JP2016091865A - Insulated electric wire - Google Patents

Insulated electric wire Download PDF

Info

Publication number
JP2016091865A
JP2016091865A JP2014226529A JP2014226529A JP2016091865A JP 2016091865 A JP2016091865 A JP 2016091865A JP 2014226529 A JP2014226529 A JP 2014226529A JP 2014226529 A JP2014226529 A JP 2014226529A JP 2016091865 A JP2016091865 A JP 2016091865A
Authority
JP
Japan
Prior art keywords
surface side
insulating layer
layer
porosity
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226529A
Other languages
Japanese (ja)
Other versions
JP6587383B2 (en
Inventor
槙弥 太田
Shinya Ota
槙弥 太田
修平 前田
Shuhei Maeda
修平 前田
菅原 潤
Jun Sugawara
潤 菅原
齋藤 秀明
Hideaki Saito
秀明 齋藤
雅晃 山内
Masaaki Yamauchi
雅晃 山内
田村 康
Yasushi Tamura
康 田村
吉田 健吾
Kengo Yoshida
健吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014226529A priority Critical patent/JP6587383B2/en
Publication of JP2016091865A publication Critical patent/JP2016091865A/en
Application granted granted Critical
Publication of JP6587383B2 publication Critical patent/JP6587383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulated electric wire which can achieve both of keeping of a mechanical strength and reduction in a dielectric constant.SOLUTION: An insulated electric wire includes a linear conductor, and an insulation layer covered on the outer peripheral surface side of the conductor. The insulation layer contains a pore, and a porosity of the insulation layer becomes the maximum in the central portion in the thickness direction and becomes small on the inner surface side and the outer surface side. The porosity of the insulation layer may be continuously inclined. The insulation layer is formed of three or more pore layers which are divided in the thickness direction, and the porosity of the three or more pore layers may be gradually changed. The porosity of the pore layer in the central portion in the thickness direction in the three or more pore layers is preferably 5 vol.% or more and 80 vol.% or less, and the porosity of the pore layer on the innermost surface side and the outermost surface side is preferably 0.01 vol.% or more and 10 vol.% or less. An average diameter of the pore is preferably 0.1 μm or more and 10 μm or less. An average thickness of the insulation layer is preferably 15 μm or more and 300 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁電線に関する。   The present invention relates to an insulated wire.

適用電圧が高い電気機器、例えば高電圧で使用されるモータ等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁被膜表面で部分放電(コロナ放電)が発生し易くなる。コロナ放電の発生により、局部的な温度上昇、オゾンの発生、イオンの発生等が引き起こされると、早期に絶縁破壊を生じ、絶縁電線ひいては電気機器の寿命が短くなる。このため、適用電圧が高い電気機器に使用される絶縁電線には、優れた絶縁性、機械的強度等に加えてコロナ放電開始電圧の向上も求められる。   In an electric device having a high applied voltage, such as a motor used at a high voltage, a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) is likely to occur on the surface of the insulating coating. When a local temperature rise, ozone generation, ion generation, or the like is caused by the generation of corona discharge, dielectric breakdown occurs at an early stage, and the life of the insulated wire and thus the electrical equipment is shortened. For this reason, the insulated wire used for the electric equipment with a high applied voltage is also required to improve the corona discharge starting voltage in addition to excellent insulation and mechanical strength.

コロナ放電開始電圧を上げる工夫としては、絶縁被膜の低誘電率化が有効である。絶縁被膜の低誘電率化を実現するために、塗膜構成樹脂と、この塗膜構成樹脂の焼付け温度よりも低い温度で分解する熱分解性樹脂とを含む絶縁ワニスにより加熱硬化膜(絶縁被膜)を形成する絶縁電線が提案されている(特開2012−224714号公報参照)。この絶縁電線は、上記熱分解性樹脂が塗膜構成樹脂の焼付け時に熱分解してその部分が気孔となることを利用して加熱硬化膜内に気孔が形成されており、この気孔の形成により絶縁被膜の低誘電率化を実現している。   As a device for increasing the corona discharge starting voltage, it is effective to lower the dielectric constant of the insulating coating. In order to reduce the dielectric constant of an insulating coating, a heat-cured film (insulating coating) is formed by an insulating varnish containing a coating film constituent resin and a thermally decomposable resin that decomposes at a temperature lower than the baking temperature of the coating film constituent resin. ) Has been proposed (see JP 2012-224714 A). In this insulated wire, pores are formed in the heat-cured film by utilizing the fact that the thermally decomposable resin is thermally decomposed during baking of the coating film-constituting resin, and the portions become pores. Low dielectric constant of insulating coating is realized.

特開2012−224714号公報JP 2012-224714 A

上記従来の絶縁電線は、気孔が形成されることにより絶縁被膜の機械的強度が低下するが、絶縁被膜内に気孔が略均一に分布しているため、絶縁被膜の厚さ方向に一様に機械的強度が低下する。そのため、絶縁被膜内の気孔率の増加に対する絶縁被膜の厚さ方向の機械的強度低下の割合が大きく、絶縁被膜の低誘電率化に伴い機械的強度が損なわれ易いので、低誘電率化と機械的強度の維持との両立が困難である。   In the above conventional insulated wire, the mechanical strength of the insulating coating is reduced due to the formation of pores. However, since the pores are distributed substantially uniformly in the insulating coating, the insulating coating is uniformly distributed in the thickness direction of the insulating coating. Mechanical strength decreases. Therefore, the ratio of the decrease in the mechanical strength in the thickness direction of the insulating coating with respect to the increase in the porosity in the insulating coating is large, and the mechanical strength tends to be impaired along with the lower dielectric constant of the insulating coating. It is difficult to maintain the mechanical strength.

本発明は以上のような事情に基づいてなされたものであり、機械的強度の維持及び低誘電率化を両立できる絶縁電線を提供することを目的とする。   This invention is made | formed based on the above situations, and it aims at providing the insulated wire which can make maintenance of mechanical strength and low dielectric constant compatible.

上記課題を解決するためになされた本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面側に被覆される絶縁層とを備える絶縁電線であって、上記絶縁層が気孔を含み、上記絶縁層の気孔率が、厚さ方向中央部で最大となり、内面側及び外面側で小さくなる。   An insulated wire according to an aspect of the present invention made to solve the above problems is an insulated wire comprising a linear conductor and an insulating layer coated on an outer peripheral surface side of the conductor, and the insulating layer Includes pores, and the porosity of the insulating layer is maximized at the central portion in the thickness direction and is decreased on the inner surface side and the outer surface side.

本発明の絶縁電線は、機械的強度の維持及び低誘電率化を両立できる。   The insulated wire of the present invention can maintain both mechanical strength and a low dielectric constant.

本発明の第一実施形態に係る絶縁電線の模式的断面図である。It is a typical sectional view of an insulated wire concerning a first embodiment of the present invention. 図1の絶縁電線の絶縁層の厚さ方向における気孔率を示す図である。It is a figure which shows the porosity in the thickness direction of the insulating layer of the insulated wire of FIG. 本発明の第二実施形態に係る絶縁電線の模式的断面図である。It is a typical sectional view of an insulated wire concerning a second embodiment of the present invention. 図3の絶縁電線の絶縁層の厚さ方向における気孔率を示す図である。It is a figure which shows the porosity in the thickness direction of the insulating layer of the insulated wire of FIG.

[本発明の実施形態の説明]
本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面側に被覆される絶縁層とを備える絶縁電線であって、上記絶縁層が気孔を含み、上記絶縁層の気孔率が、厚さ方向中央部で最大となり、内面側及び外面側で小さくなる。
[Description of Embodiment of the Present Invention]
An insulated wire according to an aspect of the present invention is an insulated wire including a linear conductor and an insulating layer coated on an outer peripheral surface side of the conductor, the insulating layer including pores, and the insulating layer The porosity becomes maximum at the central portion in the thickness direction, and decreases on the inner surface side and the outer surface side.

当該絶縁電線は、絶縁層が気孔を含むことにより、絶縁層の低誘電率化を実現でき、コロナ放電開始電圧が向上する。また、当該絶縁電線は、絶縁層の気孔率が厚さ方向中央部で最大となり内面側及び外面側で小さくなるので、絶縁層の内面側及び外面側において気孔を含むことによる機械的強度の抑制作用を低減でき、内面側及び外面側における機械的強度が低下し難く、絶縁層全体としての機械的強度が維持できる。ここで、「気孔率」とは、絶縁層の気孔を含む体積に対する気孔の容積の百分率を意味する。「厚さ方向中央部」とは、絶縁層の厚さ方向中心を含む領域を意味し、例えば絶縁層の厚さ方向中心から絶縁層の平均厚さの30%以内の領域である。   In the insulated wire, since the insulating layer includes pores, the insulating layer can have a low dielectric constant, and the corona discharge starting voltage is improved. In addition, the insulated wire has a maximum porosity in the central portion in the thickness direction and decreases on the inner surface side and the outer surface side, so that the mechanical strength is suppressed by including pores on the inner surface side and the outer surface side of the insulating layer. The action can be reduced, the mechanical strength on the inner surface side and the outer surface side is hardly lowered, and the mechanical strength of the entire insulating layer can be maintained. Here, “porosity” means the percentage of the volume of the pores relative to the volume including the pores of the insulating layer. “Thickness direction central portion” means a region including the center in the thickness direction of the insulating layer, for example, a region within 30% of the average thickness of the insulating layer from the center in the thickness direction of the insulating layer.

上記絶縁層の気孔率が連続的に傾斜するとよい。このように、絶縁層の気孔率が連続的に傾斜することで、絶縁層の厚さ方向において機械的強度が断続的に変化しないので、絶縁層の機械的強度が維持し易い。ここで、「気孔率が連続的に傾斜する」とは、気孔率が厚さ方向に単調に変化している状態を意味し、その一部に気孔率が変化しない部分を含んでもよい。   The porosity of the insulating layer may be continuously inclined. Thus, since the mechanical strength of the insulating layer does not change intermittently in the thickness direction of the insulating layer by continuously inclining the porosity of the insulating layer, the mechanical strength of the insulating layer is easily maintained. Here, “the porosity is continuously inclined” means a state where the porosity is monotonously changing in the thickness direction, and a portion where the porosity does not change may be included in a part thereof.

上記絶縁層が厚さ方向に区分される3以上の気孔層から構成され、これらの3以上の気孔層の気孔率が段階的に変化してもよい。このように、絶縁層が厚さ方向に区分される3以上の気孔層から構成され、これらの3以上の気孔層の気孔率が段階的に変化することで、機械的強度の維持及び低誘電率化を実現する絶縁層を容易に形成できる。   The insulating layer may be composed of three or more pore layers divided in the thickness direction, and the porosity of these three or more pore layers may change stepwise. As described above, the insulating layer is composed of three or more pore layers divided in the thickness direction, and the porosity of these three or more pore layers is changed stepwise to maintain the mechanical strength and reduce the low dielectric constant. It is possible to easily form an insulating layer that realizes efficiency.

上記3以上の気孔層のうち厚さ方向中央部の気孔層の気孔率としては、5体積%以上80体積%以下が好ましく、最内面側及び最外面側の気孔層の気孔率としては、0.01体積%以上10体積%以下が好ましい。このように、中央部の気孔層の気孔率と最内面側及び最外面側の気孔層の気孔率とを上記範囲内とすることで、中央部の気孔層によって、より確実に絶縁層の低誘電率化を実現できると共に、最内面側及び最外面側の気孔層によって、より確実に絶縁層の機械的強度を維持できる。ここで、「厚さ方向中央部の気孔層」とは、絶縁層の厚さ方向中心から絶縁層の平均厚さの30%以内の領域に配設される気孔層のうち、気孔率が最大の気孔層を意味する。   Among the three or more pore layers, the porosity of the pore layer at the central portion in the thickness direction is preferably 5% by volume or more and 80% by volume or less, and the porosity of the pore layers on the innermost surface side and outermost surface side is 0%. It is preferably 0.01% by volume or more and 10% by volume or less. Thus, by setting the porosity of the pore layer in the central portion and the porosity of the innermost surface side and the outermost surface side pore layer within the above range, the insulating layer of the insulating layer is more reliably reduced by the central pore layer. The dielectric constant can be realized, and the mechanical strength of the insulating layer can be more reliably maintained by the pore layers on the innermost surface side and the outermost surface side. Here, the “porosity layer at the center in the thickness direction” means that the porosity is the highest among the porosity layers disposed in a region within 30% of the average thickness of the insulating layer from the center in the thickness direction of the insulating layer. Means the pore layer.

上記気孔の平均径としては、0.1μm以上10μm以下が好ましい。このように、気孔の平均径を上記範囲内とすることで、絶縁層中でのコロナ放電の発生を抑制でき、より確実にコロナ放電開始電圧を高い値に維持できる。ここで、「気孔の平均径」とは、絶縁層に含まれる全ての気孔について、気孔の容積に相当する真球の直径の平均値を意味する。従って、絶縁層が複数の気孔層で構成される場合、「気孔の平均径」とは、全ての気孔層に含まれる気孔の平均値を意味する。   The average diameter of the pores is preferably 0.1 μm or more and 10 μm or less. Thus, by making the average diameter of the pores within the above range, generation of corona discharge in the insulating layer can be suppressed, and the corona discharge start voltage can be maintained at a high value more reliably. Here, the “average diameter of the pores” means the average value of the diameters of the true spheres corresponding to the volume of the pores for all the pores included in the insulating layer. Therefore, when the insulating layer is composed of a plurality of pore layers, the “average pore diameter” means the average value of pores included in all pore layers.

上記絶縁層の平均厚さとしては、15μm以上300μm以下が好ましい。このように、絶縁層の平均厚さを上記範囲内とすることで、導体を確実に絶縁すると共に、コイル等を形成する際のコイルの体積効率の低下を抑制できる。   The average thickness of the insulating layer is preferably 15 μm or more and 300 μm or less. Thus, by making the average thickness of the insulating layer within the above range, the conductor can be reliably insulated and a decrease in the volumetric efficiency of the coil when forming the coil or the like can be suppressed.

[本発明の実施形態の詳細]
以下、図面を参照しつつ、本発明の実施形態に係る絶縁電線及び絶縁電線の製造方法を説明する。
[Details of the embodiment of the present invention]
Hereinafter, an insulated wire and a method for manufacturing an insulated wire according to an embodiment of the present invention will be described with reference to the drawings.

[第一実施形態]
図1の当該絶縁電線1は、線状の導体2と、この導体2の外周面側に被覆される絶縁層3とを備える。絶縁層3は、厚さ方向に区分される内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cから構成される。絶縁層3は気孔4を含み、絶縁層3の気孔率は、中央部気孔層3bで最大となり、内面側気孔層3a及び外面側気孔層3cで小さくなる。
[First embodiment]
The insulated wire 1 shown in FIG. 1 includes a linear conductor 2 and an insulating layer 3 covered on the outer peripheral surface side of the conductor 2. The insulating layer 3 includes an inner surface side pore layer 3a, a central portion pore layer 3b, and an outer surface side pore layer 3c that are divided in the thickness direction. The insulating layer 3 includes pores 4, and the porosity of the insulating layer 3 is maximized in the central pore layer 3b and is small in the inner surface side pore layer 3a and the outer surface side pore layer 3c.

<導体>
上記導体2は、例えば断面が円形状の丸線とされるが、断面が方形状の角線や、複数の素線を撚り合わせた撚り線であってもよい。
<Conductor>
The conductor 2 is, for example, a round wire having a circular cross section, but may be a square wire having a square cross section or a stranded wire obtained by twisting a plurality of strands.

導体2の材質としては、導電率が高くかつ機械的強度が大きい金属が好ましい。このような金属としては、例えば銅、銅合金、アルミニウム、ニッケル、銀、鉄、鋼、ステンレス鋼等が挙げられる。導体2は、これらの金属を線状に形成した材料や、このような線状の材料にさらに別の金属を被覆した多層構造のもの、例えばニッケル被覆銅線、銀被覆銅線、銅被覆アルミ線、銅被覆鋼線等を用いることができる。   The material of the conductor 2 is preferably a metal having high conductivity and high mechanical strength. Examples of such metals include copper, copper alloys, aluminum, nickel, silver, iron, steel, and stainless steel. The conductor 2 is a material in which these metals are formed in a linear shape, or a multilayer structure in which such a linear material is coated with another metal, such as a nickel-coated copper wire, a silver-coated copper wire, or a copper-coated aluminum. Wire, copper-coated steel wire, etc. can be used.

導体2の平均断面積の下限としては、0.01mmが好ましく、0.1mmがより好ましい。一方、導体2の平均断面積の上限としては、10mmが好ましく、5mmがより好ましい。導体2の平均断面積が上記下限に満たない場合、導体2に対する絶縁層3の体積が大きくなり、当該絶縁電線1を用いて形成されるコイル等の体積効率が低くなるおそれがある。逆に、導体2の平均断面積が上記上限を超える場合、誘電率を十分に低下させるために絶縁層3を厚く形成しなければならず、当該絶縁電線1が不必要に大径化するおそれがある。 The lower limit of the average cross-sectional area of the conductor 2, preferably 0.01 mm 2, 0.1 mm 2 is more preferable. In contrast, the upper limit of the average cross-sectional area of the conductor 2 is preferably 10 mm 2, 5 mm 2 is more preferable. When the average cross-sectional area of the conductor 2 is less than the lower limit, the volume of the insulating layer 3 with respect to the conductor 2 is increased, and the volume efficiency of a coil or the like formed using the insulated wire 1 may be reduced. Conversely, when the average cross-sectional area of the conductor 2 exceeds the above upper limit, the insulating layer 3 must be formed thick in order to sufficiently reduce the dielectric constant, and the insulated wire 1 may be unnecessarily increased in diameter. There is.

<絶縁層>
上記絶縁層3は、図1に示すように、厚さ方向に区分される内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cで構成される。
<Insulating layer>
As shown in FIG. 1, the insulating layer 3 includes an inner surface side pore layer 3a, a central portion pore layer 3b, and an outer surface side pore layer 3c that are divided in the thickness direction.

内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cは、それぞれ複数の気孔4を含んでいる。ここで、厚さ方向中央部に積層される中央部気孔層3bの気孔率は、内面側気孔層3aの気孔率及び外面側気孔層3cの気孔率よりも大きい。つまり、絶縁層3の気孔率は、厚さ方向中央部で最大となり、内面側及び外面側で小さくなっている。   Each of the inner surface side pore layer 3a, the central portion pore layer 3b, and the outer surface side pore layer 3c includes a plurality of pores 4. Here, the porosity of the central pore layer 3b laminated at the central portion in the thickness direction is larger than the porosity of the inner surface side pore layer 3a and the porosity of the outer surface side pore layer 3c. That is, the porosity of the insulating layer 3 is maximum at the central portion in the thickness direction and is small on the inner surface side and the outer surface side.

内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cのそれぞれにおいて、複数の気孔4は略均一に分布しており、絶縁層3の気孔率は、厚み方向について図2に示すように変化する。このように、絶縁層3の気孔率は、厚み方向について段階的に変化する。   In each of the inner surface side pore layer 3a, the central portion pore layer 3b, and the outer surface side pore layer 3c, the plurality of pores 4 are distributed substantially uniformly, and the porosity of the insulating layer 3 is as shown in FIG. 2 in the thickness direction. To change. Thus, the porosity of the insulating layer 3 changes stepwise in the thickness direction.

絶縁層3の平均厚さの下限としては、15μmが好ましく、30μmがより好ましい。一方、絶縁層3の平均厚さの上限としては、300μmが好ましく、100μmがより好ましい。絶縁層3の平均厚さが上記下限に満たない場合、絶縁層3に破れが生じ、導体2の絶縁が不十分となるおそれがある。逆に、絶縁層3の平均厚さが上記上限を超える場合、当該絶縁電線1を用いて形成されるコイル等の体積効率が低くなるおそれがある。   As a minimum of average thickness of insulating layer 3, 15 micrometers is preferred and 30 micrometers is more preferred. On the other hand, the upper limit of the average thickness of the insulating layer 3 is preferably 300 μm, and more preferably 100 μm. If the average thickness of the insulating layer 3 is less than the lower limit, the insulating layer 3 may be broken and the conductor 2 may not be sufficiently insulated. Conversely, when the average thickness of the insulating layer 3 exceeds the above upper limit, the volume efficiency of a coil or the like formed using the insulated wire 1 may be lowered.

内面側気孔層3aの平均厚さの下限としては、絶縁層3の平均厚さに対して5%が好ましく、10%がより好ましい。一方、上記内面側気孔層3aの平均厚さの上限としては、絶縁層3の平均厚さに対して40%が好ましく、35%がより好ましい。上記内面側気孔層3aの平均厚さが上記下限未満の場合、機械的強度の維持効果が大きい内面側気孔層3aが薄くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。逆に、上記内面側気孔層3aの平均厚さが上記上限を超える場合、低誘電率化の効果が小さい内面側気孔層3aが厚くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。   The lower limit of the average thickness of the inner surface side pore layer 3a is preferably 5% with respect to the average thickness of the insulating layer 3, and more preferably 10%. On the other hand, the upper limit of the average thickness of the inner surface side pore layer 3a is preferably 40%, more preferably 35%, with respect to the average thickness of the insulating layer 3. When the average thickness of the inner surface side pore layer 3a is less than the lower limit, the inner surface side pore layer 3a having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained. On the contrary, when the average thickness of the inner surface side pore layer 3a exceeds the upper limit, the inner surface side pore layer 3a having a small effect of lowering the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered. There is.

中央部気孔層3bの平均厚さの下限としては、絶縁層3の平均厚さに対して20%が好ましく、30%がより好ましい。一方、上記中央部気孔層3bの平均厚さの上限としては、絶縁層3の平均厚さに対して90%が好ましく、80%がより好ましい。上記中央部気孔層3bの平均厚さが上記下限未満の場合、低誘電率化に寄与する効果が大きい中央部気孔層3bが薄くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。逆に、上記中央部気孔層3bの平均厚さが上記上限を超える場合、機械的強度の維持効果が小さい中央部気孔層3bが厚くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。   The lower limit of the average thickness of the central pore layer 3b is preferably 20% with respect to the average thickness of the insulating layer 3, and more preferably 30%. On the other hand, the upper limit of the average thickness of the central pore layer 3b is preferably 90% and more preferably 80% with respect to the average thickness of the insulating layer 3. When the average thickness of the central pore layer 3b is less than the lower limit, the central pore layer 3b having a large effect of contributing to the reduction of the dielectric constant becomes too thin, and the dielectric constant of the insulating layer 3 may not be sufficiently reduced. is there. On the contrary, when the average thickness of the central pore layer 3b exceeds the upper limit, the central pore layer 3b having a small effect of maintaining the mechanical strength becomes too thick, and the mechanical strength of the insulating layer 3 may not be maintained. is there.

外面側気孔層3cの平均厚さの下限としては、絶縁層3の平均厚さに対して5%が好ましく、10%がより好ましい。一方、上記外面側気孔層3cの平均厚さの上限としては、絶縁層3の平均厚さに対して40%が好ましく、35%がより好ましい。上記外面側気孔層3cの平均厚さが上記下限未満の場合、機械的強度の維持効果が大きい外面側気孔層3cが薄くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。逆に、上記外面側気孔層3cの平均厚さが上記上限を超える場合、低誘電率化の効果が小さい外面側気孔層3cが厚くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。   The lower limit of the average thickness of the outer surface side pore layer 3c is preferably 5% with respect to the average thickness of the insulating layer 3, and more preferably 10%. On the other hand, the upper limit of the average thickness of the outer surface side pore layer 3c is preferably 40% and more preferably 35% with respect to the average thickness of the insulating layer 3. When the average thickness of the outer surface side pore layer 3c is less than the lower limit, the outer surface side pore layer 3c having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained. On the contrary, when the average thickness of the outer surface side pore layer 3c exceeds the upper limit, the outer surface side pore layer 3c having a small effect of reducing the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently reduced. There is.

上記絶縁層3(内面側気孔層3a、中央部気孔層3b及び外面側気孔層3c)を形成する樹脂組成物の主成分の樹脂としては、特に限定されないが、例えばポリビニールホルマール、熱硬化ポリウレタン、熱硬化アクリル、エポキシ、熱硬化ポリエステル、熱硬化ポリエステルイミド、熱硬化ポリエステルアミドイミド、芳香族ポリアミド、熱硬化ポリアミドイミド、熱硬化ポリイミド等の熱硬化性樹脂や、例えばポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルサルフォン等の熱可塑性樹脂が使用できる。ここで「主成分」とは、最も含有量の多い成分であり、例えば50質量%以上含有される成分である。なお、内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cを形成する樹脂組成物の主成分の樹脂を同種のものとしてもよいし、異なる種類のものとしてもよい。   The resin as the main component of the resin composition for forming the insulating layer 3 (the inner surface side pore layer 3a, the central portion pore layer 3b and the outer surface side pore layer 3c) is not particularly limited, but for example, polyvinyl formal, thermosetting polyurethane , Thermosetting resins such as thermosetting acrylic, epoxy, thermosetting polyester, thermosetting polyester imide, thermosetting polyester amide imide, aromatic polyamide, thermosetting polyamide imide, thermosetting polyimide, and polyether imide, polyphenylene ether, A thermoplastic resin such as polyethersulfone can be used. Here, the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more. In addition, it is good also considering the resin of the main component of the resin composition which forms the inner surface side pore layer 3a, the center part pore layer 3b, and the outer surface side pore layer 3c as the same kind, or a different kind.

また、絶縁層3(内面側気孔層3a、中央部気孔層3b及び外面側気孔層3c)を形成する樹脂組成物に、上記樹脂と共に硬化剤を含有させてもよい。硬化剤としては、チタン系硬化剤、イソシアネート系化合物、ブロックイソシアネート、尿素やメラミン化合物、アミノ樹脂、メチルテトラヒドロ無水フタル酸などの脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物などが例示される。これらの硬化剤は、使用する樹脂組成物が含有する樹脂の種類に応じて、適宜選択される。例えば、ポリアミドイミド系の場合、硬化剤として、イミダゾール、トリエチルアミン等が好ましく用いられる。   Moreover, you may make the resin composition which forms the insulating layer 3 (the inner surface side pore layer 3a, the center part pore layer 3b, and the outer surface side pore layer 3c) contain a hardening | curing agent with the said resin. Curing agents include titanium-based curing agents, isocyanate compounds, blocked isocyanates, urea and melamine compounds, amino resins, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, aliphatic acid anhydrides, and aromatic acid anhydrides. Etc. are exemplified. These curing agents are appropriately selected according to the type of resin contained in the resin composition to be used. For example, in the case of polyamideimide, imidazole, triethylamine and the like are preferably used as the curing agent.

なお、上記チタン系硬化剤としては、テトラプロピルチタネート、テトライソプロピルチタネート、テトラメチルチタネート、テトラブチルチタネート、テトラヘキシルチタネートなどが例示される。上記イソシアネート系化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンイソシアネート(MDI)、p−フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサンジイソシアネート、リジンジイソシアネートなどの炭素数3〜12の脂肪族ジイソシアネート、1,4−シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’−ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル−4,4’−ジイソシアネート、1,3−ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5−ビス(イソシアナートメチル)−ビシクロ[2,2,1]ヘプタン、2,6−ビス(イソシアナートメチル)−ビシクロ[2,2,1]ヘプタンなどの炭素数5〜18の脂環式イソシアネート、キシリレインジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート、これらの変性物などが例示される。上記ブロックイソシアネートとしては、ジフェニルメタン−4,4'−ジイソシアネート(MDI)、ジフェニルメタン−3,3'−ジイソシアネート、ジフェニルメタン−3,4'−ジイソシアネート、ジフェニルエーテル−4,4'−ジイソシアネート、ベンゾフェノン−4,4'−ジイソシアネート、ジフェニルスルホン−4,4'−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,6−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネートなどが例示される。上記メラミン化合物としては、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミンなどが例示される。   Examples of the titanium-based curing agent include tetrapropyl titanate, tetraisopropyl titanate, tetramethyl titanate, tetrabutyl titanate, and tetrahexyl titanate. Examples of the isocyanate compound include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane isocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, C3-C12 aliphatic diisocyanate such as lysine diisocyanate, 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Dicyclohexyl-4,4′-diisocyanate, 1,3-diisocyanatomethylcyclohexane (hydrogenated XD ), Hydrogenated TDI, carbon such as 2,5-bis (isocyanatomethyl) -bicyclo [2,2,1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2,2,1] heptane Examples thereof include aliphatic diisocyanates having an aromatic ring such as alicyclic isocyanate, xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI), and modified products thereof. Examples of the blocked isocyanate include diphenylmethane-4,4′-diisocyanate (MDI), diphenylmethane-3,3′-diisocyanate, diphenylmethane-3,4′-diisocyanate, diphenylether-4,4′-diisocyanate, and benzophenone-4,4. '-Diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, etc. Is exemplified. Examples of the melamine compound include methylated melamine, butylated melamine, methylolated melamine, and butyrololized melamine.

上述したように、内面側気孔層3aの気孔率は、中央部気孔層3bの気孔率よりも小さい。内面側気孔層3aの気孔率の下限としては、1体積%が好ましく、2体積%がより好ましい。一方、上記内面側気孔層3aの気孔率の上限としては、10体積%が好ましく、8体積%がより好ましい。上記内面側気孔層3aの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記内面側気孔層3aの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。   As described above, the porosity of the inner surface side pore layer 3a is smaller than the porosity of the central portion pore layer 3b. The lower limit of the porosity of the inner surface side pore layer 3a is preferably 1% by volume, and more preferably 2% by volume. On the other hand, the upper limit of the porosity of the inner surface side pore layer 3a is preferably 10% by volume, more preferably 8% by volume. When the porosity of the inner surface side pore layer 3a is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. On the other hand, when the porosity of the inner surface side pore layer 3a exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.

中央部気孔層3bの気孔率の下限としては、5体積%が好ましく、10体積%がより好ましい。一方、上記中央部気孔層3bの気孔率の上限としては、80体積%が好ましく、60体積%がより好ましい。上記中央部気孔層3bの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記中央部気孔層3bの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。   As a minimum of the porosity of the center part pore layer 3b, 5 volume% is preferable and 10 volume% is more preferable. On the other hand, the upper limit of the porosity of the central pore layer 3b is preferably 80% by volume, more preferably 60% by volume. When the porosity of the central pore layer 3b is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. On the other hand, when the porosity of the central pore layer 3b exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.

上述したように、外面側気孔層3cの気孔率は、中央部気孔層3bの気孔率よりも小さい。外面側気孔層3cの気孔率の下限としては、0.01体積%が好ましく、1体積%がより好ましい。一方、上記外面側気孔層3cの気孔率の上限としては、10体積%が好ましく、8体積%がより好ましい。上記外面側気孔層3cの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記外面側気孔層3cの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。   As described above, the porosity of the outer surface side pore layer 3c is smaller than the porosity of the central portion pore layer 3b. The lower limit of the porosity of the outer surface side pore layer 3c is preferably 0.01% by volume, and more preferably 1% by volume. On the other hand, the upper limit of the porosity of the outer surface side pore layer 3c is preferably 10% by volume, more preferably 8% by volume. When the porosity of the outer surface side pore layer 3c is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge start voltage may not be sufficiently improved. On the contrary, when the porosity of the outer surface side pore layer 3c exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.

内面側気孔層3aの気孔率及び外面側気孔層3cの気孔率は、等しくてもよいし異なっていてもよい。当該絶縁電線の絶縁層3の気孔率は、図2に示すように、外面側気孔層3cの気孔率が内面側気孔層3aの気孔率よりも小さい。気孔率が小さいほど機械的強度が大きくなるので、当該絶縁電線1の外面の強度を高める点において、このように外面側気孔層3cの気孔率が内面側気孔層3aの気孔率よりも小さいことが好ましい。   The porosity of the inner surface side pore layer 3a and the porosity of the outer surface side pore layer 3c may be the same or different. The porosity of the insulating layer 3 of the insulated wire is such that the porosity of the outer surface side pore layer 3c is smaller than the porosity of the inner surface side pore layer 3a, as shown in FIG. Since the mechanical strength increases as the porosity decreases, the porosity of the outer surface side pore layer 3c is thus smaller than the porosity of the inner surface side pore layer 3a in that the strength of the outer surface of the insulated wire 1 is increased. Is preferred.

気孔4の平均径の下限としては、0.1μmが好ましく、1μmがより好ましい。一方、上記気孔4の平均径の上限としては、10μmが好ましく、8μmがより好ましい。上記気孔4の平均径が上記下限未満の場合、絶縁層3中でのコロナ放電の発生を十分に抑制できないおそれがある。逆に、上記気孔4の平均径が上記上限を超える場合、内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cの各層内における気孔4の分布を均一にし難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。なお、内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cごとに含まれる気孔4の平均径が異なっていてもよい。   The lower limit of the average diameter of the pores 4 is preferably 0.1 μm and more preferably 1 μm. On the other hand, the upper limit of the average diameter of the pores 4 is preferably 10 μm, more preferably 8 μm. When the average diameter of the pores 4 is less than the above lower limit, the occurrence of corona discharge in the insulating layer 3 may not be sufficiently suppressed. Conversely, when the average diameter of the pores 4 exceeds the upper limit, it is difficult to make the distribution of the pores 4 within each of the inner surface side pore layer 3a, the central portion pore layer 3b, and the outer surface side pore layer 3c uniform, There is a risk that the distribution tends to be biased. The average diameter of the pores 4 included in each of the inner surface side pore layer 3a, the central portion pore layer 3b, and the outer surface side pore layer 3c may be different.

[絶縁電線の製造方法]
次に、当該絶縁電線1の製造方法について説明する。当該絶縁電線1の製造方法は、絶縁層3を形成する樹脂及びこの樹脂の焼付温度よりも低い温度で熱分解する熱分解性樹脂を希釈し、熱分解性樹脂の含有量の異なる複数のワニスを調製する工程(ワニス調製工程)と、導体2の外周面への上記ワニスの塗布及び焼付けにより気孔4を含む内面側気孔層3aを形成する工程(内面側気孔層形成工程)と、内面側気孔層3aを形成したワニスよりも熱分解性樹脂の含有量の大きいワニスの内面側気孔層3aを形成した導体2の外周面側への塗布及び焼付けにより気孔4を含む厚さ方向中央部の中央部気孔層3bを形成する工程(中央部気孔層形成工程)と、中央部気孔層3bを形成したワニスよりも熱分解性樹脂の含有量の小さいワニスの中央部気孔層3bを形成した導体2の外周面側への塗布及び焼付けにより気孔を含む外面側気孔層3cを形成する工程(外面側気孔層形成工程)とを備える。
[Insulated wire manufacturing method]
Next, the manufacturing method of the said insulated wire 1 is demonstrated. The method for manufacturing the insulated wire 1 includes diluting a resin that forms the insulating layer 3 and a thermally decomposable resin that is thermally decomposed at a temperature lower than the baking temperature of the resin, and a plurality of varnishes having different contents of the thermally decomposable resin. A step of preparing the inner surface side pore layer 3a including the pores 4 by applying and baking the varnish on the outer peripheral surface of the conductor 2 (an inner surface side pore layer forming step), and an inner surface side The central portion in the thickness direction including the pores 4 is formed by applying and baking the outer surface of the conductor 2 on which the inner surface side pore layer 3a of the varnish having the pyrolytic resin content larger than that of the varnish in which the pore layer 3a is formed. Step of forming the central pore layer 3b (center pore layer forming step), and conductor having the central pore layer 3b of the varnish having a smaller content of the thermally decomposable resin than the varnish forming the central pore layer 3b Application to the outer peripheral surface side of 2 And forming an outer side pore layer 3c comprising pores (outer surface side-porous layer forming step) by fine baking.

<ワニス調製工程>
上記ワニス調製工程において、絶縁層3を形成する樹脂及び熱分解性樹脂を溶剤で希釈してワニスを調製する。内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cをそれぞれ形成するワニスとして、熱分解性樹脂の含有量が異なる複数種類のワニスを調製する。図2に示すように、内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cの気孔率は互いに異なるので、ここでは熱分解性樹脂の含有量が異なる内面側用、中央部用及び外面側用の3種類のワニスを調製する。なお、内面側用、中央部用及び外面側用のワニスは、溶剤で希釈する絶縁層3を形成する樹脂として同種のものを用いてもよいし、異なるものを用いてもよい。
<Varnish preparation process>
In the varnish preparation step, the resin forming the insulating layer 3 and the thermally decomposable resin are diluted with a solvent to prepare a varnish. A plurality of types of varnishes having different contents of the thermally decomposable resin are prepared as varnishes for forming the inner surface side pore layer 3a, the central portion pore layer 3b and the outer surface side pore layer 3c, respectively. As shown in FIG. 2, since the porosity of the inner surface side pore layer 3a, the central portion pore layer 3b, and the outer surface side pore layer 3c is different from each other, here, the content of the pyrolyzable resin is different for the inner surface side and the central portion. And three kinds of varnishes for the outer surface side are prepared. In addition, the same kind may be used as resin which forms the insulating layer 3 diluted with a solvent for the inner surface side, the center part, and the outer surface side, and different things may be used.

上記熱分解性樹脂としては、例えば絶縁層3を形成する樹脂の焼付温度よりも低い温度で熱分解する樹脂粒子を用いる。絶縁層3を形成する樹脂の焼付温度は、樹脂の種類に応じて適宜設定されるが、通常200℃以上350℃以下程度である。従って、上記ワニスに用いる熱分解性樹脂の熱分解温度の下限としては200℃が好ましく、上限としては300℃が好ましい。ここで、熱分解温度とは、窒素雰囲気下で室温から10℃/分で昇温し、質量減少率が50%となるときの温度を意味する。熱分解温度は、例えば熱重量測定−示差熱分析装置(エスアイアイ・ナノテクノロジー株式会社の「TG/DTA」)を用いて熱重量を測定することにより測定できる。   As the thermally decomposable resin, for example, resin particles that thermally decompose at a temperature lower than the baking temperature of the resin forming the insulating layer 3 are used. The baking temperature of the resin forming the insulating layer 3 is appropriately set according to the type of resin, but is usually about 200 ° C. or higher and 350 ° C. or lower. Accordingly, the lower limit of the thermal decomposition temperature of the thermally decomposable resin used for the varnish is preferably 200 ° C., and the upper limit is preferably 300 ° C. Here, the thermal decomposition temperature means a temperature at which the temperature is increased from room temperature to 10 ° C./min in a nitrogen atmosphere and the mass reduction rate becomes 50%. The thermal decomposition temperature can be measured, for example, by measuring the thermogravimetry using a thermogravimetry-differential thermal analyzer (“TG / DTA” manufactured by SII Nano Technology Co., Ltd.).

上記ワニスに用いる熱分解性樹脂としては、特に限定されないが、例えばポリエチレングリコール、ポリプロピレングリコールなどの片方、両方の末端又は一部をアルキル化、(メタ)アクリレート化又はエポキシ化した化合物、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチルなどの(メタ)アクリル酸の炭素数1以上6以下のアルキルエステル重合体、ウレタンオリゴマー、ウレタンポリマー、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ε―カプロラクトン(メタ)アクリレートなどの変性(メタ)アクリレートの重合物、ポリ(メタ)アクリル酸、これらの架橋物、ポリスチレン、架橋ポリスチレン等が挙げられる。これらのうち、(メタ)アクリル系重合体の架橋物が好ましく、架橋ポリ(メタ)アクリレートがより好ましい。また、熱分解性樹脂は、上記絶縁層3を形成する樹脂の海相に微小粒子の島相となって均等分布できることが好ましい。従って、上記ワニスに用いる熱分解性樹脂としては、上記絶縁層3を形成する樹脂との相溶性に優れると共に、球状にまとまる樹脂であることが好ましく、具体的には架橋樹脂が好ましい。   The heat-decomposable resin used in the varnish is not particularly limited, but for example, a compound obtained by alkylating, (meth) acrylated or epoxidizing one or both ends or part of polyethylene glycol, polypropylene glycol or the like, poly (meta) ) Alkyl ester polymer of 1 to 6 carbon atoms of (meth) acrylic acid, such as methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylic acid propyl, poly (meth) acrylic acid butyl, urethane oligomer , Urethane polymer, urethane (meth) acrylate, epoxy (meth) acrylate, polymer of modified (meth) acrylate such as ε-caprolactone (meth) acrylate, poly (meth) acrylic acid, cross-linked products thereof, polystyrene, cross-linked polystyrene Etc. Among these, a crosslinked product of a (meth) acrylic polymer is preferable, and a crosslinked poly (meth) acrylate is more preferable. Further, it is preferable that the thermally decomposable resin can be uniformly distributed as an island phase of fine particles in the sea phase of the resin forming the insulating layer 3. Accordingly, the thermally decomposable resin used for the varnish is preferably a resin that is excellent in compatibility with the resin forming the insulating layer 3 and is formed into a spherical shape, and specifically, a crosslinked resin.

上記架橋ポリ(メタ)アクリル系重合体は、例えば(メタ)アクリル系モノマーと多官能性モノマーとを乳化重合、懸濁重合、溶液重合等により重合することで得られる。   The crosslinked poly (meth) acrylic polymer can be obtained, for example, by polymerizing a (meth) acrylic monomer and a polyfunctional monomer by emulsion polymerization, suspension polymerization, solution polymerization, or the like.

ここで、(メタ)アクリル系モノマーとしては、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2−エチルヘキシル、アクリル酸テトラヒドロフルフリル、アクリル酸ジエチルアミノエチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸ジエチルアミノエチルなどが挙げられる。   Here, as the (meth) acrylic monomer, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, dodecyl acrylate, stearyl acrylate, acrylic acid 2 -Ethylhexyl, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate , Dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, diethylaminoethyl methacrylate and the like.

また、多官能性モノマーとしては、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレートなどが挙げられる。   Examples of the polyfunctional monomer include divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane triacrylate, and the like.

なお、架橋ポリ(メタ)アクリル系重合体の構成モノマーとしては、(メタ)アクリル系モノマー及び多官能性モノマー以外に他のモノマーを使用してもよい。他のモノマーとしては、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテルなどのアルキルビニルエーテル類、酢酸ビニル、酪酸ビニルなどのビニルエステル類、N−メチルアクリルアミド、N−エチルアクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミドなどのN−アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタアクリロニトリルなどのニトリル類、スチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン、α−メチルスチレンなどのスチレン系単量体が挙げられる。   In addition to the (meth) acrylic monomer and the polyfunctional monomer, other monomers may be used as the constituent monomer of the crosslinked poly (meth) acrylic polymer. Other monomers include glycol esters of (meth) acrylic acid such as ethylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate, alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, vinyl acetate and vinyl butyrate Vinyl esters, N-alkyl substituted (meth) acrylamides such as N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide and N-ethylmethacrylamide, nitriles such as acrylonitrile and methacrylonitrile, styrene, p -Styrene monomers, such as methylstyrene, p-chlorostyrene, chloromethylstyrene, and α-methylstyrene.

上記熱分解する樹脂粒子を用いる場合、樹脂粒子は球状であることが好ましい。上記樹脂粒子の平均粒子径の下限としては、0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。一方、上記樹脂粒子の平均粒子径の上限としては、100μmが好ましく、50μmがより好ましく、30μmがさらに好ましく、10μmが特に好ましい。上記樹脂粒子は絶縁層3を形成する樹脂の焼付け時に熱分解して存在していた部分に気孔を形成する。そのため、上記樹脂粒子の平均粒子径が上記下限未満の場合、絶縁層3に気孔が形成され難くなるおそれがある。逆に、上記樹脂粒子の平均粒子径が上記上限を超える場合、絶縁層3表面に凹凸が生じ易くなるおそれがある。ここで、上記樹脂粒子の平均粒子径とは、レーザー回折式粒度分布測定装置で測定した粒度分布において、最も高い含有割合を示す粒径を意味する。   When using the resin particles to be thermally decomposed, the resin particles are preferably spherical. The lower limit of the average particle diameter of the resin particles is preferably 0.1 μm, more preferably 0.5 μm, and even more preferably 1 μm. On the other hand, the upper limit of the average particle diameter of the resin particles is preferably 100 μm, more preferably 50 μm, further preferably 30 μm, and particularly preferably 10 μm. The resin particles are thermally decomposed when the resin forming the insulating layer 3 is baked to form pores in the existing portions. Therefore, when the average particle diameter of the resin particles is less than the lower limit, pores may not be easily formed in the insulating layer 3. On the contrary, when the average particle diameter of the resin particles exceeds the upper limit, the surface of the insulating layer 3 may be easily uneven. Here, the average particle size of the resin particles means a particle size showing the highest content ratio in the particle size distribution measured with a laser diffraction particle size distribution measuring device.

上記ワニスにおける熱分解性樹脂の含有量の下限としては、絶縁層3を形成する樹脂100質量部に対して5質量部が好ましく、10質量部がより好ましく、15質量部がさらに好ましい。一方、上記ワニスにおける熱分解性樹脂の含有量の上限としては、絶縁層3を形成する樹脂100質量部に対して350質量部が好ましく、150質量部がより好ましく、90質量部がさらに好ましい。上記熱分解性樹脂の含有量が上記下限未満の場合、絶縁層3の誘電率を十分に低下できないおそれがある。逆に、上記熱分解性樹脂の含有量が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。   As a minimum of content of the heat decomposable resin in the said varnish, 5 mass parts is preferable with respect to 100 mass parts of resin which forms the insulating layer 3, 10 mass parts is more preferable, 15 mass parts is more preferable. On the other hand, the upper limit of the content of the thermally decomposable resin in the varnish is preferably 350 parts by weight, more preferably 150 parts by weight, and still more preferably 90 parts by weight with respect to 100 parts by weight of the resin forming the insulating layer 3. When content of the said heat decomposable resin is less than the said minimum, there exists a possibility that the dielectric constant of the insulating layer 3 cannot fully be reduced. On the contrary, when the content of the thermally decomposable resin exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.

希釈用溶剤としては、絶縁ワニスに従来より用いられている公知の有機溶剤を用いることができる。具体的には、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ−ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類、ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類、クレゾール、クロルフェノールなどのフェノール類、ピリジンなどの第三級アミン類などが挙げられ、これらの有機溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。   As the solvent for dilution, a known organic solvent conventionally used for insulating varnish can be used. Specifically, polar organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, and γ-butyrolactone are used. First, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve) ), Ethers such as diethylene glycol dimethyl ether and tetrahydrofuran, hydrocarbons such as hexane, heptane, benzene, toluene and xylene , Halogenated hydrocarbons such as dichloromethane and chlorobenzene, phenols such as cresol and chlorophenol, and tertiary amines such as pyridine. These organic solvents may be used alone or in combination of two or more. Used.

なお、これらの有機溶剤により希釈して調製したワニスの樹脂固形分濃度の下限としては、15質量%が好ましく、22質量%がより好ましい。一方、上記ワニスの樹脂固形分濃度の上限としては、50質量%が好ましく、28質量%がより好ましい。上記ワニスの樹脂固形分濃度が上記下限未満の場合、ワニスを塗布する際の1回の塗布量が少なくなるため、所望の厚さの内面側気孔層3a、中央部気孔層3b又は外面側気孔層3cを形成するためのワニス塗布工程の繰り返し回数が多くなり、ワニス塗布工程の時間が長くなるおそれがある。逆に、上記内面側用ワニスの樹脂固形分濃度が上記上限を超える場合、ワニスが増粘することにより、ワニスの保存安定性が悪化するおそれや、ワニス塗布時の付着性が悪化するおそれがある。   In addition, as a minimum of the resin solid content density | concentration of the varnish prepared by diluting with these organic solvents, 15 mass% is preferable and 22 mass% is more preferable. On the other hand, the upper limit of the resin solid content concentration of the varnish is preferably 50% by mass, and more preferably 28% by mass. When the resin solid content concentration of the varnish is less than the above lower limit, the amount of application at one time when the varnish is applied is reduced, so that the inner surface side pore layer 3a, the central portion pore layer 3b or the outer surface side pores having a desired thickness There is a possibility that the number of repetitions of the varnish application process for forming the layer 3c increases and the time of the varnish application process becomes longer. On the contrary, when the resin solid content concentration of the inner surface side varnish exceeds the upper limit, the storage stability of the varnish may be deteriorated due to thickening of the varnish, and the adhesion property at the time of varnish application may be deteriorated. is there.

<内面側気孔層形成工程>
上記内面側気孔層形成工程において、上記ワニス調製工程で調製した内面側用ワニスを導体2の外周面に塗布した後、焼付けることで導体2表面に内面側気孔層3aを形成する。焼付けの際、内面側用ワニスに含まれる熱分解性樹脂が熱分解し、内面側気孔層3a内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Inner surface side pore layer forming step>
In the inner surface side pore layer forming step, the inner surface side pore layer 3a is formed on the surface of the conductor 2 by applying the inner surface side varnish prepared in the varnish preparation step to the outer peripheral surface of the conductor 2 and then baking it. At the time of baking, the thermally decomposable resin contained in the inner surface side varnish is thermally decomposed, and pores 4 are generated in portions where the thermally decomposable resin is present in the inner surface side pore layer 3a.

内面側用ワニスの一度の塗布及び焼付けにより所望の厚さの内面側気孔層3aが形成できない場合、導体2表面に形成される内面側気孔層3aが所定の厚さとなるまで、上記内面側用ワニスの塗布及び焼付けを繰り返し行う。   When the inner surface side pore layer 3a having a desired thickness cannot be formed by one-time application and baking of the inner surface side varnish, the inner surface side pore layer 3a formed on the surface of the conductor 2 has a predetermined thickness. Repeat application and baking of varnish.

<中央部気孔層形成工程>
上記中央部気孔層形成工程において、上記内面側気孔層3aを形成した上記導体2のさらに外周面へ、上記ワニス調製工程で調製した内面側用ワニスよりも熱分解性樹脂の含有量の大きい中央部用ワニスを塗布した後、焼付けることで、導体2に形成された内面側気孔層3aの外側に中央部気孔層3bを形成する。焼付けの際、中央部用ワニスに含まれる熱分解性樹脂が熱分解し、中央部気孔層3b内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Center part pore layer formation process>
In the center part pore layer forming step, the center having a larger content of the thermally decomposable resin than the inner surface side varnish prepared in the varnish preparation step is further provided on the outer peripheral surface of the conductor 2 on which the inner surface side pore layer 3a is formed. After applying the part varnish, the central part pore layer 3b is formed outside the inner surface side pore layer 3a formed on the conductor 2 by baking. At the time of baking, the thermally decomposable resin contained in the central varnish is thermally decomposed, and pores 4 are generated in portions where the thermally decomposable resin exists in the central pore layer 3b.

中央部用ワニスの一度の塗布及び焼付けにより所望の厚さの中央部気孔層3bが形成できない場合、中央部気孔層3bが所定の厚さとなるまで、上記中央部用ワニスの塗布及び焼付けを繰り返し行う。   When the central pore layer 3b having a desired thickness cannot be formed by one application and baking of the central varnish, the application and baking of the central varnish are repeated until the central porous layer 3b reaches a predetermined thickness. Do.

<外面側気孔層形成工程>
上記外面側気孔層形成工程において、上記中央部気孔層3bを形成した上記導体2のさらに外周面へ、上記ワニス調製工程で調製した中央部用ワニスよりも熱分解性樹脂の含有量の小さい外面側用ワニスを塗布した後、焼付けることで、導体2に形成された中央部気孔層3bの外側に外面側気孔層3cを形成する。焼付けの際、外面側用ワニスに含まれる熱分解性樹脂が熱分解し、外面側気孔層3c内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Outer surface side pore layer forming step>
In the outer surface side pore layer forming step, the outer surface having a smaller content of the heat decomposable resin than the central varnish prepared in the varnish preparation step is further formed on the outer peripheral surface of the conductor 2 on which the central portion pore layer 3b is formed. After applying the side varnish, the outer surface side pore layer 3c is formed outside the central pore layer 3b formed on the conductor 2 by baking. At the time of baking, the thermally decomposable resin contained in the outer surface side varnish is thermally decomposed, and pores 4 are generated in portions where the thermally decomposable resin exists in the outer surface side pore layer 3c.

外面側用ワニスの一度の塗布及び焼付けにより所望の厚さの外面側気孔層3cが形成できない場合、外面側気孔層3cが所定の厚さとなるまで、上記外面側用ワニスの塗布及び焼付けを繰り返し行う。所定の厚さの外面側気孔層3cを形成することにより、当該絶縁電線1が得られる。   When the outer surface side pore layer 3c having a desired thickness cannot be formed by one application and baking of the outer surface side varnish, the application and baking of the outer surface side varnish are repeated until the outer surface side pore layer 3c reaches a predetermined thickness. Do. The insulated wire 1 is obtained by forming the outer surface side pore layer 3c having a predetermined thickness.

当該絶縁電線1の絶縁層3の気孔率は、図2に示すように内面側気孔層3aの気孔率と外面側気孔層3cの気孔率とが異なるので、内面側用ワニス及び外面側用ワニスを個別に調整したが、内面側気孔層3aの気孔率と外面側気孔層3cの気孔率とが等しい絶縁電線を製造する場合には、内面側気孔層3a及び外面側気孔層3cを形成するワニスとして同種のものを共用できる。この場合、調整するワニスの種類が減るので、絶縁電線の製造コストを低減できる。   Since the porosity of the insulating layer 3 of the insulated wire 1 is different from the porosity of the inner surface side pore layer 3a and the porosity of the outer surface side pore layer 3c as shown in FIG. 2, the inner surface side varnish and the outer surface side varnish. In the case of manufacturing an insulated wire in which the porosity of the inner surface side pore layer 3a is equal to the porosity of the outer surface side pore layer 3c, the inner surface side pore layer 3a and the outer surface side pore layer 3c are formed. The same kind of varnish can be shared. In this case, since the kind of varnish to adjust decreases, the manufacturing cost of an insulated wire can be reduced.

[利点]
当該絶縁電線1は、絶縁層3が気孔4を含むことにより、絶縁層3の誘電率を低下できコロナ放電開始電圧を向上できる。また、当該絶縁電線1は、絶縁層3の気孔率が、厚さ方向中央部の中央部気孔層3bで最大であり、内面側気孔層3a及び外面側気孔層3cで小さくなるので、絶縁層3の内面側及び外面側において気孔4を含むことによる機械的強度の抑制作用を低減でき、内面側及び外面側における機械的強度が低下し難く、絶縁層3全体としての機械的強度が維持できる。
[advantage]
In the insulated wire 1, when the insulating layer 3 includes the pores 4, the dielectric constant of the insulating layer 3 can be reduced and the corona discharge starting voltage can be improved. In addition, the insulated wire 1 has the insulating layer 3 having a maximum porosity in the central pore layer 3b at the central portion in the thickness direction, and becomes smaller in the inner pore layer 3a and the outer pore layer 3c. 3 can reduce the mechanical strength suppressing effect by including the pores 4 on the inner surface side and the outer surface side, the mechanical strength on the inner surface side and the outer surface side is hardly lowered, and the mechanical strength of the insulating layer 3 as a whole can be maintained. .

また、当該絶縁電線1は、絶縁層3が、気孔率の異なる内面側気孔層3a、中央部気孔層3b及び外面側気孔層3cから構成されるので、各気孔層の厚さの調整が容易であり、絶縁層の誘電率及び機械的強度をバランスよく調整し易い。   Further, in the insulated wire 1, since the insulating layer 3 is composed of the inner surface side pore layer 3a, the central portion pore layer 3b and the outer surface side pore layer 3c having different porosities, the thickness of each pore layer can be easily adjusted. It is easy to adjust the dielectric constant and mechanical strength of the insulating layer in a well-balanced manner.

[第二実施形態]
図3の当該絶縁電線11は、線状の導体12と、この導体12の外周面側に被覆される絶縁層13とを備える。絶縁層13は気孔14を含み、絶縁層13の気孔率は、厚さ方向中央部で最大となり、厚さ方向内面側及び外面側で小さくなるよう連続的に傾斜する。
[Second Embodiment]
The insulated wire 11 in FIG. 3 includes a linear conductor 12 and an insulating layer 13 that covers the outer peripheral surface of the conductor 12. The insulating layer 13 includes pores 14, and the porosity of the insulating layer 13 is continuously inclined so as to be maximized at the central portion in the thickness direction and to be small on the inner surface side and the outer surface side in the thickness direction.

図3の当該絶縁電線11は、図1の絶縁電線1とは絶縁層13の構成が異なる。当該絶縁電線11の導体12は、絶縁電線1の導体2と同様のものを用いることができるので説明を省略する。   The insulated wire 11 in FIG. 3 differs from the insulated wire 1 in FIG. 1 in the configuration of the insulating layer 13. Since the conductor 12 of the insulated wire 11 can be the same as the conductor 2 of the insulated wire 1, the description thereof is omitted.

<絶縁層>
上記絶縁層13は、図3に示すように、複数の気孔14を含んでいる。絶縁層13の気孔率は、図4に示すように、厚さ方向に連続的に傾斜し、厚さ方向中央部で最大となり、内面側及び外面側で小さくなっている。
<Insulating layer>
The insulating layer 13 includes a plurality of pores 14 as shown in FIG. As shown in FIG. 4, the porosity of the insulating layer 13 is continuously inclined in the thickness direction, maximized at the central portion in the thickness direction, and decreased on the inner surface side and the outer surface side.

絶縁層13の平均厚さの下限としては、30μmが好ましく、50μmがより好ましい。一方、絶縁層13の平均厚さの上限としては、100μmが好ましく、80μmがより好ましい。絶縁層13の平均厚さが上記下限に満たない場合、絶縁層13に破れが生じ、導体12の絶縁が不十分となるおそれがある。逆に、絶縁層13の平均厚さが上記上限を超える場合、当該絶縁電線11を用いて形成されるコイル等の体積効率が低くなるおそれがある。   As a minimum of average thickness of insulating layer 13, 30 micrometers is preferred and 50 micrometers is more preferred. On the other hand, the upper limit of the average thickness of the insulating layer 13 is preferably 100 μm, and more preferably 80 μm. If the average thickness of the insulating layer 13 is less than the above lower limit, the insulating layer 13 may be broken and insulation of the conductor 12 may be insufficient. Conversely, when the average thickness of the insulating layer 13 exceeds the above upper limit, the volume efficiency of a coil or the like formed using the insulated wire 11 may be lowered.

上記絶縁層13を形成する樹脂組成物の主成分の樹脂としては、上述した図1の絶縁層3の樹脂として挙げたものと同種のものを用いることができる。また、上記絶縁層13を形成する樹脂組成物に、絶縁層3を形成する樹脂組成物に含有させるものとして挙げた硬化剤と同種のものを含有させてもよい。   As the main component resin of the resin composition forming the insulating layer 13, the same type of resin as that described above as the resin of the insulating layer 3 in FIG. 1 can be used. In addition, the resin composition forming the insulating layer 13 may contain the same type of curing agent as that included in the resin composition forming the insulating layer 3.

絶縁層13の厚さ方向中央部の平均気孔率の下限としては、5体積%が好ましく、10体積%がより好ましい。一方、上記厚さ方向中央部の平均気孔率の上限としては、60体積%が好ましく、50体積%がより好ましい。上記厚さ方向中央部の平均気孔率が上記下限未満の場合、絶縁層13の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記厚さ方向中央部の平均気孔率が上記上限を超える場合、絶縁層13の十分な機械的強度を確保できないおそれがある。ここで「厚さ方向中央部」とは、絶縁層13の厚さ方向中心から絶縁層13の平均厚さの30%以内の領域を意味し、「厚さ方向中央部の平均気孔率」とは、上記厚さ方向中央部として規定される領域内の気孔率の平均値である。   The lower limit of the average porosity at the central portion in the thickness direction of the insulating layer 13 is preferably 5% by volume, and more preferably 10% by volume. On the other hand, the upper limit of the average porosity at the central portion in the thickness direction is preferably 60% by volume, more preferably 50% by volume. When the average porosity in the central portion in the thickness direction is less than the lower limit, the dielectric constant of the insulating layer 13 is not sufficiently lowered, and the corona discharge start voltage may not be sufficiently improved. On the contrary, when the average porosity in the central portion in the thickness direction exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 13 cannot be ensured. Here, the “thickness direction central portion” means a region within 30% of the average thickness of the insulating layer 13 from the thickness direction center of the insulating layer 13, and “the average porosity in the thickness direction central portion” is Is an average value of the porosity in the region defined as the central portion in the thickness direction.

絶縁層13の内面側の気孔率の下限としては、1体積%が好ましく、2体積%がより好ましい。一方、上記内面側の気孔率の上限としては、10体積%が好ましく、8体積%がより好ましい。上記内面側の気孔率が上記下限未満の場合、絶縁層13の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記内面側の気孔率が上記上限を超える場合、絶縁層13の十分な機械的強度を確保できないおそれがある。ここで「内面側の気孔率」とは、絶縁層13の内面から厚さ方向に絶縁層13の平均厚さの10%以内の領域における平均気孔率を意味する。   The lower limit of the porosity on the inner surface side of the insulating layer 13 is preferably 1% by volume, and more preferably 2% by volume. On the other hand, the upper limit of the porosity on the inner surface side is preferably 10% by volume, more preferably 8% by volume. When the porosity on the inner surface side is less than the lower limit, the dielectric constant of the insulating layer 13 is not sufficiently lowered, and the corona discharge start voltage may not be sufficiently improved. On the other hand, when the porosity on the inner surface side exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 13 cannot be ensured. Here, “the porosity on the inner surface side” means the average porosity in a region within 10% of the average thickness of the insulating layer 13 in the thickness direction from the inner surface of the insulating layer 13.

絶縁層13の外面側の気孔率の下限としては、1体積%が好ましく、2体積%がより好ましい。一方、上記外面側のの気孔率の上限としては、10体積%が好ましく、8体積%がより好ましい。上記外面側の気孔率が上記下限未満の場合、絶縁層13の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、上記外面側の気孔率が上記上限を超える場合、絶縁層13の十分な機械的強度を確保できないおそれがある。ここで「外面側の気孔率」とは、絶縁層13の外面から厚さ方向に絶縁層13の平均厚さの10%以内の領域における平均気孔率を意味する。   As a minimum of the porosity of the outer surface side of insulating layer 13, 1 volume% is preferred and 2 volume% is more preferred. On the other hand, the upper limit of the porosity on the outer surface side is preferably 10% by volume, more preferably 8% by volume. When the porosity on the outer surface side is less than the lower limit, the dielectric constant of the insulating layer 13 is not sufficiently lowered, and the corona discharge start voltage may not be sufficiently improved. On the contrary, when the porosity on the outer surface side exceeds the upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 13 cannot be ensured. Here, “the porosity on the outer surface side” means an average porosity in a region within 10% of the average thickness of the insulating layer 13 in the thickness direction from the outer surface of the insulating layer 13.

気孔14の平均径の下限としては、0.1μmが好ましく、1μmがより好ましい。一方、上記気孔14の平均径の上限としては、10μmが好ましく、8μmがより好ましい。上記気孔14の平均径が上記下限未満の場合、気孔14の生成が困難となるおそれがある。逆に、上記気孔14の平均径が上記上限を超える場合、気孔率を厚さ方向に連続的に傾斜させ難くなり、誘電率の分布に偏りが生じ易くなるためコロナ放電開始電圧が向上し難くなるおそれがある。   The lower limit of the average diameter of the pores 14 is preferably 0.1 μm, and more preferably 1 μm. On the other hand, the upper limit of the average diameter of the pores 14 is preferably 10 μm, and more preferably 8 μm. When the average diameter of the pores 14 is less than the lower limit, it may be difficult to generate the pores 14. On the other hand, when the average diameter of the pores 14 exceeds the upper limit, it is difficult to continuously incline the porosity in the thickness direction and the bias distribution tends to be biased, so that the corona discharge starting voltage is difficult to improve. There is a risk.

[絶縁電線の製造方法]
次に、当該絶縁電線11の製造方法について説明する。当該絶縁電線11は、例えば第一実施形態の絶縁電線1の製造方法と同様の方法で製造することができる。
[Insulated wire manufacturing method]
Next, a method for manufacturing the insulated wire 11 will be described. The said insulated wire 11 can be manufactured by the method similar to the manufacturing method of the insulated wire 1 of 1st embodiment, for example.

具体的には、上記ワニス調製工程において、熱分解性樹脂の含有量が異なる多種類のワニスを調製する。これらのワニスを調製する際、いずれのワニスについても、絶縁層を形成する樹脂として同種の樹脂を用いる。   Specifically, in the varnish preparation step, various types of varnishes having different pyrolyzable resin contents are prepared. When preparing these varnishes, the same kind of resin is used as the resin for forming the insulating layer for any varnish.

次に、上記内面側気孔層形成工程、中央部気孔層形成工程及び外面側気孔層形成工程と同様の方法により、異なるワニスで導線12の外周側に複数の層を順に形成していく。このとき、熱分解性樹脂の含有量の差が小さいワニスを順に用いて上記複数の層を形成していく。各ワニスは、絶縁層を形成する樹脂として同種の樹脂を用いているので、導線12の外周側に形成された上記複数の層は、焼付けの際に一体となり、図3に示す当該絶縁電線11が得られる。   Next, a plurality of layers are sequentially formed on the outer peripheral side of the conducting wire 12 with different varnishes by the same method as in the inner surface side pore layer forming step, the central portion pore layer forming step, and the outer surface side pore layer forming step. At this time, the plurality of layers are formed by sequentially using varnishes having a small difference in the content of the thermally decomposable resin. Since each varnish uses the same kind of resin as the resin for forming the insulating layer, the plurality of layers formed on the outer peripheral side of the conducting wire 12 are integrated during baking, and the insulated wire 11 shown in FIG. Is obtained.

[利点]
当該絶縁電線11は、絶縁層13の気孔率が厚さ方向に連続的に傾斜するので、絶縁層13の厚さ方向において機械的強度が断続的に変化しないので、絶縁層13の機械的強度を維持し易い。
[advantage]
In the insulated wire 11, since the porosity of the insulating layer 13 is continuously inclined in the thickness direction, the mechanical strength does not change intermittently in the thickness direction of the insulating layer 13. Easy to maintain.

[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The

つまり、上記第一実施形態においては、絶縁層が3の気孔層で構成される当該絶縁電線について説明したが、気孔率が中央部で最大となり、段階的に内面側及び外面側で小さくなるよう各気孔層が配設されるのであれば、絶縁層が4層以上の気孔層で構成される当該絶縁電線としてもよい。絶縁層を構成する気孔層の数をより多くすることで、絶縁層全体の誘電率及び機械的強度をより細かく調整し易くなる。また、厚さ方向で気孔率の異なる気孔層を用いて、絶縁層が1層又は2層の気孔層で構成される絶縁電線としてもよい。   In other words, in the first embodiment, the insulated wire is described in which the insulating layer is composed of 3 pore layers. However, the porosity is maximized at the central portion and gradually decreases on the inner surface side and outer surface side. As long as each pore layer is provided, the insulated wire may be an insulated wire including four or more pore layers. By increasing the number of pore layers constituting the insulating layer, it becomes easier to finely adjust the dielectric constant and mechanical strength of the entire insulating layer. Moreover, it is good also as an insulated wire with which an insulating layer is comprised by the porous layer of one layer or two layers using the pore layer from which a porosity differs in thickness direction.

また、上記実施形態では、熱分解性樹脂を用いて気孔を生成させる製造方法について説明したが、熱分解性樹脂の代わりに発泡剤や熱膨張性マイクロカプセルをワニスに混合し、発泡剤や熱膨張性マイクロカプセルにより気孔を形成させる製造方法としてもよい。例えば上記製造方法において、絶縁層を形成する樹脂を溶剤で希釈したものを熱膨張性マイクロカプセルと混合して各気孔層用のワニスを調製し、これらのワニスの導体の外周面への塗布及び焼付けにより絶縁層を形成してもよい。焼付けの際、ワニスに含まれる熱膨張性マイクロカプセルが膨張又は発泡し、熱膨張性マイクロカプセルによって気孔が形成される。   In the above embodiment, the production method for generating pores using a thermally decomposable resin has been described. However, instead of the thermally decomposable resin, a foaming agent or a thermally expandable microcapsule is mixed with the varnish, and the foaming agent or heat It is good also as a manufacturing method which forms pores by an expandable microcapsule. For example, in the above manufacturing method, a resin for forming an insulating layer diluted with a solvent is mixed with a thermally expandable microcapsule to prepare varnishes for each pore layer, and these varnishes are applied to the outer peripheral surface of a conductor and An insulating layer may be formed by baking. During baking, the thermally expandable microcapsules contained in the varnish expand or foam, and pores are formed by the thermally expandable microcapsules.

上記熱膨張性マイクロカプセルは、熱膨張剤からなる芯材(内包物)と、この芯材を包む外殻とを有する。熱膨張性マイクロカプセルの熱膨張剤は、加熱により膨張又は気体を発生するものであればよく、その原理は問わない。熱膨張性マイクロカプセルの熱膨張剤としては、例えば低沸点液体、化学発泡剤又はこれらの混合物を使用することができる。   The thermally expandable microcapsule has a core material (inner package) made of a thermal expansion agent and an outer shell that wraps the core material. The thermal expansion agent of the heat-expandable microcapsules may be any one that expands or generates a gas by heating, and the principle thereof does not matter. As the thermal expansion agent of the thermally expandable microcapsule, for example, a low boiling point liquid, a chemical foaming agent, or a mixture thereof can be used.

上記低沸点液体としては、例えばブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン等のアルカンや、トリクロロフルオロメタン等のフレオン類などが好適に用いられる。また、上記化学発泡剤としては、加熱によりNガスを発生するアゾビスイソブチロニトリル等の熱分解性を有する物質が好適に用いられる。 As the low boiling point liquid, for example, alkanes such as butane, i-butane, n-pentane, i-pentane and neopentane, and freons such as trichlorofluoromethane are preferably used. As the chemical foaming agent, a material having thermal decomposability such as azobisisobutyronitrile that generates N 2 gas by heating is preferably used.

上記熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度、つまり低沸点液体の沸点又は化学発泡剤の熱分解温度としては、後述する熱膨張性マイクロカプセルの外殻の軟化温度以上とされる。より詳しくは、熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の下限としては、60℃が好ましく、70℃がより好ましい。一方、熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の上限としては、200℃が好ましく、150℃がより好ましい。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記下限に満たない場合、当該絶縁電線の製造時、輸送時又は保管時に熱膨張性マイクロカプセルが意図せず膨張してしまうおそれがある。逆に、熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記上限を超える場合、熱膨張性マイクロカプセルを膨張させるために必要なエネルギーコストが過大となるおそれがある。   The expansion start temperature of the thermal expansion agent of the thermal expansion microcapsule, that is, the boiling point of the low-boiling liquid or the thermal decomposition temperature of the chemical foaming agent is set to be equal to or higher than the softening temperature of the outer shell of the thermal expansion microcapsule described later. More specifically, the lower limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 60 ° C, more preferably 70 ° C. On the other hand, the upper limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 200 ° C, and more preferably 150 ° C. When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is less than the lower limit, the thermally expandable microcapsule may expand unintentionally during production, transportation or storage of the insulated wire. On the other hand, when the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule exceeds the above upper limit, the energy cost required for expanding the thermally expandable microcapsule may be excessive.

一方、上記熱膨張性マイクロカプセルの外殻は、上記熱膨張剤の膨張時に破断することなく膨張し、発生したガスを包含するマイクロバルーンを形成できる延伸性を有する材質から形成される。この熱膨張性マイクロカプセルの外殻を形成する材質としては、通常は、熱可塑性樹脂等の高分子を主成分とする樹脂組成物が用いられる。   On the other hand, the outer shell of the thermally expandable microcapsule is formed of a stretchable material that can expand without breaking when the thermally expandable agent expands to form a microballoon containing the generated gas. As a material for forming the outer shell of the thermally expandable microcapsule, a resin composition mainly composed of a polymer such as a thermoplastic resin is usually used.

上記熱膨張性マイクロカプセルの外殻の主成分とされる熱可塑性樹脂としては、例えば塩化ビニル、塩化ビニリデン、アクリロニトリル、アクリル酸、メタアクリル酸、アクリレート、メタアクリレート、スチレン等の単量体から形成された重合体、あるいは2種以上の単量体から形成された共重合体が好適に用いられる。好ましい熱可塑性樹脂の一例としては、塩化ビニリデン−アクリロニトリル共重合体が挙げられ、この場合の熱膨張剤の膨張開始温度は、80℃以上150℃以下とされる。   Examples of the thermoplastic resin used as the main component of the outer shell of the thermally expandable microcapsule are formed from monomers such as vinyl chloride, vinylidene chloride, acrylonitrile, acrylic acid, methacrylic acid, acrylate, methacrylate, and styrene. A polymer formed from two or more types of monomers is preferably used. An example of a preferred thermoplastic resin is a vinylidene chloride-acrylonitrile copolymer. In this case, the expansion start temperature of the thermal expansion agent is 80 ° C. or higher and 150 ° C. or lower.

また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば上記気孔を中空フィラーで形成させた構成としてもよい。上記気孔を中空フィラーで形成させる場合、例えば絶縁層を形成する樹脂組成物と中空フィラーとを混練し、押出し成形によりこの混練物を導体に被覆することで当該絶縁電線を製造できる。   Moreover, although the said embodiment demonstrated the structure in which the pore contained in an insulating layer was formed by thermal decomposition of a thermally decomposable resin, it is good also as a structure which formed the said pore with the hollow filler, for example. In the case where the pores are formed with a hollow filler, for example, the insulated wire can be produced by kneading the resin composition forming the insulating layer and the hollow filler and coating the kneaded material on the conductor by extrusion molding.

中空フィラーにより気孔を形成する場合、この中空フィラーの内部の空洞部分が絶縁層に含まれる気孔となる。中空フィラーとしては、例えばシラスバルーン、ガラスバルーン、セラミックバルーン、有機樹脂バルーン等が挙げられる。当該絶縁電線に可撓性が要求される場合、これらの中で有機樹脂バルーンが好ましい。また、機械的強度が重視される当該絶縁電線の場合、入手が容易で破損し難いという点からガラスバルーンが好ましい。   When the pores are formed by the hollow filler, the hollow portion inside the hollow filler becomes the pores included in the insulating layer. Examples of the hollow filler include shirasu balloons, glass balloons, ceramic balloons, and organic resin balloons. When flexibility is required for the insulated wire, an organic resin balloon is preferable among them. In the case of the insulated wire where mechanical strength is important, a glass balloon is preferable because it is easily available and is not easily damaged.

また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば上記気孔を相分離法を用いて形成させた構成としてもよい。相分離法を用いる一例として、絶縁層を形成する樹脂として熱可塑性樹脂を用い、溶剤と均質混合して加熱溶融状態で導体の外周面へ塗布する。そして、水等の非溶解性液体への浸漬又は空気中での冷却により樹脂と溶媒とを相分離させ、溶媒を別の揮発性溶剤で抽出除去することにより気孔が形成される。   Moreover, although the said embodiment demonstrated the structure in which the pore contained in an insulating layer was formed by thermal decomposition of a thermally decomposable resin, it is good also as a structure which formed the said pore using the phase-separation method, for example. As an example of using the phase separation method, a thermoplastic resin is used as the resin for forming the insulating layer, and it is homogeneously mixed with a solvent and applied to the outer peripheral surface of the conductor in a heated and melted state. Then, the resin and the solvent are phase-separated by immersion in an insoluble liquid such as water or cooling in air, and the pores are formed by extracting and removing the solvent with another volatile solvent.

また、例えば当該絶縁電線において、導体と絶縁層との間に内側介在層等のさらなる層が設けられてもよい。内側介在層は、層間の密着性を高めたり絶縁層の低誘電率化を補強するために設けられる層であり、例えば公知の樹脂組成物により形成することができる。   For example, in the insulated wire, a further layer such as an inner intervening layer may be provided between the conductor and the insulating layer. The inner intervening layer is a layer provided for enhancing the adhesion between the layers or reinforcing the lower dielectric constant of the insulating layer, and can be formed of, for example, a known resin composition.

導体と絶縁層との間に内側介在層を設ける場合、この内側介在層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、内側介在層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体と絶縁層との間に内側介在層を形成することで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、当該絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。   When an inner intervening layer is provided between the conductor and the insulating layer, the resin composition forming the inner intervening layer is, for example, one or more kinds of resins selected from polyimide, polyamideimide, polyesterimide, polyester and phenoxy resin. It is good to include. In addition, the resin composition forming the inner intervening layer may contain an additive such as an adhesion improver. By forming the inner intervening layer between the conductor and the insulating layer with such a resin composition, it is possible to improve the adhesion between the conductor and the insulating layer. Properties such as flexibility, abrasion resistance, scratch resistance, and workability can be effectively enhanced.

また、内側介在層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、内側介在層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。   Further, the resin composition forming the inner intervening layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, and the like together with the resin. Moreover, you may use a commercially available liquid composition (insulation varnish) as each resin contained in the resin composition which forms an inner intervening layer.

また、内側介在層を形成する樹脂組成物として、上述した絶縁層の樹脂組成物の主成分として挙げた樹脂と同種のものを主成分として用いてもよい。さらに、内側介在層は、複数の気孔を含んでいてもよい。内側介在層が複数の気孔を含むことにより、内側介在層も絶縁層の誘電率の低下に寄与できる。ただし、この場合、内側介在層の気孔率は絶縁層の気孔率よりも小さい方がより好ましい。また、内側介在層は、複数の層で形成されていてもよく、それらの複数の層の気孔率が互いに異なるものとしてもよい。   Further, as the resin composition for forming the inner intervening layer, the same kind of resin as the main component of the resin composition of the insulating layer described above may be used as the main component. Furthermore, the inner intervening layer may include a plurality of pores. When the inner intervening layer includes a plurality of pores, the inner intervening layer can also contribute to a decrease in the dielectric constant of the insulating layer. However, in this case, the porosity of the inner intervening layer is more preferably smaller than the porosity of the insulating layer. The inner intervening layer may be formed of a plurality of layers, and the porosity of the plurality of layers may be different from each other.

また、例えば当該絶縁電線において、絶縁層の外周面側にさらに絶縁性を有する保護層を積層してもよい。保護層を形成する樹脂組成物としては、上述した絶縁層の樹脂組成物の主成分として挙げた樹脂と同種のものを主成分とするものを用いることができる。保護層は、気孔を含んでいてもよいし、気孔を含んでいなくてもよい。保護層が気孔を含む場合、保護層も絶縁層の誘電率の低下に寄与できる。ただし、この場合、保護層の気孔率は絶縁層の気孔率よりも小さい方がより好ましい。一方、保護層が気孔を含まない場合、絶縁性に優れるので当該絶縁電線の絶縁性がさらに向上する。また、保護層は、気孔を含む複数の層で形成されていてもよく、それらの複数の層の気孔率が互いに異なるものとしてもよい。   Further, for example, in the insulated wire, a protective layer having an insulating property may be further laminated on the outer peripheral surface side of the insulating layer. As a resin composition which forms a protective layer, what has as a main component the same kind as resin mentioned as a main component of the resin composition of the insulating layer mentioned above can be used. The protective layer may contain pores or may not contain pores. When the protective layer includes pores, the protective layer can also contribute to a decrease in the dielectric constant of the insulating layer. In this case, however, the porosity of the protective layer is more preferably smaller than the porosity of the insulating layer. On the other hand, when the protective layer does not include pores, the insulation of the insulated wire is further improved since the insulation is excellent. Further, the protective layer may be formed of a plurality of layers including pores, and the porosity of the plurality of layers may be different from each other.

本発明に係る絶縁電線は、機械的強度の維持及び低誘電率化を両立できるので、コイルやモーター等を形成するために好適に利用することができる。   Since the insulated wire according to the present invention can maintain both mechanical strength and a low dielectric constant, it can be suitably used to form a coil, a motor, and the like.

1、11 絶縁電線
2、12 導体
3、13 絶縁層
3a 内面側気孔層
3b 中央部気孔層
3c 外面側気孔層
4、14 気孔
DESCRIPTION OF SYMBOLS 1,11 Insulated electric wire 2,12 Conductor 3,13 Insulating layer 3a Inner surface side pore layer 3b Center part pore layer 3c Outer surface side pore layer 4,14 Pore

Claims (6)

線状の導体と、この導体の外周面側に被覆される絶縁層とを備える絶縁電線であって、
上記絶縁層が気孔を含み、
上記絶縁層の気孔率が、厚さ方向中央部で最大となり、内面側及び外面側で小さくなる絶縁電線。
An insulated wire comprising a linear conductor and an insulating layer coated on the outer peripheral surface side of the conductor,
The insulating layer includes pores;
An insulated wire in which the porosity of the insulating layer is maximized at the central portion in the thickness direction and decreases on the inner surface side and the outer surface side.
上記絶縁層の気孔率が連続的に傾斜する請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the porosity of the insulating layer is continuously inclined. 上記絶縁層が厚さ方向に区分される3以上の気孔層から構成され、
これらの3以上の気孔層の気孔率が段階的に変化する請求項1に記載の絶縁電線。
The insulating layer is composed of three or more pore layers divided in the thickness direction,
The insulated wire according to claim 1, wherein the porosity of these three or more pore layers changes stepwise.
上記3以上の気孔層のうち厚さ方向中央部の気孔層の気孔率が5体積%以上80体積%以下であり、最内面側及び最外面側の気孔層の気孔率が0.01体積%以上10体積%以下である請求項3に記載の絶縁電線。   Among the three or more pore layers, the porosity of the pore layer at the central portion in the thickness direction is 5% by volume or more and 80% by volume or less, and the porosity of the pore layer on the innermost surface side and outermost surface side is 0.01% by volume. The insulated wire according to claim 3, wherein the content is 10% by volume or less. 上記気孔の平均径が、0.1μm以上10μm以下である請求項1から請求項4のいずれか1項に記載の絶縁電線。   The insulated wire according to any one of claims 1 to 4, wherein an average diameter of the pores is 0.1 µm or more and 10 µm or less. 上記絶縁層の平均厚さが、15μm以上300μm以下である請求項1から請求項5のいずれか1項に記載の絶縁電線。   The insulated wire according to any one of claims 1 to 5, wherein an average thickness of the insulating layer is 15 µm or more and 300 µm or less.
JP2014226529A 2014-11-06 2014-11-06 Insulated wire Active JP6587383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226529A JP6587383B2 (en) 2014-11-06 2014-11-06 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226529A JP6587383B2 (en) 2014-11-06 2014-11-06 Insulated wire

Publications (2)

Publication Number Publication Date
JP2016091865A true JP2016091865A (en) 2016-05-23
JP6587383B2 JP6587383B2 (en) 2019-10-09

Family

ID=56016312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226529A Active JP6587383B2 (en) 2014-11-06 2014-11-06 Insulated wire

Country Status (1)

Country Link
JP (1) JP6587383B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016072425A1 (en) * 2014-11-07 2017-08-24 古河電気工業株式会社 Insulated wire and rotating electrical machine
WO2018180080A1 (en) * 2017-03-31 2018-10-04 住友電気工業株式会社 Insulated electric cable
WO2018186259A1 (en) * 2017-04-03 2018-10-11 住友電気工業株式会社 Insulated electric wire
EP4156470A1 (en) 2021-09-27 2023-03-29 Hitachi Metals, Ltd. Insulated electrical wire and method of manufacturing insulated electrical wire
JP7248179B1 (en) 2021-09-27 2023-03-29 株式会社プロテリアル Insulated wire and method for manufacturing insulated wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111633A (en) * 1992-09-26 1994-04-22 Totoku Electric Co Ltd Foamed fluororesin coated electric wire and manufacture thereof
JP2010113835A (en) * 2008-11-04 2010-05-20 Furukawa Electric Co Ltd:The Cable coated with foamed sheath and method of manufacturing the same
JP2012224714A (en) * 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd Insulating varnish for low dielectric constant and insulated wire using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111633A (en) * 1992-09-26 1994-04-22 Totoku Electric Co Ltd Foamed fluororesin coated electric wire and manufacture thereof
JP2010113835A (en) * 2008-11-04 2010-05-20 Furukawa Electric Co Ltd:The Cable coated with foamed sheath and method of manufacturing the same
JP2012224714A (en) * 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd Insulating varnish for low dielectric constant and insulated wire using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016072425A1 (en) * 2014-11-07 2017-08-24 古河電気工業株式会社 Insulated wire and rotating electrical machine
WO2018180080A1 (en) * 2017-03-31 2018-10-04 住友電気工業株式会社 Insulated electric cable
JPWO2018180080A1 (en) * 2017-03-31 2020-02-06 住友電気工業株式会社 Insulated wire
JP7016860B2 (en) 2017-03-31 2022-02-07 住友電気工業株式会社 Insulated wire
WO2018186259A1 (en) * 2017-04-03 2018-10-11 住友電気工業株式会社 Insulated electric wire
CN110462755A (en) * 2017-04-03 2019-11-15 住友电气工业株式会社 Insulated electric conductor
JPWO2018186259A1 (en) * 2017-04-03 2020-02-13 住友電気工業株式会社 Insulated wire
EP4156470A1 (en) 2021-09-27 2023-03-29 Hitachi Metals, Ltd. Insulated electrical wire and method of manufacturing insulated electrical wire
JP7248179B1 (en) 2021-09-27 2023-03-29 株式会社プロテリアル Insulated wire and method for manufacturing insulated wire
JP2023048108A (en) * 2021-09-27 2023-04-06 株式会社プロテリアル Insulated wire and method for manufacturing insulated wire

Also Published As

Publication number Publication date
JP6587383B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6587383B2 (en) Insulated wire
JP2018133339A (en) Insulated electric wire
US10991477B2 (en) Insulated electrical cable
JP2012224714A (en) Insulating varnish for low dielectric constant and insulated wire using the same
WO2018180080A1 (en) Insulated electric cable
WO2018174113A1 (en) Insulated wire
JP2017016840A (en) Insulation wire and wound wire bundle
JP2017016862A (en) Insulation wire
JP7214625B2 (en) insulated wire
JP6613163B2 (en) Insulated wire
JP6781569B2 (en) Insulated wire and manufacturing method of insulated wire
WO2018037636A1 (en) Insulated wire and method for producing insulated wire
JP2016046061A (en) Insulation wire and manufacturing method of insulation wire
CN114008139B (en) Resin composition, method for producing resin composition, and insulated wire
JP2016110847A (en) Insulated electric wire and method for producing insulated electric wire
JP2018170299A (en) Insulated wire
JP6496143B2 (en) Insulated wire
JP2017045662A (en) Insulated wire and varnish for forming insulating layer
JP6690986B2 (en) Insulated wire and method of manufacturing insulated wire
JP2016225046A (en) Insulation wire
JP2016110801A (en) Insulated electric wire and method for producing insulated electric wire
JP2018203840A (en) Insulation varnish
JP2017212199A (en) Insulated wire, resin composition for forming insulating layer, and method for producing insulated wire
CN116705391A (en) Insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180816

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190910

R150 Certificate of patent or registration of utility model

Ref document number: 6587383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250