JP2016090461A - Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor - Google Patents
Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor Download PDFInfo
- Publication number
- JP2016090461A JP2016090461A JP2014226941A JP2014226941A JP2016090461A JP 2016090461 A JP2016090461 A JP 2016090461A JP 2014226941 A JP2014226941 A JP 2014226941A JP 2014226941 A JP2014226941 A JP 2014226941A JP 2016090461 A JP2016090461 A JP 2016090461A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- vibration
- model
- sensory
- monitoring target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は監視対象の官能検査を模した異常検知方法及びそのシステムに係り、特に、監視対象の音の異常診断官能モデルの構築方法及びそのシステムに関するものである。 The present invention relates to an abnormality detection method and system imitating sensory inspection of a monitoring target, and more particularly to a method and system for constructing an abnormal diagnosis sensory model of a sound to be monitored.
従来、例えば、下記特許文献1や下記非特許文献1〜3に示されるような、鉄道車両の状態監視システムが提案されている。 Conventionally, for example, a railway vehicle state monitoring system has been proposed as shown in Patent Document 1 and Non-Patent Documents 1 to 3 below.
監視対象となる鉄道車両などの走行装置の不具合は、大きな事故につながる可能性がある。新幹線などの鉄道車両の検査では、専用工具による締め付けトルク管理以外に、打音検査と呼ばれるボルトの頭を専用のハンマーで叩き、その時の音により検査員がボルトの緩みが無いかをチェックする方法も利用されている。この方法では、経験のある検査員は音の高低ばかりでなく音の減衰など様々な情報を使い不具合を判断している。これに比べ、機械による異常検知方法は周波数毎の振幅だけを頼りにする。ここで、機械による検査においても人の行う官能検査のように音の減衰など様々な情報を使い多元的に判断をするようにできれば、今以上に機械による検知が期待でき、安全性の更なる向上が期待できる。そこで、本発明では基礎実験などにより異常時の音(振動)の規則性を見出し、精度の高い検査方法を確立するための基本部分を確立する。 A malfunction of a traveling device such as a railway vehicle to be monitored may lead to a major accident. In the inspection of railway cars such as Shinkansen, in addition to tightening torque management with a dedicated tool, the head of the bolt called a hammering test is struck with a dedicated hammer, and the inspector checks whether the bolt is loose by the sound at that time. Is also used. In this method, an experienced inspector uses various information such as sound attenuation as well as sound level to judge a defect. Compared to this, the abnormality detection method using a machine relies only on the amplitude for each frequency. Here, even in machine inspections, if it is possible to make multiple judgments using various information such as sound attenuation like human sensory inspections, machine detection can be expected more than ever, further improving safety. Improvement can be expected. Therefore, in the present invention, the basic part for establishing a highly accurate inspection method is found by finding the regularity of the sound (vibration) at the time of abnormality by a basic experiment or the like.
本発明は、上記した鉄道車両の状態監視において、監視対象の音の異常診断官能モデルを加味し、統合的に判断し、異常診断の精度を高めた、音の異常診断官能モデルの構築方法及びそのシステムを提供することを目的とする。 The present invention provides a method for constructing a sound abnormality diagnostic sensory model in which the abnormality diagnosis sensory model of the sound to be monitored is taken into account in the above-described state monitoring of the railway vehicle, and is integratedly determined to improve the accuracy of the abnormality diagnosis, and The purpose is to provide such a system.
本発明は、上記目的を達成するために、
〔1〕監視対象の音の異常診断官能モデルの構築方法において、
(a)監視対象の正常時と異常時の監視対象の音(振動)の違いを説明できる素となる音感因子群を明確にし、
(b)前記監視対象の音(振動)の音感因子群は,人間が感覚的に捉えられた音(振動)のモデルであり、これを機械が観測することができる物理特性と人間の音(振動)のモデルとを結びつけ、
(c)前記監視対象の正常時と異常時の音(振動)の違いを観察し、音(振動)の音感因子群で説明し、
(d)前記監視対象の同じ正常時と異常時の音(振動)の違いを物理特性群で説明するとどう説明できるか明らかにし、これらから同じものを音感因子群と物理特性群とで説明し、両者の対応を明らかにすることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the construction method of the abnormal diagnosis sensory model of the sound to be monitored,
(A) Clarify a group of sensation factors that can explain the difference in the sound (vibration) of the monitoring target when the monitoring target is normal and abnormal,
(B) The sound factor group of the sound (vibration) to be monitored is a model of sound (vibration) that is perceived by humans, and the physical characteristics that can be observed by the machine and the human sound ( Vibration) model,
(C) Observe the difference in sound (vibration) between the normal state and the abnormal state of the monitoring target, and explain the sound factor group of sound (vibration);
(D) It will be clarified how the difference in sound (vibration) between the normal state and the abnormal state of the monitoring target can be explained by the physical characteristic group, and the same thing will be explained by the sound factor group and the physical characteristic group. The feature is to clarify the correspondence between the two.
〔2〕上記〔1〕記載の監視対象の音の異常診断官能モデルの構築方法において、監視対象の同じ正常時と異常時の音(振動)の違いを物理特性群で説明し、明らかに同じものを音感因子群と物理特性群とで説明し、両者の対応を行うことを特徴とする。 [2] In the method of constructing the abnormal diagnosis sensory model for the sound to be monitored as described in [1] above, the difference in sound (vibration) between the normal state and the abnormal state of the monitored object is explained in terms of physical characteristics group, and clearly the same An object is explained by a sound factor group and a physical property group, and the correspondence between the two is performed.
〔3〕上記〔1〕記載の監視対象の音の異常診断官能モデルの構築方法において、前記監視対象がボルトの緩みであることを特徴とする。 [3] In the construction method of the abnormality diagnostic sensory model for the monitoring target sound described in [1], the monitoring target is a loose bolt.
〔4〕上記〔2〕記載の監視対象の音の異常診断官能モデルの構築方法において、前記ボルトが締まっている際には「かん高い音」が、前記ボルトが緩んでいる際には「鈍い音」がして、締め付けトルクの変化が音の変化に表れるので、この音の変化の度合いに基づいてトルクを判定し、音の変化と締め付けトルクの関係を調査することを特徴とする。 [4] In the method for constructing the abnormality diagnosis sensory model of the sound to be monitored as described in [2] above, “high sound” is generated when the bolt is tightened, and “dull sound” is generated when the bolt is loose. Therefore, since a change in tightening torque appears in a change in sound, the torque is determined based on the degree of change in the sound, and the relationship between the change in sound and the tightening torque is investigated.
〔5〕上記〔1〕記載の監視対象の音の異常診断官能モデルの構築方法において、前記音(振動)の物理特性が周波数、周波数のゆれ、振幅のゆれ、減衰、音の振幅比率、倍音以外の音であることを特徴とする。 [5] In the construction method of the abnormal diagnosis sensory model of the sound to be monitored as described in [1] above, the physical characteristics of the sound (vibration) are frequency, frequency fluctuation, amplitude fluctuation, attenuation, sound amplitude ratio, harmonic overtone. It is a sound other than.
〔6〕監視対象の音の異常診断官能モデルの構築システムにおいて、監視対象の音の異常診断官能モデルを加味し、統合的に判断し、異常診断の精度を高めることを特徴とする。 [6] In the system for constructing the abnormal diagnosis sensory model for the sound to be monitored, the abnormality diagnosis sensory model for the sound to be monitored is taken into consideration and integrated judgment is performed to improve the accuracy of the abnormality diagnosis.
〔7〕上記〔6〕記載の監視対象の音の異常診断官能モデルの構築システムにおいて、前記監視対象がボルトの緩みであることを特徴とする。 [7] In the system for constructing an abnormal diagnosis sensory model for a sound to be monitored as described in [6] above, the monitoring object is loosening of a bolt.
〔8〕上記〔6〕記載の監視対象の音の異常診断官能モデルの構築システムにおいて、前記監視対象が車輪の摩耗であることを特徴とする。 [8] In the system for constructing the abnormality diagnosis sensory model for the sound to be monitored according to [6] above, the monitoring object is wheel wear.
〔9〕上記〔6〕記載の監視対象の音の異常診断官能モデルの構築システムにおいて、前記監視対象がフレームの亀裂であることを特徴とする。 [9] In the system for constructing an abnormal diagnosis sensory model for a sound to be monitored as described in [6] above, the monitoring object is a crack in a frame.
本発明によれば、監視対象の音の異常診断官能モデルを加味し、統合的に判断し、異常診断の精度を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, the abnormality diagnosis sensory model of the sound to be monitored can be considered and integrated judgment can be performed, and the accuracy of abnormality diagnosis can be improved.
本発明の監視対象の音の異常診断官能モデルの構築方法は、
(a)監視対象の正常時と異常時の監視対象の音(振動)の違いを説明できる素となる音感因子群を明確にし、
(b)監視対象の音(振動)の音感因子群は,人間が感覚的に捉えられた音(振動)のモデルであり、これを機械による異常診断に応用するには、機械が観測することができる物理特性と人間の音(振動)モデルを結びつけ、
(c)正常時と異常時の音(振動)の違いを観察し、音(振動)の因子群で説明し、
(d)同じ正常時と異常時の音(振動)の違いを物理特性群で説明するとどう説明できるかを明らかにし、これらから同じものを音感因子群と物理特性群とで説明する。
The method for constructing the abnormal diagnosis sensory model of the sound to be monitored of the present invention is as follows.
(A) Clarify a group of sensation factors that can explain the difference in the sound (vibration) of the monitoring target when the monitoring target is normal and abnormal,
(B) The sound factor group of sound (vibration) to be monitored is a model of sound (vibration) that is sensed by humans. Linking physical properties that can be used with human sound (vibration) models,
(C) Observe the difference in sound (vibration) between normal and abnormal, and explain with sound (vibration) factor groups,
(D) It will be clarified how the difference in sound (vibration) between the normal time and the abnormal time can be explained by the physical characteristic group, and the same thing will be explained by the sound factor group and the physical characteristic group.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明ではボルトの緩み、車輪の摩耗、フレームの亀裂などを対象とするが、ここでは、ボルトの緩みを例にとり説明する。
1.監視対象の音(振動)の異常診断官能モデルの構築
1)監視対象の音(振動)の因子群の列挙
監視対象の正常時と異常時の音(振動)の違いを説明できる素となる音感因子群を明確にする。例えば、かん高い音、鈍い音など言葉で表現される正常時の音と異常時の音の違いを表す言葉を整理する。
2)物理特性群の列挙
音(振動)の因子群はいわば人間が感覚的に捉えられた音(振動)のモデルであり、これを機械による異常診断に応用するには、機械が観測することができる物理特性と人間の音(振動)モデルを結びつけることが必要となる。そこで、音(振動)の物理特性を列挙し、研究を進めながらこれらのどれを使うのか精査してゆく。
The present invention is intended for bolt loosening, wheel wear, cracks in the frame, and the like. Here, bolt loosening will be described as an example.
1. Construction of sensory model for abnormality diagnosis of sound (vibration) to be monitored 1) List of factor groups of sound (vibration) to be monitored Sound sense that can explain the difference between sound (vibration) when monitoring target is normal and abnormal Clarify factor groups. For example, words that express the difference between normal sound and abnormal sound expressed in words such as loud sounds and dull sounds are arranged.
2) Enumeration of physical characteristics groups Sound (vibration) factor groups are models of sounds (vibrations) that are perceived by humans. In order to apply them to machine abnormality diagnosis, machines must be observed. It is necessary to link physical characteristics that can be used with human sound (vibration) models. Therefore, the physical characteristics of sound (vibration) are enumerated, and we will investigate which of these will be used while conducting research.
監視対象の音(振動)の物理特性の例を以下に挙げる。 Examples of physical characteristics of sound (vibration) to be monitored are given below.
a.周波数 b.周波数のゆれ c.振幅のゆれ d.減衰 e.倍音の振幅比率 f.倍音以外の音 など。 a. Frequency b. Frequency fluctuation c. Amplitude fluctuation d. Attenuation e. Overtone amplitude ratio f. Sound other than harmonics.
(3)音(振動)の因子群と物理特性群の結び付け
正常時と異常時の音(振動)の違いを観察し、音(振動)の因子群で説明する。次に、同じ正常時と異常時の音(振動)の違いを物理特性群で説明するとどう説明できるか明らかにする。これらから同じものを音感因子群と物理特性群とで説明したことになるので、両者の対応が明らかにできる。
(3) Connection of sound (vibration) factor group and physical property group The difference between normal and abnormal sound (vibration) will be observed and explained with the sound (vibration) factor group. Next, it will be clarified how the difference in sound (vibration) between the normal time and the abnormal time can be explained by the physical property group. Since the same thing was explained with the sound factor group and the physical property group from these, the correspondence between the two can be clarified.
(4)正常時と異常時のケーススタディ
上の例では、ボルトが締まっている際には「かん高い音」が、ボルトが緩んでいる際には「鈍い音」がして、締め付けトルクの変化が音の変化に表れてくるので、この度合いを使って締め付けトルクを言い当てられる。このために音の変化と締め付けトルクの関係を調査する。
(4) Case study in normal and abnormal cases In the above example, when the bolt is tightened, a “high sound” is heard, and when the bolt is loose, a “blunt sound” is heard. Appears in the change of sound, and this degree can be used to guess the tightening torque. For this purpose, the relationship between sound change and tightening torque is investigated.
こうして官能的な音感因子群を利用して、物理特性群の複数を用いた指標が完成する。 In this way, an index using a plurality of physical property groups is completed using the sensual pitch factor group.
以下、具体的に説明すると、
図1は鉄道車両の状態監視システムにおける、ボルトの締り音の異常診断官能モデルを示すブロック図である。
The following is a specific explanation.
FIG. 1 is a block diagram illustrating a sensor model for abnormality diagnosis of bolt tightening noise in a railway vehicle state monitoring system.
この図において、上欄(a)は監視対象の状態を示す欄であり、例えば、ボルトが締っている状態では、中欄(b)は音(振動)の因子を示す欄であり、例えば、ボルトが締っている状態では、音(振動)の因子はかん高い音となる。下欄(c)は音(振動)の物理特性群を示す欄であり、例えば、ボルトが締っている状態では、音(振動)の周波数の高さとの関連度合いは+1. 0、減衰は−1. 0である。 In this figure, the upper column (a) is a column indicating the state of the monitoring target. For example, when the bolt is tightened, the middle column (b) is a column indicating the factor of sound (vibration). When the bolt is tightened, the sound (vibration) factor is a high sound. The lower column (c) is a column indicating a physical characteristic group of sound (vibration). For example, in a state where the bolt is tightened, the degree of relation with the frequency of the sound (vibration) is +1.0, and the attenuation is -1.0.
ここで関連度合いとは、ボルトが締った状態と緩んだ状態でハンマーで叩き、両者の音を各物理特性で比較したものである。例えば、周波数の高さでは、締った状態が高く、緩んだ状態で低いので、締った状態の周波数の高さには+1. 0を、緩んだ状態の周波数の高さには−1. 0を配点する。 Here, the degree of relevance is obtained by striking a hammer with a hammer when the bolt is tightened or loosened, and comparing the sound of the two with respect to each physical characteristic. For example, at a high frequency, the tightened state is high, and when it is loose, it is low. Therefore, the frequency of the tightened state is +1.0, and the frequency of the loose state is −1. . Score 0.
一方、ボルトが緩んでいる状態では、中欄(b)では、鈍い音となり、下欄(c)では、周波数の高さは−1. 0, 減衰は+1. 0である。なお、音(振動)の物理特性群を示す欄であり、例えば、ボルトが締っている状態では、音(振動)の周波数の高さは+1. 0、減衰は−1. 0である。 On the other hand, when the bolt is loose, the middle column (b) has a dull sound, and the lower column (c) has a frequency height of -1.0 and an attenuation of +1.0. Note that this is a column indicating a physical property group of sound (vibration). For example, in a state where the bolt is tightened, the frequency of the sound (vibration) is +1.0, and the attenuation is -1.0.
なお、物理特性群を示す欄では、上記以外に、周波数のゆれ、倍音の振幅比率、倍音以外の音等を挙げることができる。 In addition to the above, in the column indicating the physical property group, frequency fluctuations, overtone amplitude ratios, sounds other than overtones, and the like can be listed.
このように、ボルトが締っているか、緩んでいるかの状態監視においても、物理特性を統合的に判断する音の異常診断官能モデルを構築することにより、精度の高い状態監視を行うことができる。 Thus, even in the state monitoring of whether the bolt is tightened or loosened, it is possible to monitor the state with high accuracy by constructing a sound abnormality diagnosis sensory model that comprehensively determines physical characteristics. .
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の監視対象の音の異常診断官能モデルの構築方法及びそのシステムは、監視対象の音の異常診断官能モデルを加味し、統合的に判断し、異常診断の精度を高めた、監視対象の音の異常診断官能モデルの構築方法及びその構築システムとして利用することができる。 The method and system for constructing an abnormal diagnosis sensory model of a sound to be monitored according to the present invention, including the abnormal diagnosis sensory model of the sound to be monitored, integrated judgment, and improved accuracy of abnormality diagnosis It can be used as a construction method and a construction system of a sensory abnormality diagnosis sensory model.
Claims (9)
(b)前記監視対象の音(振動)の音感因子群は,人間が感覚的に捉えられた音(振動)のモデルであり、これを機械が観測することができる物理特性と人間の音(振動)のモデルとを結びつけ、
(c)前記監視対象の正常時と異常時の音(振動)の違いを観察し、音(振動)の音感因子群で説明し、
(d)前記監視対象の同じ正常時と異常時の音(振動)の違いを物理特性群で説明するとどう説明できるか明らかにし、これらから同じものを音感因子群と物理特性群とで説明し、両者の対応を明らかにすることを特徴とする監視対象の音の異常診断官能モデルの構築方法。 (A) Clarify a group of sensation factors that can explain the difference in the sound (vibration) of the monitoring target when the monitoring target is normal and abnormal,
(B) The sound factor group of the sound (vibration) to be monitored is a model of sound (vibration) that is perceived by humans, and the physical characteristics that can be observed by the machine and the human sound ( Vibration) model,
(C) Observe the difference in sound (vibration) between the normal state and the abnormal state of the monitoring target, and explain the sound factor group of sound (vibration);
(D) It will be clarified how the difference in sound (vibration) between the normal state and the abnormal state of the monitoring target can be explained by the physical characteristic group, and the same thing will be explained by the sound factor group and the physical characteristic group. A method for constructing a sensory model for abnormal diagnosis of sound to be monitored, characterized by clarifying the correspondence between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226941A JP2016090461A (en) | 2014-11-07 | 2014-11-07 | Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226941A JP2016090461A (en) | 2014-11-07 | 2014-11-07 | Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016090461A true JP2016090461A (en) | 2016-05-23 |
Family
ID=56016136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014226941A Pending JP2016090461A (en) | 2014-11-07 | 2014-11-07 | Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016090461A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109785460A (en) * | 2019-01-03 | 2019-05-21 | 深圳壹账通智能科技有限公司 | Vehicle trouble recognition methods, device, computer equipment and storage medium |
JP2021092499A (en) * | 2019-12-12 | 2021-06-17 | 三菱パワー株式会社 | Deterioration determination device, deterioration determination method performed by deterioration determination device, and program |
CN113670434A (en) * | 2021-06-21 | 2021-11-19 | 深圳供电局有限公司 | Transformer substation equipment sound abnormality identification method and device and computer equipment |
-
2014
- 2014-11-07 JP JP2014226941A patent/JP2016090461A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109785460A (en) * | 2019-01-03 | 2019-05-21 | 深圳壹账通智能科技有限公司 | Vehicle trouble recognition methods, device, computer equipment and storage medium |
JP2021092499A (en) * | 2019-12-12 | 2021-06-17 | 三菱パワー株式会社 | Deterioration determination device, deterioration determination method performed by deterioration determination device, and program |
JP7370841B2 (en) | 2019-12-12 | 2023-10-30 | 三菱重工業株式会社 | Deterioration determination device, deterioration determination method and program performed by the deterioration determination device |
CN113670434A (en) * | 2021-06-21 | 2021-11-19 | 深圳供电局有限公司 | Transformer substation equipment sound abnormality identification method and device and computer equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105675306B (en) | A kind of automobile self-sensing method and detecting system | |
CN103807429B (en) | The abnormity determining device of automatic transmission and abnormality determination method | |
JP2007333635A (en) | Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program | |
JP2016090461A (en) | Construction method for abnormality diagnostic functional model for sound of monitored object, and construction system therefor | |
JPWO2009101978A1 (en) | Method and apparatus for diagnosing structural damage | |
CN104266841A (en) | Fault diagnosis device and diagnosis method of diesel engine | |
EP2713146A3 (en) | System and method for vibration severity assessment independently of vibration frequency | |
CN103134679A (en) | Bearing condition monitoring method and bearing condition monitoring device | |
CN106052743A (en) | Method for evaluating effects on frequency response functions by transducer quality | |
JP2009257862A (en) | Method for diagnosing integrity in equipment such as rotary machine by sound signal | |
JP2015230206A (en) | State monitoring system, information processing unit, state monitoring method, program, and recording medium | |
JP6110804B2 (en) | PC sleeper deterioration determination system, PC sleeper deterioration determination method, and program | |
El-Hattab et al. | Drive-by bridge damage detection using apparent profile | |
JP2004301792A (en) | Structure for diagnosing integrity of structure | |
JP4658743B2 (en) | Vibration monitoring system | |
JP2014089106A (en) | Method for evaluating stability of rock lump on rock slope by tapping sound measurement | |
JPWO2020044565A1 (en) | Diagnostic equipment, diagnostic methods, and programs | |
Pradelok | Dynamic tests of certain lattice girder railway bridge type nodes | |
Yu et al. | Wavelet Analysis based Gear Shaft Fault Detection | |
JPWO2020100509A1 (en) | Civil engineering structure monitoring system, civil engineering structure monitoring device, civil engineering structure monitoring method, and program | |
Bucca et al. | Analysis of the failure of a tramcar pantograph component through combined experimental approaches | |
JP6426568B2 (en) | Crack occurrence diagnosis method and crack occurrence diagnosis program | |
JP6273650B2 (en) | PC sleeper deterioration determination system and PC sleeper deterioration determination method | |
JP5902518B2 (en) | Engine stress analyzer | |
JP2019211308A (en) | Method for evaluating safety of pile |