JP2016083712A - Vibration damping material for machine tool, structure and manufacturing method thereof - Google Patents

Vibration damping material for machine tool, structure and manufacturing method thereof Download PDF

Info

Publication number
JP2016083712A
JP2016083712A JP2014216637A JP2014216637A JP2016083712A JP 2016083712 A JP2016083712 A JP 2016083712A JP 2014216637 A JP2014216637 A JP 2014216637A JP 2014216637 A JP2014216637 A JP 2014216637A JP 2016083712 A JP2016083712 A JP 2016083712A
Authority
JP
Japan
Prior art keywords
aggregate
vibration damping
damping material
machine tool
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014216637A
Other languages
Japanese (ja)
Inventor
豪男 西原
Takeo Nishihara
豪男 西原
郁男 田辺
Ikuo Tanabe
郁男 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITTO POLYGON CO Ltd
Nagaoka University of Technology NUC
Original Assignee
NITTO POLYGON CO Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITTO POLYGON CO Ltd, Nagaoka University of Technology NUC filed Critical NITTO POLYGON CO Ltd
Priority to JP2014216637A priority Critical patent/JP2016083712A/en
Publication of JP2016083712A publication Critical patent/JP2016083712A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration damping material for a machine tool high in mechanical strength and rigidity and improved in processing accuracy by suppressing chattering vibration, and to provide a structure and a manufacturing method thereof.SOLUTION: The vibration damping material 2 for the machine tool formed by filling the gaps of tightly packed aggregates 20, 21, and 22 with binding materials 23 is characterized in that the aggregates 20, 21, and 22 include a coarse aggregate 20 of 50 to 70 vol%, an intermediate aggregate 21 of 20 to 28 vol% having a particle diameter Rset to 1/7 or less for the particle diameter Rof the coarse aggregate 20, and a fine aggregate 22 of 5 to 15 vol% having a particle diameter Rset to 1/49 or less for the particle diameter Rof the coarse aggregate 20. The vibration damping material for the machine tool is also characterized in that at least one of the coarse aggregate 20, the intermediate aggregate 21, and the fine aggregate 22 is made of magnesium, and the others are made of sintered alumina.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の振動減衰材、構造体およびその製造方法に関し、より詳細には、密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材、構造体およびその製造方法に関する。   The present invention relates to a machine tool vibration damping material, a structure, and a manufacturing method thereof, and more particularly, a machine tool vibration damping material formed by filling a gap in a densely filled aggregate with a binder, The present invention relates to a structure and a manufacturing method thereof.

工作物を回転させて切削する旋盤や、工具を回転させて切削するフライス盤等の工作機械では、切削加工時に、びびり振動と呼ばれる不要な振動が発生する。びびり振動は、仕上げ面性状の劣化による品質の低下たけでなく、工具の異常摩耗や機械構造の破損等を引き起こす要因となることから、工作機械を用いた切削加工では、かかるびびり振動を制御・回避するための対処が要求されている。   In a machine tool such as a lathe for cutting by rotating a workpiece or a milling machine for cutting by rotating a tool, unnecessary vibration called chatter vibration is generated during cutting. Chatter vibration not only reduces quality due to deterioration of the finish surface properties, but also causes abnormal wear of tools and damage to the machine structure. Actions to avoid are required.

一般的に「びびり振動」は、強制振動に起因する強制びびり、及び自励振動に起因する自励びびりに大別される。強制びびりは、工作機械・工具・工作物が振動しながら加工が行われることで発生する振動のことであり、加工方法や切りくず生成の仕方といった加工自体が振動源となる力外乱型強制びびりと、工作機械の主軸振れや近接する機械の振動などの外部からの振動が振動源となる変位外乱型びびりとに分類される。一方、自励びびりは、切削過程における切削抵抗の変動で発生した振動が収束されない場合に発生する振動のことであり、切削抵抗の要因や機械構造系の振動特性の特徴の違いによって再生びびりと摩擦型びびりとに分類される。   In general, “chatter vibration” is roughly classified into forced chatter due to forced vibration and self-excited chatter due to self-excited vibration. Forced chatter is vibration that occurs when machining is performed while machine tools, tools, and workpieces vibrate. Force disturbance type forced chatter, in which the machining itself, such as the machining method and chip generation, is the source of vibration. And displacement disturbance type chatter in which vibrations from the outside such as the main shaft vibration of the machine tool and the vibration of a nearby machine become a vibration source. On the other hand, self-excited chatter is vibration that occurs when the vibration generated by fluctuations in cutting resistance during the cutting process is not converged. It is classified as friction type chatter.

従来、上述した工作機械で発生するびびり振動を抑制するための振動減衰材として、例えば、特許文献1に開示されるように、強度のあるセラミックス、鉄より低密度のエンジニアリングプラスチック、及び軽量骨材等の骨材とともに熱硬化性樹脂からなる結合材を充填して成形してなるレジンコンクリート製の構造体が提案されている。かかる振動減衰材によれば、振動減衰特性が高められるため、従来の鋼材に代えて工作機械の刃物台やベッド等として用いることで、上述したびびり振動の抑制が期待できる。   Conventionally, as a vibration damping material for suppressing chatter vibration generated in the above-described machine tool, for example, as disclosed in Patent Document 1, strong ceramics, engineering plastic having a lower density than iron, and lightweight aggregate A resin concrete structure has been proposed which is formed by filling a binder made of a thermosetting resin together with an aggregate such as the above. According to such a vibration damping material, vibration damping characteristics can be improved, and thus the above-described chatter vibration can be suppressed by using it as a tool post or a bed of a machine tool instead of a conventional steel material.

しかしながら、上述した特許文献1に開示される工作機械の振動減衰材では、レジンコンクリートの欠点として知られているように、鋼材等に比べて機械的強度・剛性が劣るという問題があった。また、特許文献1において、機械的強度・剛性を担保するために公知の強度・剛性のある物質を骨材として用いることが好ましいことが開示されているが、通常、この種の材料では、複合材料(コンポジット)としての振動減衰特性や機械的特性が骨材の選択や充填状態により左右されるところ、機械的特性とともに振動減衰特性を維持・向上するための他の骨材との組み合わせや、充填状態に影響する配合割合(体積比率)等が考慮されておらず、改善の余地を充分に残したものとなっていた。   However, the vibration damping material of a machine tool disclosed in Patent Document 1 described above has a problem that mechanical strength and rigidity are inferior to steel materials and the like, as is known as a defect of resin concrete. Further, in Patent Document 1, it is disclosed that it is preferable to use a known substance having strength and rigidity as an aggregate to ensure mechanical strength and rigidity. Where vibration damping characteristics and mechanical properties as a material (composite) depend on the selection and filling state of aggregates, in combination with other aggregates to maintain and improve vibration damping characteristics along with mechanical characteristics, The blending ratio (volume ratio) that affects the filling state was not taken into consideration, and there was enough room for improvement.

特開平7−68403号公報JP 7-68403 A

そこで、本発明では、工作機械の振動減衰材、構造体およびその製造方法に関し、前記従来の課題を解決するもので、機械的強度・剛性に優れ、びびり振動を抑制して加工精度を向上させた工作機械の振動減衰材、構造体およびその製造方法を提供することを目的とする。   Therefore, the present invention relates to a vibration damping material, a structure, and a manufacturing method thereof for machine tools, which solves the above-described conventional problems, and is excellent in mechanical strength and rigidity, suppressing chatter vibration and improving machining accuracy. Another object of the present invention is to provide a vibration damping material and structure for a machine tool, and a method for manufacturing the same.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

すなわち、請求項1においては、密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材において、前記骨材は、粗骨材を50〜70vol%と、粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、を含有してなり、前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなるものである。   That is, in Claim 1, in the vibration damping material of a machine tool that is formed by filling a gap in a densely filled aggregate with a binder, the aggregate is 50 to 70 vol% of coarse aggregate, 20 to 28 vol% of the medium aggregate whose particle size is 1/7 or less of the particle size of the coarse aggregate, and 5 to 5 of fine aggregate whose particle size is 1/49 or less of the particle size of the coarse aggregate 15 vol%, and at least one of the coarse aggregate, medium aggregate, and fine aggregate is made of magnesium, and the other is made of calcined alumina.

請求項2においては、前記粗骨材が焼成アルミナよりなるものである。   In the present invention, the coarse aggregate is made of calcined alumina.

請求項3においては、前記粗骨材及び細骨材が焼成アルミナよりなるものである。   In the present invention, the coarse aggregate and the fine aggregate are made of calcined alumina.

請求項4においては、請求項1乃至請求項3に記載の振動減衰材を用いた工作機械の構造体である。   According to a fourth aspect of the present invention, there is provided a machine tool structure using the vibration damping material according to any one of the first to third aspects.

請求項5においては、所定の工作機械に連結可能な形状に形成されるとともに、剥離防止用のアンカーボルトが突設された金属部材が設けられ、前記振動減衰材がアンカーボルトを介して前記金属部材と一体に成形されるものである。   According to a fifth aspect of the present invention, there is provided a metal member which is formed in a shape connectable to a predetermined machine tool and is provided with an anchor bolt for preventing peeling, and the vibration damping material is connected to the metal via the anchor bolt. It is molded integrally with the member.

請求項6においては、密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材の製造方法において、所定の成形型内に、粗骨材を50〜70vol%と、粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、を含有してなり、前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなる骨材と、結合材と、を攪拌充填する攪拌充填工程と、前記成形型を加振する加振工程と、前記成形型を加圧した状態で前記結合材を硬化させる加圧硬化工程と、を有してなるものである。   According to a sixth aspect of the present invention, there is provided a method of manufacturing a vibration damping material for a machine tool that is formed by filling a gap in a densely filled aggregate with a binder, and 50 to 70 vol of coarse aggregate in a predetermined mold. 20% to 28% by volume of the medium aggregate whose particle size is 1/7 or less of the particle size of the coarse aggregate, and the fine aggregate whose particle size is 1/49 or less of the particle size of the coarse aggregate 5 to 15 vol%, and at least one of the coarse aggregate, medium aggregate, and fine aggregate is made of magnesium, and the other is made of sintered alumina, and a binder. It comprises a stirring and filling step for stirring and filling, a vibration step for vibrating the mold, and a pressure curing step for curing the binder in a state where the mold is pressurized.

請求項7においては、密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材を用いた構造体の製造方法において、所定の工作機械に連結可能な形状に形成されるとともに、剥離防止用のアンカーボルトが突設された金属部材が設置された成形型内に、粗骨材を50〜70vol%と、粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、を含有してなり、前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなる骨材と、結合材と、を攪拌充填する攪拌充填工程と、前記成形型を加振する加振工程と、前記成形型を加圧した状態で前記結合材を硬化させる加圧硬化工程と、を有してなるものである。   According to a seventh aspect of the present invention, there is provided a method of manufacturing a structure using a vibration damping material of a machine tool that is formed by filling a gap in a densely filled aggregate with a binder, and a shape that can be connected to a predetermined machine tool. The coarse aggregate is 50 to 70 vol% and the particle diameter is 1 of the particle diameter of the coarse aggregate in a mold in which a metal member provided with an anchor bolt for preventing peeling is installed. / 7-7 or less of the medium aggregate containing 20 to 28 vol%, and the fine aggregate having a particle size of 1/49 or less of the particle size of the coarse aggregate is 5 to 15 vol%. At least one of aggregate, medium aggregate, and fine aggregate is made of magnesium, the other is made of calcined alumina, and an agitation and filling step of agitation and filling the binder, and the mold is vibrated. Exciting step and curing the binder in a state where the mold is pressed And and cured step is made a.

本発明の効果として、機械的強度・剛性に優れ、びびり振動を抑制して加工精度を向上できる。   As an effect of the present invention, it is excellent in mechanical strength and rigidity, can suppress chatter vibration, and improve machining accuracy.

本発明の一実施例に係る振動減衰材を用いた刃物台の斜視図である。It is a perspective view of the tool post using the vibration damping material which concerns on one Example of this invention. 振動減衰材の充填状態を模式的に示した図である。It is the figure which showed typically the filling state of the vibration damping material. 振動減衰材を用いた刃物台の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the tool post using a vibration damping material. 振動減衰材の密度を測定した結果を示した図である。It is the figure which showed the result of having measured the density of the vibration damping material. 振動減衰材のヤング率を測定した結果を示した図である。It is the figure which showed the result of having measured the Young's modulus of the vibration damping material. 振動減衰材の減衰比を測定した結果を示した図である。It is the figure which showed the result of having measured the damping ratio of the vibration damping material. 丸形チップによる切削加工後の表面粗さを測定した結果を示した図である。It is the figure which showed the result of having measured the surface roughness after the cutting process by a round chip. 丸形チップによる切削加工後のびびり振動発生率を測定した結果を示した図である。It is the figure which showed the result of having measured the chatter vibration incidence after the cutting process by a round chip. シェービングチップによる切削加工後の表面粗さを測定した結果を示した図である。It is the figure which showed the result of having measured the surface roughness after the cutting process by the shaving tip. シェービングチップによる切削加工後の加工面の写真である。It is a photograph of the processed surface after cutting with a shaving tip. シェービングチップによる切削加工時の振動振幅を測定した結果を示した図である。It is the figure which showed the result of having measured the vibration amplitude at the time of the cutting process by a shaving tip.

次に、発明を実施するための形態を説明する。   Next, modes for carrying out the invention will be described.

以下の実施例では、工作物を回転させて切削する旋盤や、工具を回転させて切削するフライス盤等の工作機械の構造体の一例として、本実施例の振動減衰材2を用いて刃物台1を構成した場合について説明している。ただし、後述するように、振動減衰材2を用いた工作機械の構造体としては刃物台1に限定されるものではない。   In the following embodiments, as an example of a structure of a machine tool such as a lathe for rotating a workpiece to cut and a milling machine for cutting by rotating a tool, the tool post 1 using the vibration damping material 2 of the present embodiment is used. Is described. However, as will be described later, the structure of the machine tool using the vibration damping material 2 is not limited to the tool post 1.

<刃物台>
図1に示すように、刃物台1は、所定の工作機械に取り付けられ図示せぬ工具ホルダを固定可能に構成されており、具体的には、剥離防止用のアンカーボルト31・41が突設された金属部材3・4が設けられ、振動減衰材2がアンカーボルト31・41を介して金属部材3・4と一体に成形されて構成されている。振動減衰材2は、略直方体形状に形成され、振動減衰材2の上方(図1における上方向)の縁部に略コ字型に形成された鋼製の金属部材3が配設され、振動減衰材2の下方(図1における下方向)の対向する縁部に一対の鋼製の金属部材4・4が配設されている。
<Tool post>
As shown in FIG. 1, the tool post 1 is attached to a predetermined machine tool and is configured to be able to fix a tool holder (not shown). Specifically, anchor bolts 31 and 41 for preventing peeling are provided. The metal members 3 and 4 are provided, and the vibration damping material 2 is formed integrally with the metal members 3 and 4 via the anchor bolts 31 and 41. The vibration damping material 2 is formed in a substantially rectangular parallelepiped shape, and a steel metal member 3 formed in a substantially U shape is disposed on the upper edge (upward direction in FIG. 1) of the vibration damping material 2 to vibrate. A pair of steel metal members 4, 4 are disposed at opposite edges of the damping material 2 (downward in FIG. 1).

金属部材3は、図示せぬ工具ホルダの固定部材として構成されており、金属本体30の長手方向に沿って凹設された取付溝30aに工具ホルダが横向きに取り付けられ、金属本体30の上辺に穿設されたボルト孔30b・30b・・・を介して図示せぬボルト等の止金具により固定される。また、金属部材3は、金属本体30の一側面であって振動減衰材2との接合面にアンカーボルト31・31・・・が突設され、アンカーボルト31・31・・・が振動減衰材2に埋設されることで、振動減衰材2及び金属部材3の剥離を防止するように構成されている。   The metal member 3 is configured as a fixing member for a tool holder (not shown), and the tool holder is mounted sideways in a mounting groove 30 a that is recessed along the longitudinal direction of the metal body 30. It is fixed by fasteners such as bolts (not shown) through the drilled bolt holes 30b, 30b. Further, the metal member 3 is provided with anchor bolts 31, 31... Projecting from a side surface of the metal body 30 and joined to the vibration damping material 2, and the anchor bolts 31, 31. By being embedded in 2, the vibration damping material 2 and the metal member 3 are configured to be prevented from peeling off.

金属部材4は、図示せぬ工作機械の往復台への取付部材として構成されており、刃物台1が設置された状態で、金属本体40の上辺に穿設されたボルト孔40a・40a・・を介して図示せぬボルト等の止金具により工作機械に取り付けられる。また、金属部材4も同様に、金属本体40の一側面であって振動減衰材2との接合面にアンカーボルト41・41・・・が突設され、アンカーボルト41・41・・・が振動減衰材2に埋設されることで、振動減衰材2及び金属部材4の剥離を防止するように構成されている。   The metal member 4 is configured as an attachment member to a carriage (not shown) of a machine tool (not shown), and in a state where the tool post 1 is installed, bolt holes 40a, 40a,. Is attached to the machine tool by a fastener such as a bolt (not shown). Similarly, the metal member 4 is also provided with anchor bolts 41, 41... Projecting from one side of the metal body 40 and on the joint surface with the vibration damping material 2, and the anchor bolts 41, 41. By being embedded in the damping material 2, the vibration damping material 2 and the metal member 4 are configured to be prevented from peeling off.

<振動減衰材>
振動減衰材2は、密実に充填された骨材20・21・22の空隙に結合材23を充填して成形された複合材料(コンポジット)として構成され、骨材20・21・22は、粗骨材20を50〜70vol%と、粒径Rが粗骨材20の粒径Rの1/7以下(R>R)である中骨材21を20〜28vol%と、粒径Rが粗骨材20の粒径Rの1/49以下(R>R>R)である細骨材22を5〜15vol%と、を含有してなるものである。
<Vibration damping material>
The vibration damping material 2 is configured as a composite material (composite) formed by filling a gap between densely filled aggregates 20, 21, and 22 with a binder 23, and the aggregates 20, 21, and 22 are rough. Aggregate 20 is 50 to 70 vol%, and particle size R 2 is 20 to 28 vol% of medium aggregate 21 whose particle size R 2 is 1/7 or less of particle diameter R 1 of coarse aggregate 20 (R 1 > R 2 ). The fine aggregate 22 having a diameter R 3 of 1/49 or less (R 1 > R 2 > R 3 ) of the particle diameter R 1 of the coarse aggregate 20 is contained in an amount of 5 to 15 vol%.

振動減衰材2は、骨材20・21・22及び結合材23が最充填状態となるように充填されており、各構成成分の体積比率は、次のように説明される。図2に示すように、まず、所定の容器10内に粒径Rの粗骨材20のみが充填された状態では、容器10内のほぼ60vol%が粗骨材20にて充填される(図2(a)参照)。このときの充填形態は、斜方晶充填となる。この段階で、容器10内の粗骨材20の空間部は40(=100−60)vol%である。 The vibration damping material 2 is filled so that the aggregates 20, 21, 22 and the bonding material 23 are in the most filled state, and the volume ratio of each component is described as follows. As shown in FIG. 2, first, in a state where only coarse aggregate 20 having a particle diameter R 1 in a predetermined container 10 is filled, about 60 vol% of the container 10 is filled with coarse aggregate 20 ( (See FIG. 2 (a)). The filling form at this time is orthorhombic filling. At this stage, the space of the coarse aggregate 20 in the container 10 is 40 (= 100−60) vol%.

次いで、粗骨材20間に中骨材21が充填された状態では、粒径Rが粗骨材20の粒径Rの1/7以下の中骨材21が粗骨材20間の隙間をすり抜けて、空間部のほぼ24(=40×0.6)vol%に充填される(図2(b)参照)。このとき、中骨材21の充填形態も斜方晶充填となる。この段階で、容器10内の粗骨材20及び中骨材21の空間部は16(=100−60−24)vol%である。 Next, in a state where the medium aggregate 21 is filled between the coarse aggregates 20, the medium aggregate 21 having a particle diameter R 2 that is 1/7 or less of the particle diameter R 1 of the coarse aggregate 20 is between the coarse aggregates 20. It passes through the gap and fills approximately 24 (= 40 × 0.6) vol% of the space (see FIG. 2B). At this time, the filling form of the medium aggregate 21 is also orthorhombic filling. At this stage, the space of the coarse aggregate 20 and the medium aggregate 21 in the container 10 is 16 (= 100-60-24) vol%.

次いで、粗骨材20及び中骨材21間に細骨材22が充填された状態では、粒径Rが粗骨材20の粒径Rの1/49以下の細骨材22が粗骨材20及び中骨材21間の隙間をすり抜けて、空間部のほぼ10(=16×0.6)vol%に充填される(図2(c)参照)。細骨材22の充填形態も斜方晶充填となる。そして、最後に、粗骨材20、中骨材21及び細骨材22の間の空間部6(=100−60−24−10)vol%に結合材23が充填される(図2(d)参照)。 Then, in a state where the fine aggregate 22 between coarse aggregate 20 and the medium aggregate 21 is filled, fine aggregate 22 of 1/49 or less the particle size R 1 particle size R 3 is coarse aggregate 20 is rough It passes through the gap between the aggregate 20 and the middle aggregate 21 and is filled to approximately 10 (= 16 × 0.6) vol% of the space (see FIG. 2C). The filling form of the fine aggregate 22 is also orthorhombic filling. Finally, the binder 23 is filled in the space 6 (= 100-60-24-10) vol% between the coarse aggregate 20, the medium aggregate 21, and the fine aggregate 22 (FIG. 2 (d). )reference).

このように、骨材20・21・22及び結合材23が密実に充填された状態での各構成成分の体積比率の理論値は、粗骨材20が60vol%、中骨材21が24vol%、細骨材22が10vol%、及び結合材23が6vol%となる。ただし、実際の成形では、骨材20・21・22の形状や表面状態、及び結合材23の粘性等の影響を受けて最充填状態が変化するため、振動減衰材2としては、粗骨材20が50〜70vol%、中骨材21が20〜28vol%、及び細骨材22が5〜15vol%となるように配合されるのが好ましい。結合材23の配合量は、骨材20・21・22の配合量に併せて余剰の空間部に充填されるように適宜調整される。   Thus, the theoretical values of the volume ratios of the constituent components in the state where the aggregates 20, 21, 22 and the binder 23 are densely filled are 60 vol% for the coarse aggregate 20 and 24 vol% for the middle aggregate 21. The fine aggregate 22 is 10 vol%, and the binder 23 is 6 vol%. However, in actual molding, since the most filled state changes under the influence of the shape and surface state of the aggregates 20, 21, and 22, the viscosity of the binder 23, and the like, the vibration damping material 2 is a coarse aggregate. It is preferable that 20 is 50 to 70 vol%, the middle aggregate 21 is 20 to 28 vol%, and the fine aggregate 22 is 5 to 15 vol%. The blending amount of the binder 23 is appropriately adjusted so that the surplus space is filled in accordance with the blending amounts of the aggregates 20, 21, and 22.

骨材の種類としては、粗骨材20、中骨材21、及び細骨材22のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなるものであり、好ましくは粗骨材20が焼成アルミナよりなり、より好ましくは粗骨材20及び細骨材22が焼成アルミナよりなるものである。振動減衰材2では、骨材の構成成分として焼成アルミナとともにマグネシウムを用いることで、マグネシウムにて所望の振動減衰特性を達成し、焼成アルミナで所望の機械的強度・剛性を達成するものである。   As the type of aggregate, at least one of coarse aggregate 20, medium aggregate 21, and fine aggregate 22 is made of magnesium and the others are made of calcined alumina. Preferably, coarse aggregate 20 is calcined alumina. More preferably, the coarse aggregate 20 and the fine aggregate 22 are made of calcined alumina. In the vibration damping material 2, magnesium is used together with calcined alumina as a constituent component of the aggregate, so that desired vibration damping characteristics are achieved with magnesium, and desired mechanical strength and rigidity are achieved with calcined alumina.

焼成アルミナ及びマグネシウムは、実用金属の中でも比較的軽量で強度・剛性に優れた材料であり、特に、マグネシウムは、焼成アルミナに比べてヤ減衰比が大きく優れた振動減衰特性を有している。表1には、本実施例で用いる焼成アルミナ及びマグネシウムとともに、工作機械の構造体等として一般的に用いられる材料の機械的特性(物性データ)を示す。   Firing alumina and magnesium are materials that are relatively light and excellent in strength and rigidity among practical metals, and in particular, magnesium has a vibration damping characteristic that has a greater damping ratio than fired alumina. Table 1 shows the mechanical characteristics (physical property data) of materials generally used as machine tool structures and the like, together with the calcined alumina and magnesium used in this example.

結合材23の種類としては、エポキシ樹脂やフェノール樹脂等の公知の熱硬化性樹脂が用いられる。   As the type of the binder 23, a known thermosetting resin such as an epoxy resin or a phenol resin is used.

振動減衰材2の構成成分の一例として、例えば、焼成アルミナよりなる粗骨材20、マグネシウムよりなる中骨材21、及び焼成アルミナよりなる細骨材22をそれぞれ所定体積比率で含有させた骨材と結合材23(エポキシ樹脂等)で構成した場合には、焼成アルミナ(粗骨材20・細骨材22)が機械的強度・剛性のある構造体としての機能とともに、マグネシウム(中骨材21)が振動減衰特性の機能をバランスさせた振動減衰材2とすることができる。   As an example of the constituent components of the vibration damping material 2, for example, an aggregate containing a coarse aggregate 20 made of calcined alumina, a medium aggregate 21 made of magnesium, and a fine aggregate 22 made of calcined alumina in a predetermined volume ratio, respectively. And the binder 23 (epoxy resin or the like), the sintered alumina (coarse aggregate 20 / fine aggregate 22) functions as a structure having mechanical strength and rigidity, and magnesium (medium aggregate 21). ) Can be the vibration damping material 2 in which the functions of the vibration damping characteristics are balanced.

また、例えば、焼成アルミナよりなる粗骨材20、マグネシウムよりなる中骨材21、及びマグネシウムよりなる細骨材22をそれぞれ所定体積比率で含有させた骨材と結合材23(エポキシ樹脂等)で構成した場合には、マグネシウム(中骨材21・細骨材22)にて所定の機械的強度・剛性を保持しつつ、上記と比べてより優れた振動減衰特性を発揮する振動減衰材2とすることができる。   Also, for example, an aggregate and a binder 23 (epoxy resin or the like) containing a coarse aggregate 20 made of calcined alumina, a medium aggregate 21 made of magnesium, and a fine aggregate 22 made of magnesium in a predetermined volume ratio, respectively. When configured, the vibration damping material 2 that exhibits superior vibration damping characteristics as compared with the above while maintaining predetermined mechanical strength and rigidity with magnesium (medium aggregate 21 and fine aggregate 22); can do.

また、例えば、マグネシウムよりなる粗骨材20、焼成アルミナよりなる中骨材21、及び焼成アルミナよりなる細骨材22をそれぞれ所定体積比率で含有させた骨材と結合材23(エポキシ樹脂等)で構成した場合には、機械的強度・剛性が抑制されるものの、さらに優れた振動減衰特性を発揮する振動減衰材2とすることができる。なお、かかる場合には、機械的強度・剛性が制限されるために、機械的強度・剛性が要求される構造体(例えば間座や敷板等)として用いるには不向きである。   Further, for example, an aggregate and a binder 23 (epoxy resin or the like) containing a coarse aggregate 20 made of magnesium, a medium aggregate 21 made of baked alumina, and a fine aggregate 22 made of baked alumina in a predetermined volume ratio, respectively. However, the mechanical strength / rigidity can be suppressed, but the vibration damping material 2 that exhibits more excellent vibration damping characteristics can be obtained. In such a case, since mechanical strength and rigidity are limited, it is not suitable for use as a structure (for example, a spacer or a floor board) that requires mechanical strength and rigidity.

<刃物台の製造方法>
図3に示すように、振動減衰材2を用いた刃物台1の製造方法としては、所定の工作機械に連結可能な形状に形成されるとともに、剥離防止用のアンカーボルト31・41が突設された金属部材3・4が設置された図示せぬ成形型内に、粗骨材20を50〜70vol%と、中骨材21を20〜28vol%と、細骨材22を5〜15vol%と、を含有してなり、粗骨材20、中骨材21、及び細骨材22のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなる骨材と、結合材23と、を攪拌充填する攪拌充填工程S100と、成形型を加振する加振工程S101と、成形型を加圧した状態で結合材23を硬化させる加圧硬化工程S102等とを有してなるものである。
<Method of manufacturing the tool post>
As shown in FIG. 3, as a method of manufacturing the tool post 1 using the vibration damping material 2, it is formed in a shape connectable to a predetermined machine tool, and anchor bolts 31 and 41 for preventing peeling are provided. In a molding die (not shown) where the metal members 3 and 4 are installed, the coarse aggregate 20 is 50 to 70 vol%, the middle aggregate 21 is 20 to 28 vol%, and the fine aggregate 22 is 5 to 15 vol%. And at least one of the coarse aggregate 20, the medium aggregate 21, and the fine aggregate 22 is made of magnesium and the other is made of sintered alumina, and the binder 23 is stirred and filled. The stirring and filling step S100, the vibration step S101 for vibrating the mold, the pressure curing step S102 for curing the binder 23 in a state where the mold is pressurized, and the like are included.

攪拌充填工程S100では、まず、成形型内に刃物台1を構成する金属部材3・4を所定位置に配置する。金属部材3・4の配置は、振動減衰材2に対する相対位置となるように予め位置決めされる。成形型は、木型や石膏型等の材質より形成され、金属部材3・4が配置された状態で、残りの空間部に骨材20・21・22及び結合材23が充填されることで、金属部材3・4が一体に成形された所定形状の振動減衰材2が得られるように構成される。次いで、所定の体積比率となるように骨材20・21・22及び結合材23を調製し、予め別所にて攪拌した後に、上述した成形型に供給して充填する。   In the stirring and filling step S100, first, the metal members 3 and 4 constituting the tool post 1 are arranged at predetermined positions in the mold. The metal members 3 and 4 are preliminarily positioned so as to be in a relative position with respect to the vibration damping material 2. The mold is made of a material such as a wooden mold or a plaster mold, and the remaining space is filled with the aggregates 20, 21, 22 and the bonding material 23 in a state where the metal members 3 and 4 are arranged. The vibration damping material 2 having a predetermined shape, in which the metal members 3 and 4 are integrally formed, is obtained. Next, the aggregates 20, 21, 22 and the binder 23 are prepared so as to have a predetermined volume ratio, and after stirring in another place in advance, the aggregate is supplied and filled in the above-described mold.

加振工程S101では、加振器を用いて骨材20・21・22及び結合材23が攪拌充填された成形型を加振する。このように結合材23が硬化する前に成形型を加振することで、骨材20・21・22及び結合材23に含まれる空気を除外するとともに、瞬間的に骨材20・21・22間に間隙を生じさせ、そこに結合材23を充填させることができ、結合材23を満遍なく充填させて成形型内での骨材20・21・22及び結合材23の充填密度を高めることができる。   In the vibration process S101, the mold 20, in which the aggregates 20, 21, 22 and the binder 23 are stirred and filled is vibrated using a vibrator. In this way, the mold 20 is vibrated before the binder 23 hardens, thereby excluding the air contained in the aggregates 20, 21, 22 and the binder 23, and instantaneously the aggregates 20, 21, 22. It is possible to create a gap therebetween and fill the bonding material 23 therewith, and evenly fill the bonding material 23 to increase the packing density of the aggregates 20, 21, 22 and the bonding material 23 in the mold. it can.

加圧硬化工程S102では、成形型内に充填された骨材20・21・22及び結合材23にプリストレス(予備負荷)を付与して加圧した状態で、結合材23を硬化させる。加圧状態で結合材23を硬化させることで、粗骨材20間に介在する結合材23(の膜)を薄くして、振動減衰材2の機械的強度を向上できる。このようにして、振動減衰材2がアンカーボルト31・41を介して金属部材3・4と一体に成形された刃物台1が得られる。   In the pressure curing step S102, the bonding material 23 is cured in a state in which prestress (preliminary load) is applied to the aggregates 20, 21, 22 and the bonding material 23 filled in the mold and is pressed. By curing the bonding material 23 in a pressurized state, the bonding material 23 (film) interposed between the coarse aggregates 20 can be thinned, and the mechanical strength of the vibration damping material 2 can be improved. In this way, the tool post 1 in which the vibration damping material 2 is integrally formed with the metal members 3 and 4 via the anchor bolts 31 and 41 is obtained.

なお、振動減衰材2又は振動減衰材2を用いた他の構造体(間座や敷板等)の製造方法としては、上述した刃物台1の製造方法に即して、例えば、成形型内に他の金属部材を設置するか、又は他の金属部材を設置しないで振動減衰材2の構成成分を充填して成形すればよい。   In addition, as a manufacturing method of the vibration attenuating material 2 or another structure (such as a spacer or a base plate) using the vibration attenuating material 2, in accordance with the manufacturing method of the tool post 1 described above, for example, in a mold What is necessary is just to shape | mold by filling the component of the vibration damping material 2 without installing another metal member or installing another metal member.

<振動減衰材の機械的特性の測定>
焼成アルミナ及びマグネシウムよりなる骨材(粗骨材・中骨材・細骨材)及び結合材を用いて振動減衰材を成形して、密度、ヤング率、及び減衰比の機械的特性(物性データ)を測定した。
<Measurement of mechanical properties of vibration damping material>
Vibration damping material is formed using aggregate (coarse aggregate, medium aggregate, fine aggregate) and binder made of calcined alumina and magnesium, and mechanical properties of density, Young's modulus, and damping ratio (physical property data) ) Was measured.

測定に用いた振動減衰材は、表2に示した焼成アルミナ及びマグネシウムよりなる骨材(粗骨材・中骨材・細骨材)を、粗骨材が60vol%、中骨材が24vol%、細骨材が10vol%、及び結合材(エポキシ樹脂)が6vol%となるように配合したものを、所定の成形型に攪拌充填し、加振後に加圧硬化させて各試料を成形した(実施例:試料No.1〜3)。同様に、表2に示した各材料を用いて比較用の各試料を成形した(比較例:試料No.4〜15)。   The vibration damping material used for the measurement was aggregate (coarse aggregate / medium aggregate / fine aggregate) composed of calcined alumina and magnesium shown in Table 2, coarse aggregate 60 vol%, and medium aggregate 24 vol%. The mixture was mixed so that the fine aggregate was 10 vol%, and the binder (epoxy resin) was 6 vol%, and the mixture was stirred and filled in a predetermined mold, and after pressurizing, each sample was molded by pressing and curing ( Example: Sample Nos. 1-3). Similarly, each sample for comparison was shape | molded using each material shown in Table 2 (comparative example: sample No. 4-15).

得られた各試料について密度、ヤング率、及び減衰比の物性データを測定し、その結果を表2に示している。また、図4乃至図6は、密度、ヤング率、及び減衰比のそれぞれの測定値が上位(10つ)の試料を順に示したものである。   Physical properties data of density, Young's modulus, and damping ratio were measured for each sample obtained, and the results are shown in Table 2. FIGS. 4 to 6 sequentially show the samples with the highest measured values of density, Young's modulus, and damping ratio (ten).

このように、焼成アルミナよりなる粗骨材、マグネシウムよりなる中骨材、及び焼成アルミナよりなる細骨材をそれぞれ所定体積比率で含有させた骨材を用いた場合(試料No.3)には、機械的特性と振動減衰特性に優れたバランスのよい振動減衰材とすることができる。   Thus, in the case of using an aggregate containing a coarse aggregate made of calcined alumina, a medium aggregate made of magnesium, and a fine aggregate made of calcined alumina in a predetermined volume ratio (sample No. 3), Thus, a well-balanced vibration damping material excellent in mechanical characteristics and vibration damping characteristics can be obtained.

また、焼成アルミナよりなる粗骨材、マグネシウムよりなる中骨材、及びマグネシウムよりなる細骨材をそれぞれ所定体積比率で含有させた骨材を用いた場合(試料No.2)には、上記の場合(試料No.3)と比べて振動減衰特性に優れ、マグネシウムよりなる粗骨材、焼成アルミナよりなる中骨材、及び焼成アルミナよりなる細骨材をそれぞれ所定体積比率で含有させた骨材を用いた場合(試料No.1)には、上記の場合(試料No.3等)と比べて、機械的強度・剛性が抑制されるものの、さらに優れた振動減衰特性を発揮させることができる。   In addition, when using an aggregate containing a coarse aggregate made of calcined alumina, a medium aggregate made of magnesium, and a fine aggregate made of magnesium in a predetermined volume ratio (sample No. 2), Compared with the case (sample No. 3), the vibration damping characteristics are excellent, and the aggregate contains a coarse aggregate made of magnesium, a medium aggregate made of calcined alumina, and a fine aggregate made of calcined alumina in a predetermined volume ratio. (Sample No. 1) can exhibit more excellent vibration damping characteristics, although mechanical strength and rigidity are suppressed compared to the above case (Sample No. 3 etc.). .

<実切削による有効性評価1>
振動減衰材を用いた刃物台を成形し、工作機械(NC旋盤)での丸形チップによる中仕上げ切削を行ってびびり振動抑制効果を評価した。丸形チップは、ノーズ半径が大きいため良い表面粗さが得られ、また刃先強度が大きいことから中重切削に適用されているが、切込み量の増加に伴って工具の切削幅が大きくなるため、びびり振動を発生し易いという特徴がある。
<Effectiveness evaluation 1 by actual cutting 1>
A tool post using a vibration-damping material was formed, and a semi-finished cutting with a round tip on a machine tool (NC lathe) was performed to evaluate the chatter vibration suppression effect. The round insert has a large nose radius, so good surface roughness is obtained, and the cutting edge strength is high, so it is used for medium-heavy cutting. However, as the cutting depth increases, the cutting width of the tool increases. The feature is that chatter vibration is likely to occur.

測定に用いた刃物台は、振動減衰材の構成成分として焼成アルミナよりなる粗骨材を60vol%、マグネシウムよりなる中骨材を24vol%、及び焼成アルミナよりなる細骨材を10vol%、及び結合材(エポキシ樹脂)が6vol%となるように配合し(表2の試料No.3を参照)、かかる材料を所定形状の金属部材が予め設置された所定の成形型に攪拌充填し、加振後に加圧硬化させて、振動減衰材と金属部材とが一体に成形された試料を得た(実施例)。また、比較用として、従来の鋼製の刃物台を使用した(比較例)。   The tool post used for the measurement is 60 vol% of coarse aggregate made of calcined alumina, 24 vol% of medium aggregate made of magnesium, and 10 vol% of fine aggregate made of calcined alumina as components of the vibration damping material. The material (epoxy resin) is blended so as to be 6 vol% (see sample No. 3 in Table 2), and the material is stirred and filled in a predetermined mold in which a metal member having a predetermined shape is previously set, and subjected to vibration. Thereafter, the sample was cured by pressure to obtain a sample in which the vibration damping material and the metal member were integrally formed (Example). For comparison, a conventional steel tool post was used (comparative example).

評価方法は、振動減衰材を用いた刃物台(実施例)及び従来の鋼製の刃物台(比較例)を用いて、表3に示す切削条件で切込み量を変化させて切削を行い(5回)、その際の表面粗さ、及びびびり振動発生率を測定した。この「びびり振動発生率」とは、切削を行った際に発生するびびり振動の割合(%)を表したものである。びびり振動の発生の判定は、加工中の聴覚判定及び加工終了後の加工面のマーク判定の両方で評価した。   The evaluation method uses a tool post (Example) using a vibration damping material and a conventional steel tool post (Comparative Example) to perform cutting by changing the cutting amount under the cutting conditions shown in Table 3 (5 Times), and the surface roughness and chatter vibration occurrence rate at that time were measured. The “chatter vibration occurrence rate” represents the ratio (%) of chatter vibration generated when cutting is performed. Judgment of occurrence of chatter vibration was evaluated by both auditory judgment during machining and mark judgment of the machined surface after machining.

図7は、所定の切込み量における表面粗さの測定結果であり、図8は、びびり振動発生率の測定結果である。振動減衰材を用いた刃物台(実施例)では、従来の刃物台(比較例)と比べて表面粗さが改善され、切込み量が0.8mm及び1.0mmの場合にびびり振動の発生が抑制された。なお、振動減衰材を用いた刃物台(実施例)において、切込み量が1.5mmの場合にびびり振動の抑制が見られないのは、工具と工作物との接触長さが長くなったためと考えられる。このように、振動減衰材を用いた刃物台(実施例)を使用することで、工具の切削幅が大きい丸形チップでの中仕上げ切削において、びびり振動の発生を遅らせることができ、広範囲の切削条件で正常な加工が可能であることが確認された。   FIG. 7 shows the measurement result of the surface roughness at a predetermined depth of cut, and FIG. 8 shows the measurement result of the chatter vibration occurrence rate. In the tool post (Example) using the vibration damping material, the surface roughness is improved as compared with the conventional tool post (Comparative Example), and chatter vibration occurs when the cutting depth is 0.8 mm and 1.0 mm. Suppressed. In addition, in the tool post using the vibration damping material (Example), the suppression of chatter vibration is not seen when the depth of cut is 1.5 mm because the contact length between the tool and the workpiece is increased. Conceivable. In this way, by using the tool post (Example) using the vibration damping material, the occurrence of chatter vibration can be delayed in the semi-finished cutting with a round insert having a large cutting width of the tool. It was confirmed that normal machining was possible under cutting conditions.

<実切削による有効性評価2>
次に、振動減衰材を用いた刃物台を成形し、工作機械(NC旋盤)でのシェービングチップによる円筒外周の仕上げ切削を行って加工面の表面粗さを比較してその効果を評価した。シェービングチップは、ノーズ半径が非常に大きく(本実験では300mm)、極めて高品位な加工面を得ることができる一方で、工具の切削幅が大きくなるため、びびり振動が発生し易いとう特徴がある。
<Effectiveness evaluation by actual cutting 2>
Next, a tool post using a vibration damping material was formed, and finish cutting of the outer circumference of the cylinder with a shaving tip in a machine tool (NC lathe) was performed to compare the surface roughness of the processed surface and evaluate the effect. The shaving tip has a feature that the nose radius is very large (300 mm in this experiment) and an extremely high-quality machining surface can be obtained, while the cutting width of the tool becomes large and chatter vibration is likely to occur. .

また、シェービングチップは、工具の切れ刃を送り方向に平行ではなくある角度(45度)に傾いた状態で取り付けて加工するため、次の式(1)に示すように、ノーズ半径の代わりに工作物の半径が表面粗さの決定因子の一つとなるのが特徴である。なお、式(1)において、Ryは最大高さ(μm)、Raは算術平均粗さ(μm)、Fは送り速度(mm/rev)、rは工作物半径(mm)、θは切れ刃と送り方向のなす角度(rad)である。   In addition, since the shaving tip is mounted and processed with the cutting edge of the tool tilted at an angle (45 degrees) rather than parallel to the feed direction, instead of the nose radius, as shown in the following equation (1) The feature is that the radius of the workpiece is one of the determinants of the surface roughness. In equation (1), Ry is the maximum height (μm), Ra is the arithmetic average roughness (μm), F is the feed rate (mm / rev), r is the workpiece radius (mm), and θ is the cutting edge. And an angle (rad) formed by the feed direction.

測定に用いた刃物台は、振動減衰材の構成成分として焼成アルミナよりなる粗骨材を60vol%、マグネシウムよりなる中骨材を24vol%、及び焼成アルミナよりなる細骨材を10vol%、及び結合材(エポキシ樹脂)が6vol%となるように配合し(表2の試料No.3を参照)、かかる材料を所定形状の金属部材が予め設置された所定の成形型に攪拌充填し、加振後に加圧硬化させて、振動減衰材と金属部材とが一体に成形された試料を得た(実施例)。また、比較用として、従来の鋼製の刃物台を使用した(比較例)。   The tool post used for the measurement is 60 vol% of coarse aggregate made of calcined alumina, 24 vol% of medium aggregate made of magnesium, and 10 vol% of fine aggregate made of calcined alumina as components of the vibration damping material. The material (epoxy resin) is blended so as to be 6 vol% (see sample No. 3 in Table 2), and the material is stirred and filled in a predetermined mold in which a metal member having a predetermined shape is previously set, and subjected to vibration. Thereafter, the sample was cured by pressure to obtain a sample in which the vibration damping material and the metal member were integrally formed (Example). For comparison, a conventional steel tool post was used (comparative example).

評価方法は、振動減衰材を用いた刃物台(実施例)及び従来の鋼製の刃物台(比較例)を用いて、表4に示す切削条件で送り速度を変化させて切削(5回づつ)を行い、その際の表面粗さを測定した。   The evaluation method uses a tool post (Example) using a vibration damping material and a conventional steel tool post (Comparative Example) to change the feed rate under the cutting conditions shown in Table 4 and perform cutting (every five times). ) And the surface roughness at that time was measured.

図9は、所定の送り速度における表面粗さの測定結果であり、図10は、加工面の比較写真である。従来の鋼製の刃物台(比較例)では表面粗さRaが2.4μm程度であったのに対し、振動減衰材を用いた刃物台(実施例)では、表面粗さRaが1.6μm(上仕上げ)よりも小さくすることができ、高品位な表面粗さを得ることができることを確認した。   FIG. 9 shows the measurement results of the surface roughness at a predetermined feed rate, and FIG. 10 is a comparative photograph of the processed surfaces. The conventional steel tool post (comparative example) has a surface roughness Ra of about 2.4 μm, whereas the tool post using the vibration damping material (example) has a surface roughness Ra of 1.6 μm. It was confirmed that it can be made smaller than (finishing) and a high-quality surface roughness can be obtained.

また、図11は、切削時(送り速度0.05mm/rev)の振動振幅を測定した結果である。これは、加速度ピックアップをシャンクの末端のX方向に取り付けて、表面粗さに最も影響があると考えられる切込み方向の振動を測定したものである。なお、ピーク強度は、シェービング加工時の振動から切削を行わずに送りをかけただけの振動を引いた相対変位として示されている。この結果は、振動減衰材を用いた刃物台(実施例)の方が20〜30Hz付近のピーク強度が小さくなっており、この差が加工面の表面粗さの測定結果に影響していることを示している。   FIG. 11 shows the results of measuring the vibration amplitude during cutting (feed rate 0.05 mm / rev). In this example, an acceleration pickup is attached in the X direction at the end of the shank, and the vibration in the cutting direction considered to have the most influence on the surface roughness is measured. Note that the peak intensity is shown as a relative displacement obtained by subtracting a vibration that is simply applied without cutting from the vibration during shaving. This result shows that the turret (Example) using the vibration damping material has a smaller peak intensity in the vicinity of 20 to 30 Hz, and this difference affects the measurement result of the surface roughness of the machined surface. Is shown.

以上のように、本実施例の振動減衰材2は、密実に充填された骨材20・21・22の空隙に結合材23を充填して成形される工作機械の振動減衰材2において、骨材20・21・22は、粗骨材20を50〜70vol%と、粒径Rが粗骨材20の粒径Rの1/7以下である中骨材21を20〜28vol%と、粒径Rが粗骨材20の粒径Rの1/49以下である細骨材22を5〜15vol%と、を含有してなり、粗骨材20、中骨材21、及び細骨材22のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなるため、機械的強度・剛性に優れ、びびり振動を抑制して加工精度を向上できるのである。 As described above, the vibration damping material 2 according to the present embodiment is the bone damping material 2 of a machine tool that is formed by filling the gaps of the aggregates 20, 21, and 22 that are densely filled with the binder 23. material 20, 21, 22, and 50 to 70 vol-% of coarse aggregate 20, and 20~28Vol% of Chukotsu material 21 is the particle diameter R 2 is less 1/7 of the particle diameter R 1 of the coarse aggregate 20 , becomes the particle size R 3 is contained, and 5~15Vol% fine aggregate 22 is 1/49 or less of a particle diameter R 1 of the coarse aggregate 20, coarse aggregate 20, the medium aggregate 21 and, Since at least one of the fine aggregates 22 is made of magnesium and the other is made of calcined alumina, the mechanical strength and rigidity are excellent, and chatter vibration can be suppressed to improve processing accuracy.

すなわち、本実施例の振動減衰材2によれば、粗骨材20、中骨材21、及び細骨材22として焼成アルミナ及びマグネシウムを含有し、所定の粒径の粗骨材20、中骨材21、及び細骨材22とすることで骨材が最充填された複合材料(コンポジット)とすることができる。そのため、骨材の構成成分として焼成アルミナとともにマグネシウムが勧誘されることで、マグネシウムにて所望の振動減衰特性を達成し、焼成アルミナで所望の機械的強度・剛性を達成して、機械的特性及び振動減衰特性を高めることができ、振動減衰材2を用いた構造材(刃物台1)において振動減衰能を発揮することでびびり振動の発生が抑制され、加工精度の向上による高品位・高付加価値の加工が可能となる。   That is, according to the vibration damping material 2 of the present embodiment, the coarse aggregate 20, the medium aggregate 21, and the fine aggregate 22 contain calcined alumina and magnesium, and the coarse aggregate 20 and the medium bone having a predetermined particle diameter are included. By setting it as the material 21 and the fine aggregate 22, it can be set as the composite material (composite) with which the aggregate was filled most. Therefore, by recruiting magnesium together with calcined alumina as a component of the aggregate, the desired vibration damping characteristics are achieved with magnesium, and the desired mechanical strength and rigidity are achieved with calcined alumina. The vibration damping characteristics can be enhanced, and the vibration damping performance of the structural material (tool post 1) using the vibration damping material 2 is suppressed, thereby suppressing chatter vibration and high quality and high addition due to improved machining accuracy. Value processing becomes possible.

なお、振動減衰材2、振動減衰材2を用いた構造体およびその製造方法としては、上述した実施例に限定されず、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   The vibration damping material 2, the structure using the vibration damping material 2 and the manufacturing method thereof are not limited to the above-described embodiments, and various modifications can be made without departing from the object of the present invention.

すなわち、上述した実施例では、振動減衰材2を用いた構造体として刃物台1を構成する場合について説明したが、かかる構造体としてはこれに限定されず、振動減衰材2の機械的特性を考慮しながら、例えば、振動減衰材2を用いて間座や敷板として構成するようにしてもよい。   That is, in the above-described embodiment, the case where the tool post 1 is configured as a structure using the vibration damping material 2 has been described. However, the structure is not limited to this, and the mechanical characteristics of the vibration damping material 2 are determined. For example, you may make it comprise as a spacer or a floor board using the vibration damping material 2.

また、上述した実施例の振動減衰材2及び刃物台1の製造方法では、攪拌充填工程(図3参照)において成形型に振動減衰材2の構成材料を充填する際に、予め別所にて攪拌した後に充填するものであるが、成形型への充填方法はこれに限定されず、例えば、成形型を加振させた状態で粗骨材20→中骨材21→粗骨材22→結合材23を順に充填するようにしてもよい。また、結合材23の充填後に真空ポンプ等で成形型を減圧するようにしてもよい。   Moreover, in the manufacturing method of the vibration damping material 2 and the tool rest 1 according to the above-described embodiment, when the constituent material of the vibration damping material 2 is filled in the mold in the stirring and filling step (see FIG. 3), stirring is separately performed in advance. However, the filling method into the mold is not limited to this. For example, the coarse aggregate 20 → the medium aggregate 21 → the coarse aggregate 22 → the binder in a state where the mold is vibrated. 23 may be filled in order. Alternatively, the mold may be decompressed with a vacuum pump or the like after filling with the binder 23.

1 刃物台
2 振動減衰材
3 金属部材
4 金属部材
20 粗骨材
21 中骨材
22 細骨材
23 結合材
30 金属本体
31 アンカーボルト
40 金属本体
41 アンカーボルト
DESCRIPTION OF SYMBOLS 1 Tool post 2 Vibration damping material 3 Metal member 4 Metal member 20 Coarse aggregate 21 Medium aggregate 22 Fine aggregate 23 Binding material 30 Metal main body 31 Anchor bolt 40 Metal main body 41 Anchor bolt

Claims (7)

密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材において、
前記骨材は、
粗骨材を50〜70vol%と、
粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、
粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、
を含有してなり、
前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなることを特徴とする工作機械の振動減衰材。
In the vibration damping material of a machine tool that is molded by filling a gap in the densely filled aggregate with a binder,
The aggregate is
Coarse aggregate 50-70 vol%,
20-28 vol% medium aggregate whose particle size is 1/7 or less of the particle size of the coarse aggregate,
Fine aggregate having a particle size of 1/49 or less of the particle size of the coarse aggregate is 5 to 15 vol%,
Containing
A vibration damping material for a machine tool, wherein at least one of the coarse aggregate, the medium aggregate, and the fine aggregate is made of magnesium and the other is made of calcined alumina.
前記粗骨材が焼成アルミナよりなる請求項1に記載の工作機械の振動減衰材。   The vibration damping material for a machine tool according to claim 1, wherein the coarse aggregate is made of calcined alumina. 前記粗骨材及び細骨材が焼成アルミナよりなる請求項1に記載の工作機械の振動減衰材。   The vibration damping material for a machine tool according to claim 1, wherein the coarse aggregate and the fine aggregate are made of calcined alumina. 請求項1乃至請求項3に記載の振動減衰材を用いた工作機械の構造体。   A machine tool structure using the vibration damping material according to claim 1. 所定の工作機械に連結可能な形状に形成されるとともに、剥離防止用のアンカーボルトが突設された金属部材が設けられ、
前記振動減衰材がアンカーボルトを介して前記金属部材と一体に成形される請求項4に記載の工作機械の構造体。
It is formed in a shape that can be connected to a predetermined machine tool, and a metal member is provided with an anchor bolt for preventing peeling,
The machine tool structure according to claim 4, wherein the vibration damping material is formed integrally with the metal member via an anchor bolt.
密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材の製造方法において、
所定の成形型内に、粗骨材を50〜70vol%と、粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、を含有してなり、前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなる骨材と、結合材と、を攪拌充填する攪拌充填工程と、
前記成形型を加振する加振工程と、
前記成形型を加圧した状態で前記結合材を硬化させる加圧硬化工程と、
を有してなる工作機械の振動減衰材の製造方法。
In a manufacturing method of a vibration damping material for a machine tool that is formed by filling a gap in a densely filled aggregate with a binder,
In a predetermined mold, the coarse aggregate is 50 to 70 vol%, the medium aggregate whose particle diameter is 1/7 or less of the particle diameter of the coarse aggregate is 20 to 28 vol%, and the particle diameter is the coarse bone. 5-15 vol% fine aggregate having a particle size of 1/49 or less of the particle size, and at least one of the coarse aggregate, medium aggregate, and fine aggregate is made of magnesium, A stirring and filling step of stirring and filling an aggregate made of calcined alumina and a binder;
An oscillating step of oscillating the mold;
A pressure curing step of curing the binder in a state where the mold is pressurized;
A method of manufacturing a vibration damping material for a machine tool comprising:
密実に充填された骨材の空隙に結合材を充填して成形される工作機械の振動減衰材を用いた構造体の製造方法において、
所定の工作機械に連結可能な形状に形成されるとともに、剥離防止用のアンカーボルトが突設された金属部材が設置された成形型内に、粗骨材を50〜70vol%と、粒径が前記粗骨材の粒径の1/7以下である中骨材を20〜28vol%と、粒径が前記粗骨材の粒径の1/49以下である細骨材を5〜15vol%と、を含有してなり、前記粗骨材、中骨材、及び細骨材のうち少なくとも一種がマグネシウムよりなり、その他が焼成アルミナよりなる骨材と、結合材と、を攪拌充填する攪拌充填工程と、
前記成形型を加振する加振工程と、
前記成形型を加圧した状態で前記結合材を硬化させる加圧硬化工程と、
を有してなる工作機械の構造体の製造方法。
In a method of manufacturing a structure using a vibration damping material of a machine tool that is molded by filling a gap in a densely filled aggregate with a binder,
The shape of the coarse aggregate is 50 to 70 vol% and the particle size is formed in a mold in which a metal member is provided with an anchor bolt for preventing peeling while being formed into a shape connectable to a predetermined machine tool. 20-28 vol% of medium aggregate that is 1/7 or less of the particle size of the coarse aggregate, and 5-15 vol% of fine aggregate that has a particle size of 1/49 or less of the particle size of the coarse aggregate Agitation and filling step in which at least one of the coarse aggregate, the medium aggregate, and the fine aggregate is made of magnesium and the other is made of calcined alumina and the binder is stirred and filled. When,
An oscillating step of oscillating the mold;
A pressure curing step of curing the binder in a state where the mold is pressurized;
A method for manufacturing a structure of a machine tool comprising:
JP2014216637A 2014-10-23 2014-10-23 Vibration damping material for machine tool, structure and manufacturing method thereof Pending JP2016083712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216637A JP2016083712A (en) 2014-10-23 2014-10-23 Vibration damping material for machine tool, structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216637A JP2016083712A (en) 2014-10-23 2014-10-23 Vibration damping material for machine tool, structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016083712A true JP2016083712A (en) 2016-05-19

Family

ID=55972799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216637A Pending JP2016083712A (en) 2014-10-23 2014-10-23 Vibration damping material for machine tool, structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016083712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148220A (en) * 2019-03-11 2020-09-17 Ntn株式会社 Rolling bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148220A (en) * 2019-03-11 2020-09-17 Ntn株式会社 Rolling bearing device
JP7206135B2 (en) 2019-03-11 2023-01-17 Ntn株式会社 rolling bearing device

Similar Documents

Publication Publication Date Title
US7131797B2 (en) Tool holder
Nestler et al. Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites
AU2013371044B2 (en) Abrasive article having abrasive segments with shaped gullet walls
CN100371120C (en) Clamp for precision positioning piece
US20170043422A1 (en) Saw blade having a small saw tooth
JP2016083712A (en) Vibration damping material for machine tool, structure and manufacturing method thereof
JP6681079B2 (en) Method for producing aluminum alloy-based composite material and aluminum alloy-based composite material
Buj-Corral et al. Improvement of the manufacturing process of abrasive stones for honing
JP2009545473A (en) Silicon ingot cutting cradle
JP7040504B2 (en) Cutting tool
RU2369474C1 (en) Method of producing grinding tool with oriented grains
JP7052754B2 (en) Bowling bar and its manufacturing method
JP6351056B2 (en) Machine tool plate and machining method using the same
JP5512362B2 (en) Wire tool
KR102388239B1 (en) Method for additive manufacturing of a green body from a powder or paste-like material with cutting elements arranged in a defined manner
JP4126377B2 (en) Diamond processing method
JP5283017B2 (en) Diamond sintered compact tool for ultra-precision cutting
RU2399475C2 (en) Metal-cutting lathe with automatic control
JP3688537B2 (en) Vibration tool and cutting method of vibration tool
JP2017035711A (en) Brazing method
CN117798445B (en) Processing device and processing method for bone position sheet electrode
RU2690875C1 (en) Method of pocketing tool manufacturing within cutting tool
JP2010052045A (en) Substrate for cup wheel, manufacturing method for the same, and cup hole
CN102554359B (en) Ultrasonic vibration chamfering device applied to complex curved surface
Kuruc et al. Influence of ultrasound on delamination during machining of GFRP composite material