JP2016079954A - Intake port heat insulation structure of internal combustion engine - Google Patents

Intake port heat insulation structure of internal combustion engine Download PDF

Info

Publication number
JP2016079954A
JP2016079954A JP2014214997A JP2014214997A JP2016079954A JP 2016079954 A JP2016079954 A JP 2016079954A JP 2014214997 A JP2014214997 A JP 2014214997A JP 2014214997 A JP2014214997 A JP 2014214997A JP 2016079954 A JP2016079954 A JP 2016079954A
Authority
JP
Japan
Prior art keywords
intake port
intake
heat insulating
insulating member
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014214997A
Other languages
Japanese (ja)
Inventor
征二 松田
Seiji Matsuda
征二 松田
田中 大
Masaru Tanaka
大 田中
欣也 井上
Kinya Inoue
欣也 井上
貴之 城田
Takayuki Shirota
貴之 城田
弘己 大島
Hiroki Oshima
弘己 大島
幸司 秦
Koji Hata
幸司 秦
山本 剛司
Tsuyoshi Yamamoto
剛司 山本
優貴 土橋
Yuki Dobashi
優貴 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014214997A priority Critical patent/JP2016079954A/en
Publication of JP2016079954A publication Critical patent/JP2016079954A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To suppress vibration of a heat insulating member for insulating intake air from a wall surface of an intake port.SOLUTION: An intake port 30 is composed of a heat insulating member 44 disposed on a cylinder head 16 at a part of its wall surface. The heat insulating member 44 has an outer surface 4402 fitted to a recessed portion 46 of the cylinder head 16 and kept into contact with a wall surface of the recessed portion 46, and an inner surface 4404 forming a part of the wall surface of the intake port 30. A plurality of claw bodies 50 are disposed on the outer surface 4402 of the heat insulating member 44. As the claw bodies 50 are disposed in a state of projecting from the outer surface 4402 at a part of an upstream side of the intake air in the longitudinal direction with respect to a part at a downstream side, in a state of fitting the heat insulating member 44 to the recessed portion 46, movement in a direction toward an end face, of the heat insulating member 44 is prevented.SELECTED DRAWING: Figure 1

Description

本発明は内燃機関の吸気ポート構造に関し、より詳細にはポート噴射式の内燃機関の吸気ポート断熱構造に関する。   The present invention relates to an intake port structure of an internal combustion engine, and more particularly to an intake port heat insulation structure of a port injection type internal combustion engine.

近年、燃費向上の観点から熱効率を高めた高圧縮比の内燃機関が求められている。
高圧縮比の内燃機関は、低圧縮比の機関に比べて圧縮後の混合気の温度が高くなるため、ノッキングしやすくなり、点火時期をリタード(遅角)する必要がある。
その結果、燃費の向上効果が低減してしまうことから、吸気温度ひいては混合気温度の上昇を抑制することが必要となる。
ところで、吸気は、インテークマニホールドの吸気通路と、シリンダヘッドに設けられる吸気ポートを介して燃焼室に吸引される。
インテークマニホールドおよびシリンダヘッドは、燃焼室から伝わる熱によって加熱されているため、吸気は、インテークマニホールドの吸気通路やシリンダヘッドの吸気ポートの壁面から受熱することで温度上昇することが避けられない。
そこで、インテークマニホールドを断熱性を有する樹脂材料で構成し、インテークマニホールドの樹脂製の挿入部を吸気ポートに挿入した吸気管の取付構造が提案されている(特許文献1参照)。
この構造では、樹脂製の挿入部を吸気ポートに挿入し、吸気ポートの壁面のうちシリンダヘッドの壁面で構成される部分の面積を減らして、吸気の温度上昇の抑制を図っている。
In recent years, there has been a demand for an internal combustion engine having a high compression ratio with improved thermal efficiency from the viewpoint of improving fuel efficiency.
An internal combustion engine with a high compression ratio has a higher temperature of the air-fuel mixture after compression than an engine with a low compression ratio, so that it is easy to knock and the ignition timing must be retarded.
As a result, the fuel efficiency improvement effect is reduced, and it is necessary to suppress an increase in the intake air temperature and thus the mixture temperature.
Incidentally, the intake air is sucked into the combustion chamber via the intake passage of the intake manifold and the intake port provided in the cylinder head.
Since the intake manifold and the cylinder head are heated by the heat transmitted from the combustion chamber, the intake air inevitably rises in temperature by receiving heat from the intake manifold intake passage and the wall surface of the cylinder head intake port.
In view of this, an intake pipe mounting structure has been proposed in which an intake manifold is made of a heat-insulating resin material and a resin insertion portion of the intake manifold is inserted into an intake port (see Patent Document 1).
In this structure, the resin insertion portion is inserted into the intake port, and the area of the portion formed by the wall surface of the cylinder head in the wall surface of the intake port is reduced to suppress the rise in the intake air temperature.

特開2007−285171号公報JP 2007-285171 A

しかしながら、上記構造では、樹脂製の挿入部を吸気ポートに形成した凹部に嵌め込んで固定することから、経年劣化や公差に起因して樹脂製の挿入部と凹部との間に隙間が生じる。このような隙間が大きな寸法となると、吸気脈動によって樹脂製の挿入部が隙間内で動いて振動することが懸念される。
本発明は、上記事情に鑑みなされたものであり、吸気を吸気ポートの壁面から断熱する断熱部材の振動の抑制を図れ、かつ、吸気温度の上昇を抑制しつつ、燃料の気化を促進することにより燃費の向上を図る上で有利な内燃機関の吸気ポート断熱構造を提供することを目的とする。
However, in the above-described structure, since the resin insertion portion is fitted and fixed in the recess formed in the intake port, a gap is generated between the resin insertion portion and the recess due to aging and tolerance. When such a gap has a large dimension, there is a concern that the resin insertion portion may move and vibrate in the gap due to intake pulsation.
The present invention has been made in view of the above circumstances, and can suppress the vibration of a heat insulating member that insulates intake air from the wall surface of the intake port, and promote fuel vaporization while suppressing an increase in intake air temperature. An object of the present invention is to provide an intake port heat insulation structure for an internal combustion engine that is advantageous in improving fuel consumption.

上記目的を達成するために、請求項1記載の発明は、シリンダヘッドに組み込まれ前記シリンダヘッドに接触する外面と、吸気ポートの壁面の一部を形成する内面とを有する断熱部材を備える内燃機関の吸気ポート断熱構造であって、前記断熱部材の前記外面に、吸気が前記内面を流れる方向に延在する長さを有し、前記長さ方向において吸気の上流側の箇所が下流側の箇所よりも前記外面から突出する爪体が設けられることを特徴とする。
請求項2記載の発明は、前記爪体は、前記爪体が接触する前記シリンダヘッドの壁面から前記外面を離す方向に付勢する付勢力を発揮することを特徴とする。
請求項3記載の発明は、前記爪体は、燃焼室側に位置する前記外面の箇所に設けられていることを特徴とする。
請求項4記載の発明は、前記吸気ポートに燃料を噴射するインジェクタを備えるとともに、前記断熱部材は、前記内面が前記インジェクタの噴口より前記吸気ポートの上流側の壁面を形成する上流側壁部と、前記内面が前記噴口より前記吸気ポートの下流側に延在して前記吸気ポートの下流側の壁面を形成する下流側壁部とを備え、前記下流側壁部で前記インジェクタが配置される側の箇所に、前記インジェクタの噴口を前記吸気ポート内に露出させると共に吸気が流れる方向に延在し前記上流側壁部から離れた前記下流側壁部の端部に開放状の切欠が設けられ、前記下流側壁部は前記噴口に対向する側の前記吸気ポートの壁面の前記噴霧された燃料が付着される箇所の手前まで延設されていることを特徴とする。
請求項5記載の発明は、前記爪体は、前記外面から突出する方向に常時付勢され、前記爪体は、前記外面側に位置する爪内面と、前記爪内面と反対側に位置する爪外面とを有し、前記外面には、前記爪体の収容を可能とし前記爪体が収容された状態で前記爪外面と前記外面とを同一面上に位置させる収容凹部が設けられていることを特徴とする。
In order to achieve the above object, an invention according to claim 1 is an internal combustion engine comprising a heat insulating member that is incorporated in a cylinder head and has an outer surface that contacts the cylinder head and an inner surface that forms part of the wall surface of the intake port. In the intake port heat insulating structure, the outer surface of the heat insulating member has a length extending in a direction in which the intake air flows through the inner surface, and the upstream position of the intake air in the length direction is a downstream position. Further, a nail body protruding from the outer surface is provided.
The invention according to claim 2 is characterized in that the claw body exerts a biasing force that biases the outer surface away from the wall surface of the cylinder head with which the claw body contacts.
The invention according to claim 3 is characterized in that the claw body is provided at a portion of the outer surface located on the combustion chamber side.
The invention according to claim 4 includes an injector that injects fuel into the intake port, and the heat insulating member includes an upstream side wall portion in which the inner surface forms a wall surface on the upstream side of the intake port from the injection port of the injector; The inner surface includes a downstream side wall portion that extends downstream from the nozzle and forms a wall surface on the downstream side of the intake port, and the downstream side wall portion has a portion on the side where the injector is disposed. The injector nozzle hole is exposed in the intake port and extends in the direction in which the intake air flows and is provided with an open notch at the end of the downstream side wall portion away from the upstream side wall portion. The wall surface of the intake port on the side facing the injection port extends to a position just before the location where the sprayed fuel is attached.
According to a fifth aspect of the present invention, the claw body is constantly urged in a direction protruding from the outer surface, and the claw body includes a claw inner surface located on the outer surface side and a claw located on the opposite side of the claw inner surface. An outer surface, and the outer surface is provided with an accommodation recess for accommodating the nail body and positioning the outer surface of the nail and the outer surface on the same surface in a state where the nail body is accommodated. It is characterized by.

請求項1記載の発明によれば、シリンダヘッドに断熱部材が配置された状態で、爪体は、断熱部材のシリンダヘッド外に向かう方向への移動を阻止する。したがって、断熱部材をシリンダヘッドに組み込むことから、経年劣化や公差に起因して断熱部材とシリンダヘッドとの間に隙間が生じたとしても、断熱部材の長手方向への移動は、爪体により阻止されるため、吸気脈動によって断熱部材が隙間内で動いて振動することが抑制される。
請求項2記載の発明によれば、爪体の付勢力によって断熱部材の外面とシリンダヘッドの壁面と間に空気層が形成され、熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上で有利となり、燃費の向上を図る上で有利となる。
請求項3記載の発明によれば、爪体の付勢力によって断熱部材の外面と、高温となる燃焼室側のシリンダヘッドの壁面と間に空気層が形成され、熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上で有利となり、燃費の向上を図る上で有利となる。また、燃焼室側に位置する断熱部材の外面の箇所のみに設けられた爪体の付勢力により、燃焼室側と反対方向に向かって断熱部材の外面がシリンダヘッドの壁面に押し付けられる。
請求項4記載の発明によれば、インジェクタの噴口より吸気ポートの上流側において、断熱部材の上流側壁部によって吸気通路を形成するとともに、インジェクタの噴口より吸気ポートの下流側において、断熱部材の下流側壁部が吸気ポート下流側に延在して吸気通路の一部壁面を形成することにより吸気ポートに流入する吸入空気がシリンダヘッドから受熱することを防ぐことができるため、吸気の充填効率が上昇し燃焼効率の向上を図る上で有利となる。また、下流側側壁部の端部に開放上の切欠が設けられることで、インジェクタの噴口より下流側の吸気通路の一部壁面を吸気ポートの内壁つまりシリンダヘッドで形成することにより、インジェクタの噴口から噴射された燃料の気化が高温なシリンダヘッドの壁面で効率よくなされ、燃焼効率の向上を図る上で有利となる。
請求項5記載の発明によれば、刃物を用いて合成樹脂で成形された断熱部材の表面に対して斜めに切込みを入れて爪体を簡単に製造する上で有利となる。
According to the first aspect of the present invention, the claw body prevents the heat insulating member from moving in the direction toward the outside of the cylinder head in a state where the heat insulating member is disposed on the cylinder head. Therefore, since the heat insulating member is incorporated in the cylinder head, even if a gap is generated between the heat insulating member and the cylinder head due to aging or tolerance, the movement of the heat insulating member in the longitudinal direction is prevented by the claw body. Therefore, it is suppressed that the heat insulating member moves and vibrates in the gap due to the intake pulsation.
According to the second aspect of the present invention, an air layer is formed between the outer surface of the heat insulating member and the wall surface of the cylinder head by the urging force of the claw body, the transfer of heat to the intake air is suppressed, and the temperature rise of the intake air is suppressed. This is advantageous for improving the fuel efficiency.
According to invention of Claim 3, an air layer is formed between the outer surface of a heat insulation member and the wall surface of the cylinder head by the side of the combustion chamber which becomes high temperature by the urging | biasing force of a nail | claw body, and the transmission to heat | fever intake is suppressed. Therefore, it is advantageous for suppressing the temperature rise of the intake air, and is advantageous for improving fuel consumption. Further, the outer surface of the heat insulating member is pressed against the wall surface of the cylinder head in the direction opposite to the combustion chamber side by the urging force of the claw provided only on the outer surface of the heat insulating member located on the combustion chamber side.
According to the fourth aspect of the present invention, the intake passage is formed by the upstream side wall portion of the heat insulating member on the upstream side of the intake port from the injection port of the injector, and downstream of the heat insulating member on the downstream side of the intake port from the injection port of the injector. The side wall extends downstream of the intake port to form a part of the wall surface of the intake passage, so that intake air flowing into the intake port can be prevented from receiving heat from the cylinder head, increasing intake charge efficiency. This is advantageous in improving combustion efficiency. In addition, by providing an opening notch at the end of the downstream side wall, a partial wall surface of the intake passage on the downstream side of the injector nozzle is formed by the inner wall of the intake port, that is, the cylinder head. Vaporization of the fuel injected from the cylinder is efficiently performed on the wall surface of the high-temperature cylinder head, which is advantageous in improving combustion efficiency.
According to the fifth aspect of the present invention, it is advantageous when the nail body is easily manufactured by making an oblique cut with respect to the surface of the heat insulating member formed of a synthetic resin using a blade.

第1の実施の形態に係る内燃機関の吸気ポート構造を示す断面図である。It is sectional drawing which shows the intake port structure of the internal combustion engine which concerns on 1st Embodiment. 図1のAA線断面図を示す。FIG. 2 is a sectional view taken along line AA in FIG. 1. 断熱部材の断面図である。It is sectional drawing of a heat insulation member. 断熱部材の爪体周辺の拡大断面図である。It is an expanded sectional view around the nail | claw body of a heat insulation member. 第2の実施の形態に係る内燃機関の吸気ポート構造における断熱部材の構成を示す斜視図である。It is a perspective view which shows the structure of the heat insulation member in the intake port structure of the internal combustion engine which concerns on 2nd Embodiment. 第2の実施の形態に係る内燃機関の吸気ポート構造における断熱部材の図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 of the heat insulation member in the intake port structure of the internal combustion engine which concerns on 2nd Embodiment.

(第1の実施の形態)
以下、本発明の実施の形態について図面を参照して説明する。
まず、内燃機関の全体構成について説明する。
図1に示すように、内燃機関(以下エンジンという)10は、シリンダ12が形成されたシリンダブロック14と、シリンダブロック14の上部に配置されたシリンダヘッド16と、シリンダ12に配設されたピストン18とを含んで構成されている。
シリンダヘッド16の両側には吸気管20(インテークマニホールド)と排気管22(エキゾーストマニホールド)が連結されている。
燃焼室24は、シリンダ12の内面とシリンダヘッド16の下面とピストン18の頂面とによって構成され、シリンダヘッド16には燃焼室24に位置するように点火プラグ26が設けられている。
ピストン18はコネクティングロッド28を介して不図示のクランクシャフトに連結され、図中符号1802、1804は圧力リング、符号1806はオイルリングを示している。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the overall configuration of the internal combustion engine will be described.
As shown in FIG. 1, an internal combustion engine (hereinafter referred to as engine) 10 includes a cylinder block 14 in which a cylinder 12 is formed, a cylinder head 16 disposed on the cylinder block 14, and a piston disposed in the cylinder 12. 18.
An intake pipe 20 (intake manifold) and an exhaust pipe 22 (exhaust manifold) are connected to both sides of the cylinder head 16.
The combustion chamber 24 is constituted by the inner surface of the cylinder 12, the lower surface of the cylinder head 16, and the top surface of the piston 18, and the cylinder head 16 is provided with an ignition plug 26 so as to be positioned in the combustion chamber 24.
The piston 18 is connected to a crankshaft (not shown) via a connecting rod 28. In the figure, reference numerals 1802 and 1804 denote pressure rings, and reference numeral 1806 denotes an oil ring.

シリンダヘッド16には、燃焼室24に吸気を供給する吸気ポート30と、燃焼室24内の排気を排出する排気ポート32とが設けられている。
なお、本発明において、吸気ポート30とは、外部に開口する吸気口と燃焼室24とを接続する吸気通路のうちシリンダヘッド16の内部に位置する部分をいう。
吸気ポート30には、吸気管20が接続され、排気ポート32には、排気管22が接続されている。
そして、吸気通路2002は、吸気管20、吸気ポート30を含んで構成され、排気通路2202は、排気ポート32、排気管22を含んで構成されている。
また、吸気ポート30に吸気バルブ34が設けられ、排気ポート32に排気バルブ36が設けられ、それら吸気バルブ34、排気バルブ36はバルブスプリング38、40により閉止方向に付勢されている。吸気バルブ34、排気バルブ36は不図示の吸排気カムにより駆動され、吸気ポート30、排気ポート32を開閉する。
なお、図中符号37はバルブシートを示す。
The cylinder head 16 is provided with an intake port 30 for supplying intake air to the combustion chamber 24 and an exhaust port 32 for discharging exhaust gas in the combustion chamber 24.
In the present invention, the intake port 30 refers to a portion located inside the cylinder head 16 in the intake passage that connects the intake port that opens to the outside and the combustion chamber 24.
An intake pipe 20 is connected to the intake port 30, and an exhaust pipe 22 is connected to the exhaust port 32.
The intake passage 2002 includes the intake pipe 20 and the intake port 30, and the exhaust passage 2202 includes the exhaust port 32 and the exhaust pipe 22.
An intake valve 34 is provided at the intake port 30 and an exhaust valve 36 is provided at the exhaust port 32. The intake valve 34 and the exhaust valve 36 are urged by valve springs 38 and 40 in the closing direction. The intake valve 34 and the exhaust valve 36 are driven by an intake / exhaust cam (not shown) to open and close the intake port 30 and the exhaust port 32.
In the figure, reference numeral 37 denotes a valve seat.

本実施の形態では、エンジン10は、インジェクタ42から吸気ポート30内に燃料を噴射(噴霧)するポート噴射式エンジンである。
インジェクタ42は、不図示のポンプから供給された燃料を噴射するものであり、吸気ポート30内に噴口4202を向けた燃料噴射ノズル4204と、燃料噴射ノズル4204に設けられアクチュエータにより噴口4202を開閉する不図示のニードル弁とを含んで構成されている。
ポート噴射式エンジンでは、吸気管20の吸気通路2002から吸気ポート30内に吸入された吸入空気とインジェクタ42の噴口4202から噴射された燃料とが吸気ポート30内で混合されて混合気となり、燃焼室24に供給される。
そして、クランクシャフトが回転することにより、吸気カム、排気カムを介して吸気バルブ34、排気バルブ36が開閉され、吸気行程、圧縮行程、膨張行程、排気行程が実行され、主として、排気・吸気行程中に、噴口4202から燃料が吸気ポート30内に噴射される。
In the present embodiment, engine 10 is a port injection engine that injects (sprays) fuel from injector 42 into intake port 30.
The injector 42 injects fuel supplied from a pump (not shown). The fuel injection nozzle 4204 directs the injection port 4202 into the intake port 30, and the injection port 4202 is provided in the fuel injection nozzle 4204 to open and close the injection port 4202. A needle valve (not shown) is included.
In the port injection type engine, the intake air sucked into the intake port 30 from the intake passage 2002 of the intake pipe 20 and the fuel injected from the injection port 4202 of the injector 42 are mixed in the intake port 30 to form an air-fuel mixture, and combustion It is supplied to the chamber 24.
When the crankshaft rotates, the intake valve 34 and the exhaust valve 36 are opened and closed via the intake cam and the exhaust cam, and the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke are executed. The fuel is injected into the intake port 30 from the nozzle 4202.

図1に示すように、吸気ポート30は、その壁面の一部が、シリンダヘッド16に取着された断熱部材44で構成されている。
すなわち、吸気ポート30の上流端が位置するシリンダヘッド16の端面に開口する凹部46が設けられている。
断熱部材44は、シリンダヘッド16に組み込まれシリンダヘッド16に接触する、言い換えると、凹部46に嵌め込まれ凹部46の壁面に接触する外面4402と、吸気ポート30の壁面の一部を形成する内面4404とを有している。
断熱部材44は、端部側に位置する上流側壁部44Aと、上流側壁部44Aの端部から吸気が流れる方向に延在する下流側壁部44Bとを備えている。
言い換えると、断熱部材44は、内面4404がインジェクタ42の噴口4202より吸気ポート30の上流側の壁面を形成する上流側壁部44Aと、内面4404が噴口4202より吸気ポート30の下流側に延在して吸気ポート30の下流側の壁面を形成する下流側壁部44Bとを備えている。
下流側壁部44Bでインジェクタ42が配置される側の箇所に、インジェクタ42の噴口4202を吸気ポート30内に露出させると共に吸気が流れる方向に延在し上流側壁部44Bから離れた下流側壁部44Bの端部に開放状の切欠48が設けられている。
噴口4202に対向する側の吸気ポート30の壁面3004の箇所で燃料噴霧が付着される壁面3008の範囲はシリンダヘッド16で構成されている。
As shown in FIG. 1, the intake port 30 is constituted by a heat insulating member 44 with a part of the wall surface attached to the cylinder head 16.
That is, a recess 46 is provided that opens on the end surface of the cylinder head 16 where the upstream end of the intake port 30 is located.
The heat insulating member 44 is incorporated in the cylinder head 16 and comes into contact with the cylinder head 16, in other words, an outer surface 4402 that is fitted in the recess 46 and contacts the wall surface of the recess 46, and an inner surface 4404 that forms a part of the wall surface of the intake port 30. And have.
The heat insulating member 44 includes an upstream side wall portion 44A located on the end side, and a downstream side wall portion 44B extending in a direction in which intake air flows from the end portion of the upstream side wall portion 44A.
In other words, the heat insulating member 44 includes an upstream side wall portion 44A in which the inner surface 4404 forms a wall surface on the upstream side of the intake port 30 from the injection port 4202 of the injector 42, and the inner surface 4404 extends to the downstream side of the intake port 30 from the injection port 4202. And a downstream side wall portion 44B forming a downstream wall surface of the intake port 30.
In the downstream side wall portion 44B where the injector 42 is disposed, the injection hole 4202 of the injector 42 is exposed in the intake port 30, and the downstream side wall portion 44B extending in the direction in which the intake air flows and away from the upstream side wall portion 44B is provided. An open notch 48 is provided at the end.
The range of the wall surface 3008 to which the fuel spray adheres at the location of the wall surface 3004 of the intake port 30 on the side facing the nozzle hole 4202 is constituted by the cylinder head 16.

したがって、エンジン10の高速回転域において、吸気ポート30を流れる吸気速度が速くなるため、噴口4202から噴射された燃料の大半は、噴口4202が位置する側で吸気ポート30の延在方向に沿って延在するシリンダヘッド16の壁面3006の箇所に付着する。
本実施の形態では、噴口4202よりも下流側に位置する吸気ポート30の壁面のうち噴口4202が位置する側で吸気ポート30の延在方向に沿って延在する壁面3006の箇所はシリンダヘッド16で構成されている。
噴口4202から噴射された燃料の気化が高温なシリンダヘッド16の壁面3006で効率よくなされ、燃焼効率の向上を図る上で有利となる。特に、エンジン10が低・中回転域かつ高負荷域で運転している場合は、吸気ポート30に流入する吸気の流速が遅くなるとともにインジェクタ42から噴射される燃料量が多くなるため、噴口4202から噴射された燃料の一部は吸気とともに吸気ポート30の下流へ流れず、吸気ポート30の壁面3006に付着する。この場合は、付着した燃料は高温のシリンダヘッド16の壁面3006によって効率よく気化が促進されるため、燃焼効率の向上を図る上で更に有利となる。
また、噴口4202よりも上流側に位置する吸気ポート30の壁面3002の全域と噴口4202よりも下流側に位置する吸気ポート30の壁面のうち噴口4202に対向する側の壁面3004の箇所は、上流側壁部44Aと下流側壁部44Bとからなる断熱部材44で構成されているので、シリンダヘッド16の熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上で有利となり、エンジン10の燃費の向上を図る上で有利となる。
したがって、吸気の温度上昇を抑制しつつ燃焼効率を向上できるので、エンジン10の燃費の向上を図る上で有利となる。
Therefore, in the high-speed rotation region of the engine 10, the intake speed flowing through the intake port 30 is increased. Therefore, most of the fuel injected from the injection port 4202 is along the extending direction of the intake port 30 on the side where the injection port 4202 is located. It adheres to the location of the wall surface 3006 of the extending cylinder head 16.
In the present embodiment, the portion of the wall surface 3006 that extends along the extending direction of the intake port 30 on the side where the injection port 4202 is located out of the wall surface of the intake port 30 located downstream of the injection port 4202 is the cylinder head 16. It consists of
Vaporization of the fuel injected from the nozzle 4202 is efficiently performed on the wall surface 3006 of the high-temperature cylinder head 16, which is advantageous for improving the combustion efficiency. In particular, when the engine 10 is operating in a low / medium rotation range and a high load range, the flow rate of the intake air flowing into the intake port 30 becomes slow and the amount of fuel injected from the injector 42 increases. Part of the fuel injected from the fuel does not flow downstream of the intake port 30 together with the intake air, and adheres to the wall surface 3006 of the intake port 30. In this case, since the adhering fuel is efficiently vaporized by the wall surface 3006 of the high-temperature cylinder head 16, it is further advantageous in improving the combustion efficiency.
In addition, among the entire wall surface 3002 of the intake port 30 located on the upstream side of the injection port 4202 and the wall surface of the intake port 30 located on the downstream side of the injection port 4202, the location of the wall surface 3004 on the side facing the injection port 4202 is upstream. Since the heat insulating member 44 includes the side wall portion 44A and the downstream side wall portion 44B, transmission of heat from the cylinder head 16 to the intake air is suppressed, which is advantageous in suppressing a rise in the intake air temperature. This is advantageous for improving fuel efficiency.
Therefore, the combustion efficiency can be improved while suppressing the temperature rise of the intake air, which is advantageous in improving the fuel consumption of the engine 10.

特に、エンジン10の低中速回転域で高負荷の運転状態では吸気ポート30に流入する吸気の流速が遅くなるとともにインジェクタ42から噴射される燃料量が多くなるため、噴口4202から噴射された燃料は、その大半が噴口4202に対向する側の吸気ポート30のシリンダヘッド16の壁面3008および吸気バルブ34に付着する場合がある。
本実施の形態では、噴口4202に対向する側の壁面3004の箇所で燃料噴霧が付着される壁面3008の範囲はシリンダヘッド16で構成されている。
そして、下流側壁部44Bは、噴口4202に対向する壁面3004の箇所から壁面3008の範囲の手前まで延在している。
そのため、吸気ポート30の壁面3008に付着した燃料の気化は高温のシリンダヘッド16によって効率よくなされ、燃料の燃焼効率の向上を図る上で有利となる。
また、下流側壁部44Bが噴口4202に対向する壁面3004の箇所から壁面3008の範囲の手前まで延在しているので、シリンダヘッド16の熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上でより有利となる。
したがって、吸気の温度上昇をより抑制しつつ燃焼効率をより向上できるので、エンジン10の燃費の向上を図る上でより一層有利となる。
In particular, when the engine 10 is operating at a high load in the low and medium speed rotation range, the flow rate of the intake air flowing into the intake port 30 becomes slow and the amount of fuel injected from the injector 42 increases, so the fuel injected from the injection port 4202 May adhere to the wall surface 3008 of the cylinder head 16 and the intake valve 34 of the intake port 30 on the side facing the nozzle hole 4202.
In the present embodiment, the range of the wall surface 3008 to which the fuel spray adheres at the location of the wall surface 3004 on the side facing the nozzle hole 4202 is constituted by the cylinder head 16.
The downstream side wall 44 </ b> B extends from the location of the wall surface 3004 facing the nozzle hole 4202 to the front of the range of the wall surface 3008.
Therefore, the vaporization of the fuel adhering to the wall surface 3008 of the intake port 30 is efficiently performed by the high-temperature cylinder head 16, which is advantageous for improving the fuel combustion efficiency.
Further, since the downstream side wall 44B extends from the location of the wall surface 3004 facing the nozzle hole 4202 to the front of the range of the wall surface 3008, the transfer of heat from the cylinder head 16 to the intake air is suppressed, and the temperature rise of the intake air is suppressed. It becomes more advantageous in suppressing.
Therefore, the combustion efficiency can be further improved while further suppressing the rise in the intake air temperature, which is further advantageous in improving the fuel consumption of the engine 10.

断熱部材44は、中空あるいは中実の合成樹脂材料で構成してもよい。
あるいは、断熱部材44を、中空の部材と、中空の部材の内部に挿入された断熱材料50とで構成してもよく、この場合は、最適な断熱性能を確保する上で有利となる。
また、断熱部材44の上流側部分44Aと下流側部分44Bとを別体で構成してもよい。この場合、上流側部分44Aと下流側部分44Bとに用いる断熱材料の種類を変えることで、断熱性能を変えることができる。
例えば、上流側部分44Aが配置されたシリンダヘッド16部分に冷却水通路(高温)が配置され、下流側部分44Bが配置されたシリンダヘッド16部分がそれより低温である場合は、下流側部分44Bよりも上流側部分44Aの断熱性能を高めるように、断熱部材44を構成する断熱材料を選択し、あるいは、断熱材料の密度を設定できる。
そのため、シリンダヘッド16の温度分布に対応させて最適な断熱性能を確保する上で有利となる。
The heat insulating member 44 may be made of a hollow or solid synthetic resin material.
Alternatively, the heat insulating member 44 may be constituted by a hollow member and a heat insulating material 50 inserted into the hollow member, and in this case, it is advantageous in securing optimum heat insulating performance.
Further, the upstream portion 44A and the downstream portion 44B of the heat insulating member 44 may be configured separately. In this case, the heat insulation performance can be changed by changing the kind of heat insulating material used for the upstream portion 44A and the downstream portion 44B.
For example, when the cooling water passage (high temperature) is disposed in the cylinder head 16 portion where the upstream portion 44A is disposed and the cylinder head 16 portion where the downstream portion 44B is disposed is at a lower temperature, the downstream portion 44B. The heat insulating material constituting the heat insulating member 44 can be selected or the density of the heat insulating material can be set so as to improve the heat insulating performance of the upstream portion 44A.
Therefore, it is advantageous in ensuring optimum heat insulation performance corresponding to the temperature distribution of the cylinder head 16.

図1、図3に示すように、断熱部材44の外面4402に複数の爪体50が設けられている。
爪体50は、吸気が内面4404を流れる方向に延在する長さを有し、長さ方向において吸気の上流側の箇所が下流側の箇所よりも外面4402から突出するように設けられている。
本実施の形態では、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、燃焼室24側に位置する外面4402の箇所のみに設けられている。
また、爪体50は、下流側壁部44Bの外面4402の幅方向の中央で下流側壁部44Bの長手方向に沿って間隔をおいて設けられている。
As shown in FIGS. 1 and 3, a plurality of claws 50 are provided on the outer surface 4402 of the heat insulating member 44.
The claw body 50 has a length extending in the direction in which the intake air flows through the inner surface 4404, and is provided so that the upstream side portion of the intake air protrudes from the outer surface 4402 more than the downstream side in the length direction. .
In the present embodiment, the claw body 50 is provided only on the outer surface 4402 located on the combustion chamber 24 side in a state where the heat insulating member 44 is fitted in the recess 46.
In addition, the claw bodies 50 are provided at the center in the width direction of the outer surface 4402 of the downstream side wall portion 44B at intervals along the longitudinal direction of the downstream side wall portion 44B.

図4に示すように、爪体50は、外面4402から突出する方向に常時付勢されている。
爪体50は、外面4402側に位置する爪内面5002と、爪内面5002と反対側に位置する爪外面5004とを有している。
外面4402には、爪体50の収容を可能とし爪体50が収容された状態で爪外面5004と外面4402とを同一面上に位置させる収容凹部4410が設けられている。
As shown in FIG. 4, the claw body 50 is constantly urged in a direction protruding from the outer surface 4402.
The claw body 50 has a claw inner surface 5002 positioned on the outer surface 4402 side and a claw outer surface 5004 positioned on the opposite side of the claw inner surface 5002.
The outer surface 4402 is provided with an accommodation recess 4410 that allows the nail body 50 to be accommodated so that the nail outer surface 5004 and the outer surface 4402 are positioned on the same surface in a state where the nail body 50 is accommodated.

図1、図2(B)に示すように、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、長さ方向において吸気の上流側の箇所が下流側の箇所よりも外面4402から突出するように設けられているため、断熱部材44の端面に向かう方向への移動を阻止する。
また、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、爪体50が接触する凹部46の壁面から外面4402を離す方向に付勢する付勢力を発揮する。
As shown in FIG. 1 and FIG. 2B, the claw body 50 has an outer surface 4402 at a location on the upstream side of the intake air in the length direction rather than a location on the downstream side in a state where the heat insulating member 44 is fitted in the recess 46. Therefore, the movement in the direction toward the end face of the heat insulating member 44 is prevented.
Further, in a state where the heat insulating member 44 is fitted in the recess 46, the claw body 50 exerts a biasing force that biases the outer surface 4402 away from the wall surface of the recess 46 with which the claw body 50 contacts.

なお、爪体50は、刃物を用いて合成樹脂で成形された断熱部材44の表面に対して斜めに切込みを入れることで、断熱部材44の一部によって形成してもよいし、あるいは、断熱部材44とは別体に合成樹脂製の爪体50を形成しておき、接着剤や溶着により爪体50を断熱部材44の表面に接合してもよい。   In addition, the nail | claw body 50 may be formed by a part of heat insulation member 44 by making a cut | incision diagonally with respect to the surface of the heat insulation member 44 shape | molded with the synthetic resin using the cutter, or heat insulation. The claw body 50 made of synthetic resin may be formed separately from the member 44, and the claw body 50 may be joined to the surface of the heat insulating member 44 by an adhesive or welding.

本実施の形態によれば、断熱部材44の外面4402に、長さ方向において吸気の上流側の箇所が下流側の箇所よりも外面4402から突出する爪体50が設けられ、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、断熱部材44の端面に向かう方向への移動を阻止する。
したがって、断熱部材44を凹部46に嵌め込んで固定することから、経年劣化や公差に起因して断熱部材44と凹部46との間に隙間が生じたとしても、断熱部材44の長手方向への移動は、爪体50により阻止されるため、吸気脈動によって断熱部材44が隙間内で動いて振動することが抑制される。
According to the present embodiment, the outer surface 4402 of the heat insulating member 44 is provided with the claw body 50 in which the upstream side portion of the intake air protrudes from the outer surface 4402 more than the downstream side portion in the length direction. In a state where 44 is fitted, the claw body 50 prevents movement in the direction toward the end face of the heat insulating member 44.
Therefore, since the heat insulating member 44 is fitted into the concave portion 46 and fixed, even if a gap is generated between the heat insulating member 44 and the concave portion 46 due to aging deterioration and tolerance, the heat insulating member 44 is extended in the longitudinal direction. Since the movement is blocked by the claw body 50, the heat insulating member 44 is suppressed from moving and vibrating in the gap by the intake pulsation.

また、本実施の形態によれば、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、爪体50が接触する凹部46の壁面から外面4402を離す方向に付勢する付勢力を発揮するので、爪体50の付勢力によって断熱部材44の外面4402と凹部46の壁面と間に空気層が形成され、熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上で有利となり、エンジン10の燃費の向上を図る上で有利となる。   Further, according to the present embodiment, with the heat insulating member 44 fitted in the recess 46, the claw body 50 biases the outer surface 4402 away from the wall surface of the recess 46 with which the claw body 50 contacts. As a result, an air layer is formed between the outer surface 4402 of the heat insulating member 44 and the wall surface of the recess 46 by the urging force of the claw body 50, so that the transfer of heat to the intake air is suppressed and the temperature rise of the intake air is suppressed. This is advantageous for improving the fuel consumption of the engine 10.

また、本実施の形態によれば、凹部46に断熱部材44が嵌め込まれた状態で、爪体50は、燃焼室24側に位置する外面4402の箇所のみに設けられているので、爪体50の付勢力によって断熱部材44の外面4402と、高温となる燃焼室24側の凹部46の壁面と間に空気層が形成され、熱の吸気への伝達が抑制され、吸気の温度上昇を抑制する上で有利となり、エンジン10の燃費の向上を図る上で有利となる。
また、燃焼室24側に位置する外面4402の箇所のみに設けられた爪体50の付勢力により、燃焼室24側と反対方向に向かって断熱部材44の外面4402が凹部46の壁面に押し付けられるため、断熱部材44の径方向への振動を抑制する上でも有利となる。
Further, according to the present embodiment, the claw body 50 is provided only at the location of the outer surface 4402 located on the combustion chamber 24 side in a state in which the heat insulating member 44 is fitted in the recess 46, and thus the claw body 50. Due to the urging force, an air layer is formed between the outer surface 4402 of the heat insulating member 44 and the wall surface of the concave portion 46 on the combustion chamber 24 side that becomes high temperature, and the transfer of heat to the intake air is suppressed, and the temperature rise of the intake air is suppressed. This is advantageous in improving the fuel consumption of the engine 10.
Further, the outer surface 4402 of the heat insulating member 44 is pressed against the wall surface of the recess 46 in the opposite direction to the combustion chamber 24 side by the urging force of the claw 50 provided only at the location of the outer surface 4402 located on the combustion chamber 24 side. Therefore, it is advantageous for suppressing vibration in the radial direction of the heat insulating member 44.

また、本実施の形態によれば、爪体50は、外面4402から突出する方向に常時付勢され、爪体50は、外面4402側に位置する爪内面5002と、爪内面5002と反対側に位置する爪外面5004とを有し、外面4402には、爪体50の収容を可能とし爪体50が収容された状態で爪外面5004と外面4402とを同一面上に位置させる収容凹部4410が設けられている。
そのため、刃物を用いて合成樹脂で成形された断熱部材44の表面に対して斜めに切込みを入れて爪体50を簡単に製造する上で有利となる。
Further, according to the present embodiment, the nail body 50 is constantly urged in a direction protruding from the outer surface 4402, and the nail body 50 is disposed on the nail inner surface 5002 positioned on the outer surface 4402 side and on the side opposite to the nail inner surface 5002. The nail outer surface 5004 is positioned, and the outer surface 4402 has an accommodating recess 4410 that can accommodate the nail body 50 and positions the nail outer surface 5004 and the outer surface 4402 on the same surface in a state where the nail body 50 is accommodated. Is provided.
Therefore, it becomes advantageous when the nail | claw body 50 is manufactured easily by making a cut | incision diagonally with respect to the surface of the heat insulation member 44 shape | molded with the synthetic resin using the cutter.

(第2の実施の形態)
次に、図5、図6を参照して第2の実施の形態について説明する。
第2の実施の形態では、爪体50の配置構造が第1の実施の形態と異なっている。
第2の実施の形態では、図5、図6に示すように、複数の爪体50は、下流側壁部44Bの外面4402の長手方向の中間箇所で下流側壁部44Bの幅方向に沿って間隔をおいて設けられていてもよい。
このような第2の実施の形態によっても第1の実施の形態と同様の効果が奏される。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS.
In 2nd Embodiment, the arrangement structure of the nail | claw body 50 differs from 1st Embodiment.
In the second embodiment, as shown in FIG. 5 and FIG. 6, the plurality of claws 50 are spaced along the width direction of the downstream side wall 44 </ b> B at an intermediate position in the longitudinal direction of the outer surface 4402 of the downstream side wall 44 </ b> B. May be provided.
The effect similar to 1st Embodiment is show | played also by such 2nd Embodiment.

10 エンジン(内燃機関)
16 シリンダヘッド
24 燃焼室
30 吸気ポート
3002 壁面
3004 壁面
3006 壁面
3008 壁面
42 インジェクタ
4202 噴口
44 断熱部材
4402 外面
4404 内面
44A 上流側壁部
44B 下流側壁部
4410 収容凹部
46 凹部
48 切欠
50 爪体
5002 爪内面
5004 爪外面
10 Engine (Internal combustion engine)
16 Cylinder head 24 Combustion chamber 30 Intake port 3002 Wall surface 3004 Wall surface 3006 Wall surface 3008 Wall surface 42 Injector 4202 Injection hole 44 Heat insulation member 4402 Outer surface 4404 Inner surface 44A Upstream side wall portion 44B Downstream side wall portion 4410 Receiving recess 46 Recess 48 Notch 50 Nail body 5002 Nail inner surface 5004 Nail exterior

Claims (5)

シリンダヘッドに組み込まれ前記シリンダヘッドに接触する外面と、吸気ポートの壁面の一部を形成する内面とを有する断熱部材を備える内燃機関の吸気ポート断熱構造であって、
前記断熱部材の前記外面に、吸気が前記内面を流れる方向に延在する長さを有し、前記長さ方向において吸気の上流側の箇所が下流側の箇所よりも前記外面から突出する爪体が設けられる、
ことを特徴とする内燃機関の吸気ポート断熱構造。
An intake port heat insulating structure for an internal combustion engine comprising a heat insulating member having an outer surface incorporated in a cylinder head and in contact with the cylinder head and an inner surface forming a part of a wall surface of the intake port,
The outer surface of the heat insulating member has a length that extends in a direction in which the intake air flows through the inner surface, and a claw body in which the upstream side portion of the intake air protrudes from the outer surface more than the downstream side in the length direction Is provided,
An intake port heat insulation structure for an internal combustion engine.
前記爪体は、前記爪体が接触する前記シリンダヘッドの壁面から前記外面を離す方向に付勢する付勢力を発揮する、
ことを特徴とする請求項1記載の内燃機関の吸気ポート断熱構造。
The claw body exerts a biasing force that biases the outer surface away from the wall surface of the cylinder head that the claw body contacts.
The intake port heat insulation structure for an internal combustion engine according to claim 1.
前記爪体は、燃焼室側に位置する前記外面の箇所に設けられている、
ことを特徴とする請求項2記載の内燃機関の吸気ポート断熱構造。
The claw body is provided at the outer surface located on the combustion chamber side,
The intake port heat insulation structure for an internal combustion engine according to claim 2.
前記吸気ポートに燃料を噴射するインジェクタを備えるとともに、
前記断熱部材は、前記内面が前記インジェクタの噴口より前記吸気ポートの上流側の壁面を形成する上流側壁部と、前記内面が前記噴口より前記吸気ポートの下流側に延在して前記吸気ポートの下流側の壁面を形成する下流側壁部とを備え、
前記下流側壁部で前記インジェクタが配置される側の箇所に、前記インジェクタの噴口を前記吸気ポート内に露出させると共に吸気が流れる方向に延在し前記上流側壁部から離れた前記下流側壁部の端部に開放状の切欠が設けられ、
前記下流側壁部は前記噴口に対向する側の前記吸気ポートの壁面の前記噴霧された燃料が付着される箇所の手前まで延設されている、
ことを特徴とする請求項1から3の何れか1項記載の内燃機関の吸気ポート断熱構造。
An injector for injecting fuel into the intake port;
The heat insulating member includes an upstream side wall portion in which the inner surface forms a wall surface upstream of the intake port from the injection port of the injector, and the inner surface extends downstream of the intake port from the injection port. A downstream side wall forming a downstream wall,
An end of the downstream side wall portion that is exposed in the intake port and extends in a direction in which the intake air flows and is separated from the upstream side wall portion at a location on the side where the injector is disposed in the downstream side wall portion The part is provided with an open notch,
The downstream side wall portion extends to a position just before the location where the sprayed fuel adheres to the wall surface of the intake port on the side facing the nozzle hole.
The intake port heat insulation structure for an internal combustion engine according to any one of claims 1 to 3, wherein
前記爪体は、前記外面から突出する方向に常時付勢され、
前記爪体は、前記外面側に位置する爪内面と、前記爪内面と反対側に位置する爪外面とを有し、
前記外面には、前記爪体の収容を可能とし前記爪体が収容された状態で前記爪外面と前記外面とを同一面上に位置させる収容凹部が設けられている、
ことを特徴とする請求項1から4の何れか1項記載の内燃機関の吸気ポート断熱構造。
The claw body is constantly urged in a direction protruding from the outer surface,
The claw body has a claw inner surface located on the outer surface side, and a claw outer surface located on the opposite side to the claw inner surface,
The outer surface is provided with an accommodation recess that allows the nail body to be accommodated and positions the outer surface of the nail and the outer surface on the same surface in a state where the nail body is accommodated.
The intake port heat insulation structure for an internal combustion engine according to any one of claims 1 to 4, wherein the intake port heat insulation structure is provided.
JP2014214997A 2014-10-22 2014-10-22 Intake port heat insulation structure of internal combustion engine Pending JP2016079954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214997A JP2016079954A (en) 2014-10-22 2014-10-22 Intake port heat insulation structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214997A JP2016079954A (en) 2014-10-22 2014-10-22 Intake port heat insulation structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016079954A true JP2016079954A (en) 2016-05-16

Family

ID=55957997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214997A Pending JP2016079954A (en) 2014-10-22 2014-10-22 Intake port heat insulation structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016079954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105569868A (en) * 2015-12-14 2016-05-11 中国北方发动机研究所(天津) Novel efficient air inlet system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105569868A (en) * 2015-12-14 2016-05-11 中国北方发动机研究所(天津) Novel efficient air inlet system

Similar Documents

Publication Publication Date Title
JP4804188B2 (en) Injector mounting structure and fuel injection device
JP4655033B2 (en) Internal combustion engine
JP2016114021A (en) Internal combustion engine intake port heat insulation structure
RU2017116821A (en) CONTROLLED AIR INTAKE PIPE FOR DIESEL ENGINES
JP2009293611A (en) Engine piston
JP5293842B2 (en) Piston of internal combustion engine
JP6471731B2 (en) Internal combustion engine
JP2016079954A (en) Intake port heat insulation structure of internal combustion engine
JP6347130B2 (en) Intake port structure of internal combustion engine
JP6390339B2 (en) Intake port insulation structure of internal combustion engine
JP6512330B2 (en) Intake port structure of internal combustion engine
JP6439431B2 (en) Intake port insulation structure of internal combustion engine
JP2008111367A (en) Internal combustion engine and piston
JP6597107B2 (en) Intake port structure of internal combustion engine
EP1970550A1 (en) Internal combustion engine sound isolation structure
JP2016114013A (en) Intake port heat insulation structure of internal combustion engine
JP2001234807A (en) Cylinder head
US7571708B2 (en) Spark ignited direct injection targeting for improved combustion
JP3848526B2 (en) Engine fuel injection valve arrangement structure
JP6807770B2 (en) Injector
JP2019113008A (en) Indirect injection diesel engine
JP6623665B2 (en) In-cylinder direct injection internal combustion engine
JP6788519B2 (en) Injector mounting structure
US7565893B2 (en) Spark ignited direct injection flow geometry for improved combustion
JP6636836B2 (en) Combustion chamber structure of direct injection engine