JP2016087659A - Manufacturing method of integrated molding roller, cutter and integrated molding roller - Google Patents

Manufacturing method of integrated molding roller, cutter and integrated molding roller Download PDF

Info

Publication number
JP2016087659A
JP2016087659A JP2014225820A JP2014225820A JP2016087659A JP 2016087659 A JP2016087659 A JP 2016087659A JP 2014225820 A JP2014225820 A JP 2014225820A JP 2014225820 A JP2014225820 A JP 2014225820A JP 2016087659 A JP2016087659 A JP 2016087659A
Authority
JP
Japan
Prior art keywords
groove
cutting
blade
angle
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014225820A
Other languages
Japanese (ja)
Inventor
祐樹 岩田
Yuki Iwata
祐樹 岩田
義信 古川
Yoshinobu Furukawa
義信 古川
渡辺 幸一
Koichi Watanabe
幸一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014225820A priority Critical patent/JP2016087659A/en
Publication of JP2016087659A publication Critical patent/JP2016087659A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for manufacturing an integrate molding roller which can be adapted to a fine louver shape which is difficult in processing by a normal tool such as an end mill, and can accurately mold a fin shape and a louver shape.SOLUTION: A process for cutting a recessed groove 15 being a cutting blade 14 at each tooth face of a tooth part 11 of an external peripheral face of an integrated molding roller 1 by using an acute-angled blade 3 of a cutting tool 4 has: a first process for cutting the groove 15 up to a depth shallower than a groove depth by using a wide-angled blade 31 having a molding angle α larger than a groove angle which is formed of an erecting wall 14b and an inclined part 14c of a slant blade 14a; and a second process for cutting the groove up to the groove depth of the groove by using a shape-transferred blade 32 having a molding angle β which coincides with the groove angle.SELECTED DRAWING: Figure 3B

Description

本発明は、小型熱交換器用の微細ルーバ付コルゲートフィンを成形するための一体型成形ローラに関し、詳しくは、一体型成形ローラに微細ルーバ形成用の切刃部を加工する方法および切削加工装置に関する。   The present invention relates to an integral molding roller for molding a corrugated fin with a fine louver for a small heat exchanger, and more particularly to a method and a cutting apparatus for machining a cutting edge portion for forming a fine louver on an integral molding roller. .

車両用熱交換器、例えばヒータコアの伝熱部を構成するコルゲートフィンは、一般に、一対の成形ローラを備える成形装置を用いて、波型のフィン形状に折り曲げ加工するとともに、ルーバ形状に切り起こし加工を施すことで所定形状に成形される。一対の成形ローラは円筒歯車形で、外周面に互いに噛合する凹凸部を有し、この間にフィン材の薄板を通過させてルーバ付フィン形状に成形する。特許文献1に記載される方法では、円筒ローラの外周面にルーバ用スリットを形成する多数の刃を設けた第1加工装置と、歯車形ローラの外周面にルーバ折り曲げ加工用の多数の凸部を設けた第2加工装置を組み合わせて、ルーバ付コルゲートフィンを製造している。   A corrugated fin constituting a heat exchanger for a vehicle, for example, a heater core, is generally bent into a corrugated fin shape and cut into a louver shape using a forming device having a pair of forming rollers. To form a predetermined shape. The pair of forming rollers has a cylindrical gear shape, and has an uneven portion that meshes with each other on the outer peripheral surface, and a thin plate of fin material is passed between them to form a louvered fin shape. In the method described in Patent Document 1, a first processing device provided with a large number of blades for forming louver slits on the outer peripheral surface of a cylindrical roller, and a large number of convex portions for louver bending on the outer peripheral surface of a gear-shaped roller. A corrugated fin with a louver is manufactured by combining a second processing apparatus provided with a louver.

また、一対の歯車形ローラに、フィン形状に対応する対応する凹凸部と、ルーバ形状に対応する切刃部を形成して、フィンとルーバを同時に加工可能としたものがある。図10A、10Bは、従来の成形ローラの詳細例であり、歯車形の平板201を、軸方向に所定枚数重ねた積層型ローラ200として構成されている。右図中、積層型ローラ200となる平板201の外周部は、円周方向にフィンを波型に加工するための山部と谷部が交互に形成されており、これら山部と谷部が軸方向に一致するように重畳されている。積層型ローラ200は、軸方向の両端部と中間部を除く各平板201の外周面が、軸方向に傾斜する鋭角な切断刃202となっており、左図に示すように、一対の積層型ローラ200を対向させて切断刃202間にフィン203を挟み込み、ルーバ形状に切り起こすようになっている。   In addition, there is a pair of gear-shaped rollers in which a concave and convex portion corresponding to the fin shape and a cutting edge portion corresponding to the louver shape are formed so that the fin and the louver can be processed simultaneously. 10A and 10B are detailed examples of a conventional forming roller, which is configured as a laminated roller 200 in which a predetermined number of gear-shaped flat plates 201 are stacked in the axial direction. In the figure on the right, the outer periphery of the flat plate 201 to be the laminated roller 200 is formed with crests and troughs for processing the fins in the circumferential direction alternately, and these crests and troughs are Superimposed to match the axial direction. In the laminated roller 200, the outer peripheral surface of each flat plate 201 excluding both axial end portions and the intermediate portion is an acute cutting blade 202 inclined in the axial direction. As shown in the left figure, a pair of laminated rollers 200 is provided. The fins 203 are sandwiched between the cutting blades 202 with the rollers 200 facing each other, and are cut up into a louver shape.

特開2013−139042号公報JP2013-139042A

従来の積層型ローラ200は、円盤状の平板201母材を公知の研削盤で歯車形状に加工するとともに、外周面を軸方向に傾斜する切断刃202形状に研削し、位置決め用の基準穴を用いて組み付けしてボルト固定している。このため、多数の平板をそれぞれ所定の歯車形状に加工した上で、周方向位置を一致させて所定の順序で積層する必要があり、製作工程数が多くなるだけでなく、組付調整に時間がかかって製作コストが上昇する。また、切り屑の噛み込みによる精度不良のおそれがある。そこで本発明者等は、積層型ローラに代えて、円筒ブロック状のローラ外周を切削工具で加工し、切刃部を有する歯車形状の一体型成形ローラとすることを検討した。   In the conventional laminated roller 200, a disk-shaped flat plate 201 base material is processed into a gear shape by a known grinder, and the outer peripheral surface is ground into a cutting blade 202 shape inclined in the axial direction, and a positioning reference hole is formed. It is assembled using and fixed with bolts. For this reason, it is necessary to process a large number of flat plates into a predetermined gear shape and then stack them in a predetermined order with their circumferential positions aligned, which not only increases the number of manufacturing processes but also increases the time required for assembly adjustment. The production cost increases. In addition, there is a risk of inaccuracy due to chip biting. Accordingly, the present inventors have studied to replace the laminated roller with a cylindrical block-shaped roller outer periphery with a cutting tool to form a gear-shaped integrally formed roller having a cutting edge portion.

しかしながら、ヒータコア部の小型化に伴い、コルゲートフィンの波型形状が縮小し、フィン表面のルーバが微細になると、対応する切刃部の刃溝も微細となり、公知のエンドミル等の工具では溝加工に限界があることが判明した。図9(左図)は、ルーバ形成用の切刃部形状の一例を示しており、例えば溝ピッチ0.9mm程度の時、エンドミル加工すると、使用する工具径はφ0.2〜0.6mm程度となる。ところが、近年、コルゲートフィンのさらなる微細化が要求されており、図9(右図)のようにルーバ形成用の切刃部の溝形状が例えば1/3程度になると、使用可能なエンドミル(工具径φ0.05mm以下)自体の製作が難しい。あるいは、使用工具の剛性が著しく低下することから、現実的ではなかった。   However, with the downsizing of the heater core part, the corrugated fin corrugated shape is reduced and the fin surface louver becomes finer, so the corresponding cutting edge part also becomes finer. Has been found to have limitations. FIG. 9 (left figure) shows an example of the shape of the cutting edge part for forming the louver. For example, when the end mill is processed when the groove pitch is about 0.9 mm, the tool diameter to be used is about φ0.2 to 0.6 mm. It becomes. However, in recent years, further miniaturization of corrugated fins has been demanded. When the groove shape of the cutting edge portion for forming the louver becomes, for example, about 1/3 as shown in FIG. It is difficult to manufacture itself (diameter φ0.05 mm or less). Or since the rigidity of the tool used falls remarkably, it was not realistic.

本発明の目的は、エンドミル等の工具による切削加工が困難なルーバ形状にも対応することができ、外周歯部に微細ルーバ形成用の切刃部を有して、フィン形状とルーバ形状を同時に成形可能な一体型成形ローラを、高い寸法精度で効率よく製作するための新たな方法と装置を実現することにある。   The object of the present invention is to cope with a louver shape that is difficult to cut with a tool such as an end mill, and has a cutting edge portion for forming a fine louver on an outer peripheral tooth portion, so that a fin shape and a louver shape can be simultaneously formed. The object is to realize a new method and apparatus for efficiently manufacturing a moldable integral molding roller with high dimensional accuracy.

本発明の請求項1に記載の発明は、円筒体の外周面にフィン形状に沿う山部と谷部を交互に形成した歯部を有し、該歯部の各歯面に微細ルーバ形状に沿う切刃部が一体的に形成された、微細ルーバ付コルゲートフィン成形用の一体型成形ローラの製造方法であって、
上記切刃部は、上記歯面の軸方向に並設され、立壁部と傾斜部にて構成される多数の凸条斜刃と、隣接する立壁部と傾斜部の間に形成される多数の凹条溝部からなり、
上記溝部を、先端に溝切用の鋭角刃を備える切削バイトを溝長手方向に移動させて切削加工するに際し、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度より大きな成形角度の広角刃を用い、上記溝部の溝深さより浅い深さまで切削加工する第1の工程と、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度に一致させた成形角度の形状転写刃を用い、上記溝部の溝深さまで切削加工する第2の工程と、を有することを特徴とする。
Invention of Claim 1 of this invention has the tooth part which formed the peak part and trough part which followed a fin shape on the outer peripheral surface of a cylindrical body alternately, and makes each fine tooth surface of this tooth part into a fine louver shape. A manufacturing method of an integrally formed roller for forming a corrugated fin with a fine louver, in which a cutting blade portion is integrally formed,
The cutting blade portion is arranged in parallel in the axial direction of the tooth surface, and is formed between a large number of convex swash blades composed of a standing wall portion and an inclined portion, and a large number formed between the adjacent standing wall portion and the inclined portion. Consists of grooved grooves,
When cutting the groove part by moving a cutting bite provided with an acute angle blade for grooving at the tip in the groove longitudinal direction,
A first step of cutting to a depth shallower than the groove depth of the groove portion using a wide-angle blade having a molding angle larger than the groove angle formed by the adjacent standing wall portion and the inclined portion as the acute angle blade;
And a second step of cutting to the groove depth of the groove portion using a shape transfer blade having a molding angle that matches the groove angle formed by the adjacent standing wall portion and the inclined portion as the acute angle blade. To do.

本発明の請求項2に記載の発明において、
上記第1の工程は、上記広角刃と側方の上記立壁部との間に、残り代を削り残す荒加工工程であり、
上記第2の工程は、上記第1の工程で形成された残り代を、上記形状転写刃で削り落とす中加工工程と、上記溝部形状に沿う表面を、上記形状転写刃で削り落とす仕上げ加工工程を有する。
In the invention according to claim 2 of the present invention,
The first step is a roughing step of cutting off the remaining allowance between the wide-angle blade and the side wall portion.
The second step includes a middle processing step of scraping off the remaining margin formed in the first step with the shape transfer blade, and a finishing step of scraping off the surface along the groove shape with the shape transfer blade. Have

本発明の請求項3に記載の発明において、上記切刃部は、上記多数の凹条溝部の溝ピッチが0.9mm以下であり、溝深さが0.5mm以下である。   In the invention according to claim 3 of the present invention, the cutting edge portion has a groove pitch of the plurality of concave groove portions of 0.9 mm or less and a groove depth of 0.5 mm or less.

本発明の請求項4に記載の発明において、上記溝角度が40〜70°であり、上記広角刃は成形角度が80°以上の鋭角刃である。   In the invention according to claim 4 of the present invention, the groove angle is 40 to 70 °, and the wide-angle blade is an acute-angle blade having a forming angle of 80 ° or more.

本発明の請求項5に記載の発明は、
円筒体の外周面にフィン形状に沿う山部と谷部を交互に形成した歯部を有し、該歯部の各歯面に微細ルーバ形状に沿う切刃部が一体的に形成された、微細ルーバ付コルゲートフィン成形用の一体型成形ローラの切削加工装置であって、
上記切刃部は、上記歯面の軸方向に並設され、立壁部と傾斜部にて構成される多数の凸条斜刃と、隣接する立壁部と傾斜部の間に形成される多数の凹条溝部からなり、
上記一体型成形ローラを回転自在に保持し、任意位置で停止可能なローラ支持ユニットと、
上記一体型成形ローラの加工面となる歯面に対して、垂直方向および水平方向に任意動作可能な切削バイトを備え、該切削バイトの先端に設けた溝切用の鋭角刃を溝長手方向に移動させて、上記溝部を切削加工する切削ユニットと、を有し、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度より大きな成形角度を有し、上記溝部の溝深さより浅い深さまで切削加工するための広角刃と、隣接する立壁部と傾斜部のなす溝角度に一致させた成形角度を有し、上記溝部の溝深さまで切削加工するための形状転写刃を用いることを特徴とする。
The invention according to claim 5 of the present invention is
The outer peripheral surface of the cylindrical body has teeth that are alternately formed with ridges and valleys along the fin shape, and cutting edges along the fine louver shape are integrally formed on each tooth surface of the teeth, A cutting device for an integrated molding roller for forming a corrugated fin with a fine louver,
The cutting blade portion is arranged in parallel in the axial direction of the tooth surface, and is formed between a large number of convex swash blades composed of a standing wall portion and an inclined portion, and a large number formed between the adjacent standing wall portion and the inclined portion. Consists of grooved grooves,
A roller support unit that rotatably holds the integral molding roller and can be stopped at an arbitrary position;
A cutting tool that can be arbitrarily operated in the vertical direction and the horizontal direction with respect to the tooth surface serving as the processing surface of the integrated molding roller is provided, and an acute angle blade for grooving provided at the tip of the cutting tool is arranged in the longitudinal direction of the groove. A cutting unit that moves and cuts the groove.
The acute angle blade has a forming angle larger than the groove angle formed by the adjacent standing wall portion and the inclined portion, and is formed of a wide angle blade for cutting to a depth shallower than the groove depth of the groove portion, and the adjacent standing wall portion and the inclined portion. A shape transfer blade having a forming angle that matches the groove angle formed and for cutting to the groove depth of the groove portion is used.

本発明の請求項6に記載の発明は、上記請求項1ないし4のいずれか1項に記載の製造方法または請求項5の切削装置により、上記溝部が切削加工された上記切刃部を備える微細ルーバ付コルゲートフィン成形用の一体型成形ローラである。   The invention according to claim 6 of the present invention includes the cutting edge portion in which the groove portion is cut by the manufacturing method according to any one of claims 1 to 4 or the cutting apparatus according to claim 5. This is an integral forming roller for forming a corrugated fin with a fine louver.

本発明の切削加工方法は、歯車状の一体型成形ローラの外周歯面に、軸方向に並ぶ多数の溝部を切削加工して、微細ルーバ形成用の切刃部を形成する。この時、切削バイトの2種類の鋭角刃として、立壁部と傾斜部からなる溝部の角度に対応させた形状転写刃と、より成形角度の大きい広角刃を用い、まず広角刃による第1の工程で荒加工することにより、刃先に加わる応力を略均等としてチッピングを抑制しつつ、溝概略形状を切削する。次いで、広角刃が削り残した部位を、形状転写刃による第2の工程で徐々に削り落とし、所定形状に仕上げ加工する。形状転写刃は、広角刃が削り残した立壁部側の一部のみを削り落とすので、刃先に加わる応力は小さく、チッピングを生じることなく、高精度な溝加工が可能になる。   In the cutting method of the present invention, a large number of groove portions arranged in the axial direction are cut on the outer peripheral tooth surface of a gear-shaped integral molding roller to form a cutting edge portion for forming a fine louver. At this time, as the two types of sharp blades of the cutting tool, a shape transfer blade corresponding to the angle of the groove portion formed by the standing wall portion and the inclined portion and a wide angle blade having a larger molding angle are used. The rough shape of the groove is cut while the chipping is suppressed by roughly machining the stress applied to the blade edge by roughing. Next, the portion left uncut by the wide-angle blade is gradually scraped off in a second step using the shape transfer blade, and finished into a predetermined shape. Since the shape transfer blade cuts off only a part of the standing wall portion side left uncut by the wide-angle blade, the stress applied to the blade tip is small, and high-precision grooving can be performed without causing chipping.

したがって、一体型成形ローラの歯部に、多数の斜刃からなる切刃部を精度よく加工することができる。よって、一体型成形ローラの成形性、信頼性を大きく向上させ、所望形状の微細ルーバを有するコルゲートフィンを容易に成形することができる。   Therefore, it is possible to accurately process a cutting blade portion made up of a large number of oblique blades on the tooth portion of the integral molding roller. Therefore, the moldability and reliability of the integral molding roller can be greatly improved, and a corrugated fin having a fine louver with a desired shape can be easily molded.

熱交換器用の微細ルーバフィンの製造工程を説明するための模式的な図である。It is a schematic diagram for demonstrating the manufacturing process of the fine louver fin for heat exchangers. 微細ルーバフィンを成形加工するための一対の一体型成形ローラの全体斜視図である。It is a whole perspective view of a pair of integral molding rollers for molding a fine louver fin. 成形加工された微細ルーバフィンの部分拡大図とルーバ形状を示すA−A断面図である。It is the AA sectional view showing the partial enlarged view and louver shape of the fine louver fin which were processed. 一体型成形ローラの正面図とその部分拡大斜視図である。FIG. 4 is a front view of the integral molding roller and a partially enlarged perspective view thereof. 一体型成形ローラの歯部の部分拡大図である。It is the elements on larger scale of the tooth | gear part of an integral molding roller. 一体型成形ローラの歯部に形成される切刃部の部分拡大図で、図2BのB矢視図である。It is the elements on larger scale of the cutting blade part formed in the tooth | gear part of an integral forming roller, and it is a B arrow line view of FIG. 2B. 本発明の切削加工方法を説明するための一体型成形ローラの部分拡大図である。It is the elements on larger scale of the integral molding roller for demonstrating the cutting method of this invention. 本発明の切削加工方法において、広角刃および形状転写刃を用いた切削加工工程を説明するための模式的な図である。In the cutting method of this invention, it is a schematic diagram for demonstrating the cutting process using a wide angle blade and a shape transfer blade. 本発明の切削加工方法における鋭角刃の成形角度と加工形状および応力ベクトルの関係を示す図である。It is a figure which shows the relationship between the shaping | molding angle of an acute angle blade in the cutting method of this invention, a process shape, and a stress vector. 鋭角刃の成形角度とベクトル角度および応力指数の関係を示す図である。It is a figure which shows the relationship between the shaping | molding angle of an acute angle blade, a vector angle, and a stress index. 形状転写刃による総型切削時に生じるチッピングを説明するための模式的な図である。It is a schematic diagram for demonstrating the chipping which arises at the time of the total type cutting by a shape transfer blade. 本発明の切削加工装置の全体概略断面図である。1 is an overall schematic sectional view of a cutting apparatus according to the present invention. 本発明の切削加工方法による切削加工工程の詳細例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the detailed example of the cutting process by the cutting method of this invention. 本発明を適用して切削加工した一体型成形ローラの加工形状例と評価結果を示す図である。It is a figure which shows the example of a process shape and evaluation result of the integral molding roller which cut by applying this invention. 本発明を適用可能な一体型成形ローラの切刃部形状例を説明するための模式的な図である。It is a schematic diagram for demonstrating the example of the shape of the cutting-blade part of the integral forming roller which can apply this invention. 従来の積層型成形ローラの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the conventional lamination type forming roller. 従来の積層型成形ローラの構成を示す部分拡大斜視図である。It is a partial expansion perspective view which shows the structure of the conventional lamination type forming roller.

以下、図面を参照しながら本発明を詳細に説明する。図1Aは、ヒータコア等の小型熱交換器に用いられる微細ルーバフィン(微細ルーバ付コルゲートフィン)2を製造する一連の工程を示しており、本発明は、ローラ成形工程に用いられる一体型成形ローラ1を加工対象とする。図1Bにおいて、一対の一体型成形ローラ1は円筒歯車状で、それぞれ外周面にフィン成形用の歯部11を有し、対向する歯部11を噛合可能に成形して、両歯部11の間を通過する薄板状のフィン材2´を所定のフィン形状に加工する。フィン材2´は、アルミニウム等の金属コイル材であり、ロール状のフィン材2´を公知のアンコイラで繰り出して、同期回転する一対の一体型成形ローラ1の間へ連続供給する。一体型成形ローラ1の歯部11には、ルーバ加工用の切刃部14が設けられ、図1Cに示すルーバ付コルゲートフィン型の微細ルーバフィン2の波型加工とルーバ21の切り起こし加工を同時に行う。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1A shows a series of steps for manufacturing a fine louver fin (corrugated fin with a fine louver) 2 used in a small heat exchanger such as a heater core, and the present invention shows an integrated molding roller 1 used in a roller molding step. To be processed. In FIG. 1B, a pair of integral forming rollers 1 are cylindrical gear-shaped, each having a tooth portion 11 for forming a fin on the outer peripheral surface, and forming opposing tooth portions 11 so as to be able to mesh with each other. A thin fin material 2 ′ that passes between them is processed into a predetermined fin shape. The fin material 2 ′ is a metal coil material such as aluminum, and the roll-shaped fin material 2 ′ is fed out by a known uncoiler and continuously supplied between the pair of integrally formed rollers 1 that rotate synchronously. The tooth portion 11 of the integral molding roller 1 is provided with a cutting edge portion 14 for louver processing, and the corrugated fin type fine louver fin 2 with louver and the louver 21 cut-and-raise processing are simultaneously performed as shown in FIG. 1C. Do.

本実施形態の微細ルーバフィン2は、波型の斜面幅方向に微細形状の多数のルーバ(微細ルーバ)21が所定のルーバ角度θで並設され、幅方向の中央平坦部を境に、一方の側と他方の側でルーバ21の傾斜方向が異なる対称形に配置されている。一体型成形ローラ1で波型加工され、ルーバ21が形成された微細ルーバフィン2は、次いで、一対の矯正ローラ100間で折曲部を略直角方向から押圧して凹凸形状を矯正し(矯正工程)、さらに一対のブレーキシュー101間で進行方向に押し縮めて形状を整える(整形工程)。   In the fine louver fin 2 of the present embodiment, a large number of fine louvers (fine louvers) 21 are juxtaposed at a predetermined louver angle θ in the corrugated slope width direction, and one of the louver fins 2 has a central flat portion in the width direction as a boundary. The louver 21 is arranged in a symmetrical manner in which the direction of inclination of the louver 21 is different between the other side and the other side. Next, the fine louver fin 2 that has been corrugated by the integral molding roller 1 and has the louver 21 formed thereon is pressed between the pair of straightening rollers 100 in a substantially perpendicular direction to correct the uneven shape (correction process). ) Further, the shape is adjusted by pressing in the traveling direction between the pair of brake shoes 101 (shaping step).

図2A、2Bは、一体型成形ローラ1の詳細形状であり、円筒ブロック体の筒内を回転駆動軸の連結穴10とし、外周面に山部12と谷部13を交互に形成した歯部11を有している。歯部11は、山部12と谷部13を結ぶ側面を歯面として、各歯面に、ルーバ21切り起こし用の多数の凸条斜刃14aを有する切刃部14を一体的に形成している。各斜刃14aは、略三角形断面の細長い鋭角刃で、歯面表面に沿って、山部12の頂点近傍から谷部13の底部近傍へ延びている。図2Cに示すように、切刃部14の多数の斜刃14aは、ローラ軸方向(図の左右方向)に所定のピッチで並行配設されており、各斜刃14aは、略垂直な立壁部14bと傾斜部14cにて構成される。多数の斜刃14aは、微細ルーバフィン2の多数のルーバ21に対応し、中央平坦部を中心に、図の左半部と右半部で傾斜方向が異なる対称形に配置されている。   2A and 2B show the detailed shape of the integral molding roller 1, and the tooth portion in which the inside of the cylindrical block body is the connecting hole 10 of the rotation drive shaft, and the crests 12 and the troughs 13 are alternately formed on the outer peripheral surface. 11. The tooth portion 11 integrally forms a cutting edge portion 14 having a large number of ridged oblique blades 14a for cutting and raising the louver 21 on each tooth surface, with the side surface connecting the peak portion 12 and the valley portion 13 being a tooth surface. ing. Each oblique blade 14a is a long and narrow acute blade having a substantially triangular cross section, and extends from the vicinity of the peak of the peak portion 12 to the vicinity of the bottom portion of the valley portion 13 along the tooth surface. As shown in FIG. 2C, a large number of the slant blades 14a of the cutting blade portion 14 are arranged in parallel at a predetermined pitch in the roller axis direction (left and right direction in the figure), and each slant blade 14a is a substantially vertical standing wall. It is comprised by the part 14b and the inclination part 14c. The large number of slant blades 14a correspond to the large number of louvers 21 of the fine louver fins 2, and are arranged symmetrically with different inclination directions in the left half part and the right half part in the drawing with the central flat part as the center.

一対の一体型成形ローラ1は、成形時に対向する切刃部14が噛合するように、多数の斜刃14aの傾斜方向が設定されている。これにより、ローラ成形工程において、一体型成形ローラ1が回転し、互いの歯部11が噛み合うことで、微細ルーバフィン2が山部12と谷部13に沿う波形に折り曲げ加工され、同時に、微細ルーバフィン2を挟んで対向位置する切刃部14の多数の斜刃14aが、立壁部14bの頂部を支点としてフィン材をせん断し、傾斜部14cに沿ってねじり加工する。   In the pair of integral molding rollers 1, the inclination directions of a large number of oblique blades 14 a are set so that the cutting blade portions 14 that face each other at the time of molding are engaged with each other. Thereby, in the roller molding process, the integral molding roller 1 rotates and the tooth portions 11 mesh with each other, whereby the fine louver fin 2 is bent into a waveform along the peak portion 12 and the valley portion 13, and at the same time, the fine louver fin A number of slanting blades 14a of the cutting edge portion 14 located opposite to each other 2 shear the fin material with the top portion of the standing wall portion 14b as a fulcrum, and twist it along the inclined portion 14c.

このローラ成形工程、特に、微細ルーバフィン2の多数のルーバ21を高精度に成形加工するために、一体型成形ローラ1についても、切刃部14の多数の斜刃14aに、極めて高い寸法精度が要求される。このため、一体型成形ローラ1は、詳細を後述する本発明の切削加工方法によって、切刃部14となる多数の斜刃14aを、歯部11の各側面と一体に形成する。すなわち、歯部11の側面に、立壁部14bと傾斜部14cで囲まれる鋭角な凹条溝部15を、軸方向に所定ピッチで切削加工することにより、隣り合う溝部15間に所望形状の微細な斜刃14aを多数形成する。   In order to form a large number of louvers 21 of the fine louver fins 2 with high precision in this roller forming step, the slewing blades 14a of the cutting blade portion 14 also have extremely high dimensional accuracy in the integrated molding roller 1. Required. For this reason, the integral molding roller 1 integrally forms a large number of oblique blades 14a to be the cutting blade portions 14 with the side surfaces of the tooth portions 11 by the cutting method of the present invention, which will be described in detail later. That is, by cutting the acute concave groove 15 surrounded by the standing wall 14b and the inclined portion 14c on the side surface of the tooth portion 11 at a predetermined pitch in the axial direction, a fine shape of a desired shape is formed between the adjacent grooves 15. Many slant blades 14a are formed.

具体的には、図3Aに示すように、先端部に溝切加工用の鋭角刃3を有する切削バイト4を用い、略水平な被加工面(歯部11の歯面)に対して、垂直に配置する。そして、溝部15の形成位置を、対応する形状とした鋭角刃3で切り込み、溝長手方向に略水平に移動させることで、所定の溝形状とする。この動作を繰り返して軸方向に並ぶ多数の溝部15、すなわち多数の斜刃14aを歯面と一体的に形成し、切刃部14とする。ここで、本発明の対象とする一体型成形ローラ1は、溝部15が微小ピッチであるために、対応する切削バイト4も微小となり、先端の鋭角刃3に応力がかかって破損しやすくなる(チッピング)。そこで、本発明では、溝切加工用の鋭角刃3として、図3Bに示す2種類の刃物を順に用い、段階的に効率よい加工を行って、高精度な溝加工を実現する。   Specifically, as shown in FIG. 3A, a cutting bit 4 having an acute angle blade 3 for grooving at the tip is used and is perpendicular to a substantially horizontal workpiece surface (tooth surface of the tooth portion 11). To place. And the formation position of the groove part 15 is cut | disconnected with the acute angle blade 3 made into the corresponding shape, and it is set as a predetermined groove shape by moving substantially horizontally in a groove | channel longitudinal direction. By repeating this operation, a large number of groove portions 15 arranged in the axial direction, that is, a large number of oblique blades 14a, are formed integrally with the tooth surface to form a cutting blade portion 14. Here, in the integral molding roller 1 as an object of the present invention, since the groove portions 15 have a minute pitch, the corresponding cutting tool 4 is also minute, and the sharp blade 3 at the tip is stressed and easily damaged ( Chipping). Therefore, in the present invention, as the acute angle blade 3 for grooving, two types of blades shown in FIG. 3B are sequentially used, and efficient machining is performed stepwise to realize highly accurate grooving.

図3Bは、本発明の切削加工方法の基本工程であり、第1の工程では、2種類の鋭角刃3のうち、チッピングを抑制するために、最終的な加工形状(溝部15)の溝角度より広い成形角度αを有する広角刃31を、第2の工程では、最終的な加工形状とするために、溝角度と一致させた成形角度β(β<α<90°)を有する形状転写刃32を、それぞれ用いる。広角刃31および形状転写刃32は、公知の超硬材料からなり、加工方向(送り方向)に所定の刃厚を有して剛性を確保し、上部側面を被加工面に略垂直な基準面33として、刃先の位置出しを容易にしている。広角刃31は、基準面33下方に略三角形状に突出する刃先形状で、両刃面(図の左右側面)を基準面33に対して傾斜させて、刃先にかかる荷重が略均等になるようにする。形状転写刃32は、立壁部14b側に基準面33に続く垂直な刃面を有している。   FIG. 3B is a basic process of the cutting method according to the present invention. In the first process, the groove angle of the final processed shape (groove portion 15) is selected in order to suppress chipping among the two types of acute angle blades 3. In the second step, the shape transfer blade having a forming angle β (β <α <90 °) matched with the groove angle in order to make the wide-angle blade 31 having a wider forming angle α into a final processed shape in the second step. 32 are used respectively. The wide-angle blade 31 and the shape transfer blade 32 are made of a known super hard material, have a predetermined blade thickness in the processing direction (feed direction), ensure rigidity, and have a reference surface whose upper side surface is substantially perpendicular to the processing surface. As 33, positioning of the blade edge is facilitated. The wide-angle blade 31 has a cutting edge shape that protrudes in a substantially triangular shape below the reference surface 33, and both blade surfaces (left and right side surfaces in the figure) are inclined with respect to the reference surface 33 so that the load applied to the cutting edge is substantially uniform. To do. The shape transfer blade 32 has a vertical blade surface following the reference surface 33 on the upright wall portion 14b side.

この時、前進動作する切削バイト4とともに広角刃31が図の手前側から奥側へ引かれると、溝部15の立壁部14b側が削り残され、残り代が形成される。そこで、最終的な加工形状より浅い溝深さとなる位置で、広角刃31に代えて形状転写刃32を切削バイト4に取り付け、引き続いて、所定の溝深さまで切削加工を行って、残り代を削り落とし、刃形状を転写することができる。   At this time, when the wide-angle blade 31 is pulled from the front side to the back side of the drawing together with the cutting tool 4 that moves forward, the standing wall portion 14b side of the groove portion 15 is left uncut and a remaining margin is formed. Therefore, the shape transfer blade 32 is attached to the cutting bit 4 in place of the wide-angle blade 31 at a position where the groove depth is shallower than the final processing shape, and subsequently, cutting is performed to a predetermined groove depth, and the remaining allowance is reduced. You can scrape off and transfer the blade shape.

ここで、図4、5により、広角刃31の成形角度αと形状転写刃32の成形角度βの設定方法について検討する。図4A(左図)において、加工形状である溝部15に対して、鋭角刃3の成形角度を大きくしていくと、溝部15の立壁部14b側に形成される残り代部位が多くなる。また、成形角度により鋭角刃3の両刃面と加工部(立壁部14b側または傾斜部14c側)の接触面が変化し、鋭角刃3の刃先に作用する応力ベクトルの大きさと向きが変化する(右図)。そこで、これらの関係を調べて、図4Bに示した。図中、ベクトル角度は、鋭角刃3の切り込み方向(垂直方向)に対する応力ベクトルの傾斜角度であり、応力指数は、鋭角刃3の成形角度が溝角度に一致する場合(形状転写刃32の成形角度β)を、応力指数=1として、応力の大きさを相対評価した。   Here, the setting method of the forming angle α of the wide-angle blade 31 and the forming angle β of the shape transfer blade 32 will be examined with reference to FIGS. In FIG. 4A (left figure), when the forming angle of the acute angle blade 3 is increased with respect to the groove portion 15 which is a processed shape, the remaining margin portion formed on the standing wall portion 14b side of the groove portion 15 increases. Further, the contact surfaces of the two blade surfaces of the acute angle blade 3 and the processing portion (the standing wall portion 14b side or the inclined portion 14c side) change depending on the forming angle, and the magnitude and direction of the stress vector acting on the blade edge of the acute angle blade 3 change ( (Right figure). Therefore, these relationships were examined and shown in FIG. 4B. In the figure, the vector angle is the inclination angle of the stress vector with respect to the cutting direction (vertical direction) of the acute angle blade 3, and the stress index is the case where the molding angle of the acute angle blade 3 coincides with the groove angle (molding of the shape transfer blade 32). The angle β) was set as the stress index = 1, and the magnitude of the stress was relatively evaluated.

図4Bは、鋭角刃3の成形角度とベクトル角度および応力指数の関係を示しており、ここでは、溝部15の溝角度を54°として5°刻みで鋭角刃3の成形角度を大きくした。また、それぞれにつき試験片を用いて切削加工を行った時のチッピングの有無を調べた。図示されるように、成形角度が大きくなるに従い、ベクトル角度が徐々に小さくなり、応力指数が急減して79°近傍でほぼ一定(約0.8)となった。また、79°を超える領域では、チッピングの発生が見られなかった。これにより、ベクトル角度を小さくすることで、切削加工時の応力の偏りが緩和され、チッピングのおそれが小さくなることがわかる。   FIG. 4B shows the relationship between the forming angle of the acute blade 3, the vector angle, and the stress index. Here, the groove angle of the groove 15 is set to 54 °, and the forming angle of the acute blade 3 is increased in increments of 5 °. In addition, the presence or absence of chipping when the cutting process was performed using each test piece was examined. As shown in the figure, as the forming angle increased, the vector angle gradually decreased, the stress index decreased rapidly, and became substantially constant (about 0.8) near 79 °. Further, no chipping was observed in the region exceeding 79 °. Thus, it can be seen that by reducing the vector angle, the stress bias during the cutting process is alleviated and the risk of chipping is reduced.

したがって、2種類の鋭角刃3は、第1の工程で使用する広角刃31の成形角度αを極力大きくすることで、チッピングを抑制する効果が高くなる。好適には、広角刃31を成形角度αが80°以上の鋭角刃とするのがよく、応力指数が小さい所定範囲で残り代を最小限となるように設定する。第2の工程で使用する形状転写刃32形状は、一体型成形ローラ1の切刃部14の仕様に応じて決定される。例えば、溝部15の溝角度は、40〜70°程度の範囲であり、形状転写刃32の成形角度βはこれに一致するように設定される。   Accordingly, the two types of acute angle blades 3 have an effect of suppressing chipping by increasing the forming angle α of the wide angle blade 31 used in the first step as much as possible. Preferably, the wide-angle blade 31 is an acute-angle blade having a forming angle α of 80 ° or more, and is set so that the remaining margin is minimized within a predetermined range where the stress index is small. The shape transfer blade 32 shape used in the second step is determined according to the specifications of the cutting blade portion 14 of the integral molding roller 1. For example, the groove angle of the groove portion 15 is in the range of about 40 to 70 °, and the forming angle β of the shape transfer blade 32 is set to coincide with this.

このように、微小な鋭角刃3で溝部15を切削加工する場合には、予め第1の工程で、広角刃31を用いて溝部15の一部を残して切削し、次いで第2の工程で、形状転写刃32を用いることで、チッピングを生じさせず正確に刃物形状を転写することができる。これに対して、図5に示すように、広角刃31を用いずに形状転写刃32のみで総型切削した場合は、すべて立壁部14b側の刃先(図の左側)にチッピングが生じた。これは、形状転写刃32の切り込み形状が、切り込み方向に対して非対称であり、接触面が刃先の立壁部14b側で小さく、傾斜部14c側で大きくなって応力のアンバランスが生じることに起因すると推測される。   In this way, when the groove 15 is cut with the fine acute angle blade 3, the wide angle blade 31 is used to cut a part of the groove 15 in advance in the first step, and then in the second step. By using the shape transfer blade 32, the shape of the blade can be accurately transferred without causing chipping. On the other hand, as shown in FIG. 5, when the entire shape was cut with only the shape transfer blade 32 without using the wide-angle blade 31, chipping occurred in the cutting edge (left side in the drawing) on the standing wall portion 14 b side. This is because the cut shape of the shape transfer blade 32 is asymmetric with respect to the cut direction, and the contact surface is small on the standing wall portion 14b side of the blade edge and large on the inclined portion 14c side, resulting in stress imbalance. I guess that.

図6、7に、本発明を適用した切削加工装置5の構成例と、加工工程の好適例を示す。図6において、切削加工装置5は、回転駆動軸51の外周に一体型成形ローラ1を装着し、水平方向を軸方向として回転可能に支持するローラ支持ユニットU1を有している。回転駆動軸51の先端側には、円盤状の押さえ板52が取り付けられて、一体型成形ローラ1の面振れを防止し、後端側には、回転駆動軸51を回転させ所定の加工位置で停止させるインデックス機構53が取り付けられる。一体型成形ローラ1の上方には切削ユニットU2が設けられ、図3の切削バイト4が、バイトホルダ54に保持されて垂直方向に配置され、一体型成形ローラ11の歯部11と切削バイト4先端の鋭角刃3が対向位置している。   6 and 7 show a configuration example of the cutting apparatus 5 to which the present invention is applied and a preferable example of the machining process. In FIG. 6, the cutting apparatus 5 includes a roller support unit U <b> 1 that mounts the integral molding roller 1 on the outer periphery of the rotation drive shaft 51 and supports the rotation in the horizontal direction as an axial direction. A disc-shaped pressing plate 52 is attached to the front end side of the rotary drive shaft 51 to prevent the surface vibration of the integral molding roller 1, and the rotary drive shaft 51 is rotated to a predetermined processing position on the rear end side. The index mechanism 53 to be stopped is attached. A cutting unit U2 is provided above the integral molding roller 1, and the cutting tool 4 in FIG. 3 is held by a tool holder 54 and arranged in the vertical direction. The acute angle blade 3 at the tip is opposed.

バイトホルダ54は、基準バー55を有する加工ヘッド56の外周に固定されており、図示しない駆動部により加工ヘッド56と一体に、水平方向および垂直方向に任意に動作できる。また、切削バイト4の刃先位置は、基準バー55との相対位置(XY方向およびZ方向)を測定することにより、正確な位置出しが可能となる。バイトホルダ54は、角筒状の筒内に突出して切削バイト4の外周に当接する複数の調整ボルトを有し、刃先の調整を容易にしている。この時、鋭角刃3となる広角刃31または形状転写刃32を、任意の切り込み深さおよび送り速度で溝長手方向に動作させ、所望の溝形状に切削加工することができる。   The tool holder 54 is fixed to the outer periphery of the processing head 56 having the reference bar 55, and can be arbitrarily operated in the horizontal direction and the vertical direction integrally with the processing head 56 by a driving unit (not shown). Further, the position of the cutting edge of the cutting tool 4 can be accurately determined by measuring the relative position (XY direction and Z direction) with respect to the reference bar 55. The cutting tool holder 54 has a plurality of adjusting bolts that protrude into a rectangular tube and come into contact with the outer periphery of the cutting tool 4 to facilitate adjustment of the cutting edge. At this time, the wide-angle blade 31 or the shape transfer blade 32 to be the acute-angle blade 3 can be moved in the longitudinal direction of the groove at an arbitrary cutting depth and feed rate to be cut into a desired groove shape.

好適には、図7に示すように、広角刃31を用いた第1の工程である荒加工工程(1)と、形状転写刃32を用いた第2の工程である中加工工程(2)および仕上げ加工工程(3)を組み合わせた3段階加工を行う。まず、荒加工工程(1)では、未加工の一体型成形ローラ1の歯部11に対して、広角刃31を用いて、図に斜線で示す加工部位を徐々に切削し、刃形状に沿う溝を形成する。この時、広角刃31は、切り込み方向(垂直方向)に対して両刃面(図の左右刃面)が傾斜し、被加工面との接触面に比較的均等に荷重がかかる。つまり、均等な荷重のかかる部位を削り落とし、応力がかかる箇所だけを削り残すことで、応力集中によるチッピングを抑制することができる。形成される溝幅は、加工しようとする溝部15幅よりわずかに小さく、溝周囲、特に立壁部14b側に残り代部位となる削り残しが生じる。   Preferably, as shown in FIG. 7, a roughing process (1) which is a first process using a wide-angle blade 31 and a middle machining process (2) which is a second process using a shape transfer blade 32. And the three-step processing which combined finishing process (3) is performed. First, in the roughing process (1), a processing portion indicated by hatching in the drawing is gradually cut using the wide-angle blade 31 with respect to the tooth portion 11 of the unprocessed integrated molding roller 1 to follow the blade shape. Grooves are formed. At this time, in the wide-angle blade 31, both blade surfaces (left and right blade surfaces in the figure) are inclined with respect to the cutting direction (vertical direction), and a load is applied relatively evenly to the contact surface with the work surface. That is, chipping due to stress concentration can be suppressed by scraping off a portion where a uniform load is applied and leaving only a portion where stress is applied. The width of the groove to be formed is slightly smaller than the width of the groove 15 to be processed, and an uncut portion that becomes a remaining portion is generated around the groove, particularly on the side of the standing wall 14b.

中加工工程(2)では、荒加工工程(1)後の残り代部位のうち、図に斜線で示す加工部位を、形状転写刃32を用いて徐々に切削し、刃形状に沿う溝を形成する。この時、形状転写刃32は、切り込み方向(垂直方向)に対して一方の刃面(図の右刃面)のみ傾斜するが、荒加工工程(1)により、この一方の刃面側の相当部位が削り落とされているので、残り代部位を切削する際に、両刃面にかかる応力は比較的小さい。つまり、応力が大きくならない箇所を削り落とし、溝周囲に残り代をわずかにつける程度まで加工することで、仕上げ加工工程(3)を効果的に行う。   In the intermediate machining step (2), among the remaining portions after the rough machining step (1), the machining portion indicated by hatching in the figure is gradually cut using the shape transfer blade 32 to form a groove along the blade shape. To do. At this time, the shape transfer blade 32 is inclined only on one blade surface (right blade surface in the drawing) with respect to the cutting direction (vertical direction). Since the part has been scraped off, the stress applied to the blade surfaces when the remaining part is cut is relatively small. That is, the finishing process step (3) is effectively performed by scraping off the portion where the stress does not increase and processing to the extent that the remaining margin is slightly provided around the groove.

仕上げ加工工程(3)では、中加工工程(2)後の残り代部位を、形状転写刃32を用いて切削する。加工部位となる残り代部位は、両刃面(図の左右刃面)にかかる応力が略均等になるように残されるので、同じ刃物で再度切削し、残り代全てを削り落とす。このような2種類の刃物を用いた3段階の加工により、応力を小さくしてチッピングを抑制しながら、溝部15形状を高精度に加工できる。   In the finishing process (3), the remaining portion after the intermediate machining process (2) is cut using the shape transfer blade 32. Since the remaining allowance portion that becomes the processing portion is left so that the stress applied to both blade surfaces (left and right blade surfaces in the drawing) becomes substantially equal, the remaining blade is cut again with the same blade and all the remaining allowance is removed. By the three-stage machining using these two types of blades, the shape of the groove 15 can be machined with high accuracy while reducing stress and suppressing chipping.

本発明の効果を確認するため、図6の切削加工装置5を用い、図7の3段階加工工程(1)〜(3)に従って、一体型成形ローラ1の切削加工を実施した。図8に、加工形状と評価結果を示す。一体型成形ローラ1は、切刃部14の指示寸法が、隣り合う斜刃14aのピッチP:0.3mm(要求交差±0.004mm)、溝部15深さD:0.17mm(要求交差±0.002mm)、溝部15の角度γ:54°(要求交差±5´)であり、切削バイト4の鋭角刃3として、広角刃31(成形角度α:84°)、形状転写刃32(成形角度β:54°)を用いた。その結果、図中の表に示すように、各部の測定値(ピッチP:0.299〜0.302mm、深さD:0.168〜0.171mm、角度γ:53.99°)は、いずれも要求交差の範囲内であった(評価:○)。   In order to confirm the effect of the present invention, the integrated molding roller 1 was cut according to the three-stage machining steps (1) to (3) of FIG. 7 using the cutting device 5 of FIG. FIG. 8 shows the processed shape and the evaluation results. In the integral molding roller 1, the indicated dimensions of the cutting edge portion 14 are such that the pitch P between adjacent slant blades 14a: 0.3 mm (required crossing ± 0.004 mm), and the groove portion 15 depth D: 0.17 mm (required crossing ± 0.002 mm), and the angle γ of the groove 15 is 54 ° (required crossing ± 5 ′). As the acute angle blade 3 of the cutting tool 4, a wide angle blade 31 (forming angle α: 84 °) and a shape transfer blade 32 (forming) Angle β: 54 °) was used. As a result, as shown in the table in the figure, the measured values (pitch P: 0.299 to 0.302 mm, depth D: 0.168 to 0.171 mm, angle γ: 53.99 °) of each part are as follows: All were within the required intersection (evaluation: ◯).

なお、3段階加工工程(1)〜(3)における応力ベクトルについて調べたところ、広角刃31を用いた荒加工工程(1)では、ベクトル角度17.92°、応力指数0.787であった。また、形状転写刃32を用い中加工工程(2)では、ベクトル角度35.03°、応力指数0.444で、ベクトル角度は大きいものの、応力が低減しており、仕上げ加工工程(3)では、ベクトル角度2.717°、応力指数0.405と、ともに大きく低減したことで、切削加工が効果的に実施可能となったことがわかる。さらに、得られた一体型成形ローラ1を用いて、図1の製造工程により、多数のルーバ21を有する微細ルーバフィン2の成形加工を実施したところ、ルーバ角度(平均値)が所望の範囲内となり、十分な実用性を有することがわかった。   When the stress vectors in the three-stage machining steps (1) to (3) were examined, in the rough machining step (1) using the wide-angle blade 31, the vector angle was 17.92 ° and the stress index was 0.787. . In the intermediate machining step (2) using the shape transfer blade 32, the vector angle is 35.03 ° and the stress index is 0.444, and the vector angle is large, but the stress is reduced. In the finishing machining step (3), The vector angle 2.717 ° and the stress index 0.405 are greatly reduced, and it can be seen that cutting can be effectively performed. Furthermore, when the fine louver fin 2 having a large number of louvers 21 is formed by the manufacturing process of FIG. 1 using the obtained integral forming roller 1, the louver angle (average value) is within a desired range. It was found to have sufficient practicality.

以上のように、本発明の切削加工方法および切削加工装置によれば、一体型成形ローラ1の微細な切刃部14を、総型切削による転写方式を用いて、高い成形精度で製作することができる。すなわち、切削バイト4の鋭角刃3となる2種類の刃物の組み合わせで、応力の不均等を解消しチッピングを抑制可能であり、従来困難であった微細なルーバ21形状に対応する一体型成形ローラ1を実現できる。本発明は、具体的には、図9(左図)に示すように、溝ピッチPが0.9mm程度以下、溝深さDが0.5mm程度以下の溝部15を有する切刃部14に適用され、好適には、溝ピッチPが0.5mm以下、例えば0.3mm程度の微細な切刃部14の切削加工に、特に有効である。   As described above, according to the cutting method and the cutting device of the present invention, the fine cutting edge portion 14 of the integral molding roller 1 is manufactured with high molding accuracy by using the transfer method by total die cutting. Can do. In other words, a combination of two types of blades serving as the acute-angle blade 3 of the cutting tool 4 can eliminate stress unevenness and suppress chipping, and is an integral forming roller corresponding to the fine louver 21 shape that has been difficult in the past. 1 can be realized. Specifically, as shown in FIG. 9 (left figure), the present invention provides a cutting edge portion 14 having a groove portion 15 having a groove pitch P of about 0.9 mm or less and a groove depth D of about 0.5 mm or less. It is applied and preferably particularly effective for cutting the fine cutting edge portion 14 having a groove pitch P of 0.5 mm or less, for example, about 0.3 mm.

図9(左図)に示す溝部形状(溝ピッチP:0.9mm±5μm、溝深さD:0.5mm、底部R:0.2mm以下)が、より小さくなると、従来の方法での加工が困難になる。例えば図9(右図)のように、3分の1サイズに微細化した溝部形状(溝ピッチP:0.3mm±5μm、溝深さD:0.15mm、底部R:0.05mm以下)では、使用可能なエンドミル(工具径φ0.05mm以下)の製作が難しいだけでなく、剛性の著しい低下により加工性が悪化する。このような場合も、本発明の切削方法を採用することで、生産性よく切削加工を行うことができる。   When the groove shape (groove pitch P: 0.9 mm ± 5 μm, groove depth D: 0.5 mm, bottom R: 0.2 mm or less) shown in FIG. 9 (left figure) becomes smaller, processing by the conventional method is performed. Becomes difficult. For example, as shown in FIG. 9 (right figure), the groove shape refined to one third size (groove pitch P: 0.3 mm ± 5 μm, groove depth D: 0.15 mm, bottom R: 0.05 mm or less) However, not only is it difficult to produce a usable end mill (tool diameter φ0.05 mm or less), but workability deteriorates due to a significant decrease in rigidity. Even in such a case, by using the cutting method of the present invention, cutting can be performed with high productivity.

本発明は、上記実施形態に例示したヒータコアに限らず、小型熱交換器に用いられる微細ルーバ付コルゲートフィンを製造する一体型成形ローラに適用されて、微細な切刃部を高精度に切削加工できる。また、本発明の方法または装置により製作された一体型成形ローラは、微細な切刃部により、多数のルーバが高精度に切り起こし加工された微細ルーバ付コルゲートフィンを成形加工することができ、小型熱交換器の性能向上に寄与する。   The present invention is not limited to the heater core exemplified in the above embodiment, and is applied to an integral forming roller for manufacturing a corrugated fin with a fine louver used in a small heat exchanger, and cuts a fine cutting edge portion with high accuracy. it can. Further, the integral molding roller manufactured by the method or apparatus of the present invention is capable of molding a corrugated fin with a fine louver in which a large number of louvers are cut and raised with high precision by a fine cutting edge part. Contributes to improving the performance of small heat exchangers.

U1 ローラ支持ユニット
U2 切削ユニット
1 一体型成形ローラ
11 歯部
12 山部
13 谷部
14 切刃部
14a 斜刃
14b 立壁部
14c 傾斜部
15 溝部
2 微細ルーバフィン
21 微細ルーバ
3 鋭角刃
31 広角刃
32 形状転写刃
4 切削バイト
U1 Roller support unit U2 Cutting unit 1 Integrated molding roller 11 Tooth portion 12 Mountain portion 13 Valley portion 14 Cutting edge portion 14a Oblique blade 14b Standing wall portion 14c Inclined portion 15 Groove portion 2 Fine louver fin 21 Fine louver 3 Sharp angle blade 31 Wide angle blade 32 Shape Transfer blade 4 Cutting tool

Claims (6)

円筒体の外周面にフィン形状に沿う山部(12)と谷部(13)を交互に形成した歯部(11)を有し、該歯部の各歯面に微細ルーバ(21)形状に沿う切刃部(14)が一体的に形成された、微細ルーバ付コルゲートフィン(2)成形用の一体型成形ローラ(1)の製造方法であって、
上記切刃部は、上記歯面の軸方向に並設され、立壁部(14b)と傾斜部(14c)にて構成される多数の凸条斜刃(14a)と、隣接する立壁部と傾斜部の間に形成される多数の凹条溝部(15)からなり、
上記溝部を、先端に溝切用の鋭角刃(3)を備える切削バイト(4)を溝長手方向に移動させて切削加工するに際し、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度より大きな成形角度(α)の広角刃(31)を用い、上記溝部の溝深さより浅い深さまで切削加工する第1の工程と、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度に一致させた成形角度(β)の形状転写刃(32)を用い、上記溝部の溝深さまで切削加工する第2の工程と、を有することを特徴とする一体型成形ローラの製造方法。
It has a tooth part (11) in which a peak part (12) and a valley part (13) along the fin shape are alternately formed on the outer peripheral surface of the cylindrical body, and each tooth face of the tooth part has a fine louver (21) shape. A manufacturing method of an integral forming roller (1) for forming a corrugated fin (2) with a fine louver, in which a cutting edge portion (14) along which it is formed is formed,
The cutting blade portion is arranged in parallel in the axial direction of the tooth surface, and includes a plurality of ridged slant blades (14a) constituted by the standing wall portion (14b) and the inclined portion (14c), and the adjacent standing wall portion and the inclined surface. Consisting of a number of concave groove portions (15) formed between the portions,
When cutting the groove part by moving a cutting tool (4) provided with an acute angle blade (3) for grooving at the tip in the groove longitudinal direction,
A first step of cutting to a depth shallower than the groove depth of the groove portion using a wide-angle blade (31) having a molding angle (α) larger than the groove angle formed by the adjacent standing wall portion and the inclined portion as the acute angle blade;
A second step of cutting to the groove depth of the groove part using the shape transfer blade (32) having a forming angle (β) matched to the groove angle formed by the adjacent standing wall part and the inclined part as the acute angle blade; A method for producing an integral molding roller.
上記第1の工程は、上記広角刃と側方の上記立壁部との間に、残り代を削り残す荒加工工程であり、
上記第2の工程は、上記第1の工程で形成された残り代を、上記形状転写刃で削り落とす中加工工程と、上記溝部形状に沿う表面を、上記形状転写刃で削り落とす仕上げ加工工程を有する請求項1記載の一体型成形ローラの製造方法。
The first step is a roughing step of cutting off the remaining allowance between the wide-angle blade and the side wall portion.
The second step includes a middle processing step of scraping off the remaining margin formed in the first step with the shape transfer blade, and a finishing step of scraping off the surface along the groove shape with the shape transfer blade. The manufacturing method of the integral molding roller of Claim 1 which has these.
上記切刃部は、上記多数の凹条溝部の溝ピッチが0.9mm以下、溝深さが0.5mm以下である請求項1または2記載の一体型成形ローラの製造方法。   3. The method of manufacturing an integral molding roller according to claim 1, wherein the cutting blade portion has a groove pitch of the plurality of concave groove portions of 0.9 mm or less and a groove depth of 0.5 mm or less. 上記溝角度が40〜70°であり、上記広角刃は成形角度が80°以上の鋭角刃であるいないし3のいずれか1項に記載の一体型成形ローラの製造方法。   4. The method of manufacturing an integral molding roller according to any one of 3 and 4, wherein the groove angle is 40 to 70 °, and the wide angle blade is not an acute angle blade having a molding angle of 80 ° or more. 円筒体の外周面にフィン形状に沿う山部(12)と谷部(13)を交互に形成した歯部(11)を有し、該歯部の各歯面に微細ルーバ(21)形状に沿う切刃部(14)が一体的に形成された、微細ルーバ付コルゲートフィン(2)成形用の一体型成形ローラ(1)の切削加工装置であって、
上記切刃部は、上記歯面の軸方向に並設され、立壁部(14b)と傾斜部(14c)にて構成される多数の凸条斜刃(14a)と、隣接する立壁部と傾斜部の間に形成される多数の凹条溝部(15)からなり、
上記一体型成形ローラを回転自在に保持し、任意位置で停止可能なローラ支持ユニット(U1)と、
上記一体型成形ローラの加工面となる歯面に対して、垂直方向および水平方向に任意動作可能な切削バイト(4)を備え、該切削バイトの先端に設けた溝切用の鋭角刃(3)を溝長手方向に移動させて、上記溝部を切削加工する切削ユニット(U2)と、を有し、
上記鋭角刃として、隣接する立壁部と傾斜部のなす溝角度より大きな成形角度(α)を有し、上記溝部の溝深さより浅い深さまで切削加工するための広角刃(31)と、隣接する立壁部と傾斜部のなす溝角度に一致させた成形角度(β)を有し、上記溝部の溝深さまで切削加工するための形状転写刃(32)を用いることを特徴とする一体型成形ローラの切削加工装置。
It has a tooth part (11) in which a peak part (12) and a valley part (13) along the fin shape are alternately formed on the outer peripheral surface of the cylindrical body, and each tooth face of the tooth part has a fine louver (21) shape. A cutting device for an integrally formed roller (1) for forming a corrugated fin (2) with a fine louver, in which a cutting edge portion (14) along which it is formed is formed,
The cutting blade portion is arranged in parallel in the axial direction of the tooth surface, and includes a plurality of ridged slant blades (14a) constituted by the standing wall portion (14b) and the inclined portion (14c), and the adjacent standing wall portion and the inclined surface. Consisting of a number of concave groove portions (15) formed between the portions,
A roller support unit (U1) that rotatably holds the integral molding roller and can be stopped at an arbitrary position;
A sharp cutting blade (3) provided with a cutting bit (4) that can be arbitrarily operated in the vertical and horizontal directions with respect to the tooth surface that is the processing surface of the integral molding roller, and provided at the tip of the cutting bit (3) ) In the longitudinal direction of the groove, and a cutting unit (U2) for cutting the groove portion,
Adjacent to the wide-angle blade (31) having a forming angle (α) larger than the groove angle formed by the adjacent standing wall portion and the inclined portion and cutting to a depth shallower than the groove depth of the groove portion. An integral forming roller having a forming angle (β) that matches the groove angle formed by the standing wall portion and the inclined portion, and using a shape transfer blade (32) for cutting to the groove depth of the groove portion Cutting equipment.
上記請求項1ないし5のいずれか1項に記載の製造方法または切削加工装置により上記溝部が切削加工された上記切刃部を備える微細ルーバ付コルゲートフィン成形用の一体型成形ローラ。   An integral forming roller for forming a corrugated fin with a fine louver, comprising the cutting edge portion in which the groove portion is cut by the manufacturing method or cutting device according to any one of claims 1 to 5.
JP2014225820A 2014-11-06 2014-11-06 Manufacturing method of integrated molding roller, cutter and integrated molding roller Pending JP2016087659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014225820A JP2016087659A (en) 2014-11-06 2014-11-06 Manufacturing method of integrated molding roller, cutter and integrated molding roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225820A JP2016087659A (en) 2014-11-06 2014-11-06 Manufacturing method of integrated molding roller, cutter and integrated molding roller

Publications (1)

Publication Number Publication Date
JP2016087659A true JP2016087659A (en) 2016-05-23

Family

ID=56017741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225820A Pending JP2016087659A (en) 2014-11-06 2014-11-06 Manufacturing method of integrated molding roller, cutter and integrated molding roller

Country Status (1)

Country Link
JP (1) JP2016087659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106363080A (en) * 2016-09-02 2017-02-01 滁州市鑫鼎机械模具制造有限公司 Casting die for manufacturing surface convection heat sink of shell of compressor of refrigerator
CN112077214A (en) * 2020-08-05 2020-12-15 格致汽车科技股份有限公司 Machining method for functional insert of large stamping die
CN113941658A (en) * 2020-07-15 2022-01-18 倍腾国际股份有限公司 Punch manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106363080A (en) * 2016-09-02 2017-02-01 滁州市鑫鼎机械模具制造有限公司 Casting die for manufacturing surface convection heat sink of shell of compressor of refrigerator
CN106363080B (en) * 2016-09-02 2018-01-19 滁州市鑫鼎机械模具制造有限公司 For manufacturing the mould of Dimensions Used in Shell of Refrigerator Compressor surface thermal convection device
CN113941658A (en) * 2020-07-15 2022-01-18 倍腾国际股份有限公司 Punch manufacturing method
CN112077214A (en) * 2020-08-05 2020-12-15 格致汽车科技股份有限公司 Machining method for functional insert of large stamping die

Similar Documents

Publication Publication Date Title
JP5204537B2 (en) Grinding machine for grinding gears
JP6798992B2 (en) Methods, tool configurations, and gear trimmers for machining teeth
JP4804167B2 (en) Rolling tool and simultaneous rolling method of screw or worm and minority spline
JP6531021B2 (en) elbow
JP2016087659A (en) Manufacturing method of integrated molding roller, cutter and integrated molding roller
JP2018153916A (en) Method for processing tooth surface of bevel gear work-piece
US20130259585A1 (en) Milling cutter
JP7061371B2 (en) Machine parts and their applications in cutting
KR20150125737A (en) Helical blade cutter
JP4221117B2 (en) Molding sheet mold production equipment
JPWO2012073374A1 (en) Deburring method for end face burrs of total groove and total rotary cutting tool for chamfering
CN106862618B (en) Drilling machining tool
CN102328126A (en) Small helix-edge ball-end milling cutter
JP2013506565A (en) Rotating structure
TW202130450A (en) Manufacturing method of a drill
JP2017064905A (en) Groove forming tool
CN207289036U (en) A kind of high-precision built-up broach of retainer
PL224804B1 (en) Tool for rolling the screw-type tool crests
CN104668906B (en) Manufacturing process for inclined supporting block of overrunning clutch
JP2021516625A (en) How to perform variable pitch gear cutting on the steering rack
CN103317188A (en) Surface broach
JP6376364B2 (en) How to set the energy consumption of two tools when machining the pipe end
TWI503192B (en) Method for determining features of contour cutting process using ball end
CN216990051U (en) Milling cutter with unequal blade diameters
RU189824U1 (en) Disc Cutter