JP2016084449A - Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable - Google Patents

Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable Download PDF

Info

Publication number
JP2016084449A
JP2016084449A JP2014219869A JP2014219869A JP2016084449A JP 2016084449 A JP2016084449 A JP 2016084449A JP 2014219869 A JP2014219869 A JP 2014219869A JP 2014219869 A JP2014219869 A JP 2014219869A JP 2016084449 A JP2016084449 A JP 2016084449A
Authority
JP
Japan
Prior art keywords
chlorine
based polymer
polymer composition
mass
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014219869A
Other languages
Japanese (ja)
Inventor
太郎 藤田
Taro Fujita
太郎 藤田
西川 信也
Shinya Nishikawa
信也 西川
博志 大見
Hiroshi Omi
博志 大見
益大 飯田
Masuhiro Iida
益大 飯田
恒典 森岡
Tsunenori Morioka
恒典 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014219869A priority Critical patent/JP2016084449A/en
Publication of JP2016084449A publication Critical patent/JP2016084449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasion resistant chlorine-based polymer composition having both of excellent insulation property and abrasion resistance, excellent in mechanical strength such as tensile strength and tensile elongation without increase of viscosity during mixing and extrusion molding a chlorine-based polymer composition, and a chlorine-based polymer coated cable having a sheath layer (outer layer coating) formed by the chlorine-based polymer composition.SOLUTION: There are provided an abrasion resistant chlorine-based polymer composition containing a chlorine-based polymer and gel process silica having particle diameter of 1 μm to 20 μm and having the blended amount of the gel process silica of 1 pts.mass to 40 pts.mass based on 100 pts.mass of the chlorine-based polymer and a chlorine-based polymer coated cable having a sheath layer (outer layer coating) formed by the chlorine-based polymer composition.SELECTED DRAWING: Figure 1

Description

本発明は、工場内で使用される移動機器の給電線として用いられるキャブタイヤケーブルや、電気自動車用急速充電ケーブル等の外層被覆材料を形成する耐摩耗性に優れた塩素系ポリマー組成物(耐摩耗性塩素系ポリマー組成物)に関する。   The present invention relates to a chlorine-based polymer composition (anti-wear property) that forms an outer layer covering material such as a cabtyre cable used as a power supply line of a mobile device used in a factory or a quick charge cable for an electric vehicle. Abrasive chlorine-based polymer composition).

工場内で使用される移動機器の給電線として用いられるキャブタイヤケーブルや電気自動車用急速充電ケーブルは、通常、導体及びその周囲を被覆する絶縁体からなる絶縁電線を複数本数束ね、その外周を外層被覆材で覆ってなる構造である。図1は、このようなキャブタイヤケーブル(以下、単に「ケーブル」と言う)の一例であって、工場内での移動機器の給電線として用いられるものの断面図である。   Cabtyre cables and electric vehicle quick charge cables used as power supply lines for mobile equipment used in factories usually bundle a number of insulated wires consisting of conductors and insulators that surround them, and the outer circumference is the outer layer. The structure is covered with a covering material. FIG. 1 is a cross-sectional view of an example of such a cabtyre cable (hereinafter simply referred to as “cable”), which is used as a feeder line for a mobile device in a factory.

図中、1はケーブルであり、11は銅等の導体からなる素線であり、この例では、素線11が撚られて導体線15が形成されている。また、それぞれの導体線15は絶縁層12で覆われており導体線15と絶縁層12により絶縁電線16が形成されている。絶縁層12は、通常、各絶縁電線間を互いに識別するためにそれぞれ異なった着色がなされたEPゴム組成物が被覆されてなる。   In the figure, 1 is a cable, 11 is a strand made of a conductor such as copper. In this example, the strand 11 is twisted to form a conductor wire 15. Each conductor wire 15 is covered with an insulating layer 12, and an insulated wire 16 is formed by the conductor wire 15 and the insulating layer 12. The insulating layer 12 is usually coated with an EP rubber composition that is colored differently to distinguish between the insulated wires.

ケーブル1は、3本の絶縁電線からなる3心のキャブタイヤケーブルである。3本の絶縁電線16は、図に示すように束ねられその外周が絶縁性の外層被覆材(以下「シース層」と言う)13により覆われている。通常、3本の絶縁電線16をシース層13内に安定的に保持するため、これらとシース層13との間は介在物(絶縁)14により充たされている。   The cable 1 is a three-core cabtire cable composed of three insulated wires. The three insulated wires 16 are bundled as shown in the figure, and the outer periphery thereof is covered with an insulating outer layer covering material (hereinafter referred to as “sheath layer”) 13. Usually, in order to stably hold the three insulated wires 16 in the sheath layer 13, the space between these and the sheath layer 13 is filled with inclusions (insulation) 14.

工場内の移動機器用の給電ケーブルや電気自動車用の急速充電ケーブルは、一般的に重くその使用時には床面と擦れながら激しく移動することもある等、手荒く扱われることが多い。従ってシース層には、ケーブルを取回しやすくするための柔軟性、引張強度、引張伸び等の優れた機械的強度とともに高い耐摩耗性が求められる。高い耐摩耗性を有するシース層であれば薄肉化しても十分な摩耗性を有するためケーブルを軽量化することができ、また、柔軟化により折り曲げやすくなるため取り回し性が向上し好ましい。さらに、シース層には、使用時の安全を確保するための難燃性が求められるので、シース層を形成する材料(シース材)にはポリマーの中でも耐摩耗性と柔軟性、難燃性に優れるクロロプレンゴムまたはポリ塩化ビニル(PVC)が用いられるのが一般的である。   Power supply cables for mobile devices in factories and quick charge cables for electric vehicles are generally heavy and are often handled roughly, such as when they are used, they may move violently while rubbing against the floor surface. Accordingly, the sheath layer is required to have high wear resistance as well as excellent mechanical strength such as flexibility, tensile strength, and tensile elongation for facilitating the handling of the cable. A sheath layer having high wear resistance is preferable because the cable can be reduced in weight because it has sufficient wear resistance even if it is thinned, and it is easy to bend because of its flexibility, and the handling property is improved. Furthermore, since the sheath layer is required to have flame retardance to ensure safety during use, the material (sheath material) forming the sheath layer is wear resistant, flexible and flame retardant among polymers. It is common to use excellent chloroprene rubber or polyvinyl chloride (PVC).

例えば、特許文献1では、銅導体等からなるコア(絶縁電線)を単独または複数本撚り合わせたものの外周に内層シース及びポリクロロプレンゴム外層シースを押出し被覆・加硫してなる高電圧キャブタイヤケーブルが開示されている。   For example, in Patent Document 1, a high-voltage cabtire cable formed by extruding, coating and vulcanizing an inner layer sheath and a polychloroprene rubber outer layer sheath on the outer periphery of a single core or a plurality of cores (insulated wires) made of a copper conductor or the like. Is disclosed.

クロロプレンゴム等のゴムやPVC等の塩素系ポリマー組成物の耐摩耗性をさらに向上させるため、塩素系ポリマー組成物にカーボンブラックやシリカを添加する方法が知られている。例えば、非特許文献1には、カーボンブラックやシリカをゴム組成物に添加するとゴムの耐摩耗性が向上することが開示されている。   In order to further improve the abrasion resistance of a rubber such as chloroprene rubber or a chlorine-based polymer composition such as PVC, a method of adding carbon black or silica to the chlorine-based polymer composition is known. For example, Non-Patent Document 1 discloses that the wear resistance of rubber is improved when carbon black or silica is added to the rubber composition.

一方、特許文献2では、高耐摩耗性に優れる電線として、塩化ビニル樹脂系組成物(塩化ビニル樹脂に、可塑剤、安定剤等を配合したもの)に、精製された四塩化ケイ素の酸水素焔中における気相加水分解によって製造される高分散性の無定形性シリカで球形の粒子が鎖状に凝集してつながった二酸化ケイ素のエーロゾル状態の超微粒子無定形シリカを配合した組成物によって絶縁体を構成してなる電線が開示されている。   On the other hand, in Patent Document 2, as an electric wire excellent in high wear resistance, a hydrogen chloride of silicon tetrachloride purified into a vinyl chloride resin-based composition (vinyl chloride resin blended with a plasticizer, a stabilizer, etc.). A highly dispersible amorphous silica produced by gas phase hydrolysis in soot and composed of a combination of silica particles in the form of aerosols of ultrafine particles of silica in the form of agglomerated spherical particles An electric wire comprising an insulator is disclosed.

特開2008−130367号公報JP 2008-130367 A 特許第2893413号公報Japanese Patent No. 2893413

「ゴム技術の基礎」、日本ゴム協会、昭和58年、229頁“Basics of Rubber Technology”, Japan Rubber Association, pp. 229

しかし、カーボンブラックは導電性の材料であり、高濃度になると鎖状組織を形成し伝導性回路がポリマー組成物内に形成される。カーボンブラックの添加量がある限度以上になると急にポリマー組成物の絶縁抵抗が低下し漏電の危険が生じる。従って、カーボンブラックの添加量には限度がありこの方法による耐摩耗性の向上には限界があった。   However, carbon black is a conductive material. When the concentration is high, a chain structure is formed and a conductive circuit is formed in the polymer composition. If the amount of carbon black added exceeds a certain limit, the insulation resistance of the polymer composition is suddenly reduced, causing a risk of electric leakage. Therefore, there is a limit to the amount of carbon black added, and there has been a limit to improving the wear resistance by this method.

特許文献2に開示されているように、前記の微粒子シリカを添加すると耐摩耗性が向上することは知られている。しかし、微粒子シリカは非常に表面積が大きく、樹脂との相互作用が非常に大きくいために、増粘作用が大きい。しかし、摩耗改善効果を得るために多量の微粒子シリカを添加すると、ポリマー組成物の粘度を上昇させ、ポリマー組成物の混合・押出中の剪断発熱が大きくなり所謂ヤケが生じやすく、さらに押出工程において押出機の能力を上回るトルクが発生し、押出不能となることがあった。また、硬くなり、引張伸びが低下してJIS規格割れしてしまう問題があった。従って、シリカもその添加量には限度がありこの方法による耐摩耗性の向上には限界があった。   As disclosed in Patent Document 2, it is known that when the fine particle silica is added, the wear resistance is improved. However, fine-particle silica has a very large surface area and has a large thickening effect because of its very large interaction with the resin. However, when a large amount of fine particle silica is added in order to obtain an effect of improving wear, the viscosity of the polymer composition is increased, so that shear heat generation during mixing and extrusion of the polymer composition is increased, and so-called burn is likely to occur. Torque exceeding the capacity of the extruder was generated, making extrusion impossible. Moreover, it became hard, there was a problem that the tensile elongation was lowered and the JIS standard was cracked. Accordingly, the amount of silica added is also limited, and there is a limit to the improvement of wear resistance by this method.

本発明は、クロロプレンゴムやPVC等の塩素系ポリマーにカーボンブラックやシリカを添加してなる従来の塩素系ポリマー組成物では得られない優れた絶縁性と耐摩耗性を併せ持ち、又引張強度、引張伸び等の機械的強度にも優れ、かつ塩素系ポリマー組成物の混合、押出成型の際の粘度の上昇もない耐摩耗性塩素系ポリマー組成物を提供することを課題とする。   The present invention has excellent insulation and wear resistance that cannot be obtained with conventional chlorine polymer compositions obtained by adding carbon black or silica to chlorine polymers such as chloroprene rubber and PVC, and also has tensile strength and tensile strength. It is an object of the present invention to provide an abrasion-resistant chlorine-based polymer composition that is excellent in mechanical strength such as elongation and does not increase in viscosity during mixing and extrusion molding of the chlorine-based polymer composition.

本発明は、又優れた絶縁性及び耐摩耗性を有する前記の塩素系ポリマー組成物により形成され、絶縁性及び耐摩耗性に優れるシース層(外層被覆)を有する塩素系ポリマー被覆ケーブルを提供することを課題とする。   The present invention also provides a chlorine-based polymer-coated cable formed of the above-mentioned chlorine-based polymer composition having excellent insulation and wear resistance, and having a sheath layer (outer layer coating) excellent in insulation and wear resistance. This is the issue.

本発明の第1の態様は、塩素系ポリマー及び粒子径が1μm以上20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下である耐摩耗性塩素系ポリマー組成物である。   A first aspect of the present invention contains a chlorine-based polymer and a gel method silica having a particle diameter of 1 μm or more and 20 μm or less, and the amount of the gel method silica is 1 part by mass with respect to 100 parts by mass of the chlorine-based polymer. The wear-resistant chlorine-based polymer composition is 40 parts by mass or less.

本発明の第2の態様は、導体線及び前記導体線を被覆する絶縁層からなる絶縁電線、及び該絶縁電線を被覆するシース層(外層被覆)を有する塩素系ポリマー被覆ケーブルであって、該シース層が、塩素系ポリマー及び粒子径が1μm以上、20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上40質量部以下である耐摩耗性塩素系ポリマー組成物より形成される塩素系ポリマー被覆ケーブルである。   According to a second aspect of the present invention, there is provided a chlorinated polymer-coated cable having a conductor wire and an insulated wire made of an insulating layer covering the conductor wire, and a sheath layer (outer layer coating) covering the insulated wire, The sheath layer contains a chlorine-based polymer and a gel method silica having a particle diameter of 1 μm or more and 20 μm or less, and the amount of the gel method silica is 1 part by mass or more and 40 parts by mass with respect to 100 parts by mass of the chlorine-based polymer. It is a chlorine-based polymer-coated cable formed from the following wear-resistant chlorine-based polymer composition.

本発明の第1の態様により、優れた絶縁性と耐摩耗性を併せ持ち、又引張強度、引張伸び等の機械的強度にも優れ、かつ塩素系ポリマー組成物の混合、押出成型の際の粘度の上昇もない耐摩耗性塩素系ポリマー組成物が提供される。   According to the first aspect of the present invention, it has excellent insulation properties and abrasion resistance, is excellent in mechanical strength such as tensile strength and tensile elongation, and has viscosity during mixing and extrusion molding of a chlorine-based polymer composition. A wear-resistant chlorine-based polymer composition is provided that does not increase the slag.

本発明の第2の態様により、優れた絶縁性と耐摩耗性を併せ持ち、引張強度、引張伸び等の機械的強度にも優れたシース層を有し、工場内の移動機器への給電や電気自動車の急速充電に好適に用いられる塩素系ポリマー被覆ケーブルが提供される。   According to the second aspect of the present invention, it has a sheath layer that has both excellent insulation and wear resistance, and excellent mechanical strength such as tensile strength and tensile elongation. Provided is a chlorinated polymer-coated cable that is suitably used for rapid charging of automobiles.

キャブタイヤケーブルの一例の構造を示す断面図である。It is sectional drawing which shows the structure of an example of a cabtire cable. 実施例における摩耗輪試験に使用した装置を模式的に示す図である。It is a figure which shows typically the apparatus used for the abrasion ring test in an Example.

以下、第1及び第2の実施態様の具体的形態をその例示とともに説明する。なお、本発明の範囲は以下の例示に限定されるものではなく、特許請求の範囲によって記載された範囲及び均等の範囲内での全ての変更が含まれる。   Hereinafter, specific forms of the first and second embodiments will be described together with examples thereof. Note that the scope of the present invention is not limited to the following examples, and includes all modifications within the scope and equivalent scope described by the claims.

[第1の態様]
1.第1の態様の構成及びその意義
第1の態様は、塩素系ポリマー及び粒子径が1μm以上20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下である耐摩耗性塩素系ポリマー組成物である。
[First embodiment]
1. Configuration of the first aspect and its significance The first aspect includes a chlorine-based polymer and a gel method silica having a particle size of 1 μm or more and 20 μm or less, and the amount of the gel method silica is 100 parts by mass of the chlorine-based polymer. In contrast, the wear-resistant chlorine-based polymer composition is 1 part by mass or more and 40 parts by mass or less.

本発明者は、鋭意検討の結果、従来の耐摩耗性塩素系ポリマー組成物において使用されているシリカの代わりに大きな二次粒子径をもつゲル法シリカを用いれば、少ない添加量で著しい耐摩耗性改善効果を得ることができ、塩素系ポリマー組成物の混合、押出成型の際の粘度上昇、引張強度、引張伸びの低下等を最小限に抑えて、優れた絶縁性と耐摩耗特性が得られることを見出し、本発明を完成した。そして、第1の態様により、充分な絶縁性と耐摩耗性を併せ持ち、シース層の形成に好適な耐摩耗性塩素系ポリマー組成物が提供される。また、塩素系ポリマー組成物の混合、押出成型の際の粘度の上昇が小さいため、混合時や押出時のヤケが防止される。   As a result of intensive studies, the present inventor has found that if gel-type silica having a large secondary particle size is used instead of silica used in conventional wear-resistant chlorine-based polymer compositions, significant wear resistance can be achieved with a small addition amount. The effect of improving the properties can be obtained, and excellent insulation and wear resistance properties can be obtained by minimizing the increase in viscosity, tensile strength, decrease in tensile elongation, etc. during mixing and extrusion molding of chlorinated polymer compositions. The present invention has been completed. The first aspect provides a wear-resistant chlorine-based polymer composition that has both sufficient insulation and wear resistance and is suitable for forming a sheath layer. Moreover, since the increase in the viscosity at the time of mixing and extrusion molding of the chlorine-based polymer composition is small, burning during mixing or extrusion is prevented.

2.第1の態様の構成材料
(1)塩素系ポリマー
塩素系ポリマーとは分子内に塩素を含有するポリマーやゴムを意味する。第1の態様の耐摩耗性塩素系ポリマー組成物を構成する塩素系ポリマーには、優れた機械的強度、耐候性、耐熱性、耐油性、耐薬品性が望まれ、これらの要請を満たす種類の塩素系ポリマーの使用が好ましい。これらの要請を満たす塩素系ポリマーとしては、クロロプレンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、軟質ポリ塩化ビニル樹脂(軟質PVC樹脂)等を挙げることもできる。
2. Constituent material of the first embodiment (1) Chlorine polymer Chlorine polymer means a polymer or rubber containing chlorine in the molecule. The chlorine-based polymer constituting the wear-resistant chlorine-based polymer composition of the first aspect is desired to have excellent mechanical strength, weather resistance, heat resistance, oil resistance, chemical resistance, and a type satisfying these requirements. The use of chlorinated polymers is preferred. Examples of chlorinated polymers that satisfy these requirements include chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene, and soft polyvinyl chloride resin (soft PVC resin).

中でも、クロロプレンゴムは機械的強度、柔軟性、耐候性、耐熱性、耐油性、耐薬品性、難燃性に優れている。従って、クロロプレンゴムを用いることにより、シース層用として好適な特性が得られ、特に優れた耐摩耗性を得ることができるので好ましい。そこで、第1の態様の好ましい態様として、前記塩素系ポリマーがクロロプレンゴムである耐摩耗性塩素系ポリマー組成物が提供される。   Among these, chloroprene rubber is excellent in mechanical strength, flexibility, weather resistance, heat resistance, oil resistance, chemical resistance, and flame resistance. Therefore, it is preferable to use chloroprene rubber because characteristics suitable for the sheath layer can be obtained and particularly excellent wear resistance can be obtained. Therefore, as a preferred embodiment of the first embodiment, an abrasion-resistant chlorine-based polymer composition in which the chlorine-based polymer is chloroprene rubber is provided.

使用するクロロプレンゴムの種類は特に限定されず、非変性のクロロプレンゴム、各種変性クロロプレンゴム等何れの種類のクロロプレンゴムも使用できる。又、変性クロロプレンゴムには、加硫タイプによってメルカプタン変性、ザントゲン変性、イオウ変性の3タイプがあるが、いずれも用いることができる。ただし、より耐熱性に優れるメルカプタン変性クロロプレンゴム、キサントゲン変性クロロプレンゴムを用いた場合、塩素系ポリマー組成物調製のための混合工程や、電線被覆等を形成するための押出成型工程においてヤケの発生等の熱が加わったことによる品質の低下が防止されるため好ましい。   The kind of chloroprene rubber to be used is not particularly limited, and any kind of chloroprene rubber such as non-modified chloroprene rubber and various modified chloroprene rubbers can be used. There are three types of modified chloroprene rubbers, mercaptan-modified, xanthogen-modified, and sulfur-modified, depending on the vulcanization type, any of which can be used. However, when a mercaptan-modified chloroprene rubber or xanthogen-modified chloroprene rubber with better heat resistance is used, the occurrence of burns in the mixing process for preparing the chlorine-based polymer composition and the extrusion molding process for forming the wire coating, etc. It is preferable because the deterioration of quality due to the addition of heat is prevented.

(2)ゲル法シリカ
第1の態様の耐摩耗性塩素系ポリマー組成物は、粒子径が1μm以上、20μm以下のゲル法シリカを配合することを特徴とする。シリカとしては、合成シリカ(非晶質合成シリカ及び結晶性合成シリカ)、天然シリカ(結晶性シリカ及び非晶質シリカ)等を挙げることができるが、ゲル法シリカは、非晶質合成シリカであって、酸性環境下にて珪酸ソーダを酸で中和し生じた析出物をろ過、乾燥することによって得られるシリカである。
(2) Gel Method Silica The abrasion-resistant chlorine-based polymer composition of the first aspect is characterized by blending gel method silica having a particle size of 1 μm or more and 20 μm or less. Examples of the silica include synthetic silica (amorphous synthetic silica and crystalline synthetic silica), natural silica (crystalline silica and amorphous silica), and the gel method silica is amorphous synthetic silica. In addition, it is silica obtained by filtering and drying a precipitate formed by neutralizing sodium silicate with an acid in an acidic environment.

シリカの中でも、ゲル法シリカは二次粒子の凝集力が高く、塩素系ポリマー組成物の成型加工時の剪断力により破壊されにくく、成型後も元々の二次粒子の大きさ、形状を維持する傾向が大きい。また、BET比表面積が大きく、塩素系ポリマーとの相互作用が強い。この特長によって、摩耗試験の際に塩素系ポリマーに代わってゲル法シリカが、摩耗試験機の砥粒による剪断力を受け止め、塩素系ポリマー組成物が受けるダメージを低減するので、高い耐摩耗性が得られると考えられる。   Among silicas, gel method silica has high cohesion of secondary particles, is not easily broken by shearing force during molding of chlorinated polymer composition, and maintains the size and shape of the original secondary particles after molding. The trend is great. In addition, the BET specific surface area is large and the interaction with the chlorine-based polymer is strong. Due to this feature, the gel silica replaces the chlorinated polymer during the wear test and receives the shearing force generated by the abrasive grains of the wear tester, reducing the damage the chlorinated polymer composition receives. It is thought that it is obtained.

この発明で用いるゲル法シリカは、平均粒子径が1μm以上、20μm以下であり、より好ましくは、2μm以上、20μm以下である。ゲル法シリカ粒子の平均粒子径が、20μmより大きいと引張伸びが低下し、1μmより小さいと十分な耐摩耗性が得られない。なお、平均粒子径および後述の粒子径は、塩素系ポリマー組成物の断面をSEMにて観察し、画像解析ソフトを使用して得られた粒径分布より求めた値である。   The gel method silica used in the present invention has an average particle size of 1 μm or more and 20 μm or less, more preferably 2 μm or more and 20 μm or less. If the average particle diameter of the gel method silica particles is larger than 20 μm, the tensile elongation decreases, and if it is smaller than 1 μm, sufficient wear resistance cannot be obtained. The average particle size and the particle size described later are values obtained from a particle size distribution obtained by observing a cross section of the chlorine-based polymer composition with an SEM and using image analysis software.

粒子径40μm以上である粒子の含有量が0.3質量%を超えると、押出表面外観が荒れてくるので、ゲル法シリカ中の粒子径が40μm以上である粒子の含有量は、0.3質量%以下が好ましい。   When the content of particles having a particle size of 40 μm or more exceeds 0.3% by mass, the appearance of the extruded surface becomes rough. Therefore, the content of particles having a particle size of 40 μm or more in the gel method silica is 0.3 The mass% or less is preferable.

ゲル法シリカのBET比表面積を200m/g以上とすることにより、より高い耐摩耗性が得られる。一方、BET比表面積が400m/gより大きい場合は、ゲル法シリカの塩素系ポリマー組成物での分散性が低下する傾向がある。従って、BET比表面積が200m/g以上、400m/g以下であることが好ましい。このBET比表面積は、窒素吸着法により当業者が通常採用する条件にて、具体的には、JIS 8830:2013で測定した値である。 By setting the BET specific surface area of the gel method silica to 200 m 2 / g or more, higher wear resistance can be obtained. On the other hand, when the BET specific surface area is larger than 400 m 2 / g, the dispersibility of the gel method silica in the chlorine-based polymer composition tends to be lowered. Therefore, the BET specific surface area is preferably 200 m 2 / g or more and 400 m 2 / g or less. This BET specific surface area is a value measured according to JIS 8830: 2013, specifically under conditions normally employed by those skilled in the art by the nitrogen adsorption method.

(3)ゲル法シリカの配合量
第1の態様の耐摩耗性塩素系ポリマー組成物は、前記ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下の範囲であることを特徴とする。ゲル法シリカの配合量が、塩素系ポリマー100質量部に対して1質量部未満の場合は、塩素系ポリマー組成物の耐摩耗性が低くなる。一方、配合量が40質量部を超えると、引張伸び等の機械的強度が低くなり、又塩素系ポリマー組成物の混合、押出成型の際の粘度の上昇も大きくなり、発明の目的を達成することができない。
(3) Blending amount of gel method silica In the wear-resistant chlorine-based polymer composition according to the first aspect, the blending amount of the gel method silica is 1 part by mass or more and 40 parts by mass with respect to 100 parts by mass of the chlorine polymer. It is the range below the mass part. When the blending amount of the gel method silica is less than 1 part by mass with respect to 100 parts by mass of the chlorine-based polymer, the wear resistance of the chlorine-based polymer composition is lowered. On the other hand, when the blending amount exceeds 40 parts by mass, the mechanical strength such as tensile elongation is lowered, and the increase in viscosity during mixing and extrusion molding of the chlorine-based polymer composition is increased, thereby achieving the object of the invention. I can't.

(4)カーボンブラックの配合
第1の態様の耐摩耗性塩素系ポリマー組成物中には、前記の必須成分に加えて、発明の趣旨を損ねない範囲で、他の成分を加えることができる。例えば、カーボンブラックを加えることにより、耐摩耗性をさらに向上させることができるので好ましい。
(4) Blending of carbon black In addition to the essential components described above, other components can be added to the wear-resistant chlorine-based polymer composition of the first aspect within a range that does not impair the spirit of the invention. For example, it is preferable to add carbon black because the wear resistance can be further improved.

ただし、カーボンブラックの配合量は、塩素系ポリマー100質量部に対して25質量部以下であり、又カーボンブラックとゲル法シリカの合計の配合量は40質量部以下とする必要がある。カーボンブラックの配合量が25質量部を超えた場合には、電気絶縁性が急激に低下し、漏電の可能性が生じる場合がある。又、カーボンブラックとゲル法シリカの合計が40質量部を超えた場合には、塩素系ポリマー組成物の溶融粘度が上昇し、塩素系ポリマー組成物の混合・押出成型中の剪断発熱が大きくなり所謂ヤケが生じる、押出不能となる等の問題が生じやすくなるので好ましくない。そこで、第1の態様の好ましい態様として、前記塩素系ポリマー組成物に、カーボンブラックが添加され、塩素系ポリマー100質量部に対して、カーボンブラックの配合量が25質量部以下であり、かつカーボンブラックとゲル法シリカの合計の配合量が40質量部以下である耐摩耗性塩素系ポリマー組成物が提供される。   However, the compounding amount of carbon black is 25 parts by mass or less with respect to 100 parts by mass of the chlorinated polymer, and the total compounding amount of carbon black and gel method silica needs to be 40 parts by mass or less. When the blending amount of carbon black exceeds 25 parts by mass, the electrical insulation properties may be drastically lowered, possibly causing a leakage. In addition, when the total of carbon black and gel method silica exceeds 40 parts by mass, the melt viscosity of the chlorine-based polymer composition increases, and shear heat generation during mixing and extrusion molding of the chlorine-based polymer composition increases. It is not preferable because problems such as so-called burns and impossibility of extrusion are likely to occur. Therefore, as a preferred embodiment of the first embodiment, carbon black is added to the chlorine-based polymer composition, the amount of carbon black is 25 parts by mass or less with respect to 100 parts by mass of the chlorine-based polymer, and carbon A wear-resistant chlorine-based polymer composition in which the total amount of black and gel method silica is 40 parts by mass or less is provided.

ここで使用するカーボンブラックは特に限定されないが、高い摩耗性を得るには、粒子径の小さいカーボンブラックが適しており、同じ粒径ならストラクチャーの高いものが好ましい。但し、粒子径が小さくなるほど塩素系ポリマー中に均一に分散するのが難しくなる。このような好ましいカーボンブラックとしては、例えば、東海カーボン社製のシースト3H(算術平均粒子径27μm)、シースト5H(算術平均粒子径22μm)、シースト9H(算術平均粒子径18μm)を挙げることができる。   The carbon black used here is not particularly limited, but carbon black having a small particle diameter is suitable for obtaining high wear properties, and those having a high structure are preferable for the same particle diameter. However, the smaller the particle size, the more difficult it is to uniformly disperse in the chlorinated polymer. Examples of such preferable carbon black include Toast Carbon Co., Ltd., Seast 3H (arithmetic average particle diameter 27 μm), Seast 5H (arithmetic average particle diameter 22 μm), and Seast 9H (arithmetic average particle diameter 18 μm). .

(5)その他の構成材料
第1の態様の耐摩耗性塩素系ポリマー組成物には、本実施の態様の趣旨を妨げない範囲で上記以外の添加剤、例えば、滑剤、補強剤、加硫促進剤、加硫促進助剤、老化防止剤(酸化防止剤)、受酸剤、難燃剤、増量材(フィラー)、プロセスオイル、安定剤等を、必要に応じて適宜添加することができる。但し、可塑剤の添加は、耐摩耗性を低下させる場合があるので通常は添加しない方が好ましい。
(5) Other constituent materials In the abrasion-resistant chlorine-based polymer composition of the first aspect, additives other than those described above, for example, a lubricant, a reinforcing agent, and vulcanization acceleration, within a range not impairing the gist of the present aspect. Agents, vulcanization accelerators, antioxidants (antioxidants), acid acceptors, flame retardants, extenders (fillers), process oils, stabilizers, and the like can be added as necessary. However, since the addition of a plasticizer may reduce the wear resistance, it is usually preferable not to add it.

又、ゲル法シリカ以外のシリカや、シランカップリング剤例えばポリスルフィド系シランカップリング剤等も、発明の趣旨を損ねない範囲で配合することもできる。ゲル法シリカ以外のシリカとしては、非晶質合成シリカ、結晶性合成シリカ、天然シリカ(結晶性シリカ及び非晶質シリカ)を挙げることができる。ゲル法シリカ以外の非晶質合成シリカとしては、アルカリ性環境下にて珪酸ソーダを酸で中和し、生じた析出物をろ過、乾燥することによって得られる沈殿法シリカ、四塩化珪素等の珪素化合物を酸水素炎中で燃焼させて得られる熱分解法シリカ、シリカ粉末を火炎中で溶融・球状化して得られる溶融シリカ等を挙げることができる。又、特許文献2に記載の、精製された四塩化ケイ素の酸水素焔中における気相加水分解によって製造される高分散性の無定形シリカで、球形の粒子が鎖状に凝集してつながった二酸化ケイ素のエーロゾル状態の超微粒子無定形シリカ、例えば、日本アエロジル社製のアエロジル200(一次粒子の平均径約12μm)、アエロジル300(一次粒子の平均径約7μm)を挙げることもできる。   Silica other than gel method silica and silane coupling agents such as polysulfide silane coupling agents can also be blended within a range that does not impair the spirit of the invention. Examples of the silica other than the gel method silica include amorphous synthetic silica, crystalline synthetic silica, and natural silica (crystalline silica and amorphous silica). As amorphous synthetic silica other than gel method silica, silicon such as precipitation method silica obtained by neutralizing sodium silicate with an acid in an alkaline environment, filtering the resulting precipitate and drying, silicon such as silicon tetrachloride Examples include pyrogenic silica obtained by burning a compound in an oxyhydrogen flame, and fused silica obtained by melting and spheroidizing a silica powder in a flame. In addition, it is a highly dispersible amorphous silica produced by gas phase hydrolysis of purified silicon tetrachloride in an oxyhydrogen tank as described in Patent Document 2, and spherical particles are aggregated in a chain and connected. In addition, there can be mentioned ultrafine amorphous silica in an aerosol state of silicon dioxide, for example, Aerosil 200 (average particle size of about 12 μm) and Aerosil 300 (average particle size of primary particles of about 7 μm) manufactured by Nippon Aerosil Co., Ltd.

2.第1の態様の耐摩耗性塩素系ポリマー組成物の製造(耐摩耗性塩素系ポリマー組成物の調製)
第1の態様の耐摩耗性塩素系ポリマー組成物は、前記の構成材料をロール混合機、単軸混練押出機、二軸混練押出機、加圧ニーダー、バンバリーミキサー、ロール混合機等の既知の混合機を用いて混合することにより製造することができる。混合中に加硫反応が進行しないように、混合は、塩素系ポリマー組成物の温度が100℃を越えないようにして行い、必要に応じて水冷を行う。
2. Production of wear-resistant chlorine-based polymer composition of first aspect (Preparation of wear-resistant chlorine-based polymer composition)
The wear-resistant chlorine-based polymer composition of the first aspect is a known component such as a roll mixer, a single-screw kneading extruder, a twin-screw kneading extruder, a pressure kneader, a Banbury mixer, and a roll mixer. It can manufacture by mixing using a mixer. Mixing is performed so that the temperature of the chlorine-based polymer composition does not exceed 100 ° C. so that the vulcanization reaction does not proceed during mixing, and water cooling is performed as necessary.

[第2の態様]
本発明の第2の態様は、
導体線及び前記導体線を被覆する絶縁層からなる絶縁電線、及び該絶縁電線を被覆するシース層を有する塩素系ポリマー被覆ケーブルであって、該シース層が、塩素系ポリマー及び粒子径が1μm以上20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下である耐摩耗性塩素系ポリマー組成物より形成される塩素系ポリマー被覆ケーブルである。
[Second embodiment]
The second aspect of the present invention is:
A chlorinated polymer-coated cable having a conductor wire and an insulated wire comprising an insulating layer covering the conductor wire, and a sheath layer covering the insulated wire, the sheath layer comprising a chlorinated polymer and a particle diameter of 1 μm or more It is formed from a wear-resistant chlorine-based polymer composition containing a gel method silica of 20 μm or less, and the amount of the gel method silica is 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the chlorine polymer. A chlorinated polymer-coated cable.

第2の実施の態様においては、シース層が第1の態様の耐摩耗性塩素系ポリマー組成物、即ち絶縁性、耐摩耗性に優れる耐摩耗性塩素系ポリマー組成物を用いて形成されているため、絶縁性に優れるとともに高い耐摩耗性を有し、工場内の移動機器への給電や電気自動車の急速充電に好適に用いられる塩素系ポリマー被覆ケーブルが提供される。   In the second embodiment, the sheath layer is formed using the wear-resistant chlorine-based polymer composition of the first embodiment, that is, the wear-resistant chlorine-based polymer composition excellent in insulation and wear resistance. Therefore, there is provided a chlorinated polymer-coated cable that has excellent insulation properties and high wear resistance, and is suitably used for power supply to mobile equipment in a factory and rapid charging of an electric vehicle.

(1)塩素系ポリマー被覆ケーブルの構成
第2の態様の塩素系ポリマー被覆ケーブルでは、図1に示すように、絶縁層で被覆された導体線からなる絶縁電線が、1〜数十本(図1の例では3本)束ねられその外周がシース層で被覆されている。各導体線を被覆する絶縁層は、それぞれの間を互いに識別するためにそれぞれ異なった色に着色されたものであってもよい。
(2)導体線
導体線を構成する導体としては、導電性に優れる銅、アルミ等を挙げることができる。導体線は単線であってもよいし、複数の素線の撚り線であってもよい。
(3)絶縁電線(導体線)の数
絶縁電線(導体線)の数は、上記のように、1〜数十本が一般的である。EPゴムを絶縁層として被覆したものが一般的である。
(1) Configuration of chlorine-based polymer-coated cable In the chlorine-based polymer-coated cable according to the second aspect, as shown in FIG. 1, 1 to several tens of insulated wires composed of conductor wires covered with an insulating layer (see FIG. In the example, three are bundled) and the outer periphery thereof is covered with a sheath layer. The insulating layers covering the conductor wires may be colored in different colors in order to distinguish each other from each other.
(2) Conductor wire Examples of the conductor constituting the conductor wire include copper and aluminum having excellent conductivity. The conductor wire may be a single wire or a stranded wire of a plurality of strands.
(3) Number of insulated wires (conductor wires) As described above, the number of insulated wires (conductor wires) is generally 1 to several tens. In general, EP rubber is coated as an insulating layer.

(4)シース層の形成
シース層は、クロロプレンゴムの場合にはゴム押出機、軟質PVC樹脂の場合にはプラスチック押出機等を用いて前記第1の態様の耐摩耗性塩素系ポリマー組成物を導体線の束の上(介在物がある場合はその上)に押出成型し、特にクロロプレンゴムの場合には加硫することにより形成される。加硫は、公知の方法により行うことができる。例えば、加圧水蒸気法を挙げることができ、この方法は長尺物の加硫方法として製造スピードが速く、電線・ケーブル等の加硫に多用されている。但し、加硫時に高圧が加わることからシース層、絶縁層が変形する場合がある。この問題をさけるため、バッチ式で温度がやや低く、高い圧力が加わらない缶加硫方法もある。シース層の厚みはケーブルのサイズ、用途等に応じて適宜決定される。
(4) Formation of sheath layer The sheath layer is formed of the abrasion-resistant chlorine-based polymer composition of the first aspect using a rubber extruder in the case of chloroprene rubber and a plastic extruder in the case of soft PVC resin. It is formed by extrusion molding on a bundle of conductor wires (or on an inclusion if any), and in particular in the case of chloroprene rubber, it is formed by vulcanization. Vulcanization can be performed by a known method. For example, a pressurized steam method can be mentioned, and this method is used as a vulcanization method for long objects, and is frequently used for vulcanization of electric wires and cables. However, since a high pressure is applied during vulcanization, the sheath layer and the insulating layer may be deformed. In order to avoid this problem, there is a can vulcanization method in which the temperature is somewhat low and high pressure is not applied. The thickness of the sheath layer is appropriately determined according to the size and use of the cable.

[1]ケーブルの作製
1.耐摩耗性塩素系ポリマー組成物の調製
(1)使用した材料
(塩素系ポリマー)
メルカプタン変性クロロプレンゴム:ショウプレンTW(昭和電工社製)
エチレンプロピレンゴム:EP21(JSR社製)
ポリ塩化ビニル樹脂(軟質PVC樹脂):ZEST 1300(新第一塩ビ社製)
[1] Fabrication of cable Preparation of wear-resistant chlorine-based polymer composition (1) Material used (chlorine-based polymer)
Mercaptan-modified chloroprene rubber: Showrene TW (manufactured by Showa Denko)
Ethylene propylene rubber: EP21 (manufactured by JSR)
Polyvinyl chloride resin (soft PVC resin): ZEST 1300 (manufactured by Shin Daiichi PVC)

(フィラー)
焼成クレー:ST−CROWN(白石カルシウム社製)
重質炭酸カルシウム:ホワイトンP−30(白石カルシウム社製)
(可塑剤)
フタル酸ジイソノニル:DINP(ジェイ・プラス社製)
(難燃剤)
三酸化アンチモン(山中産業社製)
(Filler)
Firing clay: ST-CROWN (manufactured by Shiroishi Calcium Co.)
Heavy calcium carbonate: Whiten P-30 (manufactured by Shiroishi Calcium)
(Plasticizer)
Diisononyl phthalate: DINP (manufactured by Jay Plus)
(Flame retardants)
Antimony trioxide (manufactured by Yamanaka Sangyo Co., Ltd.)

(カーボンブラック)
シースト3H(東海カーボン社製)
(Carbon black)
Seast 3H (Tokai Carbon Co., Ltd.)

(シリカ)
・ゲル法シリカ
ミズカシルP−705(二次粒子径3μm:水澤化学社製)
ミズカシルP−709(二次粒子径8μm:水澤化学社製)
ミズカシルP−78D(二次粒子径12μm:水澤化学社製)
ミズカシルP−78F(二次粒子径18μm:水澤化学社製)
CARPLEX BS−306(二次粒子径24.6μm:エボニック社製)
なお、二次粒子径は、塩素系ポリマー組成物の断面をSEMで観察し、画像解析ソフトで粒径分布を求め、その粒径分布より計算された平均粒子径である。
・乾燥シリカ
アエロジル200V(一次粒子径12nm(カタログ値):日本アエロジル社製)
(silica)
Gel silica Silica Mizukacil P-705 (secondary particle size 3 μm: manufactured by Mizusawa Chemical Co., Ltd.)
Mizukasil P-709 (secondary particle size 8 μm: Mizusawa Chemical Co., Ltd.)
Mizukasil P-78D (secondary particle size 12 μm: manufactured by Mizusawa Chemical Co., Ltd.)
Mizukasil P-78F (secondary particle size 18 μm: Mizusawa Chemical Co., Ltd.)
CARPLEX BS-306 (secondary particle diameter 24.6 μm: manufactured by Evonik)
The secondary particle size is an average particle size calculated from the particle size distribution obtained by observing the cross section of the chlorine-based polymer composition with an SEM, obtaining the particle size distribution with image analysis software.
・ Dried silica Aerosil 200V (Primary particle size 12nm (Catalog value): Nippon Aerosil Co., Ltd.)

(他の添加剤)
酸化防止剤:ノクラックCD(大内新興化学社製)
プロセスオイル:ダイアナプロセスオイルNP−24(出光興産社製)
滑剤:ステアリン酸
酸化マグネシウム:キョーワマグ#150(協和化学工業社製)
酸化亜鉛:酸化亜鉛1種(堺化学社製)
加硫促進剤:アクセルTS(川口化学工業社製)
非鉛PVC安定剤:アデカスタブRUP−103(ADEKA社製)
(Other additives)
Antioxidant: NOCRACK CD (Ouchi Shinsei Chemical Co., Ltd.)
Process oil: Diana process oil NP-24 (made by Idemitsu Kosan Co., Ltd.)
Lubricant: Stearic acid Magnesium oxide: Kyowa mug # 150 (Kyowa Chemical Industry Co., Ltd.)
Zinc oxide: 1 type of zinc oxide (manufactured by Sakai Chemical Co., Ltd.)
Vulcanization accelerator: Accel TS (manufactured by Kawaguchi Chemical Industry Co., Ltd.)
Lead-free PVC stabilizer: ADK STAB RUP-103 (manufactured by ADEKA)

(2)材料の混合
前記材料を、表1〜3に示す配合量(単位:質量部)でそれぞれ配合し、バンバリーミキサーにより混合した。クロロプレンゴムに関しては混合中に加硫が進行しないように水冷をして塩素系ポリマー組成物の温度が100℃以下になるように混合して耐摩耗性塩素系ポリマー組成物を調製した。
(2) Mixing of materials The materials were blended in the blending amounts (units: parts by mass) shown in Tables 1 to 3, and mixed by a Banbury mixer. The chloroprene rubber was water-cooled so that vulcanization would not progress during mixing, and mixed so that the temperature of the chlorine-based polymer composition was 100 ° C. or less to prepare an abrasion-resistant chlorine-based polymer composition.

(3)ケーブルの作製
バンバリーミキサーで混合し耐摩耗塩素系ポリマー組成物を調製した後に、オープンロールで帯状に延ばし、クロロプレンゴムとエチレンプロピレンゴムに関してはそのままゴム押出機を用いて導体上に押出被覆し、その後熱加硫処理を行ってケーブルサンプルを作製した。軟質PVC樹脂に関してはペレタイズしてからプラスチック押出機を用いてケーブルサンプルを作製した。クロロプレンゴムとエチレンプロピレンゴムの押出はゴム温度が100℃を超えないように水冷しながら行った。なお、ケーブルの作製は、600V特殊移動用2種EPゴム絶縁クロロプレンシースキャブタイヤケーブル(F−2PNCT)と呼ばれる設計で行った(3心、公称断面積38mm、シース層厚み3mm)。
(3) Preparation of cable After mixing with a Banbury mixer to prepare a wear-resistant chlorine-based polymer composition, it was extended to a strip with an open roll, and chloroprene rubber and ethylene propylene rubber were directly coated on the conductor using a rubber extruder. Then, a heat vulcanization treatment was performed to produce a cable sample. The soft PVC resin was pelletized and then a cable sample was prepared using a plastic extruder. The extrusion of chloroprene rubber and ethylene propylene rubber was carried out with water cooling so that the rubber temperature did not exceed 100 ° C. The cable was manufactured by a design called 600V special movement type 2 EP rubber insulated chloroprene sheathed cabtyre cable (F-2PNCT) (3 cores, nominal cross-sectional area 38 mm 2 , sheath layer thickness 3 mm).

Figure 2016084449
Figure 2016084449

Figure 2016084449
Figure 2016084449

Figure 2016084449
Figure 2016084449

[2]ケーブルの評価
1.評価方法
(1)耐摩耗性
JIS K7204に基づき摩耗輪試験を行い、耐摩耗性を評価した。具体的には図2に示すように、ケーブル1の先端に所定の加重(5kgfの錘)23を吊り下げ、他端を摩耗輪試験装置2の把持部22で把持して、ケーブルの側面を摩耗輪21に押し当て、摩耗輪21を所定数回転(750回転)させ、シース層(図1のシース層13に相当する)を摩耗させた後、ケーブル1の状態(摩耗後残存するシース層の厚さ(「摩耗残存厚」と言う)、介在物の露出の有無)を調べた。結果を表4〜6に示した。ケーブル1の介在物(絶縁)(図1の介在物14に相当する)が露出していない場合(摩耗後残存するシース層の厚さが0mmより大きいもの)を合格とし、露出している場合を不合格とした。
[2] Cable evaluation Evaluation Method (1) Abrasion Resistance A wear wheel test was performed based on JIS K7204 to evaluate the abrasion resistance. Specifically, as shown in FIG. 2, a predetermined load (a weight of 5 kgf) 23 is suspended from the tip of the cable 1, and the other end is gripped by the gripping portion 22 of the wear wheel test apparatus 2, After pressing against the wear ring 21 and rotating the wear ring 21 a predetermined number of times (750 rotations) to wear the sheath layer (corresponding to the sheath layer 13 in FIG. 1), the state of the cable 1 (the sheath layer remaining after wear) (Referred to as “residual wear thickness”) and whether or not inclusions were exposed). The results are shown in Tables 4-6. When the inclusion (insulation) of the cable 1 (corresponding to the inclusion 14 in FIG. 1) is not exposed (the thickness of the sheath layer remaining after wear is greater than 0 mm) is passed and exposed Was rejected.

(2)体積固有抵抗(絶縁性)
塩素系ポリマー組成物から熱プレス機を用いて、φ100mm×t2.5mmのサイズの試験サンプルを作製し、JIS K6271に定める二重リング電極法を用いて電気抵抗を測定した。測定値から体積固有抵抗値を求め、結果を表4〜6に示した。体積固有抵抗値が≧1×10Ω・mを合格とし、<1×10Ω・mを不合格とする。
(2) Volume resistivity (insulation)
A test sample having a size of φ100 mm × t2.5 mm was prepared from the chlorine-based polymer composition using a hot press, and the electrical resistance was measured using the double ring electrode method defined in JIS K6271. Volume specific resistance values were determined from the measured values, and the results are shown in Tables 4-6. A volume resistivity value of ≧ 1 × 10 9 Ω · m is accepted and <1 × 10 9 Ω · m is rejected.

(3)ムーニー粘度
前記のようにして調製された耐摩耗性塩素系ポリマー組成物のムーニー粘度を(100℃、ML1+4)の条件で測定し、結果を表4〜6に示した。80以下を合格とする。
(3) Mooney Viscosity The Mooney viscosity of the abrasion-resistant chlorine-based polymer composition prepared as described above was measured under the conditions of (100 ° C., ML1 + 4), and the results are shown in Tables 4-6. 80 or less is accepted.

(4)引張強度、引張伸び
JIS C 3005の4.16(絶縁体及びシースの引張り)に基づき、引張強度、引張伸びを測定し、結果を表4〜6に示した。引張強度については、13MPa以上を、引張伸びについては、300%以上を合格とした。
(4) Tensile strength and tensile elongation Based on JIS C 3005 4.16 (insulator and sheath tension), tensile strength and tensile elongation were measured, and the results are shown in Tables 4-6. The tensile strength was 13 MPa or more, and the tensile elongation was 300% or more.

Figure 2016084449
Figure 2016084449

Figure 2016084449
Figure 2016084449

Figure 2016084449
Figure 2016084449

表4〜6より、塩素系ポリマー組成物の組成が第1の実施態様の条件、即ちゲル法シリカの粒子径が1μm以上、20μm以下の範囲内であり、ゲル法シリカの配合量が、ゴム100質量部に対して、1質量部以上、40質量部以下である、実験例1〜9及び実験例15では、耐摩耗性(摩耗厚)、体積固有抵抗、ムーニー粘度、引張強度、引張伸びの評価結果は、いずれも合格であった。なお、実験例1〜7及び実験例9、15では、カーボンブラックが配合されているが、カーボンブラックとゲル法シリカの合計の配合量は、40質量部以下である。   From Tables 4 to 6, the composition of the chlorine-based polymer composition is the condition of the first embodiment, that is, the particle diameter of the gel method silica is in the range of 1 μm to 20 μm, and the compounding amount of the gel method silica is rubber. In Experimental Examples 1 to 9 and Experimental Example 15, which are 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass, abrasion resistance (wear thickness), volume resistivity, Mooney viscosity, tensile strength, tensile elongation All of the evaluation results passed. In Experimental Examples 1 to 7 and Experimental Examples 9 and 15, carbon black is blended, but the total blending amount of carbon black and gel method silica is 40 parts by mass or less.

一方、シリカを配合しない実験例11、ゲル法シリカの粒子径が20μmを超える実験例10、ゲル法シリカの代わりに微粒子の乾燥シリカを配合した実験例12、粒子径が1μm以上20μm以下のゲル法シリカの配合量がポリマー組成物100質量部に対して1質量部未満の実験例14では、耐摩耗性(摩耗厚)が不合格である。又、ゲル法シリカの代わりに微粒子の乾燥シリカをポリマー組成物100質量部に対して20質量部配合した実験例13では、耐摩耗性(摩耗厚)は合格であるものの、ムーニー粘度、引張強度、引張伸びの評価は不合格であり、発明の目的を達成するものでない。又、ゲル法シリカの配合量が塩素系ポリマー100質量部に対して40質量部を超える実験例16でも、ムーニー粘度、引張伸びの評価は不合格であり、発明の目的を達成していない。   On the other hand, Experimental Example 11 in which silica is not blended, Experimental Example 10 in which the particle diameter of gel silica exceeds 20 μm, Experimental Example 12 in which fine dry silica is blended in place of gel silica, Gel having a particle diameter of 1 μm to 20 μm In Experimental Example 14 in which the compounding amount of the method silica is less than 1 part by mass with respect to 100 parts by mass of the polymer composition, the wear resistance (wear thickness) is unacceptable. In Experimental Example 13, in which 20 parts by mass of fine dry silica was blended with 100 parts by mass of the polymer composition instead of the gel silica, the abrasion resistance (wear thickness) was acceptable, but the Mooney viscosity and tensile strength were satisfactory. The evaluation of tensile elongation is rejected and does not achieve the object of the invention. Further, even in Experimental Example 16 in which the blending amount of the gel method silica exceeds 40 parts by mass with respect to 100 parts by mass of the chlorinated polymer, the evaluation of Mooney viscosity and tensile elongation was unacceptable, and the object of the invention was not achieved.

第1の態様の耐摩耗性塩素系ポリマー組成物は、塩素系ポリマー組成物の混合・押出成型の際の粘度の上昇が抑制されているので、シース層の形成のための押出し、混合時におけるヤケを防止することができる。又、この耐摩耗性塩素系ポリマー組成物をシース層の形成に用いることにより、絶縁性、耐摩耗性、引張強度等の機械的強度に優れる塩素系ポリマー被覆ケーブルの提供が可能となる。この耐摩耗性塩素系ポリマー組成物をシース層の形成に用いて得られる第2の態様の耐摩耗性塩素系ポリマー組成物は、工場内での移動機器への給電線として用いられるケーブル、電気自動車の急速充電用のケーブル等として好ましく用いられる。   In the wear-resistant chlorine-based polymer composition of the first aspect, an increase in viscosity during mixing / extrusion molding of the chlorine-based polymer composition is suppressed. Burns can be prevented. In addition, by using this wear-resistant chlorine-based polymer composition for forming a sheath layer, it is possible to provide a chlorine-based polymer-coated cable having excellent mechanical strength such as insulation, wear resistance, and tensile strength. The wear-resistant chlorine-based polymer composition of the second aspect obtained by using this wear-resistant chlorine-based polymer composition for forming a sheath layer is a cable used as a power supply line to a mobile device in a factory, It is preferably used as a cable for quick charging of automobiles.

1 ケーブル
2 摩耗輪試験装置
11 素線
12 絶縁層
13 シース層
14 介在物(絶縁)
15 導体線
16 絶縁電線
21 摩耗輪
22 把持部
23 加重
DESCRIPTION OF SYMBOLS 1 Cable 2 Wear wheel test apparatus 11 Wire 12 Insulation layer 13 Sheath layer 14 Inclusion (insulation)
15 Conductor wire 16 Insulated wire 21 Wear wheel 22 Grip part 23 Weight

Claims (4)

塩素系ポリマー及び粒子径が1μm以上20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下である耐摩耗性塩素系ポリマー組成物。   It contains a chlorinated polymer and a gel method silica having a particle diameter of 1 μm or more and 20 μm or less, and the blending amount of the gel method silica is 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the chlorinated polymer. Abrasive chlorine-based polymer composition. 前記塩素系ポリマーがクロロプレンゴムまたはポリ塩化ビニル樹脂である請求項1に記載の耐摩耗性塩素系ポリマー組成物。 The wear-resistant chlorine-based polymer composition according to claim 1, wherein the chlorine-based polymer is chloroprene rubber or polyvinyl chloride resin. さらに、カーボンブラックを含有し、前記塩素系ポリマー100質量部に対して、前記カーボンブラックの含有量が25質量部以下であり、前記カーボンブラックと前記ゲル法シリカの合計の含有量が40質量部以下である請求項1又は請求項2に記載の耐摩耗性塩素系ポリマー組成物。   Furthermore, carbon black is contained, and the content of the carbon black is 25 parts by mass or less with respect to 100 parts by mass of the chlorine-based polymer, and the total content of the carbon black and the gel method silica is 40 parts by mass. The wear-resistant chlorine-based polymer composition according to claim 1 or 2, which is: 導体線及び前記導体線を被覆する絶縁層からなる絶縁電線、及び該絶縁電線を被覆するシース層を有する塩素系ポリマー被覆ケーブルであって、該シース層が、塩素系ポリマー及び粒子径が1μm以上20μm以下のゲル法シリカを含有し、ゲル法シリカの配合量が、前記塩素系ポリマー100質量部に対して、1質量部以上、40質量部以下である耐摩耗性塩素系ポリマー組成物より形成される塩素系ポリマー被覆ケーブル。   A chlorinated polymer-coated cable having a conductor wire and an insulated wire comprising an insulating layer covering the conductor wire, and a sheath layer covering the insulated wire, the sheath layer comprising a chlorinated polymer and a particle diameter of 1 μm or more It is formed from a wear-resistant chlorine-based polymer composition containing a gel method silica of 20 μm or less, and the amount of the gel method silica is 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the chlorine polymer. Chlorinated polymer coated cable.
JP2014219869A 2014-10-29 2014-10-29 Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable Pending JP2016084449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014219869A JP2016084449A (en) 2014-10-29 2014-10-29 Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014219869A JP2016084449A (en) 2014-10-29 2014-10-29 Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable

Publications (1)

Publication Number Publication Date
JP2016084449A true JP2016084449A (en) 2016-05-19

Family

ID=55973073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014219869A Pending JP2016084449A (en) 2014-10-29 2014-10-29 Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable

Country Status (1)

Country Link
JP (1) JP2016084449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180128A (en) * 2020-02-21 2020-05-19 吉林大学 Small-diameter high-strength flexible hoisting cable
CN112002470A (en) * 2020-08-20 2020-11-27 安徽华海特种电缆集团有限公司 Silicon rubber insulation shielding medium-voltage mobile cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074182A (en) * 1973-11-02 1975-06-18
JPS51125444A (en) * 1974-10-16 1976-11-01 Western Electric Co Insulating compositions
JP2000017112A (en) * 1998-07-03 2000-01-18 Tosoh Corp Chloroprene rubber composition and support using the same
JP2006008754A (en) * 2004-06-23 2006-01-12 Nippon Chem Ind Co Ltd Silica gel powder, electrical insulation improving agent composition and electrical insulation resin composition
JP2008231248A (en) * 2007-03-20 2008-10-02 Swcc Showa Cable Systems Co Ltd Water-resistant chloroprene rubber composition and electric wire, cable and apparatus for airport lamp circuits equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074182A (en) * 1973-11-02 1975-06-18
JPS51125444A (en) * 1974-10-16 1976-11-01 Western Electric Co Insulating compositions
JP2000017112A (en) * 1998-07-03 2000-01-18 Tosoh Corp Chloroprene rubber composition and support using the same
JP2006008754A (en) * 2004-06-23 2006-01-12 Nippon Chem Ind Co Ltd Silica gel powder, electrical insulation improving agent composition and electrical insulation resin composition
JP2008231248A (en) * 2007-03-20 2008-10-02 Swcc Showa Cable Systems Co Ltd Water-resistant chloroprene rubber composition and electric wire, cable and apparatus for airport lamp circuits equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180128A (en) * 2020-02-21 2020-05-19 吉林大学 Small-diameter high-strength flexible hoisting cable
CN112002470A (en) * 2020-08-20 2020-11-27 安徽华海特种电缆集团有限公司 Silicon rubber insulation shielding medium-voltage mobile cable
CN112002470B (en) * 2020-08-20 2021-05-14 安徽华海特种电缆集团有限公司 Wrapping process of silicon rubber insulation shielding medium-voltage mobile cable

Similar Documents

Publication Publication Date Title
KR101644791B1 (en) Charging cable for electronic vehicle and manufacturing method thereof
JP5907079B2 (en) Electric wires and cables using silane-grafted chlorinated polyethylene
JP6321525B2 (en) Electromagnetic wave shielding resin composition and cable
JP2012246341A (en) Cable-coating vinyl chloride resin composition and cable using the same
JP2015074709A (en) Vinyl chloride resin composition, electric wire, and cable
JP2013225405A (en) Insulation electric wire
JP5771310B1 (en) Electromagnetic wave shielding resin composition and cable
JP2016084449A (en) Abrasion resistant chlorine-based polymer composition and chlorine-based polymer coated cable
WO2015156137A1 (en) Resin composition for electromagnetic-wave shielding, and cable
JP2005133036A (en) Non-halogen flame retardant thermoplastic resin composition and electric wire and cable using the same
JP7272276B2 (en) Insulating resin composition, insulating material, insulated wire and cable
JP6326351B2 (en) Electromagnetic wave shielding resin composition and cable
JP6321524B2 (en) Electromagnetic wave shielding resin composition and cable
JP6231369B2 (en) Abrasion resistant rubber composition and rubber coated cable
CN104008796A (en) Reinforced flat cable
JP5870738B2 (en) Insulated wire
US20210241940A1 (en) Flame retardant electrical cable
JP6649815B2 (en) Composition for cable and sheath layer
JP2013125740A (en) Insulation electric wire
JP2015015119A (en) Resin composition for wire coating material and insulated wire
JP5923063B2 (en) Conductive thermoplastic resin composition for cable and cable
JP7294118B2 (en) RESIN COMPOSITION, INSULATED WIRE AND METHOD FOR MANUFACTURING INSULATED WIRE
JP5160161B2 (en) Polyolefin flame-retardant resin composition, flame-retardant insulated wire and wire harness
JP6854203B2 (en) Highly flexible electric wire and cable for in-wheel motor
US20200227185A1 (en) Resin composition, insulated electric wire and method of manufacturing insulated electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180730