JP2016080002A - Condensed water discharge device - Google Patents

Condensed water discharge device Download PDF

Info

Publication number
JP2016080002A
JP2016080002A JP2014208920A JP2014208920A JP2016080002A JP 2016080002 A JP2016080002 A JP 2016080002A JP 2014208920 A JP2014208920 A JP 2014208920A JP 2014208920 A JP2014208920 A JP 2014208920A JP 2016080002 A JP2016080002 A JP 2016080002A
Authority
JP
Japan
Prior art keywords
condensed water
steam
discharge
pipe
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208920A
Other languages
Japanese (ja)
Other versions
JP5745149B1 (en
Inventor
井 晃 深
Akira Fukai
井 晃 深
平 浩 己 源
Hiroki Genpei
平 浩 己 源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genis White Co Ltd
Original Assignee
Genis White Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genis White Co Ltd filed Critical Genis White Co Ltd
Priority to JP2014208920A priority Critical patent/JP5745149B1/en
Application granted granted Critical
Publication of JP5745149B1 publication Critical patent/JP5745149B1/en
Publication of JP2016080002A publication Critical patent/JP2016080002A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cyclones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam generation nozzle type condensed water discharge device capable of enhancing discharge efficiency even when condensed water is rapidly increased.SOLUTION: A condensed water discharge device includes: a condensed water accumulation pipe for accumulating condensed water; a steam trap connected to the condensed water accumulation pipe, receiving the condensed water flowing from an input part with a body part, feeding the condensed water to a steam generation nozzle, and converting the condensed water into steam so as to be discharged to a discharge pipe through an outlet part; a cyclone connected to a condensed water extracting port of the steam trap; a water level sensor provided in the condensed water accumulation pipe and including an upper limit sensor and a lower limit sensor; a discharge valve constituted by a solenoid valve for discharging the condensed water passing through the cyclone to the discharge pipe; and a control section for opening the discharge valve so as to discharge the condensed water to the discharge pipe through the cyclone when it is detected that the water level in the condensed water accumulation pipe rises higher than the upper limit sensor and closing the discharge valve when it is detected that the water level lowers lower than the lower limit sensor.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気発生ノズルを備えた凝縮水排出装置に係り、より詳しくは、蒸気管内の凝縮水を自動的に排出し、凝縮水が増えてもこれに追随できる凝縮水排出装置に関する。   The present invention relates to a condensate discharge device having a steam generation nozzle, and more particularly to a condensate discharge device that automatically discharges condensate in a steam pipe and can follow the condensate even when the amount of condensate increases.

凝縮水排出装置は、蒸気管内に発生した凝縮水を除去する装置である。蒸気は温度が下がるか圧力が加えられれば、一部が凝縮水となるが、蒸気管内の凝縮水を排出しなければ、本来の蒸気の空間を失い温度低下や不通を起こすことになる。そのため、凝縮水排出装置は、蒸気利用施設に必要不可欠なものである。   The condensed water discharge device is a device that removes condensed water generated in the steam pipe. When the temperature drops or pressure is applied, a part of the steam becomes condensed water. However, if the condensed water in the steam pipe is not discharged, the original steam space is lost, resulting in a temperature drop and disconnection. Therefore, the condensate drain device is indispensable for the steam utilization facility.

蒸気管内の凝縮水を排出する装置にはいくつかの方式がある。蒸気管内の凝縮水の有無を感知して弁座を開閉する機械式がある。例えばフロート弁は、フロートを浮かべ水量に応じて上下動させ、弁の開閉を行なう機械式である。   There are several systems for discharging condensed water in the steam pipe. There is a mechanical type that opens and closes the valve seat by sensing the presence or absence of condensed water in the steam pipe. For example, the float valve is a mechanical type that opens and closes the valve by moving the float up and down according to the amount of floating water.

機械式は、可動部のフロートが弁座を閉じる際に異物を噛み込んで蒸気を逃がすおそれや、弁座を閉じる際に、蒸気の一部を逃がしてしまう。機械式は、間欠的に弁を開閉するため、圧力に変動が生じ、一次側に凝縮水が残留すると、蒸気で押されて振動するウォーターハンマーを起こす場合がある。そのため機械式は、一次側に水を残留させない設定を余儀なくされる。すなわち、開閉の都度ある程度の蒸気漏れをあえて生じさせることで、ウォーターハンマーを起こさないようにしている。機械式は、流速が速く弁座が大口径なので、これが大きな蒸気ロスとなる。機械式は、凝縮水の感知部と開閉部が一体もしくは近接した構造なので、可動部のすべてが高温の蒸気雰囲気下もしくは高温の凝縮水下にあって、その中での可動となる。本来、可動部には潤滑補助材が必要であるが、高温の蒸気雰囲気下では、グリスが溶融もしくは蒸発するので使用できない。そのためクリアランスを大きくせざるを得ない。クリアランスが大きいと、開閉の都度、蒸気漏れが増えることになる。   In the mechanical type, when the float of the movable part closes the valve seat, foreign matter may be caught and the steam may escape, or when the valve seat is closed, a part of the steam is released. The mechanical type intermittently opens and closes the valve, so that fluctuations in pressure occur, and if condensed water remains on the primary side, it may cause a water hammer that vibrates when pushed by steam. Therefore, the mechanical type is forced to be set so that water does not remain on the primary side. That is, the water hammer is prevented from being caused by intentionally causing a certain amount of steam leakage each time the opening and closing. In the mechanical type, the flow rate is fast and the valve seat has a large diameter, which causes a large steam loss. The mechanical type has a structure in which the condensate detection unit and the opening / closing unit are integrated or close to each other, so that all of the movable units are movable under a high-temperature steam atmosphere or high-temperature condensate. Originally, a lubricating aid is necessary for the movable part, but it cannot be used in a high-temperature steam atmosphere because the grease melts or evaporates. Therefore, the clearance must be increased. When the clearance is large, the steam leakage increases every time the switch is opened and closed.

機械式は、耐用年数が短く放置すると蒸気漏れが増大するので、早めの交換により蒸気漏れを少なくしているが、定期点検の管理工数も大きい。   The mechanical type has a short service life and increases steam leakage if left unattended. Therefore, the steam leakage is reduced by early replacement, but the maintenance work for periodic inspection is also large.

特許文献1の凝縮水排出装置は、管路にオリフィスが設けられ、凝縮水の排出を行なっている。オリフィス式は、ノズル式と同様に可動部品がなく、機械式のような「開閉の都度」や「経年劣化」による蒸気漏れはないが、オリフィス式は、正確には「経年劣化」がある。凝縮水は、排出される際、差圧により再蒸発(フラッシュ蒸発と称す)するが、この時、体積が例えば1700倍にも増大するので、オリフィス孔の出口側が削られて拡がり、結果、蒸気漏れが増大する。オリフィス式は、ノズル式と比較して、同じ条件(圧力、想定排出量)であれば、再蒸発による抵抗がないので、オリフィス孔を、極めて細い孔とせざるを得ない。そのため、排出性能が低い。   In the condensed water discharge device of Patent Document 1, an orifice is provided in a pipe line to discharge condensed water. The orifice type, like the nozzle type, has no moving parts, and there is no vapor leakage due to “every time of opening / closing” or “aging deterioration” like the mechanical type, but the orifice type has “aging deterioration” precisely. When the condensed water is discharged, it re-evaporates due to the differential pressure (referred to as flash evaporation). At this time, since the volume increases, for example, by 1700 times, the outlet side of the orifice hole is scraped and expanded. Leakage increases. The orifice type has no resistance due to re-evaporation under the same conditions (pressure, estimated discharge amount) as compared with the nozzle type, and therefore the orifice hole must be a very thin hole. Therefore, the discharge performance is low.

本出願人は、長尺な蒸気発生ノズルを有する凝縮水排出装置(特願2014−011192)を提案した。これはノズル式で、蒸気発生ノズルの内部で凝縮水の流速を速めて圧力を低下させ、蒸気にして排出する。ノズル孔は、出口側が広くされ、孔の最細部は入口側なので長期使用に耐える。しかしながら、蒸気利用施設からの凝縮水が、気温の変動などにより急激に増えるような場合、これに対応して排出量を増やすことはできない。   The present applicant has proposed a condensed water discharge device (Japanese Patent Application No. 2014-011192) having a long steam generation nozzle. This is a nozzle type, and the pressure is reduced by increasing the flow rate of the condensed water inside the steam generating nozzle, and the steam is discharged. The nozzle hole is wide on the outlet side, and the finest details of the hole are on the inlet side to withstand long-term use. However, if the condensate from the steam utilization facility increases rapidly due to changes in temperature, etc., the amount of discharge cannot be increased correspondingly.

実開平6−28496号公報Japanese Utility Model Publication No. 6-28496

本発明の目的は、このような問題点に鑑みてなされたもので、蒸気発生ノズルを備えた凝縮水排出装置において、凝縮水が急激に増加しても、凝縮水の排出能力を大きくできる凝縮水排出装置を提供することにある。   An object of the present invention is made in view of such problems, and in a condensed water discharge device equipped with a steam generation nozzle, even if condensed water increases rapidly, condensation that can increase the discharged capacity of condensed water. It is to provide a water discharge device.

本発明による凝縮水排出装置は、蒸気利用施設から流入した凝縮水を溜め込む凝縮水蓄積管と、前記凝縮水蓄積管に連結され、入力部から入った凝縮水を本体部で受け、フィルタを介して蒸気発生ノズルに送り込み、凝縮水を蒸気に変換して、出口部から排出管に排出するスチームトラップと、前記スチームトラップの凝縮水抜き取り口に連結されるサイクロンと、前記凝縮水蓄積管に設けられ、凝縮水の水位を検知する上限センサと下限センサからなる水位センサと、前記サイクロンを通過した凝縮水を前記排出管に排出する電磁弁からなる排出バルブと、前記凝縮水蓄積管の水位が上限センサより上昇したことを検知すると、前記排出バルブを開き、前記サイクロンの凝縮水を前記排出管に排出し、前記凝縮水蓄積管の水位が下限センサにより低下したことを検知すると、前記排出バルブを閉じる制御部と、が備えられることを特徴とする。   A condensed water discharge device according to the present invention is connected to a condensed water accumulation pipe for collecting condensed water flowing in from a steam utilization facility, the condensed water accumulation pipe, and receives condensed water from an input section at a main body section, and through a filter. A steam trap that feeds into the steam generation nozzle, converts the condensed water into steam, and discharges the condensed water to the discharge pipe; a cyclone that is connected to the condensed water discharge port of the steam trap; and the condensed water storage pipe A water level sensor comprising an upper limit sensor and a lower limit sensor for detecting the level of condensed water, a discharge valve comprising an electromagnetic valve for discharging condensed water that has passed through the cyclone to the discharge pipe, and a water level of the condensed water storage pipe. When it detects that it has risen above the upper limit sensor, it opens the discharge valve, discharges the condensed water of the cyclone to the discharge pipe, and the water level of the condensed water storage pipe is the lower limit sensor. When detecting that the more decreased, the control unit closing the discharge valve, characterized in that is provided.

前記蒸気利用施設に温度差発電モジュールが取り付けられ、発電した電気をバッテリーに蓄積し、蓄積した電気エネルギーで、前記制御部の制御と前記排出バルブの開閉が行なわれることが好ましい。   It is preferable that a temperature difference power generation module is attached to the steam utilization facility, the generated electricity is stored in a battery, and the control of the control unit and the opening and closing of the discharge valve are performed with the stored electric energy.

本発明の凝縮水排出装置によれば、(1)蒸気発生ノズルを備えたスチームトラップの下にサイクロンを連結し、凝縮水蓄積管に水位センサを設け、水位が増加したことを検知すると、サイクロンの出口側に設けた排出バルブを開き、サイクロンの凝縮水を排出管に排出し、凝縮水蓄積管の水位が下限センサにより低下したことを検知すると、凝縮水抜き取りバルブを閉じるようにしたので、凝縮水の急激な増加に対応できる。(2)サイクロンは、凝縮水に含まれる塵を分離できるので、クリーンな凝縮水を排出できる。(3)また、凝縮水がクリーンなので、排出バルブが目詰まりしないようにできる。(4)凝縮水蓄積管は蒸気利用施設側の蒸気の圧力変動を緩和するので、ウォーターハンマーを起こすことがない。   According to the condensate discharge device of the present invention, (1) a cyclone is connected under a steam trap equipped with a steam generation nozzle, a water level sensor is provided in the condensate accumulation pipe, and when it detects that the water level has increased, Since the condensate water of the cyclone was discharged to the discharge pipe and the water level of the condensate accumulation pipe was detected to be lowered by the lower limit sensor, the condensate drain valve was closed. It can cope with a sudden increase in condensed water. (2) Since the cyclone can separate the dust contained in the condensed water, it can discharge clean condensed water. (3) Since the condensed water is clean, the discharge valve can be prevented from being clogged. (4) The condensate accumulation tube relieves fluctuations in steam pressure on the steam utilization facility side, so that it does not cause water hammer.

蒸気利用施設に温度差発電モジュールを取り付け、バッテリーに蓄積した電気エネルギーによって、制御部の制御と排出バルブの開閉を行なうので、100V等の給電が不要で、蒸気管から捨てていたエネルギーの有効利用ができる。電気量は、時々開く電磁弁(排出バルブ)であるから、消費電力は小さい。発電は、連続的な温度差発電とし、これを蓄電することで、安定した電磁弁制御にできる。   A temperature difference power generation module is installed in the steam utilization facility, and the control unit is controlled and the discharge valve is opened and closed by the electric energy stored in the battery. Can do. Since the amount of electricity is an electromagnetic valve (discharge valve) that opens from time to time, power consumption is small. Power generation is continuous temperature difference power generation, and by storing this, stable solenoid valve control can be achieved.

本発明による凝縮水排出装置の構成図である。It is a block diagram of the condensed water discharge apparatus by this invention. 図1のスチームトラップの内部を示す断面図である。It is sectional drawing which shows the inside of the steam trap of FIG. 図1の温度差発電モジュールの詳細で、(A)は外観図であり、(B)は内部構成図である。1A is an external view and FIG. 1B is an internal configuration diagram of the temperature difference power generation module of FIG. 図1のサイクロンの説明図である。It is explanatory drawing of the cyclone of FIG.

以下、図面を参照して、本発明による凝縮水排出装置を詳しく説明する。   Hereinafter, with reference to the drawings, a condensed water discharging apparatus according to the present invention will be described in detail.

図1は、本発明による凝縮水排出装置100の構成図である。凝縮水排出装置100は、蒸気を搬送する本管である蒸気利用施設1に連結され、蒸気利用施設1の内部に発生した凝縮水7を除去する装置である。凝縮水排出装置100は、蒸気利用施設1から引込み管2を介して流入した凝縮水7を溜め込む凝縮水蓄積管3と、凝縮水蓄積管3に連結され、凝縮水7を蒸気に変換して排出管4に排出するスチームトラップ8と、スチームトラップ8に連結されるサイクロン9と、凝縮水蓄積管3の凝縮水7の水位を検知する水位センサ13と、を備える。水位センサ13は、上限センサ13aと下限センサ13bからなる。排出管4に排出された蒸気もしくは凝縮水は、ボイラ等に送られて再利用される。   FIG. 1 is a configuration diagram of a condensed water discharge device 100 according to the present invention. The condensed water discharge device 100 is a device that is connected to the steam utilization facility 1 that is a main pipe for transporting the steam and removes the condensed water 7 generated inside the steam utilization facility 1. The condensed water discharge device 100 is connected to the condensed water storage pipe 3 that stores the condensed water 7 that flows in from the steam utilization facility 1 through the lead-in pipe 2 and the condensed water storage pipe 3, and converts the condensed water 7 into steam. A steam trap 8 that is discharged to the discharge pipe 4, a cyclone 9 that is connected to the steam trap 8, and a water level sensor 13 that detects the water level of the condensed water 7 in the condensed water storage pipe 3 are provided. The water level sensor 13 includes an upper limit sensor 13a and a lower limit sensor 13b. The steam or condensed water discharged to the discharge pipe 4 is sent to a boiler or the like and reused.

サイクロン9は、スチームトラップ8の凝縮水7が常に流れ込むように構成される。電磁弁の排出バルブ6(符号‘S’はソレノイドバルブの意味)が開かれると、サイクロン9を介して凝縮水7が排出管4に送り出される。排出バルブ6は、運転開始時は閉じられているので、スチームトラップ8から凝縮水7がサイクロン9の内部に流入しようとするが、内部に空気があるので、流入は限られたものである。排出バルブ6が開かれると、蒸気利用施設1の圧力によりサイクロン9から凝縮水7が排出管4に送り出される。   The cyclone 9 is configured such that the condensed water 7 of the steam trap 8 always flows. When the discharge valve 6 (symbol “S” means a solenoid valve) of the solenoid valve is opened, the condensed water 7 is sent to the discharge pipe 4 through the cyclone 9. Since the discharge valve 6 is closed at the start of operation, the condensed water 7 tries to flow into the cyclone 9 from the steam trap 8, but the flow is limited because there is air inside. When the discharge valve 6 is opened, the condensed water 7 is sent from the cyclone 9 to the discharge pipe 4 by the pressure of the steam utilization facility 1.

排出バルブ6は、電磁弁とすることが好ましい。ソレノイドで鉄芯が駆動され先端部分を開閉弁としたものや、モータで駆動され角度で弁を開閉させてもよい。電磁弁は、ソレノイドあるはモータの駆動部分が凝縮水と直接に接触することがないから、長寿命である。ウォーターハンマーによる機械的な損傷もない。   The discharge valve 6 is preferably a solenoid valve. The iron core may be driven by a solenoid and the tip portion may be an open / close valve, or the valve may be opened / closed by an angle driven by a motor. The solenoid valve has a long life because the solenoid or the motor drive part does not come into direct contact with the condensed water. There is no mechanical damage caused by the water hammer.

制御部12は、水位センサ13の信号により排出バルブ6の開閉制御を行なう。そのため、水位センサ13の検知信号は制御部12に送られる。制御部12は、凝縮水蓄積管3の水位が、上限センサ13aより上昇したことを検知すると、排出バルブ6を開く。そしてサイクロン9を介して凝縮水7を排出管4に排出する。凝縮水蓄積管3の水位が、下限センサ13bの位置より低下したことを検知すると、排出バルブ6を閉じる。このように、凝縮水排出装置100は、蒸気発生ノズル17で凝縮水7を連続的に排出し、凝縮水7が急激に増加するような場合は、凝縮水が増えたことを凝縮水蓄積管3の水位をセンサで検知し、排出バルブ6を開き、凝縮水7を間欠的に排出するものである。   The control unit 12 performs opening / closing control of the discharge valve 6 based on a signal from the water level sensor 13. Therefore, the detection signal of the water level sensor 13 is sent to the control unit 12. When the controller 12 detects that the water level of the condensed water storage pipe 3 has risen above the upper limit sensor 13a, the controller 12 opens the discharge valve 6. Then, the condensed water 7 is discharged to the discharge pipe 4 through the cyclone 9. When it is detected that the water level of the condensed water storage pipe 3 has dropped below the position of the lower limit sensor 13b, the discharge valve 6 is closed. In this way, the condensed water discharge device 100 continuously discharges the condensed water 7 with the steam generation nozzle 17, and when the condensed water 7 increases rapidly, the condensed water storage pipe indicates that the condensed water has increased. 3 is detected by a sensor, the discharge valve 6 is opened, and the condensed water 7 is discharged intermittently.

温度差発電モジュール10は、蒸気の温度150〜300℃と外気との温度差で発電を行ない、電気エネルギーをバッテリー11に蓄電する。バッテリー11に蓄えられた電気エネルギーが、制御部12と電磁バルブの排出バルブ6に供給される。電磁バルブの消費電力は小さなもので省エネルルギーにできる。温度差発電モジュール10が用意できない場合、一般の100V電源を使用してもよい。   The temperature difference power generation module 10 generates power at a temperature difference between the steam temperature of 150 to 300 ° C. and the outside air, and stores electric energy in the battery 11. The electric energy stored in the battery 11 is supplied to the control unit 12 and the discharge valve 6 of the electromagnetic valve. The power consumption of the electromagnetic valve is small and energy saving. When the temperature difference power generation module 10 cannot be prepared, a general 100V power source may be used.

図2は、図1のスチームトラップ8の内部を示す断面図である。スチームトラップ8は、入口部8aと、本体部8bと、出口部8cと、凝縮水抜き取り部8dと、からなる。(1)入口部8aには、凝縮水蓄積管3からの連結パイプ22が取り付けられる。(2)本体部8bには、フィルタ15が設けられ、蒸気発生ノズル17に出る凝縮水7のフィルタリングを行なう。(3)出口部8cには、排出管4が連結される。蒸気発生ノズル17で生成された蒸気18は、この排出管4に排出される。蒸気18は、温度が低下して再び凝縮水7となる。(4)凝縮水抜き取り部8dには、フィルタ交換用プラグ16が設けられ、フィルタ15を交換する時には取り外す。フィルタ交換用プラグ16の中央の貫通孔が設けられ、凝縮水7をサイクロン9に送り出すための連結管20が取り付けられる。   FIG. 2 is a cross-sectional view showing the inside of the steam trap 8 of FIG. The steam trap 8 includes an inlet portion 8a, a main body portion 8b, an outlet portion 8c, and a condensed water draining portion 8d. (1) The connection pipe 22 from the condensed water storage pipe 3 is attached to the inlet 8a. (2) The main body 8b is provided with a filter 15 for filtering the condensed water 7 coming out of the steam generation nozzle 17. (3) The discharge pipe 4 is connected to the outlet portion 8c. The steam 18 generated by the steam generation nozzle 17 is discharged to the discharge pipe 4. The temperature of the steam 18 is reduced to the condensed water 7 again. (4) The condensate drain 8d is provided with a filter replacement plug 16, which is removed when the filter 15 is replaced. A through hole in the center of the filter replacement plug 16 is provided, and a connecting pipe 20 for sending the condensed water 7 to the cyclone 9 is attached.

蒸気発生ノズル17は、長さが20〜40mmで、中央にノズル孔が穿設されている。蒸気発生ノズル17は、オリフィスの長さの2〜4倍と長い。凝縮水7は、蒸気発生ノズル17を通過する際、流速が速くなって圧力が下がり、蒸気となる。凝縮水7が蒸気18になるので、体積が増し、抵抗が増す。本実施では、凝縮水7を蒸気発生ノズル17で蒸気に変換し、蒸気の抵抗を利用するのでノズル孔の径を大きくできる。それだけ凝縮水7の排出量を大きくできる。   The steam generation nozzle 17 has a length of 20 to 40 mm and has a nozzle hole formed in the center. The steam generation nozzle 17 is as long as 2 to 4 times the length of the orifice. When the condensed water 7 passes through the steam generation nozzle 17, the flow velocity is increased and the pressure is decreased to become steam. Since the condensed water 7 becomes the steam 18, the volume increases and the resistance increases. In this embodiment, the condensed water 7 is converted into steam by the steam generation nozzle 17 and the resistance of the steam is utilized, so that the diameter of the nozzle hole can be increased. Accordingly, the discharge amount of the condensed water 7 can be increased.

蒸気発生ノズル17は、ノズル孔の径が0.2〜18mmで、複数種類が用意される。一般のオリフィスの孔径に比較して孔径を大きくできる。例えば、ノズル孔の径が18mmの蒸気発生ノズル17は、蒸気利用施設1の圧力が低く、凝縮水の発生が多い場合に使用できる。蒸気発生ノズル17のノズル孔は、ストレート型や、出口側に向かって径を大きくしたラッパ型とすることができる。ラッパ型は、塵等がノズル孔の内部に集積しにくい。また、出口側が噴流で削られることもない。蒸気発生ノズル17は、外側にネジ部があり、図2に示すように、ノズル交換用プラグ19を外して他の蒸気発生ノズル17と交換できる。   The steam generation nozzle 17 has a nozzle hole diameter of 0.2 to 18 mm, and a plurality of types are prepared. The hole diameter can be made larger than that of a general orifice. For example, the steam generation nozzle 17 having a nozzle hole diameter of 18 mm can be used when the pressure of the steam utilization facility 1 is low and the generation of condensed water is large. The nozzle hole of the steam generation nozzle 17 can be a straight type or a trumpet type whose diameter increases toward the outlet side. In the trumpet type, dust or the like is difficult to accumulate inside the nozzle hole. Moreover, the exit side is not shaved by the jet. The steam generation nozzle 17 has a threaded portion on the outside, and can be replaced with another steam generation nozzle 17 by removing the nozzle replacement plug 19 as shown in FIG.

図3は、図1の温度差発電モジュール10の詳細で、(A)は外観図であり、(B)は内部構成図である。図3(A)に示すように、温度差発電モジュール10を蒸気利用施設1に巻き付けるように装着する。このような温度差発電モジュール10としては、水や水蒸気に強いフレキシブル熱電素子が適している。フレキシブル熱電素子は、柔軟な樹脂製フィルムのシートにP−N対の金属フィルムを挟んだもので、シートの厚み方向の温度差を利用して発電する。図3(B)に示すように、温度差発電モジュール10は、内側面で吸熱し外側面から放熱する。なお、金属材料にP型半導体とN型半導体を直列に接続し、金属材料に温度差があると電圧が発生することは、ゼーペック効果として知られる。ぺルチェ素子は、上下の金属板の間にP型半導体とN型半導体を配置し、セラミックで上下を覆った矩形状のもので、同様に温度差で電圧を発生できるが、水や水蒸気に弱くまたフレキシブルではないので、蒸気管の外側から電圧を取り出す場合は、フレキシブル熱電素子より仕掛けが大がかりになる。   3A and 3B are details of the temperature difference power generation module 10 of FIG. 1, in which FIG. 3A is an external view, and FIG. 3B is an internal configuration diagram. As shown in FIG. 3A, the temperature difference power generation module 10 is mounted so as to be wound around the steam utilization facility 1. As such a temperature difference power generation module 10, a flexible thermoelectric element resistant to water and water vapor is suitable. A flexible thermoelectric element has a PN pair of metal films sandwiched between sheets of a flexible resin film, and generates power using a temperature difference in the thickness direction of the sheet. As shown in FIG. 3B, the temperature difference power generation module 10 absorbs heat on the inner surface and dissipates heat from the outer surface. It is known as the Zepeck effect that a P-type semiconductor and an N-type semiconductor are connected in series to a metal material and a voltage is generated when there is a temperature difference between the metal materials. A Peltier element is a rectangular element in which a P-type semiconductor and an N-type semiconductor are arranged between upper and lower metal plates, and the upper and lower sides are covered with ceramic. Similarly, a voltage can be generated due to a temperature difference, but it is weak against water and water vapor. Since it is not flexible, when taking out the voltage from the outside of the steam pipe, the device becomes larger than the flexible thermoelectric element.

図4は、図1のサイクロン9の説明図である。サイクロン9は、凝縮水をクリーンにする装置で、サイクロン9に入る凝縮水は、スチームトラップ8の筒型のフィルタ15を通過してくるが、筒内部を通過するだけであり、錆などの異物を含むので、そのまま排出バルブ6に流すと、バルブに異物が挟まって故障の原因となる。なお、サイクロン9はフィルタのような目詰まりがない。サイクロン9の下部に設けられたバルブ14を開いて清掃できるが、フィルタの交換に比較して手間は1/10以下である。サイクロン9は、概ね粒径が10μm以上の異物を除去できる。   FIG. 4 is an explanatory diagram of the cyclone 9 of FIG. The cyclone 9 is a device that cleans the condensed water. The condensed water that enters the cyclone 9 passes through the cylindrical filter 15 of the steam trap 8, but only passes through the inside of the cylinder, and foreign matter such as rust. Therefore, if it is allowed to flow through the discharge valve 6 as it is, foreign matter may be caught in the valve and cause a failure. The cyclone 9 is not clogged like a filter. Although the valve 14 provided in the lower part of the cyclone 9 can be opened and cleaned, the labor is 1/10 or less compared with the replacement of the filter. The cyclone 9 can remove foreign matters having a particle size of approximately 10 μm or more.

図4に示すように、サイクロン9に入った凝縮水7は、自重で旋回しながら下方に進み、比重の重い塵等は周壁部に沿って下降し集塵部21に集められる。中心部には上昇流ができて除塵された凝縮水が頂部から排出され、クリーンな凝縮水が排出バルブ6に送られる。なお、定期的にサイクロン9の底部の除塵バルブ14を開くことで清掃ができる。このようにサイクロン9はモータ等で駆動されるものではなく電源も必要としない。サイクロン9は遠心力による除塵なので、流速が速くないと機能しないが、凝縮水7は、排出バルブ6が開いている時に、サイクロン9を通過するが、その流速は20m/s以上となる。つまり除塵は十分に機能させることができる。サイクロン9の寸法(各部の比率)は、これに限られるものではないが、中筒の径をDとすると、外筒の径が約2Dで、外筒の垂直部の高さが約3D、中筒の下縁は垂直部の下縁より上に位置しかつ流入口の下縁より下に位置し、外筒のテーパ部は約5Dの長さで、底部の集塵部は約0.8Dの高さである。   As shown in FIG. 4, the condensed water 7 that has entered the cyclone 9 travels downward while turning by its own weight, and dust and the like having a high specific gravity descend along the peripheral wall portion and are collected in the dust collecting portion 21. Condensed water from which dust has been removed due to the upward flow in the center is discharged from the top, and clean condensed water is sent to the discharge valve 6. In addition, it can clean by opening the dust removal valve 14 of the bottom part of the cyclone 9 regularly. Thus, the cyclone 9 is not driven by a motor or the like and does not require a power source. Since the cyclone 9 is dust-removed by centrifugal force, it does not function unless the flow rate is high. However, the condensed water 7 passes through the cyclone 9 when the discharge valve 6 is open, but the flow rate is 20 m / s or more. That is, dust removal can function sufficiently. The size of the cyclone 9 (the ratio of each part) is not limited to this, but if the diameter of the middle cylinder is D, the diameter of the outer cylinder is about 2D, and the height of the vertical part of the outer cylinder is about 3D. The lower edge of the middle cylinder is located above the lower edge of the vertical part and below the lower edge of the inlet, the outer cylinder taper is about 5D long, and the bottom dust collecting part is about 0. It is 8D high.

本実施例の凝縮水排出装置100は、蒸気発生ノズル17で凝縮水7を連続的に排出し、凝縮水7が急激に増加した場合は、排出バルブ6を開いて凝縮水7を間欠的に排出する。これに対して、スチームトラップ8を装備せず、凝縮水蓄積管3の水位に基いて間欠的に排出バルブ6を開閉し、凝縮水の排出を行なうことが考えられる。このような構成とした場合は、常にバッテリー11を動作可能に維持する必要がある。   The condensed water discharge device 100 of the present embodiment continuously discharges the condensed water 7 with the steam generation nozzle 17, and when the condensed water 7 increases rapidly, the discharge valve 6 is opened to intermittently discharge the condensed water 7. Discharge. On the other hand, it is conceivable that the condensed water is discharged by intermittently opening and closing the discharge valve 6 based on the water level of the condensed water storage pipe 3 without providing the steam trap 8. In such a configuration, it is necessary to always keep the battery 11 operable.

本発明は、蒸気発生ノズルを備えた凝縮水排出装置であって、凝縮水が急激に増えても、これに追随できる凝縮水排出装置として好適である。   The present invention is a condensate drain device provided with a steam generating nozzle, and is suitable as a condensate drain device that can follow the condensate even if the condensate increases rapidly.

1 蒸気利用施設
2 引込み管
3 凝縮水蓄積管
4 排出管
6 排出バルブ
7 凝縮水
8 スチームトラップ
8a 入口部
8b 本体部
8c 出口部
8d 凝縮水抜き取り部
9 サイクロン
10 温度差発電モジュール
11 バッテリー
12 制御部
13 水位センサ
13a 上限センサ
13b 下限センサ
14 除塵バルブ
15 フィルタ
16 フィルタ交換用プラグ
17 蒸気発生ノズル
18 蒸気
19 ノズル交換用プラグ
20 連結管
21 集塵部
22 連結パイプ
100 凝縮水排出装置
DESCRIPTION OF SYMBOLS 1 Steam utilization facility 2 Intake pipe 3 Condensate water storage pipe 4 Discharge pipe 6 Discharge valve 7 Condensed water 8 Steam trap 8a Inlet part 8b Main body part 8c Outlet part 8d Condensate drain part 9 Cyclone 10 Temperature difference power generation module 11 Battery 12 Control part DESCRIPTION OF SYMBOLS 13 Water level sensor 13a Upper limit sensor 13b Lower limit sensor 14 Dust removal valve 15 Filter 16 Filter replacement plug 17 Steam generation nozzle 18 Steam 19 Nozzle replacement plug 20 Connection pipe 21 Dust collection part 22 Connection pipe 100 Condensate drainage device

Claims (2)

蒸気利用施設から流入した凝縮水を溜め込む凝縮水蓄積管と、
前記凝縮水蓄積管に連結され、入力部から入った凝縮水を本体部で受け、フィルタを介して蒸気発生ノズルに送り込み、凝縮水を蒸気に変換して、出口部から排出管に排出するスチームトラップと、
前記スチームトラップの凝縮水抜き取り口に連結されるサイクロンと、
前記凝縮水蓄積管に設けられ、凝縮水の水位を検知する上限センサと下限センサからなる水位センサと、
前記サイクロンを通過した凝縮水を前記排出管に排出する電磁弁からなる排出バルブと、
前記凝縮水蓄積管の水位が上限センサより上昇したことを検知すると、前記排出バルブを開き、前記サイクロンを介して凝縮水を前記排出管に排出し、前記凝縮水蓄積管の水位が下限センサにより低下したことを検知すると、前記排出バルブを閉じる制御部と、が備えられることを特徴とする凝縮水排出装置。
A condensate storage pipe for storing condensate flowing in from the steam utilization facility;
Steam that is connected to the condensed water accumulation pipe, receives condensed water from the input section at the main body section, sends it to the steam generation nozzle through a filter, converts the condensed water into steam, and discharges it from the outlet section to the discharge pipe Trap and
A cyclone connected to the condensate drain of the steam trap;
A water level sensor comprising an upper limit sensor and a lower limit sensor provided in the condensate water storage pipe for detecting the water level of the condensed water;
A discharge valve comprising a solenoid valve for discharging condensed water that has passed through the cyclone to the discharge pipe;
When detecting that the water level of the condensed water storage pipe has risen above the upper limit sensor, the discharge valve is opened, condensed water is discharged to the discharge pipe through the cyclone, and the water level of the condensed water storage pipe is reduced by the lower limit sensor. And a controller that closes the discharge valve when it is detected that the drop has occurred.
前記蒸気利用施設に温度差発電モジュールが取り付けられ、発電した電気をバッテリーに蓄積し、蓄積した電気エネルギーで、前記制御部の制御と前記排出バルブの開閉が行なわれることを特徴とする請求項1に記載の凝縮水排出装置。
The temperature difference power generation module is attached to the steam utilization facility, the generated electricity is accumulated in a battery, and the control of the control unit and the opening and closing of the discharge valve are performed with the accumulated electric energy. Condensate drainage device as described in 1.
JP2014208920A 2014-10-10 2014-10-10 Condensate drain device Active JP5745149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208920A JP5745149B1 (en) 2014-10-10 2014-10-10 Condensate drain device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208920A JP5745149B1 (en) 2014-10-10 2014-10-10 Condensate drain device

Publications (2)

Publication Number Publication Date
JP5745149B1 JP5745149B1 (en) 2015-07-08
JP2016080002A true JP2016080002A (en) 2016-05-16

Family

ID=53537821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208920A Active JP5745149B1 (en) 2014-10-10 2014-10-10 Condensate drain device

Country Status (1)

Country Link
JP (1) JP5745149B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340644B1 (en) * 2017-07-07 2018-06-13 株式会社生活環境研究所 Nozzle type steam trap
JP2019184041A (en) * 2018-04-17 2019-10-24 株式会社エコファースト Monitoring system
EP3441663A4 (en) * 2016-04-04 2019-11-27 Eco First Co. Ltd. Nozzle-type steam trap
KR102091450B1 (en) * 2018-12-14 2020-04-20 주식회사 포스코 Recycling storage apparatus for steam condensate and re-evaporated steam of steam trap and storage method using the same
KR20230114013A (en) * 2022-01-24 2023-08-01 에스이피협동조합 Smart Steam Trap Monitoring System
KR20230114012A (en) * 2022-01-24 2023-08-01 에스이피협동조합 Smart Steam Trap

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107060913A (en) * 2017-04-28 2017-08-18 安徽新宁能源科技有限公司 A kind of unattended automatic hydrophobic system
CN109805251A (en) * 2019-03-20 2019-05-28 宁波长荣酿造设备有限公司 Condensate removal system, condensate water discharging method and precooker system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441663A4 (en) * 2016-04-04 2019-11-27 Eco First Co. Ltd. Nozzle-type steam trap
US11242954B2 (en) 2016-04-04 2022-02-08 Eco First Co., Ltd. Nozzle-type steam trap
JP6340644B1 (en) * 2017-07-07 2018-06-13 株式会社生活環境研究所 Nozzle type steam trap
JP2019015341A (en) * 2017-07-07 2019-01-31 株式会社生活環境研究所 Nozzle type steam trap
JP2019184041A (en) * 2018-04-17 2019-10-24 株式会社エコファースト Monitoring system
US11821583B2 (en) 2018-04-17 2023-11-21 Eco First Co., Ltd. Monitoring system
KR102091450B1 (en) * 2018-12-14 2020-04-20 주식회사 포스코 Recycling storage apparatus for steam condensate and re-evaporated steam of steam trap and storage method using the same
KR20230114013A (en) * 2022-01-24 2023-08-01 에스이피협동조합 Smart Steam Trap Monitoring System
KR20230114012A (en) * 2022-01-24 2023-08-01 에스이피협동조합 Smart Steam Trap
KR102605611B1 (en) * 2022-01-24 2023-11-23 에스이피협동조합 Smart Steam Trap
KR102605603B1 (en) * 2022-01-24 2023-11-23 에스이피협동조합 Smart Steam Trap Monitoring System

Also Published As

Publication number Publication date
JP5745149B1 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5745149B1 (en) Condensate drain device
JP6246950B2 (en) Purifier for compressed air
JP2017201187A (en) Condensed water discharge device
EP2933546A1 (en) Condensate drain device
TWM616626U (en) Anti-clogging and power supply-free automatic drainer
JP5890797B2 (en) Air filter
US10967306B2 (en) Continuous filtration with backflush clearance of alternate filters
JP2006266553A (en) Air bleed device for water pipe
JP6809907B2 (en) Drain pot and drain collection system
EP3412957B1 (en) Device for collecting air accumulated in pipe
CN201269401Y (en) Filter of draining valve
CN203705010U (en) Material level detection device of dry quenching dust remover
JP4799400B2 (en) Wet dust collector
WO2017069170A1 (en) Suction nozzle and fluid recovery device
JP2018012057A (en) Dust collector
JP6017856B2 (en) Vacuum cooling device
US20140299200A1 (en) Liquid Condensate Collection and Drain Apparatus for Compressed Air-Gas Systems and Method Therefore
CN205760138U (en) Expanding-type dirt separator
JP7359478B1 (en) Energy-saving drain trap and compressed air pressure circuit
CN211816745U (en) Automatic drainage device
JP6159622B2 (en) steam trap
JP6089934B2 (en) Drain collection system
US10920608B2 (en) Dead leg debris extractor for continuous on-line operation
CN205649959U (en) A broken bag detection device for bag collector
TW202248531A (en) Anti-clogging and power-free automatic drainage device capable of automatically cleaning sewage and discharging water to restore the normal drainage function

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5745149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250