JP2016081757A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016081757A
JP2016081757A JP2014212858A JP2014212858A JP2016081757A JP 2016081757 A JP2016081757 A JP 2016081757A JP 2014212858 A JP2014212858 A JP 2014212858A JP 2014212858 A JP2014212858 A JP 2014212858A JP 2016081757 A JP2016081757 A JP 2016081757A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014212858A
Other languages
Japanese (ja)
Inventor
小山 裕
Yutaka Koyama
裕 小山
哲也 早稲田
Tetsuya Waseda
哲也 早稲田
藤田 秀明
Hideaki Fujita
秀明 藤田
章浩 落合
Akihiro Ochiai
章浩 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014212858A priority Critical patent/JP2016081757A/en
Publication of JP2016081757A publication Critical patent/JP2016081757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery superior in high-rate cycle characteristic, in which the outflow of a nonaqueous electrolyte from a negative electrode active material layer is suppressed at a high level.SOLUTION: A nonaqueous electrolyte secondary battery is provided according to the present invention, which comprises a wound electrode body. The wound electrode body is arranged by: putting together a positive electrode sheet 10 including an elongated positive electrode current collector 12 and a positive electrode active material layer 14 on a surface of the elongated positive electrode current collector, and a negative electrode sheet 20 including an elongated negative electrode current collector 22 and a negative electrode active material layer 24 on a surface of the elongated negative electrode current collector through an elongated separator sheet 40 so that the positive electrode active material layer 14 is opposed to the negative electrode active material layer 24; and winding them in a lengthwise direction. The negative electrode active material layer 24 includes graphite-based particles 26. With the negative electrode active material layer 24, the ratio (I/I) of a peak intensity Iof (110)-plane to a peak intensity Iof (004)-plane based on X-ray crystal structure analysis is 0.061 or larger. The negative electrode active material layer 24 and the separator sheet 40 are glued to each other with a bonding strength of 59 mN/cm or larger.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池に関する。詳しくは、捲回電極体を備えた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. Specifically, the present invention relates to a nonaqueous electrolyte secondary battery provided with a wound electrode body.

リチウムイオン二次電池等の非水電解質二次電池では、負極活物質として黒鉛系の材料(黒鉛系粒子)が多用されている。しかしながら、黒鉛系粒子は、いわゆるペースト塗布法によって集電体の表面に負極活物質層を形成する場合に、集電体の表面に対して(002)面が平行に配向し易い性質がある。その結果、電池の充放電における黒鉛系粒子の膨張・収縮に伴って、非水電解質が負極の外(ひいては電極体外)へと流出してしまい、例えばハイレート充放電時に内部抵抗が増大することがある。
これに関連する技術として、例えば特許文献1には、捲回電極体を備えるリチウムイオン二次電池であって、当該捲回電極体の捲回軸方向に直交する幅方向の両端部分において負極中の負極活物質(黒鉛粒子)の垂直度が1以上である、リチウムイオン二次電池が開示されている。
In nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries, graphite-based materials (graphite-based particles) are frequently used as negative electrode active materials. However, graphite-based particles have a property that the (002) plane is easily oriented in parallel to the surface of the current collector when the negative electrode active material layer is formed on the surface of the current collector by a so-called paste coating method. As a result, the non-aqueous electrolyte flows out of the negative electrode (and thus out of the electrode body) with the expansion and contraction of the graphite-based particles during charge / discharge of the battery, and the internal resistance may increase during high-rate charge / discharge, for example. is there.
As a technology related to this, for example, Patent Document 1 discloses a lithium ion secondary battery including a wound electrode body, in the negative electrode at both end portions in the width direction orthogonal to the winding axis direction of the wound electrode body. A lithium ion secondary battery in which the degree of perpendicularity of the negative electrode active material (graphite particles) is 1 or more is disclosed.

特開2013―069579号公報JP 2013-069579 A 特開2003−151638号公報JP 2003-151638 A 特開2003−197189号公報JP 2003-197189 A

捲回電極体では、非水電解質の流入出が概ね幅方向の端部(側面部)からに限定される。このため、特許文献1の構成によれば、上記幅方向の両端部(負極活物質層の断面)から非水電解質が流出することを効果的に抑制することができ、捲回電極体でいわゆる液枯れが生じることを防止し得る。
しかしながら、本発明者らの検討によれば、上記技術には更なる改善の余地が認められた。具体的には、例えば幅方向の中央部分において黒鉛粒子の垂直度が低いと、非水電解質が幅方向に流動し易い傾向にある。このため、捲回電極体の幅方向に支持塩の濃度分布(濃度ムラ)が生じることがあり得る。また、負極とセパレータの界面に隙間がある場合、そこから非水電解質が流出することがあり得る。
In the wound electrode body, the inflow / outflow of the nonaqueous electrolyte is generally limited to the end portion (side surface portion) in the width direction. For this reason, according to the structure of patent document 1, it can suppress effectively that a non-aqueous electrolyte flows out from the both ends (cross section of a negative electrode active material layer) of the said width direction, and what is called a wound electrode body. It is possible to prevent liquid drainage from occurring.
However, according to the study by the present inventors, there is room for further improvement in the above technique. Specifically, for example, if the perpendicularity of the graphite particles is low in the center portion in the width direction, the nonaqueous electrolyte tends to flow in the width direction. For this reason, a concentration distribution (concentration unevenness) of the supporting salt may occur in the width direction of the wound electrode body. Further, when there is a gap at the interface between the negative electrode and the separator, the nonaqueous electrolyte may flow out from there.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、捲回電極体を備える非水電解質二次電池であって、負極活物質層からの非水電解質の流出が高度に抑制され、ハイレートサイクル特性に優れた非水電解質二次電池を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is a non-aqueous electrolyte secondary battery including a wound electrode body, and the outflow of the non-aqueous electrolyte from the negative electrode active material layer is highly suppressed. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in high rate cycle characteristics.

本発明者らは、上記目的を実現すべく検討を重ねた。その結果、負極活物質層内の非水電解質の流動を制御する(非水電解質の流れる方向を調整する)ことに想到した。そして、更なる鋭意検討を行い、本発明を完成させるに至った。
本発明により、長尺状の正極集電体の表面に正極活物質層を備える正極シートと、長尺状の負極集電体の表面に負極活物質層を備える負極シートとを、上記正極活物質層と上記負極活物質層とが対向するよう長尺状のセパレータシートを介して重ね合わせ、長尺方向に捲回してなる捲回電極体を備えた非水電解質二次電池が提供される。上記負極活物質層は、黒鉛系粒子を含んでいる。上記負極活物質層の(110)面のピーク強度I110と(004)面のピーク強度I004との比(I110/I004)は、0.061以上である。上記負極活物質層と上記セパレータシートは、59mN/cm以上の接着強度で接着されている。
The inventors have repeatedly studied to achieve the above object. As a result, the inventors arrived at controlling the flow of the nonaqueous electrolyte in the negative electrode active material layer (adjusting the flow direction of the nonaqueous electrolyte). And further diligent examination was carried out and it came to complete this invention.
According to the present invention, a positive electrode sheet having a positive electrode active material layer on the surface of a long positive electrode current collector, and a negative electrode sheet having a negative electrode active material layer on the surface of a long negative electrode current collector, Provided is a non-aqueous electrolyte secondary battery including a wound electrode body that is wound with a long separator sheet so that the material layer and the negative electrode active material layer face each other and wound in the longitudinal direction. . The negative electrode active material layer contains graphite-based particles. The ratio of the peak intensity I 004 of the negative electrode active material layer (110) plane and the peak intensity I 110 (004) plane (I 110 / I 004) is 0.061 or more. The negative electrode active material layer and the separator sheet are bonded with an adhesive strength of 59 mN / cm or more.

上記配向強度比を満たすことで、黒鉛系粒子のベーサル面を負極活物質層の厚み方向に対して垂直に(負極活物質層の幅方向に対して平行に)配向させることができる。その結果、非水電解質が負極活物質層の厚み方向に移動し易くなり、入出力特性を向上することができる。また、捲回電極体の幅方向への非水電解質の移動を抑制することができる。しかしながら、かかる構成では負極活物質層とセパレータの界面から非水電解質が押し出され易くなる。このため、当該負極活物質層とセパレータとを接着して隙間を塞ぐことにより、非水電解質が流出することを高度に防止することができる。
すなわち、ここに開示される構成によれば、負極活物質層内で液枯れや塩濃度のムラが生じ難くハイレートサイクル特性に優れた非水電解質二次電池を実現することができる。
By satisfying the orientation strength ratio, the basal surface of the graphite-based particles can be oriented perpendicularly to the thickness direction of the negative electrode active material layer (parallel to the width direction of the negative electrode active material layer). As a result, the non-aqueous electrolyte can easily move in the thickness direction of the negative electrode active material layer, and input / output characteristics can be improved. Moreover, the movement of the nonaqueous electrolyte in the width direction of the wound electrode body can be suppressed. However, in such a configuration, the nonaqueous electrolyte is easily pushed out from the interface between the negative electrode active material layer and the separator. For this reason, by adhering the negative electrode active material layer and the separator to close the gap, it is possible to highly prevent the nonaqueous electrolyte from flowing out.
In other words, according to the configuration disclosed herein, it is possible to realize a non-aqueous electrolyte secondary battery that is highly resistant to liquid withering and unevenness in salt concentration in the negative electrode active material layer and that has excellent high-rate cycle characteristics.

なお、本明細書において「黒鉛系粒子」とは、黒鉛のみからなる粒子と、材料全体の50質量%以上(典型的には80質量%以上、例えば90質量%以上)を黒鉛が占める粒子との総称である。
また、負極活物質層の配向強度比(I110/I004)は、CuKα線を用いたX線回折測定(XRD:X-ray diffraction)から求めることができる。具体的には、まず測定対象たる負極活物質層を備えた負極シートを切り出す。次に、上記負極シートに対してXRD測定を行い、得られたXRDチャートから(110)面の回折ピーク強度I110と(004)面の回折ピーク強度I004とをそれぞれ求める。そして、I110をI004で除すことにより、配向強度比(I110/I004)を算出することができる。
また、負極活物質層とセパレータシートとの接合強度は、JIS−K6854−2(1999)に規定される180°剥離試験によって測定することができる。具体的には、まず測定対象たる負極とセパレータとの合体物を用意する。次に、セパレータの側を両面粘着テープで載置台の上に載置(固定)する。次に、負極活物質層の側を引張治具に取り付けられた両面粘着テープに固定する。そして、引張冶具を垂直方向に上昇させ剥離角度180度で引っ張ることにより、測定することができる。
In the present specification, “graphite-based particles” are particles composed solely of graphite, and particles occupying 50% by mass or more (typically 80% by mass or more, for example, 90% by mass or more) of the entire material. Is a general term.
Further, the orientation strength ratio (I 110 / I 004 ) of the negative electrode active material layer can be obtained from X-ray diffraction measurement (XRD: X-ray diffraction) using CuKα rays. Specifically, first, a negative electrode sheet having a negative electrode active material layer to be measured is cut out. Next, XRD measurement is performed on the negative electrode sheet, and a diffraction peak intensity I 110 on the ( 110 ) plane and a diffraction peak intensity I 004 on the (004) plane are obtained from the obtained XRD chart. The orientation intensity ratio (I 110 / I 004 ) can be calculated by dividing I 110 by I 004 .
Further, the bonding strength between the negative electrode active material layer and the separator sheet can be measured by a 180 ° peel test defined in JIS-K6854-2 (1999). Specifically, first, a combination of a negative electrode and a separator to be measured is prepared. Next, the separator side is mounted (fixed) on a mounting table with a double-sided adhesive tape. Next, the negative electrode active material layer side is fixed to a double-sided pressure-sensitive adhesive tape attached to a tension jig. And it can measure by raising a tension jig to a perpendicular direction and pulling with the peeling angle of 180 degree | times.

なお、特許文献2には、正極あるいは負極と、セパレータとの間に接着性樹脂層を備えるリチウムイオン二次電池が開示されている。また、特許文献3には、黒鉛粉末を含むペーストを集電体に塗布した後、該黒鉛粉末に含まれる黒鉛粒子同士の002面を磁場内で同一方向に配向させるリチウム二次電池用の負極の製造方法が開示されている。   Patent Document 2 discloses a lithium ion secondary battery including an adhesive resin layer between a positive electrode or a negative electrode and a separator. Patent Document 3 discloses a negative electrode for a lithium secondary battery in which a paste containing graphite powder is applied to a current collector and then the 002 surfaces of graphite particles contained in the graphite powder are oriented in the same direction in a magnetic field. A manufacturing method is disclosed.

一実施形態に係る捲回電極体の部分断面構造を示す模式図である。It is a schematic diagram which shows the partial cross-section of the wound electrode body which concerns on one Embodiment. 評価用電池の構成と電池特性の評価結果である。It is a structure of an evaluation battery and an evaluation result of battery characteristics. 入力試験の評価方法を模式的に示すグラフであり、(a)は充電時の電圧(V)と時間(T)との関係を示しており、(b)は充電時間(秒)と電力(W)との関係を示している。It is a graph which shows typically the evaluation method of an input test, (a) has shown relation between voltage (V) at the time of charge, and time (T), (b) is charging time (second) and electric power ( W). ハイレートサイクル試験における1サイクルの充放電パターンを示すグラフである。It is a graph which shows the charge / discharge pattern of 1 cycle in a high-rate cycle test.

以下、適宜図面を参照しつつ、本発明の一実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない構成要素や電池の一般的な製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. Note that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention (for example, general manufacturing processes of components and batteries not characterizing the present invention) It can be grasped as a design matter of those skilled in the art based on the prior art. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. The dimensional relationship (length, width, thickness, etc.) in each figure does not necessarily reflect the actual dimensional relationship.

ここに開示される非水電解質二次電池は、捲回電極体と非水電解質とを備える。以下、各構成要素について順に説明する。   The non-aqueous electrolyte secondary battery disclosed herein includes a wound electrode body and a non-aqueous electrolyte. Hereinafter, each component will be described in order.

ここに開示される非水電解質二次電池の捲回電極体は、長尺状の正極シートと長尺状の負極シートとを長尺状のセパレータシートを介して重ね合わせ、長尺方向に捲回して構成されている。好適な一態様では、捲回電極体の外観が扁平形状である。換言すれば、捲回軸に直交する断面において、略角丸長方形状を有している。
図1は、一実施形態に係る捲回電極体の部分断面構造を示す模式図である。図1に示すように、正極シート10および負極シート20は、正極活物質層14と負極活物質層24とがセパレータシート40を介して対向するように配置されている。
The wound electrode body of the non-aqueous electrolyte secondary battery disclosed herein has a long positive electrode sheet and a long negative electrode sheet stacked on each other via a long separator sheet and wound in the long direction. It is configured to turn. In a preferred aspect, the wound electrode body has a flat appearance. In other words, the cross section orthogonal to the winding axis has a substantially rounded rectangular shape.
FIG. 1 is a schematic diagram showing a partial cross-sectional structure of a wound electrode body according to an embodiment. As shown in FIG. 1, the positive electrode sheet 10 and the negative electrode sheet 20 are arranged so that the positive electrode active material layer 14 and the negative electrode active material layer 24 face each other with the separator sheet 40 interposed therebetween.

正極シート10は、長尺状の正極集電体12と、その表面に形成された正極活物質層14とを備えている。正極集電体12としては、導電性の良好な金属(例えばアルミニウム、ニッケル等)からなる導電性部材を好適に採用し得る。
正極活物質層14は、正極集電体12の表面に、長尺方向に沿って所定の幅で帯状に形成されている。正極活物質層14は、少なくとも正極活物質を含んでいる。典型的には、さらに導電材やバインダを含んでいる。正極活物質としては、例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5、LiFePO等のリチウム複合金属酸化物が例示される。なかでも、熱安定性やエネルギー密度の観点から、層状構造のリチウムニッケルコバルトマンガン複合酸化物が好ましい。導電材としては、例えば、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)、活性炭、黒鉛等の炭素材料が例示される。また、バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂やポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドが例示される。
The positive electrode sheet 10 includes a long positive electrode current collector 12 and a positive electrode active material layer 14 formed on the surface thereof. As the positive electrode current collector 12, a conductive member made of a metal having good conductivity (for example, aluminum, nickel, etc.) can be suitably used.
The positive electrode active material layer 14 is formed on the surface of the positive electrode current collector 12 in a band shape with a predetermined width along the longitudinal direction. The positive electrode active material layer 14 includes at least a positive electrode active material. Typically, it further contains a conductive material and a binder. Examples of the positive electrode active material include LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4. Examples thereof include lithium composite metal oxides. Of these, a lithium nickel cobalt manganese composite oxide having a layered structure is preferable from the viewpoint of thermal stability and energy density. Examples of the conductive material include carbon materials such as carbon black (for example, acetylene black and ketjen black), activated carbon, and graphite. Examples of the binder include a vinyl halide resin such as polyvinylidene fluoride (PVdF) and a polyalkylene oxide such as polyethylene oxide (PEO).

負極シート20は、長尺状の負極集電体22と、その表面に形成された負極活物質層24とを備えている。負極集電体22としては、導電性の良好な金属(例えば、銅、ニッケル等)からなる導電性材料を好適に採用し得る。
負極活物質層24は、負極集電体22の表面に、長尺方向に沿って正極活物質層14よりも幅広な帯状に形成されている。負極活物質層24は、少なくとも黒鉛系粒子26を含んでいる。典型的には、さらに増粘剤やバインダを含んでいる。黒鉛系粒子26としては、例えば、天然黒鉛、人造黒鉛、非晶質カーボンコート黒鉛(黒鉛粒子の表面に非晶質カーボンをコートした形態のもの)等の黒鉛系炭素材料が例示される。黒鉛系粒子26の平均粒径(レーザー回折・光散乱法に基づく体積基準の累積50%に相当する粒径。以下同じ。)は、高エネルギー密度と高入出力密度とを高いレベルで両立する観点から、1〜30μm程度が好ましい。また、黒鉛系粒子26は形状異方性を有し得、例えば、鱗片状、平板状等の形状であり得る。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)やメチルセルロース(MC)等のセルロース類が例示される。バインダとしては、例えば、スチレンブタジエンゴム(SBR)等のゴム類やポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂が例示される。
The negative electrode sheet 20 includes a long negative electrode current collector 22 and a negative electrode active material layer 24 formed on the surface thereof. As the negative electrode current collector 22, a conductive material made of a metal having good conductivity (for example, copper, nickel, etc.) can be suitably used.
The negative electrode active material layer 24 is formed on the surface of the negative electrode current collector 22 in a band shape wider than the positive electrode active material layer 14 along the longitudinal direction. The negative electrode active material layer 24 includes at least graphite particles 26. Typically, it further contains a thickener and a binder. Examples of the graphite-based particles 26 include graphite-based carbon materials such as natural graphite, artificial graphite, and amorphous carbon-coated graphite (forms in which amorphous carbon is coated on the surface of graphite particles). The average particle size of the graphite-based particles 26 (particle size corresponding to 50% cumulative volume based on laser diffraction / light scattering method; the same applies hereinafter) achieves both high energy density and high input / output density at a high level. From a viewpoint, about 1-30 micrometers is preferable. Moreover, the graphite-type particle | grains 26 can have shape anisotropy, for example, can be shapes, such as scale shape and flat plate shape. Examples of the thickener include celluloses such as carboxymethyl cellulose (CMC) and methyl cellulose (MC). Examples of the binder include rubbers such as styrene butadiene rubber (SBR) and vinyl halide resins such as polyvinylidene fluoride (PVdF).

負極シート20では、黒鉛系粒子26のベーサル面が負極活物質層24の厚み方向に対して垂直に(捲回電極体の幅方向に対して平行に)配向している。換言すれば、負極活物質層24のXRDに基づく配向強度比(I110/I004)が0.061以上であって、例えば0.061〜0.099、典型的には0.065以上、好ましくは0.065〜0.095である。これによって、非水電解質が負極活物質層24の厚み方向に移動し易くなり、入出力特性を向上することができる。また、非水電解質の幅方向への移動を抑制することができ、塩濃度ムラが生じることを防止し得る。
負極活物質層24の電極密度は、例えば0.8〜1.4g/cm(典型的には1.0〜1.4g/cm、好ましくは1.2〜1.4g/cm)とするとよい。上記電極密度とすることで活物質層内に適度な空隙を維持することができ、より優れた入出力特性を実現することができる。また、上述の配向強度比を安定的に実現できる効果もある。
In the negative electrode sheet 20, the basal surface of the graphite-based particles 26 is oriented perpendicular to the thickness direction of the negative electrode active material layer 24 (parallel to the width direction of the wound electrode body). In other words, the orientation strength ratio (I 110 / I 004 ) based on XRD of the negative electrode active material layer 24 is 0.061 or more, for example, 0.061 to 0.099, typically 0.065 or more, Preferably it is 0.065-0.095. As a result, the nonaqueous electrolyte can easily move in the thickness direction of the negative electrode active material layer 24, and input / output characteristics can be improved. Moreover, the movement of the nonaqueous electrolyte in the width direction can be suppressed, and the occurrence of uneven salt concentration can be prevented.
The electrode density of the negative electrode active material layer 24 is, for example, 0.8 to 1.4 g / cm 3 (typically 1.0 to 1.4 g / cm 3 , preferably 1.2 to 1.4 g / cm 3 ). It is good to do. By setting it as the said electrode density, a moderate space | gap can be maintained in an active material layer, and the more excellent input-output characteristic can be implement | achieved. In addition, there is also an effect that the above-described orientation strength ratio can be stably realized.

正極活物質層14と負極活物質層24との間には、長尺状のセパレータシート40が配置されている。セパレータシート40としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シート(フィルム)が例示される。なかでも、ポリオレフィン系の多孔質樹脂シート(例えばPEやPP)が好ましい。   A long separator sheet 40 is disposed between the positive electrode active material layer 14 and the negative electrode active material layer 24. Examples of the separator sheet 40 include a porous resin sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Among these, polyolefin-based porous resin sheets (for example, PE and PP) are preferable.

ここに開示される非水電解質二次電池の捲回電極体では、負極活物質層24とセパレータシート40とが物理的に接着されている(一体化されている)。換言すれば、負極活物質層24とセパレータシート40との界面の接着強度が59mN/cm以上、典型的には70mN/cm以上、例えば101mN/cm以上である。上記配向強度比を満たす場合、非水電解質が負極活物質層24の厚み方向に移動し易くなる背反として、負極活物質層24とセパレータシート40と界面から非水電解質が流出し易くなる傾向がある。そこで、上記接着強度で負極活物質層24とセパレータシート40とを一体化することにより、例えば、ハイレート充放電時に電池が発熱して非水電解質が体積膨張したり、黒鉛系粒子26が膨張したりして、負極活物質層24が積層方向(正極活物質層14と対向する方向)へ大きく膨張した場合であっても、負極活物質層24から非水電解質が流出することを高度に防止することができる。その結果、ハイレート充放電を繰り返しても電池抵抗が上昇し難いハイレートサイクル特性に優れた電池を実現することができる。
接着強度の上限値は特に限定されないが、本発明の効果を高いレベルで安定的に発揮する観点からは、例えば151mN/cm以下、好ましくは144mN/cm以下、より好ましくは135mN/cm以下であるとよい。
In the wound electrode body of the nonaqueous electrolyte secondary battery disclosed herein, the negative electrode active material layer 24 and the separator sheet 40 are physically bonded (integrated). In other words, the adhesive strength at the interface between the negative electrode active material layer 24 and the separator sheet 40 is 59 mN / cm or more, typically 70 mN / cm or more, for example, 101 mN / cm or more. When the orientation strength ratio is satisfied, the nonaqueous electrolyte tends to easily flow out from the interface between the negative electrode active material layer 24 and the separator sheet 40 as a contradiction that the nonaqueous electrolyte easily moves in the thickness direction of the negative electrode active material layer 24. is there. Therefore, by integrating the negative electrode active material layer 24 and the separator sheet 40 with the above adhesive strength, for example, the battery generates heat during high-rate charge / discharge and the nonaqueous electrolyte expands in volume, or the graphite particles 26 expand. Thus, even when the negative electrode active material layer 24 is greatly expanded in the stacking direction (the direction facing the positive electrode active material layer 14), the non-aqueous electrolyte is highly prevented from flowing out of the negative electrode active material layer 24. can do. As a result, it is possible to realize a battery with excellent high-rate cycle characteristics in which battery resistance hardly increases even when high-rate charge / discharge is repeated.
Although the upper limit value of the adhesive strength is not particularly limited, it is, for example, 151 mN / cm or less, preferably 144 mN / cm or less, more preferably 135 mN / cm or less from the viewpoint of stably exhibiting the effects of the present invention at a high level. Good.

このような捲回電極体は、例えば、(1)黒鉛系粒子26を含む負極ペーストを調製すること;(2)長尺状の負極集電体12の表面に上記負極ペーストを帯状に塗布すること;(3)塗布した負極ペーストが乾燥する前に、黒鉛系粒子26を磁力で配向させること;(4)負極シートを乾燥、プレスすること;(5)上記作製した負極シート20と、別途用意した正極シート10とを長尺状のセパレータシート40を介して重ね合わせ、長尺方向に捲回して、捲回体を作製すること;(6)上記捲回体を所定の温度(例えば60℃以上、一好適例では60〜80℃)に加温した状態で、一方向から荷重(例えば3000kgf以上、一好適例では4000〜10000kgf)を加えることによって、扁平形状に成形すると共に、負極活物質層内に含まれるバインダ成分をセパレータの空孔内に浸入させて負極活物質層とセパレータシートとを接着すること;によって作製することができる。なお、電池の一般的な製造プロセスについては、従来と同様でよい。また、黒鉛系粒子の磁力による配向は、例えば特開2013―069579号公報に準じて行うことができる。   Such a wound electrode body is prepared, for example, by (1) preparing a negative electrode paste containing graphite-based particles 26; (2) applying the negative electrode paste to the surface of the long negative electrode current collector 12 in a strip shape. (3) Before the applied negative electrode paste dries, the graphite particles 26 are magnetically oriented; (4) The negative electrode sheet is dried and pressed; (5) The above prepared negative electrode sheet 20 and separately The prepared positive electrode sheet 10 is overlapped with a long separator sheet 40 and wound in the longitudinal direction to produce a wound body; (6) The wound body is heated to a predetermined temperature (for example, 60). In a state where the temperature is raised to ℃ or higher, 60 to 80 ℃ in one preferred example, a load (for example, 3000 kgf or more, 4,000 to 10,000 kgf in one preferred example) is applied from one direction to form a flat shape. object It can be prepared by; that the binder component contained in the layer by penetrating into the pores of the separator to bond the negative electrode active material layer and the separator sheet. The general manufacturing process of the battery may be the same as the conventional one. Further, the orientation of the graphite-based particles by magnetic force can be performed according to, for example, JP-A-2013-069579.

非水電解質は、典型的には非水溶媒と支持塩とを含んでいる。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等が例示される。なかでも、LiPF、LiBF等のリチウム塩が好ましい。非水溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒が例示される。なかでも、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート類が好ましい。 The nonaqueous electrolyte typically includes a nonaqueous solvent and a supporting salt. Examples of the supporting salt include lithium salt, sodium salt, magnesium salt and the like. Of these, lithium salts such as LiPF 6 and LiBF 4 are preferable. Examples of the non-aqueous solvent include aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are preferable.

ここで開示される非水電解質二次電池は各種用途に利用可能であるが、捲回電極体を備えることで高エネルギー密度や高容量を実現し得る。また、捲回電極体の構成が上述のような構成を有することで、従来品に比べて入出力特性とハイレートサイクル特性とを高いレベルで両立可能なことを特徴とする。したがって、かかる特徴を活かして、例えばハイブリッド車両や電気車両の動力源(駆動電源)として好適に利用し得る。   Although the nonaqueous electrolyte secondary battery disclosed here can be used for various applications, a high energy density and a high capacity can be realized by providing a wound electrode body. Further, since the configuration of the wound electrode body has the above-described configuration, the input / output characteristics and the high rate cycle characteristics can be compatible at a high level as compared with the conventional product. Therefore, taking advantage of this feature, for example, it can be suitably used as a power source (drive power source) of a hybrid vehicle or an electric vehicle.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

[非水電解質二次電池の構築]
まず、正極活物質としてのLiNi1/3Co1/3Mn1/3粒子(NCM、平均粒径5μm)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、固形分比率がNCM:AB:PVdF=92:5:3となるよう秤量し、N−メチルピロリドン(NMP)と混合して正極ペーストを調製した。このペーストを、平均厚み15μmの長尺状アルミニウム箔(正極集電体)の両面に幅100mmで帯状に塗布して乾燥、プレスすることにより、長尺状の正極シートを得た。
次に、負極活物質としての黒鉛粒子(C、平均粒径10μm)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、固形分比率がC:SBR:CMC=98:1:1となるよう秤量し、イオン交換水と混合して負極ペーストを調製した。このペーストを、平均厚み10μmの長尺状銅箔(負極集電体)の両面に幅105mmで帯状に塗布した後、上記黒鉛粒子を磁力によって配向させた。これを乾燥、プレスすることにより、図2に示す電極密度および配向強度比の負極活物質層を備えた長尺状の負極シートを得た。なお、配向強度比については、負極活物質層の任意の3箇所においてCuKα線を用いたXRD測定を行い、その算術平均値を採用した。
[Construction of non-aqueous electrolyte secondary battery]
First, LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles (NCM, average particle size 5 μm) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (Binder as a binder) PVdF) was weighed so that the solid content ratio was NCM: AB: PVdF = 92: 5: 3 and mixed with N-methylpyrrolidone (NMP) to prepare a positive electrode paste. This paste was applied to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm in a strip shape having a width of 100 mm, dried and pressed to obtain a long positive electrode sheet.
Next, graphite particles (C, average particle size 10 μm) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener have a solid content ratio of C: A negative electrode paste was prepared by weighing so that SBR: CMC = 98: 1: 1 and mixing with ion-exchanged water. The paste was applied in a strip shape with a width of 105 mm on both sides of a long copper foil (negative electrode current collector) having an average thickness of 10 μm, and the graphite particles were oriented by magnetic force. By drying and pressing this, a long negative electrode sheet provided with a negative electrode active material layer having an electrode density and an orientation strength ratio shown in FIG. 2 was obtained. In addition, about orientation strength ratio, the XRD measurement using a CuK (alpha) ray was performed in arbitrary three places of a negative electrode active material layer, and the arithmetic mean value was employ | adopted.

正極シートと負極シートとをセパレータシートを介して長手方向に重ね合わせ、円筒形状に捲回した。なお、セパレータシートとしてはポリエチレン(PE)の両面にポリプロピレン(PP)が積層されたPP/PE/PPの3層構造のもの(平均厚み24μm)を用いた。次に、上記円筒形状の捲回体を、図2に示す癖付け条件(温度および荷重)で扁平形状に成形し、同時に負極活物質層とセパレータシートとを接着した。この扁平な捲回電極体の両端に集電板を溶接した後、直方体形状の電池ケース内に収容し、蓋板と電池ケースとを溶接した。そして、蓋板に設けられた注液孔から非水電解質を注入した。なお、非水電解質としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。最後に、注液孔を封止用のネジで締め付け、図2に示す構成の非水電解質二次電池(実施例1〜15および比較例1〜7、電池設計容量:5Ah)を構築した。 The positive electrode sheet and the negative electrode sheet were overlapped in the longitudinal direction via a separator sheet and wound into a cylindrical shape. As the separator sheet, a PP / PE / PP three-layer structure (average thickness 24 μm) in which polypropylene (PP) is laminated on both sides of polyethylene (PE) was used. Next, the cylindrical wound body was formed into a flat shape under the brazing conditions (temperature and load) shown in FIG. 2, and at the same time, the negative electrode active material layer and the separator sheet were bonded. The current collector plates were welded to both ends of the flat wound electrode body, and then accommodated in a rectangular parallelepiped battery case, and the lid plate and the battery case were welded. And the nonaqueous electrolyte was inject | poured from the injection hole provided in the cover plate. As the non-aqueous electrolyte, a mixed salt containing ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 3: 3: 4 is used as a supporting salt. As a solution, LiPF 6 dissolved at a concentration of 1 mol / L was used. Finally, the liquid injection hole was tightened with a sealing screw, and non-aqueous electrolyte secondary batteries (Examples 1 to 15 and Comparative Examples 1 to 7, battery design capacity: 5 Ah) having the configuration shown in FIG. 2 were constructed.

[初期特性の測定]
25℃の環境下において、電池電圧が4.1Vとなるまで0.2Cで定電流充電(CC充電)した後、3.0Vまで0.2Cで定電流放電(CC放電)し、初期容量を確認した。また、電池をSOC60%の状態に調整し、20Cの放電レートで10秒間放電させ、このときの電圧降下量を電流値で除して初期のIV抵抗を算出した。
[Measurement of initial characteristics]
Under an environment of 25 ° C., constant current charge (CC charge) at 0.2 C until the battery voltage becomes 4.1 V, then constant current discharge (CC discharge) at 0.2 C to 3.0 V, and the initial capacity is confirmed. Further, the battery was adjusted to a SOC of 60%, discharged at a discharge rate of 20 C for 10 seconds, and the initial IV resistance was calculated by dividing the voltage drop at this time by the current value.

[入力試験]
25℃の環境下において、電池をSOC60%の状態に調整し、異なる電力レートA,B,Cで定電力充電することにより、それぞれ電池電圧が4.1Vに到達するまでの時間X,Y,Z(秒)を測定した(図3(a)参照)。そして、このときの充電所要時間(秒)−電力(W)のプロットの一次近似直線の傾きから、10秒入力を算出した(図3(b)参照)。結果を図2の該当欄に示す。なお、図2には、例1の10秒入力を100とした場合の相対値を示している。この数値が大きいほど入力密度の高い電池といえる。
[Input test]
Under the environment of 25 ° C., the battery is adjusted to a state of SOC 60%, and constant power charging is performed at different power rates A, B, and C, so that the time X, Y, and the time until the battery voltage reaches 4.1 V, respectively. Z (seconds) was measured (see FIG. 3A). Then, the 10-second input was calculated from the slope of the first-order approximation line of the required charging time (seconds) -power (W) plot (see FIG. 3B). The results are shown in the corresponding column of FIG. FIG. 2 shows relative values when the 10-second input in Example 1 is set to 100. It can be said that the larger the numerical value, the higher the input density.

[ハイレートサイクル試験]
図4に示す充放電サイクルを1サイクルとして2000サイクルの充放電を行い、100サイクル毎に上記と同様にしてIV抵抗を測定した。そして、初期のIV抵抗と2000サイクル後のIV抵抗とから、以下の式:抵抗増加率(%)=(2000サイクル後のIV抵抗−初期のIV抵抗)/初期のIV抵抗×100;によって抵抗増加率(%)を算出した。結果を図2の該当欄に示す。なお、図2には、例1の抵抗増加率を100とした場合の相対値を示している。この数値が小さいほどハイレートサイクル特性の優れた電池といえる。
[High rate cycle test]
The charge / discharge cycle shown in FIG. 4 was regarded as one cycle, and 2000 cycles were charged / discharged, and the IV resistance was measured in the same manner as described above every 100 cycles. Then, from the initial IV resistance and the IV resistance after 2000 cycles, resistance is increased by the following formula: resistance increase rate (%) = (IV resistance after 2000 cycles−initial IV resistance) / initial IV resistance × 100; The increase rate (%) was calculated. The results are shown in the corresponding column of FIG. FIG. 2 shows relative values when the resistance increase rate of Example 1 is set to 100. The smaller this value, the better the battery with high rate cycle characteristics.

図2に示すように、比較例2では、負極活物質層に磁場配向を行って配向強度を高めた結果、比較例1(従来品)に比べて入力特性は向上した。また、比較例3では、捲回体を扁平形状に成形する際(癖付け時)に温度と荷重を高めた結果、比較例1(従来品)に比べて入力特性もハイレートサイクル特性も僅かに低下した。このように、比較例2,3では、高入力特性と優れたハイレートサイクル特性を両立することは困難であった。   As shown in FIG. 2, in Comparative Example 2, the magnetic field orientation was performed on the negative electrode active material layer to increase the orientation strength. As a result, the input characteristics were improved as compared with Comparative Example 1 (conventional product). In Comparative Example 3, the temperature and load were increased when the wound body was formed into a flat shape (at the time of brazing). As a result, the input characteristics and the high rate cycle characteristics were slightly higher than those of Comparative Example 1 (conventional product). Declined. Thus, in Comparative Examples 2 and 3, it was difficult to achieve both high input characteristics and excellent high rate cycle characteristics.

比較例4,5および実施例1〜3では、癖付け時の条件は比較例3と同様とし、磁場配向の際の磁力を調整して、負極活物質層の配向強度を変化させた。
その結果、配向強度を0.065以上とすることで、比較例1に比べて2割以上も抵抗増加率を低減することができた。また、配向強度が高くなるにつれて入力特性も向上し、実施例1〜3では入力特性とハイレートサイクル特性とを高いレベルで両立することができた。
In Comparative Examples 4 and 5 and Examples 1 to 3, the brazing conditions were the same as those in Comparative Example 3, and the magnetic strength during magnetic field orientation was adjusted to change the orientation strength of the negative electrode active material layer.
As a result, by increasing the orientation strength to 0.065 or more, the resistance increase rate could be reduced by 20% or more compared to Comparative Example 1. In addition, the input characteristics improved as the orientation strength increased. In Examples 1 to 3, the input characteristics and the high rate cycle characteristics were compatible at a high level.

比較例6,7および実施例4〜13では、負極活物質層の配向強度は比較例2と同様とし、癖付け時の温度と荷重を調整して、接着強度を変化させた。
その結果、接着強度を59mN/cm以上(好ましくは70mN/cm以上)とすることで、比較例1に比べて凡そ2割以上も抵抗増加率を低減することができた。また、接着強度が115mN/cmを超えたあたりから、接着強度が高くなるにつれて少しずつ入力特性が減少し、かつハイレートサイクル後の抵抗増加率が増加する傾向にある。これは負極とセパレータとの接着強度が高くなるにつれて、負極表面(反応面)のセパレータによる被覆率が高くなったためと考えられる。つまり、磁場配向による入力向上の効果が低下して、ハイレート充放電時の反応が不十分となり、非水電解質の流出を十分抑制しきれなくなったことが推測される。このことから、接着強度は151mN/cm以下(好ましくは144mN/cm以下、より好ましくは135mN/cm以下)とすることで、本発明の効果をより高いレベルで安定的に奏することができた。
In Comparative Examples 6 and 7 and Examples 4 to 13, the orientation strength of the negative electrode active material layer was the same as that of Comparative Example 2, and the adhesive strength was changed by adjusting the temperature and load during brazing.
As a result, by increasing the adhesive strength to 59 mN / cm or more (preferably 70 mN / cm or more), the resistance increase rate could be reduced by about 20% or more compared to Comparative Example 1. Also, since the adhesive strength exceeds 115 mN / cm, the input characteristics gradually decrease as the adhesive strength increases, and the resistance increase rate after the high rate cycle tends to increase. This is presumably because the coverage of the negative electrode surface (reaction surface) by the separator increased as the adhesive strength between the negative electrode and the separator increased. That is, it is presumed that the effect of improving the input by the magnetic field orientation is reduced, the reaction at the high rate charge / discharge is insufficient, and the outflow of the nonaqueous electrolyte cannot be sufficiently suppressed. From this, the adhesive strength was 151 mN / cm or less (preferably 144 mN / cm or less, more preferably 135 mN / cm or less), and the effects of the present invention could be stably achieved at a higher level.

また、実施例14,15では、負極のプレス条件を調整して、電極密度を変化させた。その結果、少なくとも電極密度が1.0〜1.4g/cmの範囲においては、非水電解質の流動性やリチウムイオンの透過性が良好に維持されており、本発明の効果を安定的に奏することができた。 In Examples 14 and 15, the negative electrode pressing conditions were adjusted to change the electrode density. As a result, at least in the range of the electrode density of 1.0 to 1.4 g / cm 3 , the fluidity of the nonaqueous electrolyte and the permeability of lithium ions are well maintained, and the effects of the present invention can be stably achieved. I was able to play.

これらの評価結果から明らかなように、ここで開示される技術によれば、電池特性(特には入力特性やハイレートサイクル特性)に優れた非水電解質二次電池を提供することができる。   As is clear from these evaluation results, according to the technique disclosed herein, a nonaqueous electrolyte secondary battery excellent in battery characteristics (particularly, input characteristics and high rate cycle characteristics) can be provided.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here.

10 正極シート
12 正極集電体
14 正極活物質層
20 負極シート
22 負極集電体
24 負極活物質層
26 黒鉛系粒子
40 セパレータシート
DESCRIPTION OF SYMBOLS 10 Positive electrode sheet 12 Positive electrode collector 14 Positive electrode active material layer 20 Negative electrode sheet 22 Negative electrode collector 24 Negative electrode active material layer 26 Graphite-based particle 40 Separator sheet

Claims (1)

長尺状の正極集電体の表面に正極活物質層を備える正極シートと、長尺状の負極集電体の表面に負極活物質層を備える負極シートとを、前記正極活物質層と前記負極活物質層とが対向するよう長尺状のセパレータシートを介して重ね合わせ、長尺方向に捲回してなる捲回電極体を備えた非水電解質二次電池であって、
前記負極活物質層は、少なくとも黒鉛系粒子を含み、
前記負極活物質層のX線結晶構造解析に基づく(110)面のピーク強度I110と(004)面のピーク強度I004との比(I110/I004)は0.061以上であり、
前記負極活物質層と前記セパレータシートは、59mN/cm以上の接着強度で接着されている、非水電解質二次電池。
A positive electrode sheet having a positive electrode active material layer on the surface of a long positive electrode current collector, and a negative electrode sheet having a negative electrode active material layer on the surface of a long negative electrode current collector, the positive electrode active material layer and the A non-aqueous electrolyte secondary battery comprising a wound electrode body that is stacked through a long separator sheet so as to face the negative electrode active material layer and wound in the longitudinal direction,
The negative electrode active material layer includes at least graphite-based particles,
The ratio (I 110 / I 004 ) between the peak intensity I 110 of the ( 110 ) plane and the peak intensity I 004 of the (004) plane based on the X-ray crystal structure analysis of the negative electrode active material layer is 0.061 or more,
The non-aqueous electrolyte secondary battery in which the negative electrode active material layer and the separator sheet are bonded with an adhesive strength of 59 mN / cm or more.
JP2014212858A 2014-10-17 2014-10-17 Nonaqueous electrolyte secondary battery Pending JP2016081757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212858A JP2016081757A (en) 2014-10-17 2014-10-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212858A JP2016081757A (en) 2014-10-17 2014-10-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2016081757A true JP2016081757A (en) 2016-05-16

Family

ID=55956443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212858A Pending JP2016081757A (en) 2014-10-17 2014-10-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2016081757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190575A (en) * 2017-05-01 2018-11-29 トヨタ自動車株式会社 Nonaqueous battery and method for manufacturing the same
CN109546204A (en) * 2018-06-29 2019-03-29 宁德时代新能源科技股份有限公司 Lithium ion battery
CN109950474A (en) * 2018-06-29 2019-06-28 宁德时代新能源科技股份有限公司 Lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190575A (en) * 2017-05-01 2018-11-29 トヨタ自動車株式会社 Nonaqueous battery and method for manufacturing the same
CN109546204A (en) * 2018-06-29 2019-03-29 宁德时代新能源科技股份有限公司 Lithium ion battery
CN109950474A (en) * 2018-06-29 2019-06-28 宁德时代新能源科技股份有限公司 Lithium ion battery
US10923761B2 (en) 2018-06-29 2021-02-16 Contemporary Amperex Technology Co., Limited Lithium-ion battery

Similar Documents

Publication Publication Date Title
JP6587105B2 (en) Secondary battery
JP5618165B2 (en) Nonaqueous electrolyte secondary battery
JP5828346B2 (en) Lithium secondary battery
JP5311157B2 (en) Lithium secondary battery
JP5896024B2 (en) Charge control method and charge control device for secondary battery
JP5590424B2 (en) Lithium ion secondary battery
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
KR20170057446A (en) Non-aqueous electrolyte secondary battery, electrode body used therefor, and method of manufacturing the electrode body
KR101846767B1 (en) Nonaqueous electrolyte secondary battery
WO2011077564A1 (en) Process for production of lithium ion secondary battery
WO2013094037A1 (en) Lithium secondary battery
JP5812336B2 (en) Secondary battery
JP2016081757A (en) Nonaqueous electrolyte secondary battery
CN108110323B (en) Method for manufacturing secondary battery
WO2016067428A1 (en) Lithium ion battery and method for manufacturing same
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP2012252951A (en) Nonaqueous electrolyte secondary battery
WO2012001814A1 (en) Lithium secondary battery
WO2011074083A1 (en) Lithium ion secondary battery
JP6735036B2 (en) Lithium ion secondary battery
JP2013243031A (en) Nonaqueous electrolyte secondary battery
JP6810897B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2005116321A (en) Lithium secondary battery and its low-temperature characteristic evaluation method
JP5880942B2 (en) Non-aqueous electrolyte secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module