JP2016081894A - Polymer bushing - Google Patents

Polymer bushing Download PDF

Info

Publication number
JP2016081894A
JP2016081894A JP2015003911A JP2015003911A JP2016081894A JP 2016081894 A JP2016081894 A JP 2016081894A JP 2015003911 A JP2015003911 A JP 2015003911A JP 2015003911 A JP2015003911 A JP 2015003911A JP 2016081894 A JP2016081894 A JP 2016081894A
Authority
JP
Japan
Prior art keywords
polymer
porcelain tube
rip
main body
central conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003911A
Other languages
Japanese (ja)
Other versions
JP6502674B2 (en
Inventor
優宏 秋月
Masahiro Akizuki
優宏 秋月
田中 直樹
Naoki Tanaka
直樹 田中
和宏 辻
Kazuhiro Tsuji
和宏 辻
努 奈良
Tsutomu Nara
努 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2016081894A publication Critical patent/JP2016081894A/en
Application granted granted Critical
Publication of JP6502674B2 publication Critical patent/JP6502674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Insulators (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Patch Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology that can improve, in a transformer polymer bushing, reliability of an axis sealing structure of a portion where the central conductor is drawn into the air, and that is applicable also to transformers installed outdoors where a temperature load is large.SOLUTION: A polymer bushing 1 includes a polymer porcelain tube 2 to which flange metal fittings 7 and 8 of a porcelain tube main body 5 are arranged, a central conductor 3 penetrating through the center section of the polymer porcelain tube 2, and a RIP capacitor core 4 for electric field relaxation formed around the central conductor 3, and in the polymer bushing 1, insulation gas is filled in an interior space 9 of the polymer porcelain tube 2. In the polymer bushing 1, a portion where the central conductor 3 is drawn into the air from the polymer porcelain tube 2 is made to be of a static seal structure by an O ring 13, a terminal-integrated lid 10 is arranged over the flange metal fitting 7 arranged in the upper part of the porcelain tube main body 5, and, as electrification means for electrifying the terminal-integrated lid 10 and the central conductor 3, a slidable electrification member 11 is included, and a length (L2) of a portion existing in the RIP capacitor core 4 and in the porcelain tube main body 5 is made to be within a range of 50-70% of the full length (L1) of the porcelain tube main body 5.SELECTED DRAWING: Figure 1

Description

本発明は、変圧器用のポリマーブッシングに関するものである。   The present invention relates to a polymer bushing for a transformer.

変圧器用のポリマーブッシングとして、中心導体を貫通させたポリマー碍管の内部に、RIP(レジン含浸紙)コンデンサコアを有し、ポリマー碍管の内部で、RIP(レジン含浸紙)コンデンサコアの上方に形成される空間に絶縁ガスを充填した製品が商品化されている(非特許文献1)。   As a polymer bushing for transformers, it has a RIP (resin impregnated paper) capacitor core inside the polymer insulator that penetrates the center conductor, and is formed above the RIP (resin impregnated paper) capacitor core inside the polymer insulator. A product in which an insulating gas is filled in a space is commercialized (Non-Patent Document 1).

上記の製品では、中心導体をポリマー碍管の内部から気中に引き出す箇所の軸シール構造として、中心導体とポリマー碍管の界面にO-リングを設けた構造を採用している。しかし、このような従来の軸シール構造では、導体の温度変化に伴う導体伸縮によって、O−リングが摩耗する恐れがあり、軸シール構造の信頼性の観点から、特に温度負荷が大きい屋外に設置される変圧器には適用できないという問題があった。   In the above products, a structure in which an O-ring is provided at the interface between the center conductor and the polymer soot pipe is adopted as a shaft seal structure where the center conductor is drawn out from the inside of the polymer soot pipe. However, in such a conventional shaft seal structure, there is a risk that the O-ring may be worn due to the conductor expansion and contraction accompanying the temperature change of the conductor. From the viewpoint of the reliability of the shaft seal structure, it is installed outdoors where the temperature load is particularly large. There was a problem that it could not be applied to transformers.

HSP Hochspannungsgerate GmbH社のホームページ(www.hspkoeln.de)製品紹介ページ(HVDC Transformer Bushings: Type GSETF/GSETFt)HSP Hochspannungsgerate GmbH homepage (www.hspkoeln.de) product introduction page (HVDC Transformer Bushings: Type GSETF / GSETt)

本発明の目的は前記の問題を解決し、中心導体を貫通させたポリマー碍管の内部に、RIP(レジン含浸紙)コンデンサコアを有し、ポリマー碍管の内部で、RIP(レジン含浸紙)コンデンサコアの上方に形成される空間に絶縁ガスを充填した変圧器用ポリマーブッシングにおいて、中心導体を気中に引き出す箇所における軸シール構造の信頼性を向上し、温度負荷が大きい屋外に設置される変圧器にも適用できるものとする技術を提供することである。   The object of the present invention is to solve the above-mentioned problems and to have a RIP (resin impregnated paper) capacitor core inside the polymer soot tube penetrating the central conductor, and within the polymer soot tube, the RIP (resin impregnated paper) capacitor core. In the transformer polymer bushing in which the insulating gas is filled in the space formed above the transformer, the reliability of the shaft seal structure at the location where the center conductor is drawn out into the air is improved, and the transformer is installed outdoors with a large temperature load. Is to provide technology that can be applied.

上記課題を解決するためになされた本発明は、碍管本体の上下に各々フランジ金具を配置したポリマー碍管と、該ポリマー碍管の中心部分に貫通させた中心導体と、該中心導体の周囲に形成した電界緩和用のRIPコンデンサコアを備え、該ポリマー碍管の内部空間に絶縁ガスを充填したポリマーブッシングにおいて、前記中心導体をポリマー碍管から引き出す箇所を、Oリングによる固定シール構造とするとともに、前記碍管本体の上方に配置されたフランジ金具の上部に端子一体蓋を配置して、該端子一体蓋と前記中心導体とを通電する通電手段として、摺動性通電部材を備え、前記RIPコンデンサコアの内、碍管本体内に存在する部分の長さ(L2)を、前記碍管本体の全長(L1)の50〜70%の範囲としたことを特徴とするものである。   The present invention made in order to solve the above-mentioned problems is formed around the center conductor, a polymer core tube in which flange metal fittings are respectively arranged on the top and bottom of the tube body, a central conductor penetrating through the central portion of the polymer core tube, and In a polymer bushing provided with an RIP capacitor core for electric field relaxation and filled with an insulating gas in the interior space of the polymer soot tube, the location where the central conductor is drawn out from the polymer soot tube has a fixed seal structure by an O-ring, and the soot body A terminal integrated lid is arranged on the upper part of the flange fitting disposed above, and a slidable energizing member is provided as an energizing means for energizing the terminal integrated lid and the central conductor. The length (L2) of the portion existing in the soot tube main body is in the range of 50 to 70% of the total length (L1) of the soot tube main body. It is.

前記L1は、ポリマーブッシングの絶縁性能上、必要とされる長さとすることが好ましく、L2は、ポリマーブッシングの放電性能上、必要とされる長さとすることが好ましい。ここで、「ポリマーブッシングの絶縁性能上必要とされる長さ」とは、「JEC-5202-2007、P14 表6」を満足する碍管の最小有効長を意味する。   The length L1 is preferably a length required for the insulation performance of the polymer bushing, and L2 is preferably a length required for the discharge performance of the polymer bushing. Here, “the length required for the insulation performance of the polymer bushing” means the minimum effective length of the soot tube that satisfies “JEC-5202-2007, P14 Table 6”.

また、前記中心導体を引き上げるセンタークランプ手段は、前記コンデンサコアの上端部に設けることが好ましい。   Moreover, it is preferable that the center clamp means for pulling up the center conductor is provided at the upper end of the capacitor core.

本発明では、碍管本体の上下に各々フランジ金具を配置したポリマー碍管と、該ポリマー碍管の中心部分に貫通させた中心導体と、該中心導体の周囲に形成した電界緩和用のRIPコンデンサコアを備え、該ポリマー碍管の内部空間に絶縁ガスを充填したポリマーブッシングにおいて、中心導体をポリマー碍管から引き出す箇所を、Oリングによる固定シール構造とするとともに、前記碍管本体の上方に配置されたフランジ金具の上部に端子一体蓋を配置して、該端子一体蓋と前記中心導体とを通電する通電手段として、摺動性通電部材を備える構造を採用しているため、従来、O−リングを介した軸シール構造としていた際に生じていた問題(中心導体の温度変化に伴う導体伸縮によって、O−リングが摩耗してシールの信頼性が低下する問題)を回避し、軸シール構造の信頼性を、温度負荷が大きい屋外に設置される変圧器にも適用できるレベルにまで向上させることができる。   In the present invention, a polymer pipe having flange fittings arranged on the upper and lower sides of the pipe main body, a central conductor penetrating through the central portion of the polymer pipe, and an RIP capacitor core for electric field relaxation formed around the central conductor are provided. In the polymer bushing in which the inner space of the polymer soot tube is filled with an insulating gas, the location where the central conductor is pulled out from the polymer soot tube has a fixed seal structure with an O-ring, and the upper part of the flange fitting disposed above the soot tube body Since a structure including a slidable energizing member is employed as an energizing means for energizing the terminal integral lid and the central conductor by arranging a terminal integrated lid on the shaft, conventionally, a shaft seal via an O-ring is used. Problems that occurred when the structure was used (O-ring wears due to conductor expansion / contraction caused by temperature change of the center conductor, and the reliability of the seal decreases. Avoiding problems), the reliability of the shaft sealing structure, it is possible to improve to a level that can be applied to a transformer to be installed outdoors temperature load is large.

なお、中心導体に電流が流れると発熱が生じるため、この熱による製品寿命低下を回避するため、ポリマーブッシングには、この熱を放熱するための適切な構造を備えることが求められる。RIP樹脂は熱伝導性が低く、RIP樹脂経由の放熱効果は期待できないが、従来のO−リングを介した軸シール構造では、軸シール部分が高い熱伝導性を有しているため、その他の放熱構造は特段考慮されていない。これに対し、本発明では、摺動性通電部材を介した通電構造を採用しており、この構造では、O−リングを介した構造に比べて熱伝導性が低下するため、この低下分の放熱能力を他の構造で担保する必要がある。そこで、本発明では、RIPコンデンサコアの内、碍管内に存在する部分の長さ(L2)を、碍管本体の全長(L1)の50〜70%の範囲として、絶縁ガスが充填される空間(すなわち、RIP樹脂で被覆されていない中心導体の表面から絶縁ガスへ向けての放熱が行われる空間)を十分に確保することにより良好な放熱特性を確保している。   Since heat is generated when a current flows through the central conductor, the polymer bushing is required to have an appropriate structure for radiating this heat in order to avoid a decrease in product life due to this heat. RIP resin has low thermal conductivity and cannot be expected to dissipate heat through RIP resin. However, in the conventional shaft seal structure with an O-ring, the shaft seal portion has high thermal conductivity. The heat dissipation structure is not particularly considered. On the other hand, in the present invention, an energization structure via a slidable energization member is adopted, and in this structure, thermal conductivity is reduced as compared with a structure via an O-ring. It is necessary to secure the heat dissipation capability with another structure. Therefore, in the present invention, the length (L2) of the portion existing in the soot tube in the RIP capacitor core is set to a range of 50 to 70% of the overall length (L1) of the soot tube body (the space filled with the insulating gas ( That is, good heat dissipation characteristics are ensured by sufficiently securing a space in which heat is radiated from the surface of the central conductor not covered with the RIP resin toward the insulating gas.

ポリマーブッシングの垂直断面図である。It is a vertical sectional view of a polymer bushing. 導体を内部空間から気中に引き出す箇所の説明図である。It is explanatory drawing of the location which pulls out a conductor in the air from internal space. (a)摺動性通電部材の側面図である。(b)摺動性通電部材の上面図である。(A) It is a side view of a slidable electricity supply member. (B) It is a top view of a slidable electricity supply member. センタークランプ手段の説明図である。It is explanatory drawing of a center clamp means.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

本実施形態のポリマーブッシング1は、図1に示すように、ポリマー碍管2と、ポリマー碍管2の内部中心に貫通して設けた中心導体3と、中心導体3の下方部分に紙を巻き付けて成形されたRIP(レジン含浸紙)コンデンサコア4から構成されている。   As shown in FIG. 1, the polymer bushing 1 of the present embodiment is formed by winding a paper around a polymer soot tube 2, a center conductor 3 penetrating through the inner center of the polymer soot tube 2, and a lower portion of the center conductor 3. RIP (resin impregnated paper) capacitor core 4.

RIPコンデンサコア4は、中心導体3に絶縁のために紙を巻き付け、これにレジン(一般に、エポキシ樹脂)を含浸させて、または、予めレジンを塗布した紙を加熱しながら中心導体3に巻き付けて製作されたコンデンサコアである。   The RIP capacitor core 4 is formed by winding paper around the central conductor 3 for insulation and impregnating the paper with resin (generally epoxy resin), or winding the paper on which the resin has been applied in advance around the central conductor 3 while heating. It is a manufactured capacitor core.

ポリマー碍管2は、碍管本体5を構成するFRP筒5と、FRP筒5の周囲に設けた例えばシリコーンゴム製の外被6と、FRP筒5の両端に把持固定した上部フランジ金具7および下部フランジ金具8とから構成されている。   The polymer soot tube 2 includes an FRP cylinder 5 constituting the soot body 5, an outer sheath 6 made of, for example, silicone rubber provided around the FRP cylinder 5, an upper flange fitting 7 and a lower flange that are held and fixed at both ends of the FRP cylinder 5 It consists of a metal fitting 8.

ポリマー碍管2の内部空間9には、絶縁媒体として、SF6ガスを満たしている。   The internal space 9 of the polymer soot tube 2 is filled with SF6 gas as an insulating medium.

上部フランジ金具7の上部には、中心導体3と外部装置との接続に用いられる端子一体蓋10が配置されている。   On the upper part of the upper flange metal fitting 7, a terminal integrated lid 10 used for connection between the central conductor 3 and an external device is disposed.

本発明では、中心導体3に流れる電流を端子一体蓋10へ通電するため、図2に示すように、摺動性通電部材11を配設している。また、ポリマー碍管2の内部空間9の気密性を確保するため、固定用のOリング13を配置している。   In the present invention, a slidable energizing member 11 is provided as shown in FIG. 2 in order to energize the current flowing through the center conductor 3 to the terminal integrated lid 10. Moreover, in order to ensure the airtightness of the internal space 9 of the polymer soot tube 2, the fixing O-ring 13 is disposed.

本実施形態では、摺動性通電部材11として、図3に示すように、多点接触方式のコンタクトを用いている。この多点接触方式のコンタクトは、ベリリウム銅や銅等で作られた多面接触子(例えば、マルチラムバンドの商品名で知られたルーバー状の金属帯材:マルチコンタクト社製)であり、本実施形態では、を中心導体3の外周に環状に組み込んで配設している。このように、本発明では、従来の中心導体を気中に引き出す構造(O−リングを介した軸シール構造)を廃止し、中心導体3から端子一体蓋10へ摺動性通電部材を介して通電し、シール構造はO−リング13による固定シール構造を採用しているため、従来、O−リングを介した軸シール構造としていた際に生じていた問題(中心導体の温度変化に伴う導体伸縮によって、O−リングが摩耗してシールの信頼性が低下する問題)を回避し、シール構造の信頼性を、温度負荷が大きい屋外に設置される変圧器にも適用できるレベルにまで向上させることができる。   In the present embodiment, as the slidable energizing member 11, as shown in FIG. 3, a multipoint contact type contact is used. This multipoint contact type contact is a multi-faceted contactor made of beryllium copper or copper (for example, a louver-shaped metal strip known by the trade name of multilam band: manufactured by Multicontact Corporation) In the embodiment, is arranged in an annular shape on the outer periphery of the center conductor 3. Thus, in the present invention, the conventional structure for pulling the center conductor into the air (the shaft seal structure via the O-ring) is abolished, and the center conductor 3 is connected to the terminal integrated lid 10 via the slidable energizing member. Energized, and the seal structure employs a fixed seal structure with an O-ring 13, so the problem that occurred in the past when the shaft seal structure was through an O-ring (contractor expansion / contraction due to temperature changes in the center conductor) The problem that the O-ring wears down and the reliability of the seal is reduced) is avoided, and the reliability of the seal structure is improved to a level that can be applied to transformers installed outdoors with large temperature loads. Can do.

なお、中心導体に電流が流れると発熱が生じるため、この熱による製品寿命低下を回避するため、ポリマーブッシングには、この熱を放熱するための適切な構造を備えることが求められる。RIP樹脂は熱伝導性が低く、RIP樹脂経由の放熱効果は期待できないが、従来のO−リングを介した軸シール構造では、軸シール部分が高い熱伝導性を有しているため、その他の放熱構造は特段考慮されていない。これに対し、本発明では、摺動性通電部材を介した構造を採用しており、この構造では、O−リングを介した軸シール構造に比べて熱伝導性が低下するため、この低下分の放熱能力を他の構造で担保する必要がある。そこで、本発明では、RIPコンデンサコアの内、碍管内に存在する部分の長さ(L2)を、碍管本体の全長(L1)の70%以下として、絶縁ガスが充填される空間(すなわち、RIP樹脂で被覆されていない中心導体の表面から絶縁ガスへ向けての放熱が行われる空間)を十分に確保することにより良好な放熱特性を確保している。   Since heat is generated when a current flows through the central conductor, the polymer bushing is required to have an appropriate structure for radiating this heat in order to avoid a decrease in product life due to this heat. RIP resin has low thermal conductivity and cannot be expected to dissipate heat through RIP resin. However, in the conventional shaft seal structure with an O-ring, the shaft seal portion has high thermal conductivity. The heat dissipation structure is not particularly considered. On the other hand, in the present invention, a structure through a slidable energizing member is adopted, and in this structure, the thermal conductivity is lower than that of a shaft seal structure through an O-ring. It is necessary to secure the heat dissipation capability of the other structure. Therefore, in the present invention, the length (L2) of the portion existing in the soot tube in the RIP capacitor core is set to 70% or less of the overall length (L1) of the soot tube main body (ie, RIP) Good heat dissipation characteristics are ensured by sufficiently securing a space in which heat is radiated from the surface of the central conductor not covered with resin toward the insulating gas.

L2は、放熱特性の観点からは短い方が良いが、一方で、電界特性の観点からは長い方が良く、「L2がL1の50%未満」では、電場解析による沿面方向電界の絶対値が、放電電界を超える領域が発生してしまうため、電界特性の観点からは、「L2がL1の50%以上」とすることが望ましい。   L2 should be short from the viewpoint of heat dissipation characteristics, but on the other hand, it should be long from the viewpoint of electric field characteristics. When "L2 is less than 50% of L1," the absolute value of the creeping electric field by electric field analysis is Since a region exceeding the discharge electric field is generated, it is desirable that “L2 is 50% or more of L1” from the viewpoint of electric field characteristics.

ここで、「L1」は、絶縁性能上、最低限必要とされる長さ(「JEC-5202-2007、P14 表6」を満足する碍管の最小有効長)として、(汚損レベルに関わらず)一義的に定めることができるため、「L2がL1の70%以下となるように設計したコンデンサコア」も一義的に定まり、汚損条件で碍管本体の全長が変化した場合(例えば、重汚損用では、軽汚損用に比べて、碍管本体の全長が長い設計となる等)でも、コンデンサコアを共有することができる。   Here, “L1” is the minimum required length for insulation performance (minimum effective length of the soot tube that satisfies “JEC-5202-2007, P14 Table 6”) (regardless of the contamination level) Since it can be defined uniquely, the “capacitor core designed so that L2 is 70% or less of L1” is also uniquely determined, and when the total length of the tub tube body changes under fouling conditions (for example, for heavy fouling) The capacitor core can be shared even in the case where the total length of the soot tube main body is longer than that for light fouling.

「L2がL1の50%未満」では、電場解析による沿面方向電界の絶対値が、放電電界を超える領域が発生してしまうため、電界特性の観点からは、「L2がL1の50%以上」とすることが望ましく、L2を、L1の50〜70%の範囲とすることにより、中心導体を貫通させたポリマー碍管の内部に、RIP(レジン含浸紙)コンデンサコアを有し、ポリマー碍管の内部で、RIP(レジン含浸紙)コンデンサコアの上方に形成される空間に絶縁ガスを充填した変圧器用ポリマーブッシングにおいて、中心導体を気中に引き出す箇所における軸シール構造の信頼性を向上し、温度負荷が大きい屋外に設置される変圧器にも適用可能な構造を実現することができる。   When “L2 is less than 50% of L1”, there is a region where the absolute value of the creeping electric field by electric field analysis exceeds the discharge electric field. From the viewpoint of electric field characteristics, “L2 is 50% or more of L1”. It is desirable to have L2 in the range of 50 to 70% of L1, so that the inside of the polymer soot pipe has a RIP (resin impregnated paper) capacitor core inside the polymer soot pipe penetrating the center conductor. In the polymer bushing for transformers, where the space formed above the RIP (resin-impregnated paper) capacitor core is filled with insulating gas, the reliability of the shaft seal structure at the location where the center conductor is drawn into the air is improved, and the temperature load is increased. Therefore, it is possible to realize a structure that can be applied to a transformer installed outdoors.

本発明のポリマーブッシングは、前記のように、分解可能なものであり、ポリマー碍管の碍管本体部分のみを交換することができる。ポリマー碍管は、有機絶縁材料で構成されているため、汚損時の放電による劣化、界面の劣化等から一般的に30年程度と寿命が短く、耐用限界年数が40〜50年の変圧器との協調が取れていない。このため変圧器使用期間中に、経年劣化や保守・メンテナンス時のハンドリングミスによる損傷が合った場合にブッシングの交換を行う必要があるが、現在は、分解不能なポリマーブッシング(ウレタンエラストマーでモールドされているブッシングやRIP樹脂に直接モールドされているブッシング等)が主流であるため、ポリマーブッシング丸ごとの交換が必要となり、変圧器油を処理する等の付帯工事が伴うため、多くの停止期間、交換コストが必要となっている。これに対し、前記のように、ポリマー碍管の碍管本体部分のみを交換することができる本発明によれば、これらの不都合を解消することができる。   As described above, the polymer bushing of the present invention is decomposable, and only the soot tube main body portion of the polymer soot tube can be replaced. Since polymer pipes are made of organic insulating materials, they generally have a short life of about 30 years due to deterioration due to discharge at the time of fouling, deterioration of the interface, etc., and transformers with a life expectancy of 40 to 50 years. There is no coordination. For this reason, it is necessary to replace the bushing when the transformer is in use and damage due to aging or handling mistakes during maintenance / maintenance is appropriate, but now it is a non-decomposable polymer bushing (molded with urethane elastomer). The bushing that is directly molded to the RIP resin, etc.) is the mainstream, so it is necessary to replace the entire polymer bushing, and it involves ancillary work such as processing transformer oil. Cost is required. On the other hand, as described above, according to the present invention in which only the soot tube main body portion of the polymer soot tube can be replaced, these disadvantages can be eliminated.

なお、本実施形態では、中心導体3を引き上げるセンタークランプ手段12を、RIPコンデンサコア4の上端部に設けているため、碍管本体部分の交換作業時にも、中心導体3を下方の油中部14に落下させることなく定位置に保持することができる。   In the present embodiment, since the center clamp means 12 for pulling up the center conductor 3 is provided at the upper end of the RIP capacitor core 4, the center conductor 3 is placed on the lower oil central portion 14 even during the replacement work of the soot tube main body. It can be held in place without being dropped.

センタークランプ手段12は、図4に示すように、RIPコンデンサコア4の上部に圧縮ばね15を適正個数配置させた構成を有し、圧縮ばね15の反力を、ばね押さえ16を介して、中心導体3を持ち上げる方向に作用させることにより、中心導体3を上記の定位置に保持している。万が一の内圧上昇時には、圧縮ばね15による力が、中心導体3を下方の油中部14に移動させる方向に作用するが、本実施形態では、図4に示すように、圧縮ばね15が完全に短絡する前に、ばね押さえ16をストッパー17に当接させる構造としているため、中心導体3の移動を防止することができる。図4において、18は半割ネジ、19は上部シールドカバー、20はロックナット、21は下部シールドカバーを示している。   As shown in FIG. 4, the center clamp means 12 has a configuration in which an appropriate number of compression springs 15 are arranged on the upper part of the RIP capacitor core 4, and the reaction force of the compression springs 15 is centered via a spring retainer 16. By acting in the direction in which the conductor 3 is lifted, the central conductor 3 is held at the above-mentioned fixed position. In the unlikely event that the internal pressure rises, the force of the compression spring 15 acts in a direction to move the center conductor 3 to the lower oil middle portion 14, but in this embodiment, the compression spring 15 is completely short-circuited as shown in FIG. Since the spring retainer 16 is brought into contact with the stopper 17 before the movement, the movement of the center conductor 3 can be prevented. In FIG. 4, 18 is a half screw, 19 is an upper shield cover, 20 is a lock nut, and 21 is a lower shield cover.

154kV用のポリマーブッシング(RIPコンデンサコア、内部空間にガス充填)を前提として、L2の長さを変化させながら、電場解析および熱流体解析を行った結果を下記(表1)に示している。   Table 1 below shows the results of electric field analysis and thermal fluid analysis while changing the length of L2 on the premise of a polymer bushing for 154 kV (RIP capacitor core, gas filling in the internal space).

表1において、L1=1500mmは、「JEC-5202-2007、P14 表6」に基づき定めた値である。   In Table 1, L1 = 1500 mm is a value determined based on “JEC-5202-2007, P14 Table 6”.

電場解析は、「JEC-5202-2007、P14 表6」に基づく短時間商用周波耐電圧試験電圧(325kVrms)で、ゴム表面電界における放電の有無で評価し、放電が発生したものを「NG」とし、発生しないものを「OK」とした。   The electric field analysis is a short-term commercial frequency withstand voltage test voltage (325 kVrms) based on “JEC-5202-2007, P14 Table 6”, evaluated by the presence or absence of discharge in the rubber surface electric field, and “NG” Those that did not occur were designated as “OK”.

熱流体解析は、圧縮性非定常解析法を用い、外気温度を40℃、絶縁油温度を95℃とし、中心導体はアルミ展伸材とし発熱量を1.77×10W/mとして行った。解析の結果、中心導体の温度上昇の最大値が65Kを超える場合を「NG」とし、65K未満になる場合を「OK」とした。
The thermal fluid analysis uses a compressible unsteady analysis method, the outside air temperature is 40 ° C., the insulating oil temperature is 95 ° C., the center conductor is an aluminum wrought material, and the heat generation amount is 1.77 × 10 4 W / m 3. went. As a result of the analysis, the case where the maximum value of the temperature rise of the central conductor exceeds 65K is set as “NG”, and the case where it is less than 65K is set as “OK”.

実施例1、2に示すように、「中心導体を貫通させたポリマー碍管の内部に、RIP(レジン含浸紙)コンデンサコアを有し、ポリマー碍管の内部で、RIP(レジン含浸紙)コンデンサコアの上方に形成される空間に絶縁ガスを充填し、中心導体を気中に引き出す構造(O−リングを介した軸シール構造)を廃止し、中心導体から端子一体蓋へ摺動性通電部材を介して通電し、シール構造はOリングによる固定シール構造とした変圧器用ポリマーブッシング」において、L2を、L1の50〜70%の範囲とすることにより、放熱特性と電界特性の双方において、温度負荷が大きい屋外に設置される変圧器にも適用可能なレベルの特性を備えた構造を実現することができることが確認された。一方、比較例1に示すように、L2が、「L1の50%」に満たない場合には、電場解析による沿面方向電界の絶対値が、放電電界を超える領域が発生してしまうことが確認された。また、比較例2に示すように、L2が、「L1の70%」を超えた場合、「RIP樹脂で被覆されていない中心導体の表面から絶縁ガスへ向けての放熱が行われる空間」が充分確保できず、放熱特性の観点から、上記レベルを満足することができなくなることが確認された。   As shown in Examples 1 and 2, “the inside of the polymer pipe having the central conductor penetrated has a RIP (resin impregnated paper) capacitor core, and inside the polymer pipe, the RIP (resin impregnated paper) capacitor core The space formed above is filled with insulating gas, and the structure that draws the center conductor into the air (shaft seal structure via the O-ring) is abolished, and the center conductor is connected to the terminal integrated lid via a slidable energizing member. In the transformer polymer bushing in which the seal structure is a fixed seal structure using an O-ring, by setting L2 within the range of 50 to 70% of L1, the temperature load is reduced in both the heat radiation characteristics and the electric field characteristics. It was confirmed that a structure with a level of characteristics applicable to a large transformer installed outdoors could be realized. On the other hand, as shown in Comparative Example 1, when L2 is less than “50% of L1,” it is confirmed that a region where the absolute value of the creeping electric field by electric field analysis exceeds the discharge electric field occurs. It was done. Further, as shown in Comparative Example 2, when L2 exceeds “70% of L1,” “a space where heat is radiated from the surface of the central conductor not covered with the RIP resin toward the insulating gas” is generated. It was confirmed that the above level could not be satisfied from the viewpoint of heat dissipation characteristics, which could not be secured sufficiently.

1 ポリマーブッシング
2 ポリマー碍管
3 中心導体
4 RIPコンデンサコア
5 FRP筒、碍管本体
6 外被
7 上部フランジ金具
8 下部フランジ金具
9 内部空間
10 端子一体蓋
11 摺動性通電部材
12 センタークランプ手段
13 Oリング
14 油中部
15 圧縮ばね
16 ばね押さえ
17 ストッパー
18 反割ネジ
19 上部シールドカバー
20 ロックナット
21 下部シールドカバー
DESCRIPTION OF SYMBOLS 1 Polymer bushing 2 Polymer soot pipe 3 Center conductor 4 RIP capacitor core 5 FRP cylinder, soot pipe main body 6 Jacket | cover 7 Upper flange metal fitting 8 Lower flange metal fitting 9 Internal space 10 Terminal integrated cover 11 Sliding electricity supply member 12 Center clamp means 13 O ring 14 Oil middle part 15 Compression spring 16 Spring retainer 17 Stopper 18 Counter split screw 19 Upper shield cover 20 Lock nut 21 Lower shield cover

Claims (5)

碍管本体の上下に各々フランジ金具を配置したポリマー碍管と、該ポリマー碍管の中心部分に貫通させた中心導体と、該中心導体の周囲に形成した電界緩和用のRIPコンデンサコアを備え、該ポリマー碍管の内部空間に絶縁ガスを充填したポリマーブッシングにおいて、
前記中心導体をポリマー碍管から引き出す箇所を、Oリングによる固定シール構造とするとともに、
前記碍管本体の上方に配置されたフランジ金具の上部に端子一体蓋を配置して、該端子一体蓋と前記中心導体とを通電する通電手段として、摺動性通電部材を備え、
前記RIPコンデンサコアの内、碍管本体内に存在する部分の長さ(L2)を、前記碍管本体の全長(L1)の50〜70%の範囲としたことを特徴とするポリマーブッシング。
A polymer pipe having flange metal fittings disposed on the upper and lower sides of the pipe main body, a center conductor penetrating through a central portion of the polymer pipe, and an RIP capacitor core for electric field relaxation formed around the center conductor, the polymer pipe In polymer bushings filled with insulating gas in the interior space of
The location where the center conductor is pulled out from the polymer soot tube has a fixed seal structure with an O-ring,
A terminal integrated lid is arranged on the upper part of the flange fitting disposed above the soot tube main body, and includes a slidable energizing member as an energizing means for energizing the terminal integrated lid and the central conductor,
A polymer bushing characterized in that the length (L2) of the portion of the RIP capacitor core existing in the soot tube body is in the range of 50 to 70% of the overall length (L1) of the soot tube body.
前記「L1」が、ポリマーブッシングの絶縁性能上、必要とされる長さであることを特徴とする請求項1記載のポリマーブッシング。   2. The polymer bushing according to claim 1, wherein the length “L1” is a length required for insulation performance of the polymer bushing. 前記「L2」が、ポリマーブッシングの放電性能上、必要とされる長さであることを有することを特徴とする請求項1記載のポリマーブッシング。   2. The polymer bushing according to claim 1, wherein the “L2” has a length required for discharge performance of the polymer bushing. 前記中心導体を引き上げるセンタークランプ手段を、前記コンデンサコアの上端部に設けたことを特徴とする請求項1記載のポリマーブッシング。   The polymer bushing according to claim 1, wherein a center clamp means for pulling up the center conductor is provided at an upper end portion of the capacitor core. 前記の摺動性通電部材が、ルーバ状の金属帯材からなる多点接触方式のコンタクトであることを特徴とする請求項1記載のポリマーブッシング。   The polymer bushing according to claim 1, wherein the slidable energizing member is a multi-point contact type contact made of a louver-like metal strip.
JP2015003911A 2014-10-15 2015-01-13 Polymer bushing Active JP6502674B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014210977 2014-10-15
JP2014210977 2014-10-15

Publications (2)

Publication Number Publication Date
JP2016081894A true JP2016081894A (en) 2016-05-16
JP6502674B2 JP6502674B2 (en) 2019-04-17

Family

ID=55958935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003911A Active JP6502674B2 (en) 2014-10-15 2015-01-13 Polymer bushing

Country Status (1)

Country Link
JP (1) JP6502674B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169424A (en) * 2018-03-26 2019-10-03 昭和電線ケーブルシステム株式会社 Bushing
WO2020024819A1 (en) * 2018-08-02 2020-02-06 江苏神马电力股份有限公司 Insulating sleeve pipe
KR20200142782A (en) * 2019-06-13 2020-12-23 현대일렉트릭앤에너지시스템(주) Structure of bushing of transformer
KR20210005229A (en) * 2018-06-04 2021-01-13 에이비비 파워 그리즈 스위처랜드 아게 Removable bushing flange

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218716A (en) * 1984-04-12 1985-11-01 三菱電機株式会社 Oil-impregnated paper condenser bushing
JPS62260505A (en) * 1986-05-06 1987-11-12 株式会社東芝 Gas insulated transformer connecting apparatus
JPH05274942A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Resin impregnated paper capacitor core and manufacture thereof
JPH07326242A (en) * 1994-05-30 1995-12-12 Toshiba Corp Insulated conductor
JP2001052550A (en) * 1999-08-11 2001-02-23 Siemens Ag Hollow composite insulator
JP2007200882A (en) * 2006-01-24 2007-08-09 Nexans Electric bushing
JP2011501868A (en) * 2007-10-26 2011-01-13 アーベーベー・リサーチ・リミテッド High voltage outdoor bushing
JP2011188719A (en) * 2010-03-11 2011-09-22 Swcc Showa Cable Systems Co Ltd Polymer bushing, and cable terminal connection
JP3181821U (en) * 2012-12-11 2013-02-21 日本碍子株式会社 Transformer bushings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218716A (en) * 1984-04-12 1985-11-01 三菱電機株式会社 Oil-impregnated paper condenser bushing
JPS62260505A (en) * 1986-05-06 1987-11-12 株式会社東芝 Gas insulated transformer connecting apparatus
JPH05274942A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Resin impregnated paper capacitor core and manufacture thereof
JPH07326242A (en) * 1994-05-30 1995-12-12 Toshiba Corp Insulated conductor
JP2001052550A (en) * 1999-08-11 2001-02-23 Siemens Ag Hollow composite insulator
JP2007200882A (en) * 2006-01-24 2007-08-09 Nexans Electric bushing
JP2011501868A (en) * 2007-10-26 2011-01-13 アーベーベー・リサーチ・リミテッド High voltage outdoor bushing
JP2011188719A (en) * 2010-03-11 2011-09-22 Swcc Showa Cable Systems Co Ltd Polymer bushing, and cable terminal connection
JP3181821U (en) * 2012-12-11 2013-02-21 日本碍子株式会社 Transformer bushings

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169424A (en) * 2018-03-26 2019-10-03 昭和電線ケーブルシステム株式会社 Bushing
KR20210005229A (en) * 2018-06-04 2021-01-13 에이비비 파워 그리즈 스위처랜드 아게 Removable bushing flange
KR102447848B1 (en) 2018-06-04 2022-09-26 히타치 에너지 스위처랜드 아게 Removable bushing flange
US11552463B2 (en) 2018-06-04 2023-01-10 Hitachi Energy Switzerland Ag Removable bushing flange
WO2020024819A1 (en) * 2018-08-02 2020-02-06 江苏神马电力股份有限公司 Insulating sleeve pipe
KR20200142782A (en) * 2019-06-13 2020-12-23 현대일렉트릭앤에너지시스템(주) Structure of bushing of transformer
KR102206799B1 (en) 2019-06-13 2021-01-25 현대일렉트릭앤에너지시스템(주) Structure of bushing of transformer

Also Published As

Publication number Publication date
JP6502674B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6502674B2 (en) Polymer bushing
RU2681643C1 (en) Cable fittings for connecting a high-voltage cable with a high-voltage component
JP5400227B2 (en) Gas insulated electrical equipment
JP5555729B2 (en) Terminal equipment for cryogenic equipment
US10210969B2 (en) Electrical bushing
CN105119217B (en) High-voltage wall bushing
US20180115100A1 (en) Mobile transformer bushing connection
CA2923658C (en) Connection of at least four electric conductors
JP2018078194A (en) Stationary induction equipment
WO2008119782A1 (en) A cable termination arrangement
NO129432B (en)
EP2528071A1 (en) High voltage arrangement comprising an insulating structure
US2135321A (en) High current bushing
KR102534685B1 (en) Electromechanical actuators and high voltage (HV) switches
JP6415848B2 (en) Transformer for converter
EP3007184B1 (en) Electrical bushing
JP7158963B2 (en) Molded stationary induction device
CN114050532A (en) 800kV flexible direct-current wall bushing
WO2016066187A1 (en) Power converter assembly with insulating material-covered electrodes
Streit et al. Dry terminations for high voltage cable system
US1752281A (en) Insulator-bushing joint
JP2015029372A (en) Terminal device of cryogenic apparatus
AU2014383641B2 (en) Power cable termination device for gas-insulated switchgear
CN112868077B (en) Device and method for reducing the potential in high-voltage technology
JP2018527873A (en) Change joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150