。この場合、前記のように左右輪の差分をとったとしても同相ノイズをキャンセルすることができず、その結果、タイヤ空気圧を正しく推定することができない。   However, since the lengths of the drive shafts are different on the left and right, even if the noise appears in the same phase in the wheel speeds of the left and right wheels, their amplitudes may be different from each other. In this case, even if the difference between the left and right wheels is taken as described above, the in-phase noise cannot be canceled, and as a result, the tire pressure cannot be estimated correctly.

同相ノイズ、すなわちホイールが受けるトルクが左右輪で異なる場合、左右それぞれの車輪速外乱は以下の式(3)〜(4)で表され、左右の車輪速の差分は式(5)で表される。   When the in-phase noise, that is, the torque applied to the wheels is different between the left and right wheels, the left and right wheel speed disturbances are expressed by the following formulas (3) to (4), and the difference between the left and right wheel speeds is expressed by the formula (5). The

ここで、式(5)におけるTsL−TsRは、推定に与える影響が大きいので、これが無視できない大きさであると、正しく共振周波数を推定することができなくなる。 Here, since T sL -T sR in the equation (5) has a large influence on the estimation, if this is a size that cannot be ignored, the resonance frequency cannot be estimated correctly.

本発明は、このような事情に鑑みてなされたものであり、左右の車輪に同位相に現れるノイズの影響を排除してタイヤ空気圧の推定精度を向上させることができるタイヤ空気圧低下検出装置、方法及びプログラムを提供することを目的としている。   The present invention has been made in view of such circumstances, and a tire pressure drop detection device and method that can improve the estimation accuracy of tire pressure by eliminating the influence of noise appearing in the same phase on the left and right wheels. And to provide a program.

(1)本発明の第1の観点に係るタイヤ空気圧低下検出装置(以下、単に「検出装置」ともいう)は、車両の各車輪の回転速度情報を検出する回転速度情報検出部と、
前記回転速度情報検出部により得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定部と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定部と
を備えており、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正部を備える。
(1) A tire pressure drop detection device (hereinafter also simply referred to as “detection device”) according to a first aspect of the present invention includes a rotation speed information detection unit that detects rotation speed information of each wheel of a vehicle,
From the rotation speed information obtained by the rotation speed information detection unit, a resonance frequency estimation unit that estimates the torsional resonance frequency of the rotation speed information in time series,
A determination unit that determines a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation unit is configured to obtain a difference between the rotational speed information of the left and right wheels to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference by the difference acquisition unit, the left and right wheels And a correction unit that multiplies the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.

(2)本発明の第2の観点に係る検出装置は、車両の各車輪の回転速度情報を検出する回転速度情報検出部と、
前記回転速度情報検出部により得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算部と、
前記回転加速度情報演算部により演算された回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定部と、
推定された捻り共振周波数に基づいて前記タイヤの空気圧の低下を判定する判定部と
を備えており、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正部を備える。
(2) A detection device according to a second aspect of the present invention includes a rotation speed information detection unit that detects rotation speed information of each wheel of the vehicle,
From the rotational speed information obtained by the rotational speed information detection unit, a rotational acceleration information calculation unit that calculates rotational acceleration information of the wheel,
From the rotational acceleration information calculated by the rotational acceleration information calculation unit, a resonance frequency estimation unit that estimates the torsional resonance frequency of the rotational acceleration information in time series,
A determination unit that determines a decrease in the tire air pressure based on the estimated torsional resonance frequency, and
The resonance frequency estimation unit is configured to obtain a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when obtaining the difference by the difference acquisition unit, the left and right wheels And a correction unit that multiplies the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.

本発明の検出装置では、車両の左右輪に同相に現れるノイズをキャンセルするに際し、左右輪のノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報又は回転加速度情報に乗じる。これにより、車両の左右輪に同相に現れるノイズを、より確実にキャンセルすることができ、前記回転速度情報又は回転加速度情報から時系列推定される当該回転速度情報又は回転加速度情報の捻り共振周波数を高精度に推定することができ、その結果、タイヤ空気圧の推定精度を向上させることができる。   In the detection apparatus of the present invention, when canceling noise appearing in the same phase on the left and right wheels of the vehicle, the difference coefficient based on the amplitude of the noise of the left and right wheels is multiplied by the rotational speed information or rotational acceleration information of the left or right wheel. Thereby, the noise appearing in the same phase on the left and right wheels of the vehicle can be canceled more reliably, and the torsional resonance frequency of the rotational speed information or rotational acceleration information estimated in time series from the rotational speed information or rotational acceleration information can be reduced. As a result, the estimation accuracy of the tire pressure can be improved.

(3)本発明の第3の観点に係るタイヤ空気圧低下検出方法(以下、単に「検出方法」ともいう)は、車両の各車輪の回転速度情報を検出する回転速度情報検出工程と、
前記回転速度情報検出工程において得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定工程と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定工程と
を含んでおり、
前記共振周波数推定工程は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得工程、及び、当該差分取得工程において差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正工程を含む。
(3) A tire pressure drop detecting method (hereinafter also simply referred to as “detecting method”) according to a third aspect of the present invention includes a rotational speed information detecting step of detecting rotational speed information of each wheel of the vehicle,
From the rotational speed information obtained in the rotational speed information detection step, a resonance frequency estimation step for time-series estimation of the torsional resonance frequency of the rotational speed information;
A determination step of determining a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation step includes a difference acquisition step for obtaining a difference in rotational speed information between the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference in the difference acquisition step, the left and right wheels Includes a correction step of multiplying the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in phase.

(4)本発明の第4の観点に係る検出方法は、車両の各車輪の回転速度情報を検出する回転速度情報検出工程と、
前記回転速度情報検出工程において得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算工程と、
前記回転加速度情報演算工程において得られる回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定工程と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定工程と
を含んでおり、
前記共振周波数推定工程は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得工程、及び、当該差分取得工程において差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正工程を含む。
(4) A detection method according to a fourth aspect of the present invention includes a rotation speed information detection step of detecting rotation speed information of each wheel of the vehicle;
From the rotational speed information obtained in the rotational speed information detection step, a rotational acceleration information calculation step of calculating rotational acceleration information of the wheel,
From the rotational acceleration information obtained in the rotational acceleration information calculation step, a resonance frequency estimation step for time-series estimating the torsional resonance frequency of the rotational acceleration information;
A determination step of determining a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation step includes a difference acquisition step of obtaining a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference in the difference acquisition step, the left and right wheels Includes a correction step of multiplying the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in phase.

本発明の検出方法では、車両の左右輪に同相に現れるノイズをキャンセルするに際し、左右輪のノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報又は回転加速度情報に乗じる。これにより、車両の左右輪に同相に現れるノイズを、より確実にキャンセルすることができ、前記回転速度情報又は回転加速度情報から時系列推定される当該回転速度情報又は回転加速度情報の捻り共振周波数を高精度に推定することができ、その結果、タイヤ空気圧の推定精度を向上させることができる。   In the detection method of the present invention, when canceling the noise appearing in the same phase on the left and right wheels of the vehicle, the difference coefficient based on the amplitude of the noise of the left and right wheels is multiplied by the rotational speed information or rotational acceleration information of the left wheel or right wheel. Thereby, the noise appearing in the same phase on the left and right wheels of the vehicle can be canceled more reliably, and the torsional resonance frequency of the rotational speed information or rotational acceleration information estimated in time series from the rotational speed information or rotational acceleration information can be reduced. As a result, the estimation accuracy of the tire pressure can be improved.

(5)本発明の第5の観点に係るタイヤ空気圧低下検出プログラム(以下、単に「プログラム」ともいう)は、走行中の車両のタイヤの共振周波数に基づいて当該タイヤの空気圧低下を検出するためにコンピュータを、車両の各車輪の回転速度情報を検出する回転速度情報検出部により得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定部、及び、推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定部として機能させ、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正部を備える。
(5) A tire air pressure drop detection program (hereinafter also simply referred to as “program”) according to a fifth aspect of the present invention detects a tire air pressure drop based on a resonance frequency of a tire of a running vehicle. A rotational frequency information obtained by a rotational speed information detection unit that detects rotational speed information of each wheel of the vehicle, and a resonance frequency estimation unit that estimates a torsional resonance frequency of the rotational speed information in time series, and Function as a determination unit for determining a decrease in the air pressure of the tire mounted on each wheel based on the twist resonance frequency,
The resonance frequency estimation unit is configured to obtain a difference between the rotational speed information of the left and right wheels to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference by the difference acquisition unit, the left and right wheels And a correction unit that multiplies the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.

(6)本発明の第6の観点に係るプログラムは、走行中の車両のタイヤの共振周波数に基づいて当該タイヤの空気圧低下を検出するためにコンピュータを、車両の各車輪の回転速度情報を検出する回転速度情報検出部により得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算部、前記回転加速度情報演算部により演算された回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定部、及び、推定された捻り共振周波数に基づいて前記タイヤの空気圧の低下を判定する判定部として機能させ、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正部を備える。
(6) A program according to a sixth aspect of the present invention detects a rotational speed information of each wheel of a vehicle and a computer for detecting a decrease in air pressure of the tire based on a resonance frequency of a tire of a running vehicle. A rotational acceleration information calculation unit that calculates rotational acceleration information of the wheel from the rotational speed information obtained by the rotational speed information detection unit, and a torsional resonance of the rotational acceleration information from the rotational acceleration information calculated by the rotational acceleration information calculation unit Resonance frequency estimation unit that estimates frequency in time series, and function as a determination unit that determines a decrease in tire air pressure based on the estimated torsional resonance frequency,
The resonance frequency estimation unit is configured to obtain a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when obtaining the difference by the difference acquisition unit, the left and right wheels And a correction unit that multiplies the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.

本発明のタイヤ空気圧低下検出装置、方法及びプログラムによれば、左右の車輪に同位相に現れるノイズの影響を排除してタイヤ空気圧の推定精度を向上させることができる。   According to the tire pressure drop detecting device, method, and program of the present invention, it is possible to eliminate the influence of noise appearing in the same phase on the left and right wheels and improve the estimation accuracy of the tire pressure.

本発明の検出装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the detection apparatus of this invention. 図1に示される検出装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of the detection apparatus shown by FIG. FL輪及びFR輪の車輪速スペクトル、並びに、FR輪スペクトルの車輪速ゲインを1.2倍したFFTスペクトルを表す図である。It is a figure showing the FFT spectrum which multiplied the wheel speed gain of FL wheel and FR wheel, and the wheel speed gain of FR wheel spectrum by 1.2 times. FR輪の車輪速を定数倍せずに左右前輪の車輪速を差分した後の信号についてのFFTスペクトル、及び、FR輪の車輪速を1.2倍した後に左右前輪の車輪速を差分した後の信号についてのFFTスペクトルを表す図である。After the difference between the wheel speeds of the FR wheels and the FFT spectrum of the signal after the wheel speeds of the left and right front wheels are subtracted without multiplying the wheel speeds by a constant, the wheel speeds of the left and right front wheels are subtracted after multiplying the wheel speeds of the FR wheels by 1.2. It is a figure showing the FFT spectrum about the signal of. FR輪の車輪速を1.2倍せずに左右輪の車輪速を差分して求めたタイヤ共振周波数推定値を示す図である。It is a figure which shows the tire resonant frequency estimated value calculated | required by making the wheel speed of a right-and-left wheel differed without multiplying the wheel speed of FR wheel. FR輪の車輪速を1.2倍した後に左右輪の車輪速を差分して求めたタイヤ共振周波数推定値を示す図である。It is a figure which shows the tire resonant frequency estimated value calculated | required by subtracting the wheel speed of a right-and-left wheel after multiplying the wheel speed of FR wheel 1.2 times.

以下、添付図面を参照しつつ、本発明の検出装置、方法及びプログラムの実施の形態を詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Hereinafter, embodiments of the detection apparatus, method, and program of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

図1は、本発明の一実施形態に係る検出装置を示すブロック図であり、 図2は、図1に示される検出装置の電気的構成を示すブロック図である。
図1に示されるように、本発明の一実施形態に係る検出装置は、4輪車両の左前輪(FL)、右前輪(FR)、左後輪(RL)及び右後輪(RR)の回転速度情報を検出するため、各輪に関連して設けられた通常の車輪速度検出部(回転速度情報検出部)1を備えている。
FIG. 1 is a block diagram showing a detection device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an electrical configuration of the detection device shown in FIG.
As shown in FIG. 1, the detection device according to an embodiment of the present invention includes a left front wheel (FL), a right front wheel (FR), a left rear wheel (RL), and a right rear wheel (RR) of a four-wheel vehicle. In order to detect rotation speed information, a normal wheel speed detection unit (rotation speed information detection unit) 1 provided in association with each wheel is provided.

前記車輪速度検出部1としては、電磁ピックアップなどを用いて回転パルスを発生させ、パルスの数から回転角速度及び車輪速度を測定するための車輪速センサや、ダイナモのように回転を利用して発電を行い、この電圧から回転角速度及び車輪速度を測定するためのものを含む角速度センサなどを用いることができる。前記車輪速度検出部1の出力は、ABSなどのコンピュータである制御ユニット2に与えられる。この制御ユニット2には、例えばタイヤが減圧していることを表示するための液晶表示素子、プラズマ表示素子又はCRTなどで構成された表示器3、ドライバーによって操作することができる初期化ボタン4、及びタイヤ減圧であることをドライバーに知らせる警報器5が接続されている。   The wheel speed detector 1 generates a rotation pulse by using an electromagnetic pickup or the like, and uses a wheel speed sensor for measuring a rotation angular speed and a wheel speed from the number of pulses, or rotation like a dynamo. An angular velocity sensor including that for measuring the rotational angular velocity and the wheel speed from this voltage can be used. The output of the wheel speed detector 1 is given to a control unit 2 which is a computer such as ABS. The control unit 2 includes, for example, a liquid crystal display element for displaying that the tire is depressurized, a display 3 composed of a plasma display element or a CRT, an initialization button 4 that can be operated by a driver, An alarm device 5 is connected to notify the driver that the tire pressure is reduced.

制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェース2aと、演算処理の中枢として機能するCPU2bと、このCPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行う際にデータなどが一時的に書き込まれたり、その書き込まれたデータが読み出されたりするRAM2dとから構成されている。   As shown in FIG. 2, the control unit 2 stores an I / O interface 2a necessary for passing signals to and from an external device, a CPU 2b that functions as a center of arithmetic processing, and a control operation program for the CPU 2b. The ROM 2c and the RAM 2d from which data is temporarily written or the written data is read when the CPU 2b performs a control operation.

前記車輪速度検出部1では、タイヤの回転数に対応したパルス信号(以下、「車輪速パルス」ともいう)が出力される。そして、この車輪速パルスを所定の周期ΔT(sec)、例えばΔT=0.005秒で再サンプリングすることにより、車輪速信号の時系列データを得ることができる。着目するタイヤのねじり方向の共振周波数は数十Hz付近に現れるため、ナイキスト周波数内にそれが含まれるようにサンプリング周期を設定する必要がある。   The wheel speed detection unit 1 outputs a pulse signal corresponding to the number of rotations of the tire (hereinafter also referred to as “wheel speed pulse”). Then, by re-sampling the wheel speed pulse at a predetermined cycle ΔT (sec), for example, ΔT = 0.005 seconds, time-series data of the wheel speed signal can be obtained. Since the resonance frequency of the torsional direction of the tire of interest appears in the vicinity of several tens of Hz, it is necessary to set the sampling period so that it is included in the Nyquist frequency.

本実施形態に係る検出装置は、車輪速度検出部(回転速度情報検出部)1と、この車輪速度検出部1により得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定部と、推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定部とで主に構成されている。前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正部を備えている。そして、本実施形態に係るプログラムは、前記制御ユニット2にインストールされており、当該制御ユニット2を、差分取得部及び補正部を備えた共振周波数推定部、並びに判定部として機能させる。   The detection device according to the present embodiment estimates the torsional resonance frequency of the rotation speed information from the wheel speed detection section (rotation speed information detection section) 1 and the rotation speed information obtained by the wheel speed detection section 1 in time series. A resonance frequency estimation unit and a determination unit that determines a decrease in air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency are mainly configured. The resonance frequency estimation unit is configured to obtain a difference between the rotational speed information of the left and right wheels to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference by the difference acquisition unit, the left and right wheels And a correction unit that multiplies the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase. The program according to the present embodiment is installed in the control unit 2, and causes the control unit 2 to function as a resonance frequency estimation unit including a difference acquisition unit and a correction unit, and a determination unit.

捻り共振周波数は、例えば回転速度情報又は回転加速度情報を2次の自己回帰(Autoregressive;AR)モデルに基づいて時系列解析を行ったり、例えば特開2011−102077号公報に開示されているように、回転加速度情報を時系列信号として、以下の式(6)〜(7)のn次(nは3以上の整数)の線形モデルとして各パラメータを時系列推定したりすることで、推定することができる。式(6)〜(7)において、y(t)は車輪回転加速度の時系列信号、nはモデル次数(3以上の整数)、aは各パラメータ、y´(t)は回転成分、w(t)は外乱(振動成分)である。 For the torsional resonance frequency, for example, rotational speed information or rotational acceleration information is subjected to time series analysis based on a second-order autoregressive (AR) model, or disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-102077. The estimation is performed by estimating each parameter as a time-series signal as a time-series signal, and by estimating each parameter as a linear model of the following formulas (6) to (7) (n is an integer of 3 or more). Can do. In Expressions (6) to (7), y (t) is a time series signal of wheel rotational acceleration, n is a model order (an integer of 3 or more), a i is each parameter, y ′ (t) is a rotational component, w (T) is a disturbance (vibration component).

そして、得られる捻り共振周波数が、例えば初期化時に算出され前記RAM2dに記憶されている基準の捻り共振周波数よりも所定の閾値(例えば、2Hz)を超えて小さくなったときに、タイヤが減圧していると判定し、前記警報器5により警報が発せられる。   Then, when the obtained torsional resonance frequency becomes lower than a reference torsional resonance frequency calculated at initialization, for example, and stored in the RAM 2d by exceeding a predetermined threshold (for example, 2 Hz), the tire is depressurized. The alarm device 5 issues an alarm.

本実施形態は、捻り共振周波数の変化に着目してタイヤ空気圧の低下を判定するに際し、車両の駆動輪において車速やギヤポジションなどによってタイヤの捻り共振周波数付近に周期ノイズが発生し、これが原因で誤報や未警報の惧れがあることに鑑み左右輪の車輪速の差分をとることで当該周期ノイズをキャンセルするときに、左右輪のノイズの振幅が異なる場合でも前記周期ノイズの影響を排除するものである。   In this embodiment, when determining a decrease in tire air pressure by paying attention to a change in the torsional resonance frequency, periodic noise is generated in the vicinity of the torsional resonance frequency of the tire depending on the vehicle speed, gear position, and the like in the drive wheels of the vehicle. In view of the possibility of false alarms and unwarned alarms, the difference between the wheel speeds of the left and right wheels is taken to cancel the periodic noise, thereby eliminating the influence of the periodic noise even when the amplitudes of the noises of the left and right wheels are different. Is.

すなわち、車両の駆動輪において車速やギヤポジションなどによって発生するノイズは同じ位相であるため、通常は、左右輪の差分をとることで当該ノイズをキャンセルすることができる。しかし、ドライブシャフトの長さが左右で異なることなどにより左右輪の車輪速に現れる同相ノイズの振幅が互いに異なる状況下では、単純に差分をとるだけでは当該ノイズをキャンセルすることができない。例えば、図3に示される例では、FL輪とFR輪とでは42Hz付近の車輪速スペクトルのピーク高さ(ノイズの振幅に比例する)が異なっている。このピーク周波数は、エンジンの爆発振動と一致する周波数であることからエンジンノイズであると考えられる。かかるエンジンノイズは左右輪で同じ位相のノイズである。なお、図3において、50Hz付近にあるピークがタイヤの捻り共振周波数であり、当該タイヤの空気圧と相関のある共振周波数である。   That is, noise generated by the vehicle speed, gear position, and the like in the driving wheels of the vehicle has the same phase, and therefore, normally, the noise can be canceled by taking the difference between the left and right wheels. However, under a situation where the amplitudes of the common-mode noise appearing at the wheel speeds of the left and right wheels are different from each other due to the difference in the length of the drive shaft between the left and right, the noise cannot be canceled by simply taking the difference. For example, in the example shown in FIG. 3, the peak height (proportional to the amplitude of noise) of the wheel speed spectrum near 42 Hz is different between the FL wheel and the FR wheel. This peak frequency is considered to be engine noise because it is a frequency that matches the explosion vibration of the engine. Such engine noise is the same phase noise on the left and right wheels. In FIG. 3, the peak in the vicinity of 50 Hz is the torsional resonance frequency of the tire, which is a resonance frequency correlated with the tire air pressure.

ここで、図4に示されるように、単に左右輪で差分をとるだけでは、前述したようにFL輪とFR輪とでは42Hz付近の車輪速スペクトルのピーク高さが異なることから、「FR輪を定数倍せずに左右前輪車輪速を差分」と表記されている太い実線で示されるように42Hz付近にノイズが残り、図5に示されるように、タイヤ捻り共振周波数の推定値を正しく求めることができない。なお、図3〜6に示される結果は、フロントエンジン・フロントドライブのFF車での走行試験に基づくものである。図3〜4は、マニュアル車においてギアシフトの位置を「5速」とし、70kphで走行したときに得られたデータに基づいており、図5〜6は、45kphについては「4速」、45kph以外の速度については「5速」で走行したときに得られたデータに基づいている。   Here, as shown in FIG. 4, simply by taking the difference between the left and right wheels, the peak height of the wheel speed spectrum near 42 Hz is different between the FL wheel and the FR wheel as described above. As shown in the thick solid line labeled “difference between left and right front wheel speeds without multiplying by a constant”, noise remains in the vicinity of 42 Hz, and the estimated value of the tire torsional resonance frequency is correctly obtained as shown in FIG. I can't. The results shown in FIGS. 3 to 6 are based on a running test in a front engine / front drive FF vehicle. 3 to 4 are based on data obtained when the gear shift position is “5th gear” in a manual vehicle and travels at 70 kph. FIGS. 5 to 6 are for “45 kph” except “4th gear” and 45 kph. The speed is based on data obtained when traveling at “5th speed”.

これに対し、本実施形態では、左右輪に同相に現れる各ノイズの差分係数を予め求めておき、左輪又は右輪に前記差分係数を乗じることで、左右輪の同相ノイズの振幅の違いの影響を排除している。
差分係数とは、例えば左右輪に現れるエンジンノイズの振幅をそれぞれB、Bとし、ωをエンジンノイズの角周波数とし、tを時刻とし、左輪に現れるエンジンノイズをBsinωtとし、右輪に現れるエンジンノイズをBsinωtとしたときに、B/Bで表される係数である。
On the other hand, in the present embodiment, the difference coefficient of each noise appearing in phase on the left and right wheels is obtained in advance, and the difference between the amplitudes of the in-phase noise of the left and right wheels is multiplied by the difference coefficient on the left wheel or the right wheel. Is eliminated.
The differential coefficient, for example, the amplitude of engine noise that appears to the left and right wheels respectively B L, and B R, the ω is the angular frequency of the engine noise, the time of t, and the engine noise that appears to the left wheel and B L sin .omega.t, right wheel the engine noise when the B R sin .omega.t appearing in a coefficient expressed by B L / B R.

差分係数は、例えば車両の生産段階における実験走行においてFFTで周波数スペクトルを左右輪それぞれについて出力し(図3参照)、出力図のスペクトルのピーク値から比を計算して求めることができる。求めた比は車両に搭載される制御ユニットに所定値として記憶される。一方、制御ユニットの計算資源に余裕があれば、タイヤを交換したり、タイヤ空気圧を調整したりした後の初期化段階において、その都度差分係数を求めるようにしてもよい。この場合、標準タイヤ以外のタイヤが装着されたとしても、当該タイヤに応じた差分係数を求めることができる。さらに、走行中に差分係数が変化する可能性があることを想定し、一定時間ごとに差分係数を求めることもできる。   The difference coefficient can be obtained by, for example, outputting a frequency spectrum for each of the left and right wheels by FFT in an experimental run in the vehicle production stage (see FIG. 3) and calculating a ratio from the peak value of the spectrum in the output diagram. The obtained ratio is stored as a predetermined value in a control unit mounted on the vehicle. On the other hand, if the control unit has sufficient computing resources, the difference coefficient may be obtained each time in the initialization stage after the tire is replaced or the tire pressure is adjusted. In this case, even if a tire other than the standard tire is mounted, the difference coefficient corresponding to the tire can be obtained. Furthermore, assuming that there is a possibility that the difference coefficient may change during traveling, the difference coefficient can be obtained at regular intervals.

図3に示される例では、FL輪の車輪速ゲインはFR輪の車輪速ゲインのほぼ1.2倍である。したがって、この場合、差分係数は1.2であり、FR輪の車輪速ゲインを1.2倍した後に左右輪の差分をとることで、図4において細線で示されるように、振幅が異なる左右同相ノイズをキャンセルすることができる(「FR輪を1.2倍した後に左右前輪車輪速を差分」参照)。そして、求めたタイヤの捻り共振周波数は、図6に示されるように、速度による変化を無視できるレベルであった。
図5〜6より、本実施形態によれば、振幅が互いに異なる左右輪における同相ノイズの影響を低減させ、タイヤの捻り共振周波数の推定精度を向上させ得ることがわかる。
In the example shown in FIG. 3, the wheel speed gain of the FL wheel is approximately 1.2 times the wheel speed gain of the FR wheel. Therefore, in this case, the difference coefficient is 1.2, and by taking the difference between the left and right wheels after multiplying the wheel speed gain of the FR wheel by 1.2, as shown by the thin line in FIG. In-phase noise can be canceled (refer to “difference between front and rear wheel speeds after FR wheel is multiplied by 1.2”). The obtained torsional resonance frequency of the tire was a level at which the change due to the speed could be ignored as shown in FIG.
5 to 6, it can be seen that according to the present embodiment, the influence of in-phase noise on the left and right wheels having different amplitudes can be reduced, and the estimation accuracy of the torsional resonance frequency of the tire can be improved.

次に、本実施形態に係る検出装置の動作又は本実施形態に係る検出方法について説明する。
(1)まず、車輪速度検出部により、車輪の回転信号を検出する。
(2)ついで、制御ユニット2により、前記車輪の回転信号を所定の周期にしたがって再サンプリングすることで車輪速信号を得る。その周期は、着目するタイヤの捻り方向の共振周波数を考慮して決める必要がある。具体的には、サンプリング周期は、着目している捻り方向の共振周波数が数十Hz付近に現れることから、100Hz以上のサンプリング周期とすることが望ましい。
Next, the operation of the detection apparatus according to this embodiment or the detection method according to this embodiment will be described.
(1) First, a wheel rotation signal is detected by a wheel speed detector.
(2) Next, the control unit 2 re-samples the wheel rotation signal according to a predetermined period to obtain a wheel speed signal. The period must be determined in consideration of the resonance frequency in the torsional direction of the tire of interest. Specifically, the sampling period is preferably set to a sampling period of 100 Hz or more because the resonance frequency in the torsional direction of interest appears in the vicinity of several tens of Hz.

(3)ついで、左右車輪速に含まれる外乱をwL(t)、wR(t)とし、a1、a2、・・・、an、およびb1、b2、・・・、bnを係数とすると、
wL(t)=a1(t−1)+a2(t−2)+・・・+an(t−n)
wR(t)=b1(t−1)+b2(t−2)+・・・+bn(t−n)
である。
a1、a2、・・・、an、およびb1、b2、・・・、bnは、タイヤ捻りバネ定数K、減衰定数D、ホイールが受けるトルク(左右同位相)Ts、路面によるノイズTdからなる定数である。
(3) Next, if the disturbance included in the left and right wheel speeds is wL (t), wR (t), and a1, a2,..., An, and b1, b2,.
wL (t) = a1 (t−1) + a2 (t−2) +... + an (t−n)
wR (t) = b1 (t−1) + b2 (t−2) +... + bn (t−n)
It is.
a1, a2,..., an, and b1, b2,..., bn are tire torsion spring constant K, damping constant D, wheel received torque (right and left in-phase) Ts, and road surface noise Td. It is.

(4)ここで、エンジンノイズの影響をなくすためにwL(t)−wR(t)として差分をとるが、例えば図3に示される例のようにFL=1.2×FRである場合、左右輪の差分係数は「1.2」であるので、
wL(t)−1.2wR(t)=a1(t−1)+a2(t−2)+・・・an(t−n)−1.2{b1(t−1)+b2(t−2)+・・・+bn(t−n)}として、a1、a2、・・・、anおよびb1、b2、・・・・、bnを時系列推定し、得られる各係数に基づいて、FL輪およびFR輪それぞれの共振周波数を推定する。
(5)そして、推定された共振周波数と、基準の共振周波数とを比較し、その差が所定の値よりも大きい場合にタイヤが減圧していると判断し、警報を発する。
(4) Here, in order to eliminate the influence of engine noise, a difference is taken as wL (t) −wR (t). For example, when FL = 1.2 × FR as in the example shown in FIG. Since the difference coefficient between the left and right wheels is “1.2”,
wL (t) −1.2 wR (t) = a1 (t−1) + a2 (t−2) +... an (t−n) −1.2 {b1 (t−1) + b2 (t−2) ) +... + Bn (t-n)}, a1, a2,..., An and b1, b2,. And estimate the resonant frequency of each of the FR wheels.
(5) Then, the estimated resonance frequency is compared with the reference resonance frequency, and when the difference is larger than a predetermined value, it is determined that the tire is depressurized, and an alarm is issued.

[実施例]
つぎに本発明の検出方法の実施例を説明するが、本発明はかかる実施例のみに限定されるものではない。
[実施例1]
FF(フロントエンジン、フロントドライブ)車をテストコース(周回路)で走行させ、フロント2輪の車輪速を計測した。逐次時系列推定法にて、3.75msのサンプリングタイムで33Hzから67Hzの間にある共振ピークを2次近似で推定した。
左右輪の差分をとるに際し、FR輪の車輪速ゲインに予め求めておいた差分係数(1.2)を乗じた後に左右輪の差分をとった。
[Example]
Next, examples of the detection method of the present invention will be described, but the present invention is not limited to such examples.
[Example 1]
An FF (front engine, front drive) vehicle was run on a test course (circumference circuit), and the wheel speeds of the two front wheels were measured. A resonance peak between 33 Hz and 67 Hz was estimated by a second order approximation with a sampling time of 3.75 ms by a sequential time series estimation method.
In taking the difference between the left and right wheels, the difference between the left and right wheels was taken after multiplying the wheel speed gain of the FR wheel by a difference coefficient (1.2) obtained in advance.

[比較例1]
差分係数を用いることなく左右輪の差分をとった以外は実施例1と同様にして共振ピークを推定した。
実施例1の方が比較例1よりも、速度条件を変えた場合の推定共振周波数の変動が小さかった。
[Comparative Example 1]
The resonance peak was estimated in the same manner as in Example 1 except that the difference between the left and right wheels was taken without using the difference coefficient.
In Example 1, the variation in the estimated resonance frequency when the speed condition was changed was smaller than that in Comparative Example 1.

〔その他の変形例〕
本発明は前述した実施形態に限定されるものではなく、特許請求の範囲内において種々の変更が可能である。
例えば、前述した実施形態では、時系列推定により回転速度情報である車輪速の捻り共振周波数を求めているが、車輪速に代えて、回転加速度情報である車輪加速度の捻り共振周波数を時系列推定により求めることもできる。この場合、回転速度情報検出部により得られる回転速度情報から、回転加速度情報演算部として機能する制御ユニットにより回転加速度情報が演算される。そして、演算された回転加速度情報から、共振周波数推定部として機能する制御ユニットにより前記回転加速度情報の捻り共振周波数が時系列推定される。回転加速度情報の方が回転速度情報よりも変化が少ないので、演算精度を向上させる点からは、回転加速度情報を時系列データとすることが望ましい。
[Other variations]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.
For example, in the embodiment described above, the torsional resonance frequency of the wheel speed that is the rotational speed information is obtained by time series estimation, but instead of the wheel speed, the torsional resonance frequency of the wheel acceleration that is the rotational acceleration information is estimated in time series. Can also be obtained. In this case, the rotation acceleration information is calculated from the rotation speed information obtained by the rotation speed information detection unit by the control unit that functions as the rotation acceleration information calculation unit. Then, the torsional resonance frequency of the rotation acceleration information is time-series estimated from the calculated rotation acceleration information by a control unit that functions as a resonance frequency estimation unit. Since the rotational acceleration information has less change than the rotational speed information, it is desirable that the rotational acceleration information be time-series data from the viewpoint of improving calculation accuracy.

1 車輪速度検出部
2 制御ユニット
2a インターフェース
2b CPU
2c ROM
2d RAM
3 表示器
4 初期化ボタン
5 警報器
DESCRIPTION OF SYMBOLS 1 Wheel speed detection part 2 Control unit 2a Interface 2b CPU
2c ROM
2d RAM
3 Display 4 Initialization button 5 Alarm

Claims (8)

車両の各車輪の回転速度情報を検出する回転速度情報検出部と、
前記回転速度情報検出部により得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定部と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定部と
を備えており、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正部を備える、タイヤ空気圧低下検出装置。
A rotational speed information detector for detecting rotational speed information of each wheel of the vehicle;
From the rotation speed information obtained by the rotation speed information detection unit, a resonance frequency estimation unit that estimates the torsional resonance frequency of the rotation speed information in time series,
A determination unit that determines a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation unit is configured to obtain a difference between the rotational speed information of the left and right wheels to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference by the difference acquisition unit, the left and right wheels A tire pressure drop detection device comprising: a correction unit that multiplies the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.
車両の各車輪の回転速度情報を検出する回転速度情報検出部と、
前記回転速度情報検出部により得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算部と、
前記回転加速度情報演算部により演算された回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定部と、
推定された捻り共振周波数に基づいて前記タイヤの空気圧の低下を判定する判定部と
を備えており、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正部を備える、タイヤ空気圧低下検出装置。
A rotational speed information detector for detecting rotational speed information of each wheel of the vehicle;
From the rotational speed information obtained by the rotational speed information detection unit, a rotational acceleration information calculation unit that calculates rotational acceleration information of the wheel,
From the rotational acceleration information calculated by the rotational acceleration information calculation unit, a resonance frequency estimation unit that estimates the torsional resonance frequency of the rotational acceleration information in time series,
A determination unit that determines a decrease in the tire air pressure based on the estimated torsional resonance frequency, and
The resonance frequency estimation unit is configured to obtain a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when obtaining the difference by the difference acquisition unit, the left and right wheels A tire air pressure drop detection device comprising: a correction unit that multiplies the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.
前記ノイズはエンジンノイズであり、前記差分係数は、左右輪に現れるエンジンノイズの振幅をそれぞれB、Bとし、ωをエンジンノイズの角周波数とし、tを時刻とし、左輪に現れるエンジンノイズをBsinωtとし、右輪に現れるエンジンノイズをBsinωtとしたときに、B/Bである、請求項1又は請求項2に記載のタイヤ空気圧低下検出装置。 The noise is engine noise, the difference coefficients, respectively B L amplitudes of engine noise that appears to the left and right wheels, and B R, the ω is the angular frequency of the engine noise, the time of t, the engine noise that appears to the left wheel and B L sin .omega.t, when the engine noise that appears to the right wheel and B R sin .omega.t, a B L / B R, a tire pressure drop detecting device according to claim 1 or claim 2. 車両の各車輪の回転速度情報を検出する回転速度情報検出工程と、
前記回転速度情報検出工程において得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定工程と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定工程と
を含んでおり、
前記共振周波数推定工程は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得工程、及び、当該差分取得工程において差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正工程を含む、タイヤ空気圧低下検出方法。
A rotational speed information detecting step for detecting rotational speed information of each wheel of the vehicle;
From the rotational speed information obtained in the rotational speed information detection step, a resonance frequency estimation step for time-series estimation of the torsional resonance frequency of the rotational speed information;
A determination step of determining a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation step includes a difference acquisition step for obtaining a difference in rotational speed information between the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference in the difference acquisition step, the left and right wheels A method for detecting a decrease in tire air pressure, which includes a correction step of multiplying the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in phase.
車両の各車輪の回転速度情報を検出する回転速度情報検出工程と、
前記回転速度情報検出工程において得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算工程と、
前記回転加速度情報演算工程において得られる回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定工程と、
推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定工程と
を含んでおり、
前記共振周波数推定工程は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得工程、及び、当該差分取得工程において差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正工程を含む、タイヤ空気圧低下検出方法。
A rotational speed information detecting step for detecting rotational speed information of each wheel of the vehicle;
From the rotational speed information obtained in the rotational speed information detection step, a rotational acceleration information calculation step of calculating rotational acceleration information of the wheel,
From the rotational acceleration information obtained in the rotational acceleration information calculation step, a resonance frequency estimation step for time-series estimating the torsional resonance frequency of the rotational acceleration information;
A determination step of determining a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency, and
The resonance frequency estimation step includes a difference acquisition step of obtaining a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference in the difference acquisition step, the left and right wheels A method for detecting a decrease in tire air pressure, including a correction step of multiplying the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in phase.
前記ノイズはエンジンノイズであり、前記差分係数は、左右輪に現れるエンジンノイズの振幅をそれぞれB、Bとし、ωをエンジンノイズの角周波数とし、tを時刻とし、左輪に現れるエンジンノイズをBsinωtとし、右輪に現れるエンジンノイズをBsinωtとしたときに、B/Bである、請求項4又は請求項5に記載のタイヤ空気圧低下検出方法。 The noise is engine noise, the difference coefficients, respectively B L amplitudes of engine noise that appears to the left and right wheels, and B R, the ω is the angular frequency of the engine noise, the time of t, the engine noise that appears to the left wheel and B L sin .omega.t, when the engine noise that appears to the right wheel and B R sin .omega.t, a B L / B R, a tire pressure drop detecting method according to claim 4 or claim 5. 走行中の車両のタイヤの共振周波数に基づいて当該タイヤの空気圧低下を検出するためにコンピュータを、車両の各車輪の回転速度情報を検出する回転速度情報検出部により得られる回転速度情報から、当該回転速度情報の捻り共振周波数を時系列推定する共振周波数推定部、及び、推定された捻り共振周波数に基づいて前記各車輪に装着されたタイヤの空気圧の低下を判定する判定部として機能させ、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転速度情報に乗じる補正部を備える、タイヤ空気圧低下検出プログラム。
Based on the rotational speed information obtained by the rotational speed information detecting unit for detecting rotational speed information of each wheel of the vehicle, a computer is used to detect a decrease in air pressure of the tire based on the resonance frequency of the tire of the traveling vehicle. Resonance frequency estimation unit for time series estimation of the torsional resonance frequency of the rotation speed information, and function as a determination unit for determining a decrease in the air pressure of the tire mounted on each wheel based on the estimated torsional resonance frequency,
The resonance frequency estimation unit is configured to obtain a difference between the rotational speed information of the left and right wheels to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when acquiring the difference by the difference acquisition unit, the left and right wheels A tire pressure drop detection program comprising a correction unit that multiplies the rotational speed information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.
走行中の車両のタイヤの共振周波数に基づいて当該タイヤの空気圧低下を検出するためにコンピュータを、車両の各車輪の回転速度情報を検出する回転速度情報検出部により得られる回転速度情報から、車輪の回転加速度情報を演算する回転加速度情報演算部、前記回転加速度情報演算部により演算された回転加速度情報から、当該回転加速度情報の捻り共振周波数を時系列推定する共振周波数推定部、及び、推定された捻り共振周波数に基づいて前記タイヤの空気圧の低下を判定する判定部として機能させ、
前記共振周波数推定部は、左右輪に同相に現れるノイズの影響をなくすために左右輪の回転加速度情報の差分をとる差分取得部、及び、当該差分取得部により差分を取得する際に、左右輪に同相に現れる各ノイズの振幅に基づく差分係数を左輪又は右輪の回転加速度情報に乗じる補正部を備える、タイヤ空気圧低下検出プログラム。
From the rotational speed information obtained by the rotational speed information detecting unit that detects the rotational speed information of each wheel of the vehicle, the computer detects the decrease in air pressure of the tire based on the resonance frequency of the tire of the running vehicle. A rotational acceleration information calculating unit for calculating the rotational acceleration information of the rotational acceleration information, a resonance frequency estimating unit for estimating the torsional resonance frequency of the rotational acceleration information in time series from the rotational acceleration information calculated by the rotational acceleration information calculating unit, and Function as a determination unit for determining a decrease in the tire air pressure based on the twist resonance frequency,
The resonance frequency estimation unit is configured to obtain a difference between rotational acceleration information of the left and right wheels in order to eliminate the influence of noise appearing in the same phase on the left and right wheels, and when obtaining the difference by the difference acquisition unit, the left and right wheels A tire pressure drop detection program comprising a correction unit that multiplies the rotational acceleration information of the left wheel or the right wheel by a difference coefficient based on the amplitude of each noise appearing in the same phase.
JP2014230562A 2014-11-13 2014-11-13 Tire pressure drop detection device, method and program Active JP6475954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230562A JP6475954B2 (en) 2014-11-13 2014-11-13 Tire pressure drop detection device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230562A JP6475954B2 (en) 2014-11-13 2014-11-13 Tire pressure drop detection device, method and program

Publications (2)

Publication Number Publication Date
JP2016094067A true JP2016094067A (en) 2016-05-26
JP6475954B2 JP6475954B2 (en) 2019-02-27

Family

ID=56070490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230562A Active JP6475954B2 (en) 2014-11-13 2014-11-13 Tire pressure drop detection device, method and program

Country Status (1)

Country Link
JP (1) JP6475954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631830A (en) * 2016-07-18 2018-01-26 Pi自动化系统公司 The measuring method of the blowing pressure of the tire of assembling vehicle on the move on runway
JP2019111896A (en) * 2017-12-22 2019-07-11 住友ゴム工業株式会社 Detection device for pressure reduction in tire
CN112406420A (en) * 2019-08-23 2021-02-26 现代自动车株式会社 Apparatus and method for providing tire information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101085A (en) * 1994-08-04 1996-04-16 Nippon Soken Inc Resonance frequency detector for tire
JPH09104208A (en) * 1995-08-04 1997-04-22 Denso Corp Tire pressure estimating device
JP2004317484A (en) * 2003-03-31 2004-11-11 Denso Corp Vibration angular velocity sensor
JP2008004150A (en) * 2006-06-21 2008-01-10 Sony Corp Circuit and method for reducing noise, and recording device
JP2014035207A (en) * 2012-08-07 2014-02-24 Sumitomo Rubber Ind Ltd Tire inflation pressure reduction detection device, method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101085A (en) * 1994-08-04 1996-04-16 Nippon Soken Inc Resonance frequency detector for tire
JPH09104208A (en) * 1995-08-04 1997-04-22 Denso Corp Tire pressure estimating device
JP2004317484A (en) * 2003-03-31 2004-11-11 Denso Corp Vibration angular velocity sensor
JP2008004150A (en) * 2006-06-21 2008-01-10 Sony Corp Circuit and method for reducing noise, and recording device
JP2014035207A (en) * 2012-08-07 2014-02-24 Sumitomo Rubber Ind Ltd Tire inflation pressure reduction detection device, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631830A (en) * 2016-07-18 2018-01-26 Pi自动化系统公司 The measuring method of the blowing pressure of the tire of assembling vehicle on the move on runway
JP2019111896A (en) * 2017-12-22 2019-07-11 住友ゴム工業株式会社 Detection device for pressure reduction in tire
CN112406420A (en) * 2019-08-23 2021-02-26 现代自动车株式会社 Apparatus and method for providing tire information
US11981168B2 (en) 2019-08-23 2024-05-14 Hyundai Motor Company Apparatus and method for providing tire information

Also Published As

Publication number Publication date
JP6475954B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP5538279B2 (en) Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program
EP3250424B1 (en) Loose wheel detection
JP4830015B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP4988359B2 (en) Detection method of tire pressure loss
JP5649625B2 (en) Tire pressure drop detection device, method and program
JP4474475B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
US8397559B2 (en) Method for indirect tire pressure monitoring and tire pressure monitoring system
JP4617371B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP6063428B2 (en) Tire pressure drop detection device, method and program
JP6475954B2 (en) Tire pressure drop detection device, method and program
JP5689105B2 (en) Tire pressure drop detection device, method and program
JP5606502B2 (en) Tire pressure drop detection device, method and program
JP3971720B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
US20210023894A1 (en) Wheel release detection
JP5227687B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP5404062B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP2011093353A (en) Device and method for detecting decrease in tire air pressure, and program for detecting decrease in tire air pressure
JP5406560B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP4869700B2 (en) Tire pressure drop warning device and method, and tire pressure drop warning program
JP2009166587A (en) Yaw rate arithmetic unit for vehicle
JP2014190789A (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6475954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250