JP2016088847A - Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide]) - Google Patents

Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide]) Download PDF

Info

Publication number
JP2016088847A
JP2016088847A JP2014220981A JP2014220981A JP2016088847A JP 2016088847 A JP2016088847 A JP 2016088847A JP 2014220981 A JP2014220981 A JP 2014220981A JP 2014220981 A JP2014220981 A JP 2014220981A JP 2016088847 A JP2016088847 A JP 2016088847A
Authority
JP
Japan
Prior art keywords
silodosin
reaction
carbonitrile
water
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014220981A
Other languages
Japanese (ja)
Inventor
芳樹 大庭
Yoshiki Oba
芳樹 大庭
健次 田中
Kenji Tanaka
健次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2014220981A priority Critical patent/JP2016088847A/en
Publication of JP2016088847A publication Critical patent/JP2016088847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a high purity (-)-1-(3-hydroxypropyl)-5-[[(2R)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1H-indole-7-carboxamide]) in which the amount of a certain impurity is reduced.SOLUTION: The method includes hydrolyzing 1-(3-hydroxypropyl)-5-[(2R)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1H-indole-7-carbonitrile in water-soluble organic solvent, water, or a mixture of water-soluble organic solvent and water, under the presence of alkali, using an oxidizer, at reaction temperature of 15°C or less.SELECTED DRAWING: None

Description

本発明は、シロドシン(化学名称:(‐)‐1‐(3‐ヒドロキシプロピル)‐5‐[[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボキサミド])の新規な製造方法に関する。   The present invention relates to silodosin (chemical name: (-)-1- (3-hydroxypropyl) -5-[[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) Phenoxy] ethyl} amino) propyl] -2,3-dihydro-1H-indole-7-carboxamide]).

下記式(2)   Following formula (2)

Figure 2016088847
Figure 2016088847

で示されるシロドシンは、選択的な尿路平滑筋収縮抑制作用を有し、血圧に大きく影響を与えることなく尿道内圧を低下させ、さらにα1Aアドレナリン受容体サブタイプに選択的に作用して、前立腺肥大症に伴う排尿障害を改善する治療薬として知られている。このような治療薬として用いられるシロドシンは、非常に高純度であることが望まれることから、製造過程において不純物の生成を抑制することが極めて重要である。 Silodosin represented by the formula has selective urinary tract smooth muscle contraction inhibitory action, reduces urethral pressure without significantly affecting blood pressure, and selectively acts on the α 1A adrenergic receptor subtype, It is known as a therapeutic drug that improves dysuria associated with benign prostatic hyperplasia. Since silodosin used as such a therapeutic agent is desired to have a very high purity, it is extremely important to suppress the generation of impurities during the production process.

シロドシンの製造方法としては、下記式(1)   As a manufacturing method of silodosin, following formula (1)

Figure 2016088847
Figure 2016088847

で示される1‐(3−ヒドロキシプロピル)‐5‐[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボニトリル(以下カルボニトリル体とも言う。)のシアノ基を水溶性有機溶媒と水との混合溶媒中においてアルカリ存在下、酸化剤を用いて加水分解してカルバモイル基とすることによって、シロドシンを製造するという方法が特許文献1及び2に記載されている。 1- (3-hydroxypropyl) -5-[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) propyl] -2 represented by Hydrolysis of the cyano group of 3-dihydro-1H-indole-7-carbonitrile (hereinafter also referred to as carbonitrile) using an oxidizing agent in the presence of an alkali in a mixed solvent of a water-soluble organic solvent and water. Patent Documents 1 and 2 describe a method of producing silodosin by using a carbamoyl group.

なお、上記カルボニトリル体の製造方法としては、特許文献1では下記式(3)   In addition, as a manufacturing method of the said carbonitrile body, in patent document 1, following formula (3)

Figure 2016088847
Figure 2016088847

で示される1‐(ベンゾイルオキシプロピル)‐7‐シアノ‐5‐[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]インドリンと、下記式(4) 1- (Benzoyloxypropyl) -7-cyano-5-[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) propyl] Indoline and the following formula (4)

Figure 2016088847
Figure 2016088847

(式中のXは、求核置換反応によって脱離する官能基を示す。)
で示される化合物とを塩基存在下、求核置換反応させて、下記式(5)
(X in the formula represents a functional group eliminated by a nucleophilic substitution reaction.)
And a compound represented by the following formula (5):

Figure 2016088847
Figure 2016088847

で示される1‐(ベンゾイルオキシプロピル)‐7‐シアノ‐5‐[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]インドリン(以下、N‐アルキル化インドリン誘導体とも言う。)とし、得られたN‐アルキル化インドリン誘導体をシュウ酸塩とした結晶を析出させることにより精製した後、フェニルエステル基を適当な溶媒中で加水分解して水酸基とすることによって製造する方法が記載されている。また、特許文献2には同様にして得られたN‐アルキル化インドリン誘導体を酒石酸塩とした結晶を析出させることにより精製した後、フェニルエステル基を適当な溶媒中で加水分解して水酸基とすることによってカルボニトリル体を製造する方法が記載されている。 1- (Benzoyloxypropyl) -7-cyano-5-[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) propyl] After purification by precipitating crystals of indoline (hereinafter also referred to as N-alkylated indoline derivative) and using the resulting N-alkylated indoline derivative as an oxalate, the phenyl ester group is removed in an appropriate solvent. A method for producing a hydroxyl group by hydrolysis is described. Further, in Patent Document 2, purification is performed by precipitating a crystal in which the N-alkylated indoline derivative obtained in the same manner is a tartrate salt, and then the phenyl ester group is hydrolyzed in an appropriate solvent to form a hydroxyl group. A method for producing carbonitrile bodies is described.

このようにして得られたシロドシンは特許文献1及び特許文献2では例えば酢酸エチルからの再結晶操作で精製する方法が、また特許文献3には特許文献1及び特許文献2とは別の方法で合成したシロドシンではあるが、得られたシロドシンをカラムクロマトグラフィーによって精製する方法が記載されている。   Silodosin thus obtained is purified by recrystallization from, for example, ethyl acetate in Patent Document 1 and Patent Document 2, and in Patent Document 3 by a method different from Patent Document 1 and Patent Document 2. Although it is a synthesized silodosin, a method is described in which the obtained silodosin is purified by column chromatography.

特許第5049013号公報Japanese Patent No. 5049013 国際公開第2012/147019号パンフレットInternational Publication No. 2012/147019 Pamphlet 特許第2944402号公報Japanese Patent No. 2944402

前述のように医薬品原薬は非常に高純度なものが求められており、例えば99.9%以上の純度が求められることも多い。前記加水分解反応では、反応が進行するにつれ、得られたシロドシンのカルバモイル基が更に加水分解され、下記式(6)   As described above, an active pharmaceutical ingredient is required to have a very high purity. For example, a purity of 99.9% or more is often required. In the hydrolysis reaction, as the reaction proceeds, the carbamoyl group of the obtained silodosin is further hydrolyzed, and the following formula (6)

Figure 2016088847
Figure 2016088847

で示される(‐)‐1‐(3‐ヒドロキシプロピル)‐5‐[[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボキシル](以下、カルボキシル体とも言う。)が副生することが分かった。更に、カルボキシル体の生成速度は、反応が進行しシロドシンの生成量が増加すると共に増大し、例えば上記反応の反応転化率が99%となった時点ではカルボキシル体量がHPLC純度で0.1%以上となることも確認された。このカルボキシル体は精製操作によって除去することが難しく、特許文献3に記載のカラムクロマトグラフィーによる精製方法では、操作が煩雑であり工業的手法には適しておらず、特許文献1及び特許文献2に記載の再結晶操作による精製方法ではシロドシンの純度を向上することはできたが、該不純物は除去できなかった。 (-)-1- (3-hydroxypropyl) -5-[[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) represented by Propyl] -2,3-dihydro-1H-indole-7-carboxyl (hereinafter also referred to as carboxyl form) was found to be a by-product. Furthermore, the rate of formation of the carboxyl body increases as the reaction proceeds and the amount of silodosin produced increases. For example, when the reaction conversion rate of the above reaction reaches 99%, the amount of carboxyl body is 0.1% in terms of HPLC purity. It was also confirmed that this was the case. This carboxyl body is difficult to remove by a purification operation, and the purification method by column chromatography described in Patent Document 3 is complicated and not suitable for an industrial technique. Although the purity of silodosin could be improved by the purification method by the recrystallization operation described, the impurities could not be removed.

また、上記加水分解中、カルボキシル体が増加傾向となった直後(反応転化率85%、カルボキシル体量0.02%)に反応を終結させたところ、カルボニトリルが十分にシロドシンへと変換される間に反応を止めることから、収率及び純度の低下を招き、高純度のシロドシンを十分な量得ることは困難であった。   In addition, when the reaction is terminated immediately after the hydrolysis tends to increase during the hydrolysis (reaction conversion rate 85%, carboxyl content 0.02%), carbonitrile is sufficiently converted to silodosin. Since the reaction was stopped in the meantime, the yield and purity were reduced, and it was difficult to obtain a sufficient amount of high-purity silodosin.

したがって、本発明の目的は、カルボニトリル体を加水分解してシロドシンを製造する方法において、カルボキシル体の含有量が低減された、高純度のシロドシンを製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing high-purity silodosin in which the content of carboxyl bodies is reduced in a method for producing silodosin by hydrolyzing a carbonitrile body.

本発明者は、上記課題を解決するために、シロドシン合成方法について鋭意検討を行った。その結果、カルボニトリル体の加水分解反応の反応温度を低下させることによって、驚くべきことにカルボキシル体の生成反応が選択的に速度低下し、シロドシンの生成に影響を与えることなくカルボキシル体の生成を抑制できることが分かった。このような効果が得られる理由としてはカルボキシル体生成反応とシロドシン生成反応の活性化エネルギーに大きな差があることが考えられる。   In order to solve the above problems, the present inventor has intensively studied a silodosin synthesis method. As a result, by reducing the reaction temperature of the hydrolysis reaction of the carbonitrile body, surprisingly, the carboxyl body formation reaction is selectively reduced in speed, and the production of the carboxyl body can be achieved without affecting the production of silodosin. It turned out that it can suppress. The reason why such an effect can be obtained may be that there is a large difference in activation energy between the carboxyl body formation reaction and the silodosin formation reaction.

すなわち、本発明は、下記式(1)   That is, the present invention provides the following formula (1):

Figure 2016088847
Figure 2016088847

で示される1‐(3−ヒドロキシプロピル)‐5‐[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボニトリルを水溶性有機溶媒、水または水溶性有機溶媒と水との混合溶媒中においてアルカリ存在下、酸化剤を用いて加水分解を行う工程において、加水分解における反応温度を15℃以下とすることを特徴とする(‐)‐1‐(3‐ヒドロキシプロピル)‐5‐[[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボキサミド])の製造方法である。 1- (3-hydroxypropyl) -5-[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) propyl] -2 represented by Hydrolysis of 3-dihydro-1H-indole-7-carbonitrile in a water-soluble organic solvent, water or a mixed solvent of water-soluble organic solvent and water using an oxidizing agent in the presence of an alkali. (−)-1- (3-hydroxypropyl) -5-[[(2R) -2-({2- [2- (2,2,2 -Trifluoroethoxy) phenoxy] ethyl} amino) propyl] -2,3-dihydro-1H-indole-7-carboxamide]).

本発明によれば、カルボニトリル体を加水分解させる際の反応温度を15℃以下とすることによって不純物、特にカルボキシル体の含有量が低減されたシロドシンを収率良く製造することができる。また、得られるシロドシンはカルボキシル体の含有量が低減されているので、精製することにより容易に高純度のものとすることができる。   According to the present invention, silodosin in which the content of impurities, particularly carboxyl bodies, is reduced can be produced with high yield by setting the reaction temperature when hydrolyzing a carbonitrile body to 15 ° C. or lower. In addition, since the silodosin obtained has a reduced content of carboxyl, it can be easily purified to a high purity.

本発明は、カルボニトリル体を水溶性有機溶媒、水または水溶性有機溶媒と水との混合溶媒中で酸化剤を加えて加水分解を行い、シロドシンを製造する方法において、加水分解における反応温度が15℃以下であることを特徴とする方法である。   The present invention provides a method for producing silodosin by hydrolyzing a carbonitrile body by adding an oxidizing agent in a water-soluble organic solvent, water or a mixed solvent of a water-soluble organic solvent and water. The method is characterized by being 15 ° C. or lower.

まず、本発明で使用するカルボニトリル体、反応溶媒について説明する。   First, the carbonitrile body and reaction solvent used in the present invention will be described.

(カルボニトリル体)
本発明で使用されるカルボニトリル体は、特に制限されず、公知の方法で製造されたものを使用することができる。具体的には前記特許文献1に記載された方法、すなわち、N‐アルキル化インドリン誘導体のシュウ酸塩のフェニルエステル基を加水分解する方法、及び特許文献2に記載されたN‐アルキル化インドリン誘導体の酒石酸塩のフェニルエステル基を加水分解する方法によって製造することができる。
(Carbonitrile body)
The carbonitrile body used in the present invention is not particularly limited, and those produced by a known method can be used. Specifically, the method described in Patent Document 1, that is, the method of hydrolyzing the phenyl ester group of an oxalate salt of an N-alkylated indoline derivative, and the N-alkylated indoline derivative described in Patent Document 2 It can be produced by a method of hydrolyzing the phenyl ester group of tartrate.

当該カルボニトリル体は、前記カルボニトリル体を80%以上含むものであれば良く、最終的に得られるシロドシンの結晶の純度や収率を考慮すると、カルボニトリル体を85%以上含むことが好ましく、さらにはカルボニトリル体を90%以上含むものであることが好ましい。また、当該カルボニトリル体はオイル状で得られることがほとんどであるが、形態は特に制限されず、オイル状であってもよく、塩形成させることによって固体で得ても良く、さらには反応に用いた溶媒の溶液であってもよく、加水分解反応に影響を及ぼさない範囲で他の溶媒を含んでいても良い。   The carbonitrile body only needs to contain 80% or more of the carbonitrile body, and considering the purity and yield of the finally obtained silodosin crystals, the carbonitrile body preferably contains 85% or more of the carbonitrile body. Furthermore, it is preferable that it contains 90% or more of a carbonitrile body. The carbonitrile body is almost always obtained in the form of an oil, but the form is not particularly limited, and may be in the form of an oil, or may be obtained in the form of a solid by salt formation. It may be a solution of the solvent used, and may contain other solvents as long as the hydrolysis reaction is not affected.

(反応溶媒)
本発明で使用される溶媒としてメタノール、エタノール、プロパノール、イソプロピルアルコール等の低級アルコール、アセトン、テトラヒドロフラン、ジオキサン及びジメチルスルホキシド等の任意の割合で水と混和する水溶性有機溶媒、水または水溶性有機溶媒と水との混合溶媒が挙げられ、これらのうち水とジメチルスルホキシドとの混合溶媒が好ましい。
(Reaction solvent)
As a solvent used in the present invention, a water-soluble organic solvent, water or a water-soluble organic solvent which is miscible with water in any proportion such as lower alcohols such as methanol, ethanol, propanol and isopropyl alcohol, acetone, tetrahydrofuran, dioxane and dimethyl sulfoxide. A mixed solvent of water and dimethyl sulfoxide is preferable among them.

(アルカリ・酸化剤)
加水分解は、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩などのアルカリを用いて行うことができるが、特にアルカリ金属水酸化物を用いて行うのが好ましい。また、加水分解に用いる酸化剤は特に制限されるものではなく、シアノ基が酸化し、カルバモイルが得られれば良いが、特に過酸化水素の存在下に行うのがこの好ましい。
(Alkali / oxidizer)
Hydrolysis can be performed using alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkalis such as alkali metal carbonates such as sodium carbonate and potassium carbonate, and in particular, alkali metal hydroxides are used. Preferably. The oxidizing agent used for the hydrolysis is not particularly limited, and it is sufficient that the cyano group is oxidized to obtain carbamoyl, but this is particularly preferably performed in the presence of hydrogen peroxide.

(加水分解反応工程)
当該反応工程は、反応温度を15℃以下とすること以外、特に制限されるものではなく、カルボニトリル体を前記溶媒中でアルカリ及び酸化剤と接触させシロドシンが得られれば良い。
(Hydrolysis reaction step)
The reaction step is not particularly limited except that the reaction temperature is 15 ° C. or lower, and it is sufficient that silodosin is obtained by contacting the carbonitrile body with an alkali and an oxidizing agent in the solvent.

加水分解反応はカルボニトリル体を溶媒に完全に溶解させて反応を行っても良いし、スラリー状態で反応を行っても良く、溶液調製に用いる溶媒の量は特に制限されるものではない。アルカリ及び酸化剤を加える順序も特に制限はないが、反応と共に発熱することからアルカリを加えた後、冷却しながら酸化剤を加えることが好ましい。この場合アルカリを加える作業は室温で実施しても良い。加水分解に用いるアルカリ及び酸化剤の量は一般的な加水分解に用いられる量で良く、カルボニトリル体に対しそれぞれ0.5〜2当量であることが好ましい。   The hydrolysis reaction may be performed by completely dissolving the carbonitrile body in a solvent, or may be performed in a slurry state, and the amount of the solvent used for preparing the solution is not particularly limited. The order of adding the alkali and the oxidizing agent is not particularly limited, but it is preferable to add the oxidizing agent while cooling after adding the alkali because it generates heat with the reaction. In this case, the operation of adding alkali may be performed at room temperature. The amount of alkali and oxidizing agent used for hydrolysis may be the amount used for general hydrolysis, and is preferably 0.5 to 2 equivalents relative to the carbonitrile body.

当該加水分解工程では加水分解反応を反応温度15℃以下で実施するが、反応速度を考慮すると0℃〜15℃とすることが好ましく、カルボキシル体の生成をほぼ抑制できることから0℃から10℃とすることが特に好ましい。反応時間は反応転化率が95%以上となるまで実施することが望ましいため、反応温度によって最適条件は変化するが3時間以上48時間未満とすることが好ましい。   In the hydrolysis step, the hydrolysis reaction is carried out at a reaction temperature of 15 ° C. or lower. However, considering the reaction rate, it is preferably 0 ° C. to 15 ° C. It is particularly preferable to do this. Since it is desirable to carry out the reaction time until the reaction conversion rate becomes 95% or more, the optimum condition varies depending on the reaction temperature, but it is preferably 3 hours or more and less than 48 hours.

このようにして製造されたシロドシン含有反応液は公知の方法、例えば反応液に亜硫酸ナトリウム水溶液を加えて反応を終息させ、酢酸エチルを用いて抽出した後、結晶化を行うことによってシロドシンの結晶を得ることができる。   The silodosin-containing reaction solution produced in this way is obtained by a known method, for example, adding sodium sulfite aqueous solution to the reaction solution to terminate the reaction, extracting with ethyl acetate, and then crystallizing the silodosin crystals. Can be obtained.

本発明の製造方法によって得られるシロドシンはカルボキシル体の含有量が低減されているので、結晶化工程を経たシロドシンは非常に高純度となり、過度の精製操作を行うことなく、効率的に医薬品用途とし得る高純度のシロドシンを製造することができる。   Since silodosin obtained by the production method of the present invention has a reduced carboxyl content, silodosin that has undergone the crystallization step is very high in purity and can be efficiently used for pharmaceuticals without excessive purification operations. The resulting high purity silodosin can be produced.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited by these Examples.

本実施例において、カルボニトリル体、シロドシンの純度、並びに、シロドシンの不純物量の測定は、以下のように高速液体クロマトグラフィー(HPLC)により行なった。なお、本発明において、溶液の体積は25℃におけるものとする。   In this example, the carbonitrile, the purity of silodosin and the amount of impurities of silodosin were measured by high performance liquid chromatography (HPLC) as follows. In the present invention, the volume of the solution is at 25 ° C.

<純度及び不純物量測定方法>
装置:高速液体クロマトグラフ装置(ウォーターズ社製)
検出器:紫外吸光光度検出器(ウォーターズ社製)
測定波長:225nm
カラム:Inertsil ODS−3、内径4.6mm、長さ50mm(GLサイエンス社製)
カラム温度:25℃付近の一定温度
移動相A:リン酸2.8gを水1000mLに溶解させた水溶液にトリエチルアミンを加えて液性をpH2.4に調整した緩衝液900mLとアセトニトリル100mLとを混合した溶液
移動相B:アセトニトリル
移動相の送液:移動相A及び移動相Bの混合比を表1のように変えて濃度勾配制御する。
流速:毎分1.0mL
測定時間:60分

上記条件において、カルボニトリル体は約23分、シロドシンは約10分にピークが確認される。以下の実施例、比較例において、上記化合物の純度または含有量は、上記条件で測定される全ピークの面積値(溶媒由来のピークを除く)の合計に対する各化合物のピークの面積値の割合である。
<Purity and impurity measurement method>
Equipment: High-performance liquid chromatograph (Waters)
Detector: UV absorption detector (manufactured by Waters)
Measurement wavelength: 225 nm
Column: Inertsil ODS-3, inner diameter 4.6 mm, length 50 mm (manufactured by GL Sciences)
Column temperature: Constant temperature around 25 ° C. Mobile phase A: A mixture of 900 mL of a buffer solution adjusted to pH 2.4 by adding triethylamine to an aqueous solution in which 2.8 g of phosphoric acid was dissolved in 1000 mL of water, and 100 mL of acetonitrile were mixed. Solution mobile phase B: Acetonitrile mobile phase liquid feed: The concentration ratio is controlled by changing the mixing ratio of mobile phase A and mobile phase B as shown in Table 1.
Flow rate: 1.0 mL / min
Measurement time: 60 minutes

Under the above conditions, a peak is confirmed at about 23 minutes for carbonitrile and about 10 minutes for silodosin. In the following Examples and Comparative Examples, the purity or content of the above compound is the ratio of the area value of each compound peak to the sum of all peak area values (excluding solvent-derived peaks) measured under the above conditions. is there.

Figure 2016088847
Figure 2016088847

また、本実施例においてカルボニトリル体の加水分解の反応転化率は下記式で計算した。   In this example, the reaction conversion rate of hydrolysis of the carbonitrile body was calculated by the following formula.

反応転化率(%)=(シロドシンのHPLC面積値)/(シロドシンのHPLC面積値+カルボニトリル体のHPLC面積値)×100   Reaction conversion rate (%) = (HPLC area value of silodosin) / (HPLC area value of silodosin + HPLC area value of carbonitrile) × 100

実施例1
撹拌翼、温度計を取り付けた100mLの三口フラスコにオイル状のカルボニトリル体3.55g(HPLC純度91.45%)を投入し、ジメチルスルホキシド35.5mLを加え固体が全て溶解したことを確認した後、20%水酸化ナトリウム水溶液2.5mLを加え撹拌混合し、10℃に冷却した。これに溶液温度が10℃を越えないように30%過酸化水素水1.5mLを滴下し10℃で17時間撹拌した。HPLCで確認した所、反応転化率が99%でカルボキシル体の面積比率は0.01%であった。得られた反応液に2%亜硫酸ナトリウム水溶液60mLを加え反応を停止した後、酢酸エチル50mLで抽出した。酢酸エチルを5mLまで濃縮した後に、65℃まで加熱、析出した結晶の溶解を確認した後、4℃まで冷却し、同温で2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル5mLで洗浄し、減圧乾燥して、シロドシンの結晶2.78g(純度99.73%、カルボキシル体含有量0.01%)を得た(収率 75.5%)。
Example 1
A 100 mL three-necked flask equipped with a stirring blade and a thermometer was charged with 3.55 g of oily carbonitrile (HPLC purity 91.45%), and 35.5 mL of dimethyl sulfoxide was added to confirm that all the solid had dissolved. Thereafter, 2.5 mL of 20% aqueous sodium hydroxide solution was added, mixed with stirring, and cooled to 10 ° C. To this, 1.5 mL of 30% aqueous hydrogen peroxide was added dropwise so that the solution temperature did not exceed 10 ° C., and the mixture was stirred at 10 ° C. for 17 hours. When confirmed by HPLC, the reaction conversion rate was 99% and the area ratio of the carboxyl body was 0.01%. The reaction mixture was quenched by adding 60 mL of 2% aqueous sodium sulfite solution, and extracted with 50 mL of ethyl acetate. After concentrating ethyl acetate to 5 mL, heating to 65 ° C., confirming dissolution of the precipitated crystals, cooling to 4 ° C., and stirring at the same temperature for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 5 mL of ethyl acetate, and dried under reduced pressure to obtain 2.78 g of silodosin crystals (purity 99.73%, carboxyl group content 0.01%). Rate 75.5%).

参考例1
撹拌翼、温度計を取り付けた50mL三口フラスコに実施例1で得られたシロドシンの結晶2.78gを投入し、酢酸エチル28mLを加えた。溶液を65℃まで加熱し、結晶が溶解したことを確認した後、冷却を行った。成り行きで室温まで冷却した後、4℃まで冷却し、2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル3mLで洗浄し、減圧乾燥して、シロドシンの結晶を得た。同様の精製操作を更に1回行い、シロドシンの結晶2.39g(純度99.94%、カルボキシル体含有量0.01%)を得た(収率86.0%:総収率64.9%)。
Reference example 1
2.78 g of the silodosin crystals obtained in Example 1 were placed in a 50 mL three-necked flask equipped with a stirring blade and a thermometer, and 28 mL of ethyl acetate was added. The solution was heated to 65 ° C., and after confirming that the crystals were dissolved, cooling was performed. After cooling to room temperature, it was cooled to 4 ° C. and stirred for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 3 mL of ethyl acetate, and dried under reduced pressure to obtain silodosin crystals. The same purification operation was performed once more to obtain 2.39 g of silodosin crystals (purity 99.94%, carboxyl body content 0.01%) (yield 86.0%: total yield 64.9%). ).

実施例2
撹拌翼、温度計を取り付けた100mLの三口フラスコにオイル状のカルボニトリル体4.05g(HPLC純度91.45%)を投入し、ジメチルスルホキシド40mLを加え固体が全て溶解したことを確認した後、20%水酸化ナトリウム水溶液2.8mLを加え撹拌混合し、10℃に冷却した。これに溶液温度が15℃を越えないように30%過酸化水素水1.7mLを滴下し15℃で17時間撹拌した。HPLCで確認した所、反応転化率が99%でカルボキシル体の面積比率は0.02%であった。得られた反応液に2%亜硫酸ナトリウム水溶液70mLを加え反応を停止した後、酢酸エチル60mLで抽出した。酢酸エチルを40mLまで濃縮した後に、65℃まで加熱、析出した結晶の溶解を確認した後、4℃まで冷却し、同温で2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル3mLで洗浄し、減圧乾燥して、シロドシンの結晶 2.96g(純度99.72%、カルボキシル体含有量0.02%)を得た(収率 70.43%)。
Example 2
After adding 4.05 g of oily carbonitrile (HPLC purity 91.45%) to a 100 mL three-necked flask equipped with a stirring blade and a thermometer, and adding 40 mL of dimethyl sulfoxide, it was confirmed that all solids were dissolved. 2.8 mL of 20% aqueous sodium hydroxide solution was added, mixed with stirring, and cooled to 10 ° C. To this, 1.7 mL of 30% aqueous hydrogen peroxide was added dropwise so that the solution temperature did not exceed 15 ° C., and the mixture was stirred at 15 ° C. for 17 hours. When confirmed by HPLC, the reaction conversion rate was 99% and the area ratio of the carboxyl body was 0.02%. The reaction mixture was quenched by adding 70 mL of 2% aqueous sodium sulfite solution, and extracted with 60 mL of ethyl acetate. After concentrating ethyl acetate to 40 mL, heating to 65 ° C., confirming dissolution of the precipitated crystals, cooling to 4 ° C., and stirring at the same temperature for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 3 mL of ethyl acetate, and dried under reduced pressure to obtain 2.96 g of silodosin crystals (purity 99.72%, carboxylate content 0.02%). (Rate 70.43%).

更に得られた結晶のうち2.50gを参考例1と同様の精製操作を行ったところシロドシンの結晶2.20g(純度99.92%、カルボキシル体含有量0.02%)を得た(収率88.0%、全体収率62.0%)。   Further, 2.50 g of the obtained crystals were subjected to the same purification operation as in Reference Example 1 to obtain 2.20 g of silodosin crystals (purity 99.92%, carboxyl group content 0.02%). Rate 88.0%, overall yield 62.0%).

実施例3
撹拌翼、温度計を取り付けた100mLの三口フラスコにオイル状のカルボニトリル体22.52g(HPLC純度91.45%)を投入し、ジメチルスルホキシド230mLを加え固体が全て溶解したことを確認した後、20%水酸化ナトリウム水溶液15.8mLを加え撹拌混合し、10℃に冷却した。これに溶液温度が5℃を越えないように30%過酸化水素水9.5mLを滴下し10℃で40時間撹拌した。HPLCで確認した所、反応転化率が99%でカルボキシル体は確認されなかった。得られた反応液に2%亜硫酸ナトリウム水溶液380mLを加え反応を停止した後、酢酸エチル340mLで抽出した。酢酸エチルを225mLまで濃縮した後に、65℃まで加熱、析出した結晶の溶解を確認した後、4℃まで冷却し、同温で2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル25mLで洗浄し、減圧乾燥して、シロドシンの結晶 16.75g(純度99.67%、カルボキシル体0.01%未満)を得た(収率 71.68%)。
Example 3
An oily carbonitrile body (22.52 g, HPLC purity 91.45%) was put into a 100 mL three-necked flask equipped with a stirring blade and a thermometer, and 230 mL of dimethyl sulfoxide was added to confirm that all solids were dissolved. 15.8 mL of 20% aqueous sodium hydroxide solution was added, mixed with stirring, and cooled to 10 ° C. To the solution, 9.5 mL of 30% hydrogen peroxide solution was added dropwise so that the solution temperature did not exceed 5 ° C., and stirred at 10 ° C. for 40 hours. When confirmed by HPLC, the reaction conversion rate was 99%, and no carboxyl form was confirmed. The reaction was stopped by adding 380 mL of a 2% aqueous sodium sulfite solution to the resulting reaction solution, and then extracted with 340 mL of ethyl acetate. After concentrating ethyl acetate to 225 mL, heating to 65 ° C. and confirming dissolution of the precipitated crystals, the mixture was cooled to 4 ° C. and stirred at the same temperature for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 25 mL of ethyl acetate, and dried under reduced pressure to obtain 16.75 g of silodosin crystals (purity 99.67%, carboxyl body less than 0.01%) (yield) 71.68%).

更に参考例1と同様の精製操作を行ったところシロドシンの結晶15.49g(純度99.96%、カルボキシル体0.01%未満)を得た(収率92.4%、全体収率66.2%)。   Further, the same purification procedure as in Reference Example 1 was performed to obtain 15.49 g of silodosin crystals (purity 99.96%, carboxyl body less than 0.01%) (yield 92.4%, overall yield 66. 2%).

比較例1
撹拌翼、温度計を取り付けた100mLの三口フラスコにオイル状のカルボニトリル体13.34g(HPLC純度91.45%)を投入し、ジメチルスルホキシド134mLを加え固体が全て溶解したことを確認した後、20%水酸化ナトリウム水溶液9.4mLを加え撹拌混合し、20℃に冷却した。これに溶液温度が20℃を維持するように30%過酸化水素水5.6mLを滴下し20℃で17時間撹拌した。HPLCで確認した所、反応転化率が99%でカルボキシル体の面積比率は0.21%であった。得られた反応液に2%亜硫酸ナトリウム水溶液230mLを加え反応を停止した後、酢酸エチル150mLで抽出した。酢酸エチルを130mLまで濃縮した後に、65℃まで加熱、析出した結晶の溶解を確認した後、4℃まで冷却し、同温で2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル15mLで洗浄し、減圧乾燥して、シロドシンの結晶 10.30g(純度99.09%、カルボキシル体含有量0.21%)を得た(収率 74.41%)。
Comparative Example 1
Into a 100 mL three-necked flask equipped with a stirring blade and a thermometer, 13.34 g (HPLC purity 91.45%) of an oily carbonitrile was added, and after confirming that all solids were dissolved by adding 134 mL of dimethyl sulfoxide, 9.4 mL of 20% aqueous sodium hydroxide solution was added, mixed with stirring, and cooled to 20 ° C. To this, 5.6 mL of 30% aqueous hydrogen peroxide was added dropwise so as to maintain the solution temperature at 20 ° C., and the mixture was stirred at 20 ° C. for 17 hours. When confirmed by HPLC, the reaction conversion rate was 99% and the area ratio of the carboxyl body was 0.21%. The obtained reaction solution was quenched with 230 mL of a 2% aqueous sodium sulfite solution, and then extracted with 150 mL of ethyl acetate. After concentrating ethyl acetate to 130 mL, heating to 65 ° C. and confirming the dissolution of the precipitated crystals, the solution was cooled to 4 ° C. and stirred at the same temperature for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 15 mL of ethyl acetate, and dried under reduced pressure to obtain 10.30 g of silodosin crystals (purity 99.09%, carboxylate content 0.21%). Rate 74.41%).

更に参考例1と同様の精製操作を行ったところシロドシンの結晶7.99g(純度99.49%、カルボキシル体含有量0.21%)を得た(収率77.6%、全体収率57.7%)。   Further, the same purification operation as in Reference Example 1 was performed to obtain 799 g of silodosin crystals (purity 99.49%, carboxyl body content 0.21%) (yield 77.6%, overall yield 57). .7%).

比較例2
撹拌翼、温度計を取り付けた100mLの三口フラスコにオイル状のカルボニトリル体4.05g(HPLC純度91.45%)を投入し、ジメチルスルホキシド40mLを加え固体が全て溶解したことを確認した後、20%水酸化ナトリウム水溶液2.8mLを加え撹拌混合し、20℃に冷却した。これに溶液温度が20℃を維持するように30%過酸化水素水1.7mLを滴下し20℃で撹拌し、HPLCでカルボキシル体の面積比率が0.02%となったところで反応を停止した。反応添加率は約85%であった。得られた反応液に2%亜硫酸ナトリウム水溶液70mLを加え反応を停止した後、酢酸エチル60mLで抽出した。酢酸エチルを30mLまで濃縮した後に、65℃まで加熱、析出した結晶の溶解を確認した後、4℃まで冷却し、同温で2時間撹拌した。析出した結晶を減圧濾過によって濾取し、酢酸エチル3mLで洗浄し、減圧乾燥して、シロドシンの結晶 2.38g(純度98.90%、カルボキシル体含有量0.02%)を得た(収率 56.63%)。
Comparative Example 2
After adding 4.05 g of oily carbonitrile (HPLC purity 91.45%) to a 100 mL three-necked flask equipped with a stirring blade and a thermometer, and adding 40 mL of dimethyl sulfoxide, it was confirmed that all solids were dissolved. 2.8 mL of 20% aqueous sodium hydroxide solution was added, mixed with stirring, and cooled to 20 ° C. To this, 1.7% of 30% hydrogen peroxide water was added dropwise so as to maintain the solution temperature at 20 ° C., and the mixture was stirred at 20 ° C., and the reaction was stopped when the area ratio of the carboxyl body was 0.02% by HPLC. . The reaction addition rate was about 85%. The reaction mixture was quenched by adding 70 mL of 2% aqueous sodium sulfite solution, and extracted with 60 mL of ethyl acetate. After concentrating ethyl acetate to 30 mL, heating to 65 ° C. and confirming the dissolution of the precipitated crystals, the mixture was cooled to 4 ° C. and stirred at the same temperature for 2 hours. The precipitated crystals were collected by filtration under reduced pressure, washed with 3 mL of ethyl acetate, and dried under reduced pressure to obtain 2.38 g of silodosin crystals (purity 98.90%, carboxylate content 0.02%). Rate 56.63%).

更に参考例1と同様の精製操作を行ったところシロドシンの結晶2.06g(純度99.88%、カルボキシル体含有量0.02%)を得た(収率86.6%、全体収率49.0%)。   Further, the same purification operation as in Reference Example 1 was performed to obtain 2.06 g of silodosin crystals (purity 99.88%, carboxyl group content 0.02%) (yield 86.6%, overall yield 49). 0.0%).

Claims (1)

下記式(1)
Figure 2016088847
で示される1‐(3−ヒドロキシプロピル)‐5‐[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボニトリルを水溶性有機溶媒、水または水溶性有機溶媒と水との混合溶媒中においてアルカリ存在下、酸化剤を用いて加水分解を行う工程において、加水分解における反応温度を15℃以下とすることを特徴とする(‐)‐1‐(3‐ヒドロキシプロピル)‐5‐[[(2R)‐2‐({2‐[2‐(2,2,2‐トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]‐2,3‐ジヒドロ‐1H‐インドール‐7‐カルボキサミド])の製造方法。
Following formula (1)
Figure 2016088847
1- (3-hydroxypropyl) -5-[(2R) -2-({2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl} amino) propyl] -2 represented by Hydrolysis of 3-dihydro-1H-indole-7-carbonitrile in a water-soluble organic solvent, water or a mixed solvent of water-soluble organic solvent and water using an oxidizing agent in the presence of an alkali. (−)-1- (3-hydroxypropyl) -5-[[(2R) -2-({2- [2- (2,2,2 -Trifluoroethoxy) phenoxy] ethyl} amino) propyl] -2,3-dihydro-1H-indole-7-carboxamide]).
JP2014220981A 2014-10-30 2014-10-30 Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide]) Pending JP2016088847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014220981A JP2016088847A (en) 2014-10-30 2014-10-30 Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide])

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014220981A JP2016088847A (en) 2014-10-30 2014-10-30 Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide])

Publications (1)

Publication Number Publication Date
JP2016088847A true JP2016088847A (en) 2016-05-23

Family

ID=56018648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220981A Pending JP2016088847A (en) 2014-10-30 2014-10-30 Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide])

Country Status (1)

Country Link
JP (1) JP2016088847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421719B2 (en) 2015-09-30 2019-09-24 Urquima S.A. Maleic acid salt of a silodosin intermediate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220015A (en) * 1992-12-02 1994-08-09 Kissei Pharmaceut Co Ltd Indoline derivative
JP2003335742A (en) * 2002-05-22 2003-11-28 Showa Denko Kk Method for producing aminomethyl group-containing benzamide compound
WO2006046499A1 (en) * 2004-10-27 2006-05-04 Kissei Pharmaceutical Co., Ltd. Indoline compound and process for producing the same
WO2012147107A2 (en) * 2011-04-29 2012-11-01 Msn Laboratories Limited Novel & improved processes for the preparation of indoline derivatives and its pharmaceutical composition
WO2012147019A1 (en) * 2011-04-26 2012-11-01 Orchid Chemicals And Pharamceuticals Limited An improved process for the preparation of silodosin
JP2013504563A (en) * 2009-09-12 2013-02-07 サンド・アクチエンゲゼルシヤフト Process for the preparation of indoline derivatives and intermediates thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220015A (en) * 1992-12-02 1994-08-09 Kissei Pharmaceut Co Ltd Indoline derivative
JP2003335742A (en) * 2002-05-22 2003-11-28 Showa Denko Kk Method for producing aminomethyl group-containing benzamide compound
WO2006046499A1 (en) * 2004-10-27 2006-05-04 Kissei Pharmaceutical Co., Ltd. Indoline compound and process for producing the same
JP2013504563A (en) * 2009-09-12 2013-02-07 サンド・アクチエンゲゼルシヤフト Process for the preparation of indoline derivatives and intermediates thereof
WO2012147019A1 (en) * 2011-04-26 2012-11-01 Orchid Chemicals And Pharamceuticals Limited An improved process for the preparation of silodosin
WO2012147107A2 (en) * 2011-04-29 2012-11-01 Msn Laboratories Limited Novel & improved processes for the preparation of indoline derivatives and its pharmaceutical composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421719B2 (en) 2015-09-30 2019-09-24 Urquima S.A. Maleic acid salt of a silodosin intermediate

Similar Documents

Publication Publication Date Title
KR101249865B1 (en) Indoline compound and process for producing the same
WO2012010788A1 (en) Process for preparing aminobenzoylbenzofuran derivatives
US10538507B2 (en) Preparation process for high-purity dabigatran etexilate
WO2016174685A1 (en) Process for the enantiomeric resolution of apremilast intermediates
CN105348262B (en) A kind of improved method preparing dabigatran etcxilate
JP2013508272A (en) Bromofenac sodium polymorph and process for producing bromfenac sodium polymorph
JP2008201740A (en) Method for purifying edaravone and highly pure edaravone
JP2016088847A (en) Method for producing (-)-1-(3-hydroxypropyl)-5-[[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1h-indole-7-carboxamide])
JP7288295B2 (en) A Novel Crystalline Form of an Intermediate in the Production of Alogliptin Benzoate
WO2018146285A1 (en) Method for the one-pot production of organo-iodinated compounds
JP2013544768A (en) Method for preparing bicalutamide
US20090111997A1 (en) Method of Generating Amorphous Solid for Water-Insoluble Pharmaceuticals
JP2009522352A (en) Method for producing lansoprazole crystal form A
JP2016003183A (en) Method for producing 1-(3-benzoyloxy propyl)-7-cyano-5-[(2r)-2-({2-[2-(2,2,2-trifluoro ethoxy)phenoxy]ethyl}amino)propyl]indoline or its salt
JP2007517797A (en) Preparation of highly chemical R-5- (2- (2-ethoxyphenoxyethylamino) propyl) -2-methoxybenzenesulfonamide hydrochloride
JP6275596B2 (en) Method for producing ammonium salt of telmisartan
JP2011144162A (en) New crystal of optically active 4-amino-3-(4-chlorophenyl)butanoic acid, and method for producing the same
JP6483483B2 (en) Manufacturing method of ezetimibe
US20100125143A1 (en) Process for the preparation of dexlansoprazole
US20220185794A1 (en) Process for preparing osimertinib or a salt thereof
RU2741389C1 (en) Method for preparing intermediate compound for synthesis of medicinal agent
JP6263814B2 (en) Cell death inhibitor and novel compound
JP2008534575A (en) A new process for the preparation of bicalutamide
JP6938001B2 (en) Method for producing biphenylbenzimidazole derivative
JP2000239253A (en) Production of 2-oxyindole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016