JP2016093823A - Solid wire for welding, welding method and weld metal - Google Patents
Solid wire for welding, welding method and weld metal Download PDFInfo
- Publication number
- JP2016093823A JP2016093823A JP2014231164A JP2014231164A JP2016093823A JP 2016093823 A JP2016093823 A JP 2016093823A JP 2014231164 A JP2014231164 A JP 2014231164A JP 2014231164 A JP2014231164 A JP 2014231164A JP 2016093823 A JP2016093823 A JP 2016093823A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- solid wire
- less
- weld metal
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 131
- 239000007787 solid Substances 0.000 title claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 57
- 239000002184 metal Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims description 38
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 44
- 239000010959 steel Substances 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 40
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 24
- 238000007747 plating Methods 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 239000001569 carbon dioxide Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 35
- 230000002349 favourable effect Effects 0.000 abstract 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 32
- 239000011324 bead Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 238000004021 metal welding Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
本発明は、鋼材として極低温用の9%Ni鋼を溶接するのに適した溶接用ソリッドワイヤ、および上記溶接用ソリッドワイヤを用いた溶接方法、並びに上記溶接方法によって形成される溶接金属に関する。 The present invention relates to a welding solid wire suitable for welding 9% Ni steel for cryogenic use as a steel material, a welding method using the welding solid wire, and a weld metal formed by the welding method.
液体窒素の温度である−196℃程度の極低温下で使用される高張力鋼として、高い耐力と卓越した極低温靱性を有する9%Ni鋼が知られている。9%Ni鋼は、液化天然ガス(LNG:Liquefied Natural Gas)、液体窒素、液体酸素などの貯蔵タンクの素材として、或はその関連機器などの素材として広く用いられている。上記貯蔵タンクや関連機器の構造物は通常、溶接により製造されるため、母材として用いられる9%Ni鋼同士を溶接して形成される溶接継手の溶接金属、すなわち溶接接合部においても、母材と同程度の優れた極低温靱性が要求される。 A 9% Ni steel having a high yield strength and excellent cryogenic toughness is known as a high-strength steel used at a cryogenic temperature of about −196 ° C., which is the temperature of liquid nitrogen. 9% Ni steel is widely used as a material for storage tanks such as liquefied natural gas (LNG), liquid nitrogen, and liquid oxygen, or as related materials. Since the structures of the storage tank and related equipment are usually manufactured by welding, the weld metal of a welded joint formed by welding 9% Ni steel used as a base material, that is, a weld joint, is also used as a base. Excellent cryogenic toughness comparable to that of the material is required.
9%Ni鋼同士の溶接技術については、これまでに種々検討されている。例えば、母材である9%Ni鋼と同じ成分か、或は上記母材に類似した成分を有する共金系溶接ワイヤを用いて上記母材同士を溶接すれば、極低温特性に優れた溶接金属が得られると考えられる。溶接方法として、シールドガスを用いるMIG溶接(Inert gas metal−arc welding)、TIG溶接(Inert gas tungsten−arc welding)などが挙げられ、TIG溶接に比べて溶接効率の高いMIG溶接の使用が推奨されるが、MIG溶接では、高い極低温靱性レベルを安定して確保できないという問題がある。そのため、9%Ni鋼の母材同士を、これと同一または類似の成分を有する共金系溶接ワイヤを用いて溶接するに当たっては、MIG溶接に比べて溶接効率が低いTIG溶接に限定され、溶接施工の作業性が著しく低下する。よって、共金系溶接ワイヤを適用した例は、これまで殆どなかった。 Various studies have been made on the welding technology between 9% Ni steels. For example, if the base materials are welded using a common metal welding wire having the same component as the base material 9% Ni steel or a component similar to the base material, welding with excellent cryogenic properties It is thought that metal is obtained. Examples of welding methods include MIG welding using shield gas (Inert gas metal-arc welding), TIG welding (Inert gas tungsten-arc welding), and the use of MIG welding with higher welding efficiency than TIG welding is recommended. However, MIG welding has a problem that a high cryogenic toughness level cannot be secured stably. Therefore, when welding the base materials of 9% Ni steel using a common metal welding wire having the same or similar components, the welding is limited to TIG welding, which has a lower welding efficiency than MIG welding. The workability of construction is significantly reduced. Therefore, there has been almost no example of applying the common metal welding wire.
一方、上記共金系溶接ワイヤでなく、Ni量が60%と比較的高いNi基合金、例えばINCONEL(登録商標)を溶接ワイヤとして用い、溶接効率の高いMIG溶接により9%Ni鋼同士を溶接する方法が汎用されている。上記Ni基合金溶接ワイヤを用いた溶接継手は、−196℃の極低温下でも溶接ままで優れた靱性を示す反面、強度、特に0.2%耐力は、9%Ni鋼に比べて極めて低くなる。その結果、溶接母材として高耐力の9%Ni鋼を使用しているにも拘わらず、溶接継手の強度が低くなるため、設計応力もこれに応じて下げざるを得なくなる。具体的には、溶接継手での高い強度を確保するため、溶接構造物全体の板厚増加、重量増加、高価なNi基合金溶接ワイヤの増大などの不利益を招く。しかも、Ni基合金溶接ワイヤを用いる場合、多量のNi添加に伴う高温割れの問題がある他、母材である9%Ni鋼と溶接金属とは成分組成が大きく異なるため、溶接時の互いの熱膨張係数差による、熱疲労発生の問題も顕在化する。 On the other hand, a 9% Ni steel is welded to each other by MIG welding with high welding efficiency, using a Ni-based alloy having a relatively high Ni content of 60%, for example, INCONEL (registered trademark), as a welding wire, instead of the above-mentioned metal alloy welding wire. The way to do it is universal. The welded joint using the Ni-based alloy welding wire exhibits excellent toughness as it is welded even at an extremely low temperature of -196 ° C, while its strength, particularly 0.2% proof stress, is extremely low compared to 9% Ni steel. Become. As a result, the strength of the welded joint is lowered despite the high yield strength 9% Ni steel being used as the weld base material, and the design stress must be lowered accordingly. Specifically, in order to ensure high strength in the welded joint, there are disadvantages such as an increase in the thickness of the entire welded structure, an increase in weight, and an increase in expensive Ni-based alloy welding wires. In addition, when using a Ni-based alloy welding wire, there is a problem of hot cracking due to the addition of a large amount of Ni, and since the composition of the 9% Ni steel, which is the base material, and the weld metal are greatly different, The problem of thermal fatigue due to the difference in thermal expansion coefficient also becomes obvious.
よって、母材である9%Ni鋼は極低温用鋼として卓越した性能を有しているにもかかわらず、従来の共金系溶接ワイヤやINCONELなどのNi基合金に代表される溶接ワイヤを使用する限り、上述した種々の問題のため、9%Ni鋼による優れた性能が十分発揮されず、その適用範囲が著しく制限されている。 Therefore, despite the fact that the 9% Ni steel, which is the base material, has outstanding performance as a cryogenic steel, conventional welding wires represented by Ni-base alloys such as metal alloy welding wires and INCONEL are used. As long as it is used, due to the various problems described above, the excellent performance of the 9% Ni steel is not sufficiently exhibited, and its application range is significantly limited.
このような問題点に鑑み、9%Ni鋼と同一または類似の組成を有する共金系溶接ワイヤの改良技術が種々提案されている。例えば特許文献1には、殊に極低温用のNi鋼同士を、これとほぼ同程度のNiを含むNi鋼ワイヤを用いて強固に溶接し得る様に工夫された方法が記載されている。しかしながら、上記方法は、溶接施工の工程数が増えるという問題がある。また、上記方法は、溶接継手における最終溶接層のみの部分的な極低温靱性の改善に止まっている。そのため、溶接金属全体の極低温靱性向上に関しては、必ずしも有効な方法でない。 In view of such problems, various techniques for improving a common metal welding wire having the same or similar composition as 9% Ni steel have been proposed. For example, Patent Document 1 describes a method devised so that particularly Ni steels for cryogenic temperatures can be firmly welded using Ni steel wires containing approximately the same amount of Ni. However, the above method has a problem that the number of welding processes increases. Moreover, the said method has stopped only the improvement of the partial cryogenic toughness of only the last weld layer in a welded joint. Therefore, it is not always an effective method for improving the cryogenic toughness of the entire weld metal.
一方、本発明者らも上記問題に鑑み、特許文献2〜4の技術を提案している。上記特許文献2〜4ではいずれも、9%Ni鋼溶接ワイヤに0.005〜0.04%の希土類元素(REM:Rare Earth Metal)を添加しており、結晶粒成長を抑制するピン止め粒子として機能する微細なREM酸化物を溶接金属中に形成させることによって、溶接金属の極低温靱性および耐亀裂発生強度を向上させている。 On the other hand, the present inventors have proposed the techniques of Patent Documents 2 to 4 in view of the above problems. In all of the above Patent Documents 2 to 4, 0.005 to 0.04% rare earth element (REM: Rare Earth Metal) is added to 9% Ni steel welding wire, and pinning particles that suppress grain growth By forming a fine REM oxide functioning as a weld metal in the weld metal, the cryogenic toughness and crack resistance strength of the weld metal are improved.
上記特許文献2〜4によれば、平均して良好な極低温靱性が得られるが、MIG溶接で接合する際、融合不良に起因して靱性が低下する場合がある。そのため、極低温靱性にばらつきが生じ、安定性の点で改善の余地があった。 According to Patent Documents 2 to 4, on average, good cryogenic toughness is obtained, but when joining by MIG welding, the toughness may be reduced due to poor fusion. Therefore, the cryogenic toughness varies and there is room for improvement in terms of stability.
本発明は上記事情に鑑みてなされたものであり、その目的は、母材である9%Ni鋼同士を溶接したとき、ばらつきなく安定して良好な極低温靱性を示す溶接金属を形成することが可能な溶接用ソリッドワイヤ、および上記溶接用ソリッドワイヤを用いて溶接金属を形成する方法、並びに上記方法によって得られる上記極低温靱性に優れた溶接金属を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to form a weld metal that exhibits stable and excellent cryogenic toughness without variation when 9% Ni steel as a base material is welded together. It is an object of the present invention to provide a welding solid wire capable of being welded, a method of forming a weld metal using the welding solid wire, and a weld metal excellent in the cryogenic toughness obtained by the method.
上記課題を解決し得た本発明に係る溶接用ソリッドワイヤは、質量%で、C:0%超0.10%以下、Si:0%超0.15%以下、Mn:0.1〜0.80%、Ni:8〜15%、Ti:0.015〜0.050%、REM:0%超0.005%以下、およびO:0%超0.0065%以下を含有し、残部が鉄および不可避的不純物であり、下記(1)式を満たすところに要旨を有するものである。
10≦18×[Mn]+71×[REM]+206×[Ti]≦20・・・(1)
式中、[ ]は、それぞれ質量%で、各元素の含有量を表す。
The solid wire for welding according to the present invention capable of solving the above problems is, in mass%, C: more than 0% and 0.10% or less, Si: more than 0% and 0.15% or less, Mn: 0.1 to 0 80%, Ni: 8 to 15%, Ti: 0.015 to 0.050%, REM: more than 0% to 0.005% or less, and O: more than 0% to 0.0065% or less, with the balance being It is iron and inevitable impurities, and has a gist where it satisfies the following formula (1).
10 ≦ 18 × [Mn] + 71 × [REM] + 206 × [Ti] ≦ 20 (1)
In the formula, [] represents mass% and represents the content of each element.
本発明の好ましい実施形態において、上記溶接用ソリッドワイヤは、上記ソリッドワイヤの表面が銅めっき層で覆われており、上記ソリッドワイヤの総質量に対する上記銅めっき層の質量比率が0.1〜0.2%である。 In a preferred embodiment of the present invention, the solid wire for welding has a surface of the solid wire covered with a copper plating layer, and the mass ratio of the copper plating layer to the total mass of the solid wire is 0.1 to 0. .2%.
本発明の好ましい実施形態において、上記溶接用ソリッドワイヤは、パルス電源を用いたガスシールドアーク溶接に使用される溶接用ソリッドワイヤであって、シールドガスが、炭酸ガスを0体積%以上2体積%以下で含むアルゴンガスである。 In a preferred embodiment of the present invention, the solid wire for welding is a solid wire for welding used for gas shielded arc welding using a pulse power source, and the shielding gas contains 0% by volume or more and 2% by volume of carbon dioxide. Argon gas contained below.
本発明は、溶接方法も含むものであって、該溶接方法は、上記溶接用ソリッドワイヤと、パルス電源とを用いて鋼材をガスシールドアーク溶接して溶接金属を形成するところに特徴を有する。 The present invention also includes a welding method, and the welding method is characterized in that a weld metal is formed by gas shield arc welding of a steel material using the solid wire for welding and a pulse power source.
本発明の好ましい実施形態において、上記溶接方法は、上記ガスシールドアーク溶接に用いられるシールドガスが、炭酸ガスを0体積%以上2体積%以下で含むアルゴンガスである。 In preferable embodiment of this invention, the said welding method WHEREIN: The shielding gas used for the said gas shield arc welding is argon gas which contains a carbon dioxide gas in 0 volume% or more and 2 volume% or less.
本発明には、上記のいずれかに記載の溶接方法によって形成される溶接金属も包含される。 The present invention also includes a weld metal formed by any of the above-described welding methods.
本発明の溶接用ソリッドワイヤによれば、化学成分組成が適切に制御されているため、9%Ni鋼同士を溶接したとき、ばらつきなく安定して良好な極低温靱性を示す溶接金属を形成することができる。 According to the solid wire for welding of the present invention, the chemical composition is appropriately controlled. Therefore, when 9% Ni steels are welded together, a weld metal that exhibits stable and excellent cryogenic toughness is formed without variation. be able to.
本発明者らは、9%Ni鋼同士を溶接したとき、ばらつきなく安定して良好な極低温靱性を示す溶接金属を形成することができる溶接用ソリッドワイヤを提供するため、上記特許文献2〜4の技術をベースに検討を行った。その結果、REMを0.005%を超えて添加すると、溶接欠陥を生じて極低温靱性が不安定になり、特性のばらつきが生じることを新たに見出した。そこで、更に検討を行った結果、REMの上限を0.005%以下と、上記特許文献に比べて少なくすると共に、Tiを所定量含有させ、且つ、脱酸剤として添加される上記REMと上記Tiと、更にMnの量を式(1)に示すように適切に制御すれば所期の目的が達成されることを見出した。更に本発明の溶接用ソリッドワイヤを用いれば、9%Ni鋼板同士を、溶接効率の高いMIG溶接で溶接したとしても、9%Ni鋼の優れた特性(高い耐力と卓越した極低温靱性)を損なうことなしに上記目的が達成されることを見出し、本発明を完成した。 In order to provide a solid wire for welding that can stably form a weld metal exhibiting good cryogenic toughness without variation when 9% Ni steels are welded to each other, The study was based on the four technologies. As a result, it has been newly found that when REM is added in excess of 0.005%, a weld defect is generated, the cryogenic toughness becomes unstable, and the characteristics vary. Therefore, as a result of further investigation, the upper limit of REM is 0.005% or less, which is smaller than that of the above-mentioned patent document, contains a predetermined amount of Ti, and is added as a deoxidizer and the above-mentioned REM It has been found that the intended purpose is achieved if the amounts of Ti and Mn are appropriately controlled as shown in formula (1). Furthermore, if the solid wire for welding of the present invention is used, even if 9% Ni steel plates are welded together by MIG welding with high welding efficiency, the excellent characteristics (high proof stress and excellent cryogenic toughness) of 9% Ni steel are obtained. The inventors have found that the above object can be achieved without impairing the present invention and completed the present invention.
以下、本発明の溶接用ソリッドワイヤを構成する化学成分組成について、詳細に説明する。 Hereafter, the chemical component composition which comprises the solid wire for welding of this invention is demonstrated in detail.
C:0%超0.10%以下
Cは、少量でも溶接金属の引張強度(TS)を高める上で有効な元素である。そのため、0%を超える量を含有させる。C含有量の好ましい下限は0.01%以上であり、より好ましくは0.02%以上である。一方、C含有量が過剰になると溶接金属の極低温靱性が著しく低下するため、C含有量の上限は0.10%以下とする。好ましくは0.08%以下であり、より好ましくは0.06%以下である。
C: more than 0% and 0.10% or less C is an element effective in increasing the tensile strength (TS) of a weld metal even in a small amount. Therefore, an amount exceeding 0% is contained. The minimum with preferable C content is 0.01% or more, More preferably, it is 0.02% or more. On the other hand, if the C content is excessive, the cryogenic toughness of the weld metal is remarkably lowered, so the upper limit of the C content is 0.10% or less. Preferably it is 0.08% or less, More preferably, it is 0.06% or less.
Si:0%超0.15%以下
Siは、溶接作業性の向上に有効に作用するため、0%を超える量を含有させる。Si含有量の好ましい下限は0.01%以上であり、より好ましくは0.02%以上である。一方、Si含有量が過剰になると溶接金属の極低温靱性が著しく低下するため、Si含有量の上限は0.15%以下とする。好ましくは0.12%以下であり、より好ましくは0.10%以下である
Si: more than 0% and 0.15% or less Since Si acts effectively on the improvement of welding workability, it is contained in an amount exceeding 0%. The minimum with preferable Si content is 0.01% or more, More preferably, it is 0.02% or more. On the other hand, if the Si content is excessive, the cryogenic toughness of the weld metal is remarkably lowered, so the upper limit of the Si content is 0.15% or less. Preferably it is 0.12% or less, More preferably, it is 0.10% or less
Mn:0.1〜0.80%
Mnは、溶接作業性を改善すると共に、脱酸剤や硫黄捕捉剤として卓越した効果を発揮するため、重要な基本成分である。上記効果を有効に発揮させるため、Mn含有量の下限を0.1%以上とする。Mn含有量の好ましい下限は0.2%以上、より好ましくは0.3%以上である。しかしながら、Mn含有量が過剰になると、溶接金属中に安定な残留オーステナイトが生じ易くなり、後述するNiを過剰に含有させた場合と同様、溶接金属の極低温靱性が著しく損なわれる。そのため、Mn含有量の上限は0.80%以下とする。Mn含有量の好ましい上限は0.7%以下、より好ましくは0.6%以下である。
Mn: 0.1 to 0.80%
Mn is an important basic component because it improves welding workability and exhibits excellent effects as a deoxidizer and sulfur scavenger. In order to effectively exhibit the above effects, the lower limit of the Mn content is set to 0.1% or more. The minimum with preferable Mn content is 0.2% or more, More preferably, it is 0.3% or more. However, when the Mn content is excessive, stable retained austenite is likely to be generated in the weld metal, and the cryogenic toughness of the weld metal is significantly impaired as in the case of excessively containing Ni described later. Therefore, the upper limit of the Mn content is 0.80% or less. The upper limit with preferable Mn content is 0.7% or less, More preferably, it is 0.6% or less.
Ni:8〜15%
Niは、良好な極低温靱性を確保する上で重要な成分である。溶接金属に対して十分な極低温靱性を付与するため、Ni含有量の下限を8%以上とする。好ましい下限は9.0%以上、より好ましくは10.0%以上である。一方、Ni含有量が過剰になって15%を超えると、溶接金属の機械的強度が高くなり過ぎて、延性が極端に低下する。更に不安定な残留オーステナイトが生じ、極低温下でマルテンサイトに変態して極低温靱性の低下を招く。そのため、Ni含有量の上限を15%以下とする。好ましい上限は13.0%以下、より好ましくは12.0%以下である。
Ni: 8-15%
Ni is an important component for ensuring good cryogenic toughness. In order to impart sufficient cryogenic toughness to the weld metal, the lower limit of the Ni content is 8% or more. A preferred lower limit is 9.0% or more, more preferably 10.0% or more. On the other hand, when the Ni content is excessive and exceeds 15%, the mechanical strength of the weld metal becomes too high, and the ductility is extremely lowered. Furthermore, unstable retained austenite is generated, which transforms to martensite at a very low temperature, leading to a decrease in cryogenic toughness. Therefore, the upper limit of Ni content is 15% or less. The upper limit is preferably 13.0% or less, more preferably 12.0% or less.
Ti:0.015〜0.050%
Tiは、微量添加により、溶接作業性を改善すると共に、脱酸剤として卓越した効果を発揮する。また、Tiは、後述するREMほど顕著な効果ではないが、REMと同様に微細な酸化物を形成するため、REMと共に含有させることによって、溶接金属の極低温靱性を向上させることができる。このような効果を有効に発揮させるため、Ti含有量の下限を0.015%以上とする。Ti含有量の好ましい下限は0.018%以上であり、より好ましくは0.020%以上である。しかしながら、Ti含有量が過剰になると、溶接金属中に微細析出物であるTiCが生じやすくなり、極低温靱性が低下する。そのため、Ti含有量の上限を0.050%以下とする。好ましくは0.045%以下であり、より好ましくは0.040%以下である。
Ti: 0.015 to 0.050%
Ti improves welding workability by adding a small amount and exhibits an excellent effect as a deoxidizer. In addition, Ti is not as remarkable as REM described later, but forms a fine oxide like REM. Therefore, Ti can be included together with REM to improve the cryogenic toughness of the weld metal. In order to effectively exhibit such an effect, the lower limit of the Ti content is set to 0.015% or more. The minimum with preferable Ti content is 0.018% or more, More preferably, it is 0.020% or more. However, when the Ti content is excessive, TiC, which is a fine precipitate, is easily generated in the weld metal, and the cryogenic toughness is lowered. Therefore, the upper limit of Ti content is 0.050% or less. Preferably it is 0.045% or less, More preferably, it is 0.040% or less.
REM:0%超0.005%以下
REMは、脱酸剤として作用し、溶接金属中に含まれる微量の酸素と反応して微細なREM酸化物を形成する。このような微細なREM酸化物は、破壊起点として作用せず、むしろ、溶接凝固過程や凝固後の結晶粒成長を抑制するピン止め粒子として機能するため、溶接金属全体の強度や極低温靱性を高めるのに有効に作用する。そのため、REM含有量を0%超とする。REM含有量の好ましい下限は、0.002%以上である。一方、REMはアークを集中させる効果も有するため、溶接欠陥を生じて靱性不安定を招くことがある。本発明者らの検討結果によれば、REM含有量が0.005%を超えると、欠陥を助長する溶け込み不良が生じ易くなり、極低温靱性の平均値は良好であっても最小値が小さくなり、安定して高い極低温靱性が得られないことが判明した。上記観点から、REM含有量の上限を0.005%以下とする。REM含有量の好ましい上限は0.004%以下、より好ましくは0.003%以下である。なお、本発明におけるREMは、周期律表のLaからLuまでの15のランタノイド系列希土類元素を意味する。これらの元素は単独で添加しても良いし、二種類以上を併用しても良い。
REM: more than 0% and 0.005% or less REM acts as a deoxidizer and reacts with a trace amount of oxygen contained in the weld metal to form fine REM oxide. Such a fine REM oxide does not act as a starting point for fracture, but rather functions as a pinning particle that suppresses the weld solidification process and crystal grain growth after solidification, thereby reducing the strength and cryogenic toughness of the entire weld metal. It works effectively to enhance. Therefore, the REM content is set to more than 0%. A preferable lower limit of the REM content is 0.002% or more. On the other hand, since REM also has the effect of concentrating arcs, it may cause welding defects and cause instability toughness. According to the examination results of the present inventors, when the REM content exceeds 0.005%, a penetration failure that promotes defects tends to occur, and the minimum value is small even if the average value of the cryogenic toughness is good. Thus, it has been found that stable high cryogenic toughness cannot be obtained. From the above viewpoint, the upper limit of the REM content is set to 0.005% or less. The upper limit with preferable REM content is 0.004% or less, More preferably, it is 0.003% or less. In the present invention, REM means 15 lanthanoid series rare earth elements from La to Lu in the periodic table. These elements may be added alone or in combination of two or more.
O:0%超0.0065%以下
Oは、極低温靱性の向上に有用な上記微細REM酸化物を形成する上で必要な元素である。そのため、O含有量を0%超とする。O含有量の下限は、好ましくは0.0020%以上である。しかしながら、O含有量が過剰になると、粗大酸化物が形成されるようになり、極低温靱性に悪影響を及ぼすため、その上限を0.0065%以下とする。O含有量の好ましい上限は0.0060%以下、より好ましくは0.0050%以下である。
O: more than 0% and 0.0065% or less O is an element necessary for forming the fine REM oxide useful for improving the cryogenic toughness. Therefore, the O content is set to more than 0%. The lower limit of the O content is preferably 0.0020% or more. However, when the O content is excessive, coarse oxides are formed, which adversely affects the cryogenic toughness, so the upper limit is made 0.0065% or less. The upper limit with preferable O content is 0.0060% or less, More preferably, it is 0.0050% or less.
(1)式:10≦18×[Mn]+71×[REM]+206×[Ti]≦20
本発明では、上記成分を満足すると共に、脱酸作用を有するMn、REM、およびTiの含有量が上記(1)式を満足するように制御する。これにより、アークの安定性が改善すると共に、酸化物系介在物を適切に制御することが可能となる。更に上記(1)式を制御することにより、溶け込み形状に影響するREMの悪影響も回避することができ、極低温靱性の安定性が一層確保される。上記(1)式の値が10未満では、上記元素による脱酸作用が不十分であり、極低温靱性は平均値も最小値も低下する。そのため、上記(1)式の値の下限は10以上とする。上記(1)式の値の好ましい下限は10.5以上、より好ましくは11以上である。一方、上記(1)式の値が20を超えると、アークが不安定となり、溶接欠陥が生じ易くなって安定して高い極低温靱性が得られない。そのため、上記(1)式の値の上限は20以下とする。上記(1)式の値の好ましい上限は19以下、より好ましくは18以下である。
(1) Formula: 10 ≦ 18 × [Mn] + 71 × [REM] + 206 × [Ti] ≦ 20
In this invention, while satisfying the said component, it controls so that content of Mn, REM, and Ti which has a deoxidation effect may satisfy said (1) Formula. Thereby, the stability of the arc is improved and the oxide inclusions can be appropriately controlled. Furthermore, by controlling the above expression (1), the adverse effect of REM that affects the penetration shape can be avoided, and the stability of the cryogenic toughness is further ensured. If the value of the above formula (1) is less than 10, the deoxidation action by the above elements is insufficient, and the cryogenic toughness decreases in both the average value and the minimum value. Therefore, the lower limit of the value of the above equation (1) is 10 or more. The minimum with the preferable value of the said (1) Formula is 10.5 or more, More preferably, it is 11 or more. On the other hand, if the value of the above equation (1) exceeds 20, the arc becomes unstable, weld defects are likely to occur, and stable high cryogenic toughness cannot be obtained. Therefore, the upper limit of the value of the above equation (1) is set to 20 or less. The upper limit with the value of the said (1) formula is 19 or less, More preferably, it is 18 or less.
本発明の溶接用ソリッドワイヤの基本成分組成は上記の通りであり、残部は鉄および不可避的不純物である。上記不可避的不純物として、例えば原料、資材、製造設備等の状況によって持ち込まれるAl,Ca,Cr,Mg,P,S,B,N等が挙げられる。これらの元素は、極低温靱性を低下させる傾向にあるため、定法による製鋼工程の範囲内で、できるだけ低減することが好ましい。具体的には、例えばAlは約0.020%未満、Caは約0.002%未満、Crは約0.01%未満、Mgは約0.002%未満、Pは約0.015%未満、Sは約0.010%未満、Bは約0.002%未満、Nは約0.008%未満に制御することが好ましい。 The basic composition of the welding solid wire of the present invention is as described above, and the balance is iron and inevitable impurities. Examples of the inevitable impurities include Al, Ca, Cr, Mg, P, S, B, and N that are brought in depending on the status of raw materials, materials, manufacturing equipment, and the like. Since these elements tend to reduce the cryogenic toughness, it is preferable to reduce them as much as possible within the range of the steelmaking process by a regular method. Specifically, for example, Al is less than about 0.020%, Ca is less than about 0.002%, Cr is less than about 0.01%, Mg is less than about 0.002%, and P is less than about 0.015%. , S is preferably less than about 0.010%, B is less than about 0.002%, and N is preferably less than about 0.008%.
本発明の溶接用ソリッドワイヤを製造する方法、上記ソリッドワイヤの送給方法、上記ソリッドワイヤの表面改質方法は特に限定されず、本発明の技術分野で通常用いられる方法を適宜採用することができる。例えば、前述した特許文献4に記載の方法を参照することができる。以下、その好ましい一例を記載するが、本発明はこれに限定されない。 The method for producing the solid wire for welding according to the present invention, the method for feeding the solid wire, and the method for modifying the surface of the solid wire are not particularly limited, and a method usually used in the technical field of the present invention can be appropriately employed. it can. For example, the method described in Patent Document 4 described above can be referred to. Hereinafter, although the preferable example is described, this invention is not limited to this.
本発明の溶接用ソリッドワイヤを製造する方法として、例えば、上記化学成分組成の共金系の鋼線材素線を、例えば、製品径である0.8〜1.6mmφの細径まで、ローラダイスや孔ダイス線引き装置を用いた公知の伸線工程で伸線する方法が挙げられる。 As a method for producing the solid wire for welding according to the present invention, for example, a metal alloy wire of the above-mentioned chemical composition is used to roll a die to a product diameter of 0.8 to 1.6 mmφ, for example. Or a method of drawing in a known drawing process using a hole die drawing apparatus.
このようにして製造された溶接用ソリッドワイヤは、スプールに巻装、或はペールパックに充填された収納形態で搬送され、溶接に供される。このように収納された溶接用ソリッドワイヤは、9%Ni鋼による低温構造物の溶接施工現場にて、送給機の送給ローラによりスプール、或はペールパックから引き出される。その後、後続するフレキシブルなガイド管であるコンジットケーブルに内包されたライナー等を経由して、溶接位置にあるMIG溶接等のトーチ内の給電チップ部分まで送給される。このような一連の溶接用ソリッドワイヤの送給作業の際、送給条件によらず、一定速度で安定して本発明の溶接用ソリッドワイヤは供給される。 The welding solid wire manufactured in this way is wound in a spool or conveyed in a storage form filled in a pail pack, and is subjected to welding. The solid welding wire thus housed is pulled out of the spool or the pail pack by the feeding roller of the feeder at the welding construction site of the low-temperature structure made of 9% Ni steel. Thereafter, the sheet is fed to a power feed tip portion in a torch such as MIG welding at a welding position via a liner or the like included in a conduit cable which is a subsequent flexible guide tube. In such a series of welding solid wire feeding operations, the welding solid wire of the present invention is stably supplied at a constant speed regardless of the feeding conditions.
ワイヤの送給性をより安定に確保するため、本発明に係る溶接用ソリッドワイヤの表面に、銅めっき層を形成したり、潤滑剤、防錆油等を塗布することが好ましい。このような表面改質法によれば、送給ライナーからの送給抵抗を下げて、ワイヤの送給性を向上させる効果が得られる。更には伸線加工時の伸線性を大きく向上させ、通電性や防錆性などを向上させる効果もある。銅めっき層の形成方法、潤滑剤、防錆油等の種類、これらの塗布方法は特に限定されず、公知の方法を採用することができる。 In order to secure the wire feedability more stably, it is preferable to form a copper plating layer on the surface of the welding solid wire according to the present invention, or to apply a lubricant, rust preventive oil, or the like. According to such a surface modification method, the effect of improving the wire feedability by reducing the feed resistance from the feed liner can be obtained. Furthermore, it has the effect of greatly improving the drawability at the time of wire drawing and improving the electrical conductivity and rust prevention. There are no particular limitations on the method for forming the copper plating layer, the type of lubricant, rust-preventing oil, etc., and these coating methods, and known methods can be employed.
上記のうち、溶接用ソリッドワイヤの表面に銅めっき層を形成する場合には、めっき性と極低温靱性の両立という観点から、上記ソリッドワイヤの総質量に対する銅めっき層の質量比率が0.1〜0.2%であることが好ましい。上記質量比率が0.1%を下回ると、十分なめっき性が得られず、ワイヤの送給性を向上させることができなくなる場合がある。一方、0.2%を超えると、溶接金属中のCu濃度が上昇し、強度が過大となって極低温靱性が確保できなくなる場合がある。 Among the above, when a copper plating layer is formed on the surface of the solid wire for welding, the mass ratio of the copper plating layer to the total mass of the solid wire is 0.1 from the viewpoint of achieving both plating properties and cryogenic toughness. It is preferable that it is -0.2%. If the mass ratio is less than 0.1%, sufficient plating properties may not be obtained, and the wire feedability may not be improved. On the other hand, if it exceeds 0.2%, the Cu concentration in the weld metal increases, the strength becomes excessive, and the cryogenic toughness may not be ensured.
但し、本発明は上記態様に限定する趣旨でなく、環境上の問題を配慮して、上述した銅めっき層、潤滑剤、防錆剤などを表面に施さない裸の溶接用ソリッドワイヤの適用も勿論可能である。 However, the present invention is not intended to be limited to the above embodiment, and in consideration of environmental problems, it is also possible to apply a bare welding solid wire that does not apply the above-described copper plating layer, lubricant, rust preventive agent, etc. Of course it is possible.
また、本発明の溶接用ソリッドワイヤは、単一構造であっても良いし積層構造を有していても良い。後者の積層構造として、例えば、公知の同軸複層ワイヤの構造を採用することができる。 Moreover, the solid wire for welding of the present invention may have a single structure or a laminated structure. As the latter laminated structure, for example, a known coaxial multilayer wire structure can be adopted.
以上、本発明の溶接用ソリッドワイヤについて説明した。 The solid wire for welding according to the present invention has been described above.
次に、本発明の溶接方法について説明する。本発明の溶接方法は、母材である9%Ni鋼同士を溶接するに当たり、上記溶接用ソリッドワイヤを用いたところに特徴があり、これにより、安定して高いレベルの極低温靱性を示す溶接金属が得られる。 Next, the welding method of the present invention will be described. The welding method of the present invention is characterized by the use of the above-described solid wire for welding the 9% Ni steel which is a base material, thereby stably exhibiting a high level of cryogenic toughness. A metal is obtained.
本発明に用いられる母材は、上記のとおり9%Ni鋼材である。9%Ni鋼材の化学成分組成は、当該分野で通常用いられるものである。本発明では、上述したように溶接ソリッドワイヤ中の特にREM、Ti、Mnを制御しているため、母材である9%Ni鋼の上記成分についても、例えばREM:0%超0.005%以下、Ti:0%超0.05%以下、Mn:0%超1.5%以下の範囲にそれぞれ、制御することが好ましい。 As described above, the base material used in the present invention is a 9% Ni steel material. The chemical component composition of the 9% Ni steel material is usually used in the field. In the present invention, since REM, Ti, and Mn in the welded solid wire are particularly controlled as described above, the above-mentioned components of 9% Ni steel that is the base material are also, for example, REM: more than 0% to 0.005% Hereinafter, it is preferable to control within a range of Ti: more than 0% and 0.05% or less and Mn: more than 0% and 1.5% or less.
特に本発明の溶接用ソリッドワイヤを用いれば、溶接効率の高いMIG溶接により、9%Ni鋼本来の特性を何ら阻害することなく、上記9%Ni鋼同士を溶接することができる点で有用である。その際、溶接電源として、定常の直流電源でなく、好ましくはパルス電源を用いてガスシールドアーク溶接を行うこと;更に好ましくは、シールドガスとして、炭酸ガスを2体積%以下の範囲で含むArガスを用いることが有用である。これにより、良好な溶け込み形状、すなわち良好なビード形状を確保することができる。このように本発明では、シールドガスとして、MIG溶接に通常用いられる純アルゴンガス(100%Ar)のみならず、Arガス中に炭酸ガスを2体積%以下の範囲で含む態様も包含する点で、通常のガスシールドアーク溶接とは相違する。 In particular, if the solid wire for welding of the present invention is used, it is useful in that the 9% Ni steels can be welded to each other without obstructing the original characteristics of the 9% Ni steels by MIG welding with high welding efficiency. is there. At that time, gas shield arc welding is preferably performed using a pulse power source instead of a steady DC power source as a welding power source; more preferably, Ar gas containing carbon dioxide in a range of 2% by volume or less as a shielding gas. It is useful to use Thereby, a good penetration shape, that is, a good bead shape can be secured. As described above, the present invention includes not only pure argon gas (100% Ar) normally used for MIG welding as a shielding gas but also an aspect in which carbon dioxide gas is contained in Ar gas in a range of 2% by volume or less. This is different from ordinary gas shielded arc welding.
以下、本発明に係る溶接方法の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the welding method according to the present invention will be described.
本発明に用いられる溶接電源は特に限定されず、定常の溶接電源、パルス電源を用いることができる。但し、パルス電源を用いれば、溶滴移行がスプレー状になり易くなるため、後記する実施例に示すように良好なビード形状が得られる。パルス電源を使用する際の条件は特に限定されず、通常、用いられる方法を採用することができる。 The welding power source used in the present invention is not particularly limited, and a steady welding power source or a pulse power source can be used. However, if a pulse power supply is used, the droplet transfer tends to be sprayed, so that a good bead shape can be obtained as shown in the examples described later. The conditions for using the pulse power supply are not particularly limited, and a generally used method can be employed.
また、ガスシールドアーク溶接に用いられるシールドガスは、Arガス中に炭酸ガスを、好ましくは2体積%以下の範囲で許容することもできる。この範囲内であれば、良好な極低温靱性は維持したまま、更に良好なビード形状が得られることも後記する実施例で確認している。炭酸ガス量の比率が2体積%を超えると、炭酸ガスに由来する酸素によって溶接金属中の酸素量が増加してしまい、溶接金属における良好な極低温靱性が確保できなくなる虞がある。より好ましくは1.8体積%以下、更に好ましくは1.5体積%以下である。 Moreover, the shielding gas used for gas shield arc welding can accept | permit carbon dioxide gas in Ar gas, Preferably it is 2 volume% or less. It is confirmed in the examples described later that a better bead shape can be obtained while maintaining a good cryogenic toughness within this range. When the ratio of the amount of carbon dioxide exceeds 2% by volume, the amount of oxygen in the weld metal increases due to oxygen derived from the carbon dioxide gas, and there is a risk that good cryogenic toughness in the weld metal cannot be ensured. More preferably, it is 1.8 volume% or less, More preferably, it is 1.5 volume% or less.
なお、ガスシールドアーク溶接を実施するに際しては、シールドガスを二重とし、アウターガスを純アルゴン雰囲気とし、インナーガスを上記のように炭酸ガスを、好ましくは2体積%以下の範囲で含むアルゴンガスとすることも有用である。このような構成を採用することによって、溶接時における大気混入が極力抑制され、より一層良好な極低温靱性を有する溶接金属が得られる。 When performing gas shield arc welding, the shield gas is doubled, the outer gas is a pure argon atmosphere, and the inner gas is carbon dioxide as described above, preferably containing 2% by volume or less. Is also useful. By adopting such a configuration, air mixing during welding is suppressed as much as possible, and a weld metal having even better cryogenic toughness can be obtained.
上述した本発明の溶接方法によれば、高いレベルでばらつきがなく、安定して極低温靱性に優れた溶接金属が得られる。上記方法によって得られる溶接金属の化学成分組成は、基本的に溶接用ソリッドワイヤの化学成分組成と同じである。なお、上記溶接用ソリッドワイヤの表面に銅めっき層を有する場合は、更に上記銅めっき層の組成も溶接金属の組成に反映される。 According to the above-described welding method of the present invention, a weld metal that is stable at a high level and has excellent cryogenic toughness can be obtained. The chemical composition of the weld metal obtained by the above method is basically the same as the chemical composition of the solid wire for welding. In addition, when it has a copper plating layer on the surface of the said solid wire for welding, the composition of the said copper plating layer is further reflected in the composition of a weld metal.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.
表1に示す化学成分組成を有する鋼線材を真空溶製により製造し、線引き加工によって製品径1.2mmの溶接用ソリッドワイヤを得た。このうち、一部の溶接用ソリッドワイヤについては、銅めっきを施した。なお、表1に記載のREMとして、質量%で、Ce:50%、およびLa:25%を含むミッシュメタルを用いた。 Steel wires having the chemical composition shown in Table 1 were manufactured by vacuum melting, and a solid wire for welding having a product diameter of 1.2 mm was obtained by wire drawing. Among these, some of the solid wires for welding were subjected to copper plating. In addition, as a REM described in Table 1, a misch metal containing Ce: 50% and La: 25% by mass% was used.
このようにして作製した溶接用ソリッドワイヤを用い、9%Ni鋼母材として表2に示す化学成分組成の鋼材に対して、下記の溶接条件および表3に記載の条件にてガスシールドアーク溶接を実施した。本実施例では、MIG溶接を行った。 Using the welding solid wire thus produced, gas shielded arc welding was performed on the steel material having the chemical composition shown in Table 2 as a 9% Ni steel base material under the following welding conditions and the conditions shown in Table 3. Carried out. In this example, MIG welding was performed.
(溶接条件)
母材(鋼材)の板厚:25mm
開先角度:60°(V形開先)
ルート間隔:4mm
溶接姿勢:下向き
シールドガス:アルゴン(Ar)ガス+0〜1.0体積%炭酸ガス
予熱/パス間温度:50〜125℃
積層方法:7層16パス
溶接電流:
(1)260〜280A(定常の直流電源、ワイヤプラス)
溶接電圧:23〜31V
溶接速度:24〜27cm/min
上記溶接電流は、溶接速度にあわせて、電流を変化させた。詳細には、溶接速度が24cm/minのとき溶接電流260Aとし、溶接速度が27cm/minのとき溶接電流280Aとなるように電流を変化させた。
(2)パルス電源、ワイヤプラス
ピーク電流:350A
ベース電流:70A
立上り開始〜ピーク定常期〜立上り終了の1ピーク間:5ミリ秒
溶接電圧は、シールドガス組成に応じて最適値を選択した。
(Welding conditions)
Base material (steel) thickness: 25mm
Groove angle: 60 ° (V-shaped groove)
Route interval: 4mm
Welding posture: Downward shielding gas: Argon (Ar) gas +0 to 1.0 volume% carbon dioxide gas preheating / interpass temperature: 50 to 125 ° C.
Lamination method: 7-layer 16-pass welding current:
(1) 260-280A (steady DC power supply, wire plus)
Welding voltage: 23-31V
Welding speed: 24-27 cm / min
The welding current was changed according to the welding speed. Specifically, the current was changed so that the welding current was 260 A when the welding speed was 24 cm / min and the welding current was 280 A when the welding speed was 27 cm / min.
(2) Pulse power supply, wire plus peak current: 350A
Base current: 70A
Between one peak from the start of rising to the peak stationary period to the end of rising: 5 milliseconds The optimum welding voltage was selected according to the shield gas composition.
このようにして得られた溶接金属のビート形状およびシャルピー衝撃吸収値を、以下のように評価した。 The beat shape and Charpy impact absorption value of the weld metal thus obtained were evaluated as follows.
(ビード形状の評価)
ビード形状とは、溶接時の各パスによって形成される溶接金属を意味する。本実施例では、パスごとにグラインダ処理を実施せず、目視によって溶接金属のビード形状を観察した。
(Evaluation of bead shape)
The bead shape means a weld metal formed by each pass during welding. In this example, the bead shape of the weld metal was observed visually without performing the grinder process for each pass.
その結果、図1に示すように、良好なビード形状の溶接金属が得られた場合をビード形状が良好であり、「良」と評価した。具体的には、ビードの高さが低く、なだらかであり、ビードの側縁部と9%Ni鋼表面とがなだらかに連続的につながっているものである。これに対し、図2に示すように、良好なビード形状の溶接金属が得られなかった場合をビード形状が良好でなく、「不良」と評価した。具体的には、ビード形状が上向きに凸状に膨らんだ形状を有し、ビードの側縁部と9%Ni鋼表面とが不連続な変曲点(屈曲部)によってつながっているものである。 As a result, as shown in FIG. 1, when a weld metal having a good bead shape was obtained, the bead shape was good and it was evaluated as “good”. Specifically, the height of the bead is low and gentle, and the side edge of the bead and the 9% Ni steel surface are connected smoothly and continuously. On the other hand, as shown in FIG. 2, when a weld metal having a good bead shape was not obtained, the bead shape was not good, and “bad” was evaluated. Specifically, the bead shape has a shape that bulges upward, and the side edge of the bead and the 9% Ni steel surface are connected by a discontinuous inflection point (bent part). .
(極低温靱性の評価)
溶接金属の板厚中央部より、図3に示すように、溶接線方向に垂直にシャルピー衝撃試験片としてJIS Z 3111 4号Vノッチ試験片を各3本採取し、JIS Z 2242に則って、−196℃でのシャルピー衝撃試験を実施し、シャルピー衝撃吸収値(vE-196)を測定した。3本のシャルピー衝撃吸収値の平均値が100J以上の場合、極低温靱性に優れると評価した。
(Evaluation of cryogenic toughness)
As shown in FIG. 3, three JIS Z 3111 No. 4 V-notch test pieces were collected as Charpy impact test pieces perpendicular to the weld line direction from the center of the plate thickness of the weld metal, and in accordance with JIS Z 2242, A Charpy impact test at −196 ° C. was performed, and the Charpy impact absorption value (vE −196 ) was measured. When the average value of the three Charpy impact absorption values was 100 J or more, it was evaluated that the cryogenic toughness was excellent.
更に上記シャルピー衝撃試験の吸収エネルギーの最小値が100J以上の場合、極低温靱性の安定性に優れると評価した。 Furthermore, when the minimum value of the absorbed energy in the Charpy impact test was 100 J or more, it was evaluated that the stability of the cryogenic toughness was excellent.
これらの結果を表3に併記する。 These results are also shown in Table 3.
まず、極低温靱性に着目すると、以下のように考察することができる。表3の試験No.1〜15は、本発明で規定する要件を満足する表1のNo.A1〜A10の溶接用ソリッドワイヤを用いて溶接金属を形成した例であり、いずれも安定して極低温靱性に優れることが分かる。 First, focusing on cryogenic toughness, it can be considered as follows. Test No. in Table 3 1 to 15 are Nos. 1 in Table 1 that satisfy the requirements defined in the present invention. It is an example in which a weld metal is formed using solid welding wires of A1 to A10, and it can be seen that all are stable and excellent in cryogenic toughness.
これに対して、表3の試験No.16〜25は、本発明で規定するいずれかの要件を満足しない例であり、極低温靱性、その安定性の少なくとも一方が低下した。 On the other hand, test no. 16-25 is an example which does not satisfy any requirement prescribed | regulated by this invention, and cryogenic toughness and at least one of the stability fell.
詳細には試験No.16は、C含有量が過剰な表1のソリッドワイヤNo.B1を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 For details, see Test No. No. 16 is a solid wire No. 1 in Table 1 with excessive C content. It is the example which formed the weld metal using B1. As a result, the cryogenic toughness and stability decreased.
試験No.17は、Si含有量が過剰な表1のソリッドワイヤNo.B2を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 Test No. No. 17 is a solid wire No. 1 in Table 1 with excessive Si content. This is an example in which a weld metal is formed using B2. As a result, the cryogenic toughness and stability decreased.
試験No.18は、Mn含有量が過剰な表1のソリッドワイヤNo.B3を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 Test No. No. 18 is a solid wire No. 1 in Table 1 having an excessive Mn content. This is an example in which a weld metal is formed using B3. As a result, the cryogenic toughness and stability decreased.
試験No.19は、Ni含有量が少ない表1のソリッドワイヤNo.B4を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 Test No. No. 19 is a solid wire No. 1 in Table 1 having a low Ni content. This is an example in which a weld metal is formed using B4. As a result, the cryogenic toughness and stability decreased.
試験No.20は、Ni含有量が過剰な表1のソリッドワイヤNo.B5を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 Test No. No. 20 is a solid wire No. 1 in Table 1 with excessive Ni content. In this example, a weld metal is formed using B5. As a result, the cryogenic toughness and stability decreased.
試験No.21は、REM含有量が過剰な表1のソリッドワイヤNo.B6を用いて溶接金属を形成した例である。そのため、極低温靱性の安定性が低下した。 Test No. No. 21 is a solid wire No. 1 in Table 1 with excessive REM content. It is the example which formed the weld metal using B6. As a result, the stability of the cryogenic toughness decreased.
試験No.22は、Ti含有量が少ない表1のソリッドワイヤNo.B7を用いて溶接金属を形成した例である。そのため、極低温靱性および安定性が低下した。 Test No. No. 22 is a solid wire No. in Table 1 having a low Ti content. In this example, a weld metal is formed using B7. As a result, the cryogenic toughness and stability decreased.
試験No.23は、Ti含有量が過剰な表1のソリッドワイヤNo.B8を用いて溶接金属を形成した例である。そのため、低温靱性および安定性が低下した。 Test No. No. 23 is a solid wire No. 1 in Table 1 having an excessive Ti content. It is the example which formed the weld metal using B8. Therefore, low temperature toughness and stability were reduced.
試験No.24は、O含有量が過剰であり、且つ、(1)式の値が低い表1のソリッドワイヤNo.B9を用いて溶接金属を形成した例である。O含有量が多いため極低温靱性が低下し、(1)式の値が低いため安定性が低下した。 Test No. No. 24 is a solid wire No. 24 in Table 1 having an excessive O content and a low value of the expression (1). In this example, a weld metal is formed using B9. Since the O content is large, the cryogenic toughness is lowered, and the stability is lowered because the value of the formula (1) is low.
試験No.25は、(1)式の値が大きい表1のソリッドワイヤNo.B10を用いて溶接金属を形成した例である。そのため、極低温靱性の安定性が低下した。 Test No. No. 25 is a solid wire No. in Table 1 having a large value of the expression (1). In this example, a weld metal is formed using B10. As a result, the stability of the cryogenic toughness decreased.
また、ビード形状に着目すると、インナーにおけるシールドガス中の炭酸ガス量を2体積%以下に制御した場合、定常の直流電源を用いた試験No.1〜3、13〜16、21、24に比べて、パルス溶接電源を用いた試験No.4〜12、17〜20、22、23、25では、良好なビード形状が得られた。 Further, focusing on the bead shape, when the amount of carbon dioxide in the shield gas in the inner is controlled to 2% by volume or less, the test No. 1 using a steady DC power source was used. 1 to 3, 13 to 16, 21, 24 Test No. using a pulse welding power source. In 4-12, 17-20, 22, 23, 25, a good bead shape was obtained.
1a、1b 溶接継手
2a、2b 9%Ni鋼板
3、4 溶接金属
5 裏当て材
1a, 1b Welded joint 2a, 2b 9% Ni steel plate 3, 4 Welded metal 5 Backing material
Claims (6)
C :0%超0.10%以下、
Si:0%超0.15%以下、
Mn:0.1〜0.80%、
Ni:8〜15%、
Ti:0.015〜0.050%、
REM:0%超0.005%以下、および
O :0%超0.0065%以下を含有し、
残部が鉄および不可避的不純物であり、
下記(1)式を満たすことを特徴とする溶接用ソリッドワイヤ。
10≦18×[Mn]+71×[REM]+206×[Ti]≦20・・・(1)
式中、[ ]は、それぞれ質量%で、各元素の含有量を表す。 % By mass
C: more than 0% and 0.10% or less,
Si: more than 0% and 0.15% or less,
Mn: 0.1 to 0.80%,
Ni: 8-15%,
Ti: 0.015 to 0.050%,
REM: more than 0% and 0.005% or less, and O: more than 0% and 0.0065% or less,
The balance is iron and inevitable impurities,
Solid wire for welding characterized by satisfying the following formula (1).
10 ≦ 18 × [Mn] + 71 × [REM] + 206 × [Ti] ≦ 20 (1)
In the formula, [] represents mass% and represents the content of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014231164A JP6273191B2 (en) | 2014-11-14 | 2014-11-14 | Solid wire for welding and welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014231164A JP6273191B2 (en) | 2014-11-14 | 2014-11-14 | Solid wire for welding and welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016093823A true JP2016093823A (en) | 2016-05-26 |
JP6273191B2 JP6273191B2 (en) | 2018-01-31 |
Family
ID=56069993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014231164A Expired - Fee Related JP6273191B2 (en) | 2014-11-14 | 2014-11-14 | Solid wire for welding and welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6273191B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018051823A1 (en) | 2016-09-13 | 2018-03-22 | 株式会社神戸製鋼所 | Wire for electroslag welding, flux for electroslag welding and welded joint |
KR20190039762A (en) | 2016-09-13 | 2019-04-15 | 가부시키가이샤 고베 세이코쇼 | Electro slag welding wire, Electro slag welding flux and welded joint |
WO2019221284A1 (en) | 2018-05-17 | 2019-11-21 | 株式会社神戸製鋼所 | Solid wire for electroslag welding, and welding joint |
JP2020186427A (en) * | 2019-05-13 | 2020-11-19 | 国立大学法人大阪大学 | Machine component |
KR20200133812A (en) | 2018-05-17 | 2020-11-30 | 가부시키가이샤 고베 세이코쇼 | Solid wire and weld joints for electroslag welding |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49121756A (en) * | 1973-03-23 | 1974-11-21 | ||
JPS54121247A (en) * | 1978-03-14 | 1979-09-20 | Nippon Steel Corp | Innert gas shield arc welding wire material for nickel- containing steel |
JPS57171598A (en) * | 1981-04-17 | 1982-10-22 | Daido Steel Co Ltd | Inactive gas shield arc welding material |
JPS61150783A (en) * | 1984-12-24 | 1986-07-09 | Kawasaki Steel Corp | Welding method of low temperature steel |
-
2014
- 2014-11-14 JP JP2014231164A patent/JP6273191B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49121756A (en) * | 1973-03-23 | 1974-11-21 | ||
JPS54121247A (en) * | 1978-03-14 | 1979-09-20 | Nippon Steel Corp | Innert gas shield arc welding wire material for nickel- containing steel |
JPS57171598A (en) * | 1981-04-17 | 1982-10-22 | Daido Steel Co Ltd | Inactive gas shield arc welding material |
JPS61150783A (en) * | 1984-12-24 | 1986-07-09 | Kawasaki Steel Corp | Welding method of low temperature steel |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018051823A1 (en) | 2016-09-13 | 2018-03-22 | 株式会社神戸製鋼所 | Wire for electroslag welding, flux for electroslag welding and welded joint |
KR20190039762A (en) | 2016-09-13 | 2019-04-15 | 가부시키가이샤 고베 세이코쇼 | Electro slag welding wire, Electro slag welding flux and welded joint |
US11577346B2 (en) | 2016-09-13 | 2023-02-14 | Kobe Steel, Ltd. | Wire for electroslag welding, flux for electroslag welding and welded joint |
WO2019221284A1 (en) | 2018-05-17 | 2019-11-21 | 株式会社神戸製鋼所 | Solid wire for electroslag welding, and welding joint |
KR20200133812A (en) | 2018-05-17 | 2020-11-30 | 가부시키가이샤 고베 세이코쇼 | Solid wire and weld joints for electroslag welding |
US11691227B2 (en) | 2018-05-17 | 2023-07-04 | Kobe Steel, Ltd. | Solid wire for electroslag welding, and welding joint |
JP2020186427A (en) * | 2019-05-13 | 2020-11-19 | 国立大学法人大阪大学 | Machine component |
JP7352253B2 (en) | 2019-05-13 | 2023-09-28 | 国立大学法人大阪大学 | mechanical parts |
Also Published As
Publication number | Publication date |
---|---|
JP6273191B2 (en) | 2018-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9156112B2 (en) | Welding solid wire and weld metal | |
JP5205115B2 (en) | MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method | |
JP4886440B2 (en) | High strength weld metal with excellent low temperature toughness | |
JP6063355B2 (en) | Solid wire for welding and welding method | |
JP5244059B2 (en) | Welded solid wire and weld metal | |
JP6273191B2 (en) | Solid wire for welding and welding method | |
US11318567B2 (en) | Flux-cored wire | |
JP5909143B2 (en) | MAG welding method for hot rolled steel sheet and MIG welding method for hot rolled steel sheet | |
KR102208029B1 (en) | Electroslag welding wire, electroslag welding flux and weld joints | |
JP2007289965A (en) | Flux-cored wire for gas shielded arc welding and welding method | |
JP6594266B2 (en) | Gas shield arc welding method and manufacturing method of welded structure | |
WO2019116917A1 (en) | Gas-shielded arc welding wire and gas-shielded arc welding method | |
WO2018203513A1 (en) | Arc welding method and welding wire | |
JP2012081514A (en) | Fillet arc welding method of galvanized steel sheet | |
CN112512742B (en) | Solid welding wire and method for manufacturing welded joint | |
KR20160130312A (en) | Welded metal having excellent strength, toughness and sr cracking resistance | |
JP6953870B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
JP4745900B2 (en) | High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding | |
JP2022042360A (en) | Arc-welding method | |
JP2007268577A (en) | Method of tandem arc welding | |
JP2004261858A (en) | Wire for welding martensitic stainless steel pipe | |
JPH10180488A (en) | Flux cored wire for electro gas arc welding | |
JP7485936B2 (en) | Manufacturing method for welded joints using low-temperature Ni steel | |
US20240009776A1 (en) | Flux-cored wire and gas-shielded arc welding method | |
JP2022061826A (en) | Method for manufacturing weld joint, and flux-cored cut wire for groove filling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160901 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170215 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6273191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |