JP2016079120A - Olanzapine formulation in which stability is improved by packaging - Google Patents

Olanzapine formulation in which stability is improved by packaging Download PDF

Info

Publication number
JP2016079120A
JP2016079120A JP2014210544A JP2014210544A JP2016079120A JP 2016079120 A JP2016079120 A JP 2016079120A JP 2014210544 A JP2014210544 A JP 2014210544A JP 2014210544 A JP2014210544 A JP 2014210544A JP 2016079120 A JP2016079120 A JP 2016079120A
Authority
JP
Japan
Prior art keywords
desiccant
olanzapine
comparative example
orally disintegrating
packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014210544A
Other languages
Japanese (ja)
Inventor
正孝 齋藤
Masataka Saito
正孝 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Meiji Seika Pharma Co Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Meiji Seika Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd, Meiji Seika Pharma Co Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP2014210544A priority Critical patent/JP2016079120A/en
Publication of JP2016079120A publication Critical patent/JP2016079120A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an orally disintegrating olanzapine tablet in which the increase of analogues by oxidative degradation or a degradation mechanism thereof is reduced over the long time.SOLUTION: The invention provides an orally disintegrating olanzapine tablet preserved in a packaging form where a drying agent having a deoxidation function which utilizes the oxidation mechanism of organic substances is enclosed. Preferably, the drying agent has a deoxidation function and is enclosed in an organic deoxidant, and preferably, the drying agent is also used in combination with the drying agent having a deoxidation function. Preferably, the orally disintegrating tablet has a packaging form of a pillow package or a bottle package. The orally disintegrating olanzapine tablet in which excellent stability is imparted reduces the temporal increase of many degradation products (analogue B, analogue C, thiolactam body, lactam body, and the like) derived from olanzapine, by the packaging form.SELECTED DRAWING: None

Description

本発明は、包装により、オランザピン口腔内崩壊錠の保存安定性を向上させることに関する。   The present invention relates to improving the storage stability of an olanzapine orally disintegrating tablet by packaging.

統合失調症及び双極性障害の治療薬であるオランザピンは、イーライ・リリー社よりジプレキサ(登録商標)としてフィルムコート錠、ザイディス(登録商標)錠、細粒及び筋注の4剤形が発売されている。この中のザイディス錠は、凍結乾燥法により製造され、日本薬局方では口腔内崩壊錠に分類される。   Olanzapine, a treatment for schizophrenia and bipolar disorder, is available in four dosage forms from Eli Lilly as Zyprexa (registered trademark): film-coated tablets, Zydis (registered trademark) tablets, fine granules and intramuscular injections. Yes. Zydis tablets are manufactured by freeze-drying and are classified as orally disintegrating tablets in the Japanese Pharmacopoeia.

口腔内崩壊錠が求められる例には、嚥下能力の低下した高齢者を主な対象とする疾患のほか、オランザピンのような統合失調症や双極性障害等の精神疾患における治療剤においても、服用を拒む患者に介助者が速やかに投薬・嚥下させるのに有用とされる(非特許文献1)。   Examples that require orally disintegrating tablets include those that are mainly used for elderly people with reduced swallowing ability, as well as treatments for psychiatric disorders such as schizophrenia and bipolar disorder such as olanzapine. It is considered useful for an assistant to promptly administer and swallow a patient who refuses (Non-patent Document 1).

ところで、オランザピンの製剤化には、安定性に関する課題があることが知られている。オランザピンの製剤化で安定性向上を記した文献としては、オランザピンがある種の添加剤との接触により褪色し、高温、高湿条件ではそれが加速するため、錠剤にフィルムコーティングを施すことで美観を維持する方法が開示されている(特許文献1)。また、アルカリ性賦形剤を用いるとオランザピンの安定性に負の効果をもたらすが、事前にオランザピンを単離剤と十分に混合しておけば分解が抑制されるほか、機能性ポリマーで錠剤をコーティングすることでも錠剤の着色及びアルカリ性賦形剤による不安定化を改善できることが開示されている(特許文献2)。しかしながら、これらはいずれもフィルムコート錠における安定化方法である。口腔内崩壊錠は一般に錠剤硬度が低く、摩損しやすいことから、フィルムコーティングを適用すると操作中に錠剤の欠けなどを生じて外観を損ねやすいほか、被膜の存在が口腔内崩壊性を低下させることにもつながり、実施は困難と予想される。   By the way, it is known that formulation of olanzapine has a problem regarding stability. The literature that describes the stability improvement in the formulation of olanzapine is that olanzapine fades by contact with certain additives and accelerates under high temperature and high humidity conditions. Has been disclosed (Patent Document 1). In addition, the use of alkaline excipients has a negative effect on the stability of olanzapine, but if olanzapine is mixed well with the isolator in advance, the decomposition is suppressed and the tablet is coated with a functional polymer. It is disclosed that the coloration of tablets and the destabilization caused by alkaline excipients can also be improved (Patent Document 2). However, these are all stabilization methods for film-coated tablets. Orally disintegrating tablets generally have low tablet hardness and are easily abraded, so the application of film coating tends to damage the appearance due to chipping of the tablets during operation, and the presence of a coating reduces the disintegration property in the oral cavity. Therefore, implementation is expected to be difficult.

オランザピン製剤の不安定化で生じる類縁物質としては、(非特許文献2)においてジプレキサ錠(フィルムコート錠)を対象に、オランザピンラクタム、4−オキソ体(類縁物質B)、オランザピンチオラクタム、4’−N−オキシド体(類縁物質C)が特定されている。化学構造上、4−オキソ体は水、オランザピンチオラクタム及び4’−N−オキシド体は酸素が主に作用することで、それぞれ生成されると考えられる。すなわち、オランザピン製剤を安定に保つには、湿度と酸素の影響を排除することが肝要となる。   As related substances generated by destabilization of olanzapine preparations, olanzapine lactam, 4-oxo-form (related substance B), olanzapine thiolactam, 4 ′ -N-oxide (related substance C) is specified. From the chemical structure, it is considered that the 4-oxo form is produced by water, the olanzapine thiolactam, and the 4'-N-oxide form, respectively, mainly due to the action of oxygen. That is, in order to keep the olanzapine formulation stable, it is important to eliminate the influence of humidity and oxygen.

特許文献3には、オランザピン含有製剤を長期間保存すると、崩壊剤のクロスポビドンに含まれる過酸化物に起因して4’−N−オキシド体(類縁物質C)が増加すること、崩壊剤として低置換度ヒドロキシプロピルセルロースまたは過酸化物含量が80ppm未満のクロスポビドンを用いることで、類縁物質の増加を抑えた製剤を得られることが開示されている。しかし、4’−N−オキシド体(類縁物質C)以外にも複数生じる他の類縁物質に対する効果の記載はない。   Patent Document 3 discloses that when an olanzapine-containing preparation is stored for a long period of time, the 4′-N-oxide (related substance C) increases due to peroxide contained in the disintegrant crospovidone. It is disclosed that a low-substituted hydroxypropyl cellulose or a crospovidone having a peroxide content of less than 80 ppm can be used to obtain a preparation that suppresses an increase in related substances. However, there is no description of the effect on other related substances generated in addition to the 4'-N-oxide (related substance C).

薬物の酸化抑制としては、空気中の酸素で分解しやすいアトルバスタチンに対して、ポリビニルアルコール共重合体を主体とするフィルムコーティングを施すことで安定化できる方法が示されている(特許文献4)。しかし、これもコーティングであるため口腔内崩壊錠への適用は困難である。   As a method for inhibiting the oxidation of a drug, a method has been shown in which atorvastatin which is easily decomposed by oxygen in the air can be stabilized by applying a film coating mainly composed of a polyvinyl alcohol copolymer (Patent Document 4). However, since this is also a coating, application to orally disintegrating tablets is difficult.

そのほかの手法として、医薬品製剤の包装形態中に脱酸素剤などを封入し、安定性を向上させる方法はアゼルニジピンの事例が知られている(特許文献5)。しかしながら、薬物の分解機構は化学構造によって異なり、酸化分解物以外にも様々な分解物が生じるオランザピンの製剤において、包装形態の工夫によってほとんどの分解物の経時的増加を抑えた製剤は知られていない。   As another method, a case of azelnidipine is known as a method for improving the stability by encapsulating an oxygen scavenger or the like in a packaging form of a pharmaceutical preparation (Patent Document 5). However, the degradation mechanism of drugs varies depending on the chemical structure, and in the formulation of olanzapine in which various degradation products other than oxidative degradation products are produced, there are known formulations that suppress the increase in most degradation products over time by devising the packaging form. Absent.

以上のことから、口腔内崩壊錠としてのオランザピン製剤には、多種生じうる類縁物質の増加を抑制して安定化するための方法が求められていた。   From the above, olanzapine preparations as orally disintegrating tablets have been required to have a method for suppressing and stabilizing an increase in various related substances.

特表平11−502848号公報Japanese National Patent Publication No. 11-502848 特表2009−521518号公報Special table 2009-521518 特開2014−58461号公報JP 2014-58461 A WO2011/077843号公報WO2011 / 077843 Publication WO2010/107081号公報WO 2010/107081

月刊薬事、2008.10(Vol.50 No.11)25−32Monthly Pharmaceutical Affairs, 2008.10 (Vol.50 No.11) 25-32 United States Pharmacopeia(36)、4562−4565United States Pharmacopeia (36), 4562-4565

本発明の目的は、長期間にわたり類縁物質の増加が軽減されたオランザピンの口腔内崩壊錠を提供することにある。   The object of the present invention is to provide an orally disintegrating tablet of olanzapine in which an increase in related substances is reduced over a long period of time.

本発明者らは、オランザピンを含有する製剤を高温高湿度の条件で保存すると、加水分解物4−オキソ体(類縁物質B)や酸化分解物4’−N−オキシド体(類縁物質C)が増加するが、開環体であるラクタム体やチオラクタム体はほとんど増加しないことを見出した。一方、製剤の包装形態中に脱酸素剤または乾燥剤を封入して同一の条件で保存したところ、乾燥剤の存在は類縁物質の増加抑制に効果を示さず、逆にチオラクタム体が増加する場合もあることが判明した。また、脱酸素剤単独ではチオラクタム体を抑える半面で水分に由来する類縁物質Bの抑制に不安があり、水分除去を目的として脱酸素剤に合成ゼオライトを併用するとチオラクタム体の増加を起こすなど、単に脱酸素剤や乾燥剤を単独または組み合わせるだけで全ての類縁物質を抑えることは困難であり、さらなる対策を必要としていた。   When the present inventors store a preparation containing olanzapine under conditions of high temperature and high humidity, a hydrolyzate 4-oxo compound (related substance B) and an oxidative decomposition product 4′-N-oxide compound (related substance C) are obtained. It was found that the number of ring-opened lactams and thiolactams increased little. On the other hand, when an oxygen scavenger or desiccant is enclosed in the packaging form of the preparation and stored under the same conditions, the presence of the desiccant has no effect on the suppression of the increase in related substances, and conversely the thiolactam body increases. It turns out that there is also. In addition, while the oxygen scavenger alone suppresses the thiolactam body, there is anxiety about the suppression of the related substance B derived from moisture, and when the synthetic zeolite is used in combination with the oxygen scavenger for the purpose of removing water, the thiolactam body is simply increased. It has been difficult to suppress all related substances merely by combining oxygen scavengers and desiccants alone or in combination, and further measures have been required.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、有機物の酸化機構を利用した脱酸素機能を有する乾燥剤をオランザピン製剤の包装形態中に封入することにより、類縁物質Bや類縁物質C、さらにはチオラクタム体やラクタム体など、オランザピンに由来するほとんどの分解物の経時的増加を抑え、優れた安定性を有するオランザピン口腔内崩壊錠が得られることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have encapsulated a desiccant having a deoxygenation function utilizing an oxidation mechanism of an organic substance in a packaging form of an olanzapine preparation, whereby related substances B and related substances It has been found that an olanzapine orally disintegrating tablet having excellent stability can be obtained by suppressing the increase over time of most degradation products derived from olanzapine such as substance C, thiolactam and lactam.

オランザピン口腔内崩壊錠の安定化に最も好適なのは、有機系脱酸素剤に乾燥剤が同封された、脱酸素機能付き乾燥剤である。さらに、脱酸素機能付き乾燥剤に乾燥剤を併用しても同等以上の安定化を図ることができる。   The most suitable for stabilizing the olanzapine orally disintegrating tablet is a desiccant with a deoxygenating function in which a desiccant is enclosed in an organic oxygen scavenger. Furthermore, even if a desiccant is used in combination with a desiccant with a deoxygenating function, stabilization equivalent to or higher can be achieved.

包装中に脱酸素機能付き乾燥剤、または脱酸素機能付き乾燥剤及び乾燥剤を封入することで、水に起因する類縁物質B、酸素に起因する類縁物質Cだけでなく、水及び酸素の影響を受けるチオラクタム体やラクタム体なども含んだ類縁物質総量の増加も顕著に抑制され、安定性に優れたオランザピンの口腔内崩壊錠を提供できる。   By enclosing a desiccant with a deoxygenating function or a desiccant with a deoxygenating function and a desiccant in the package, not only the related substance B caused by water, the related substance C caused by oxygen, but also the influence of water and oxygen The olanzapine orally disintegrating tablet excellent in stability can be provided, in which the increase in the total amount of related substances including thiolactam bodies and lactam bodies that are received is significantly suppressed.

比較例1〜2の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Comparative Examples 1-2 is shown. 比較例1〜2の保存試験における類縁物質C量の経時的推移を示す。The time-dependent transition of the related substance C amount in the storage test of Comparative Examples 1-2 is shown. 比較例1〜2の保存試験における類縁物質B量の経時的推移を示す。The time-dependent transition of the related substance B amount in the storage test of Comparative Examples 1-2 is shown. 比較例1〜2の保存試験におけるオランザピンチオラクタム量の経時的推移を示す。The time-dependent transition of the amount of olanzapine thiolactam in the preservation | save test of Comparative Examples 1-2 is shown. 比較例3〜8の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Comparative Examples 3-8 is shown. 比較例3〜8の保存試験におけるオランザピンチオラクタム及び類縁物質C量の経時的推移を示す。The time-dependent transition of the amount of olanzapine thiolactam and related substance C in the storage test of Comparative Examples 3-8 is shown. 実施例1、比較例9〜11の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 1 and Comparative Examples 9-11 is shown. 実施例1、比較例9〜11の保存試験における個々の類縁物質量の経時的推移を示す。The time-dependent transition of the amount of each related substance in the preservation | save test of Example 1 and Comparative Examples 9-11 is shown. 実施例2、比較例12〜16の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 2 and Comparative Examples 12-16 is shown. 実施例3、比較例17〜20の保存試験における各類縁物質量の経時的推移を示す。The time-dependent transition of the amount of each related substance in the storage test of Example 3 and Comparative Examples 17-20 is shown. 実施例4〜5の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Examples 4-5 is shown. 実施例6、比較例21〜23の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 6 and Comparative Examples 21-23 is shown. 実施例7、比較例24〜26の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 7 and Comparative Examples 24-26 is shown. 実施例8、比較例27〜29の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 8 and Comparative Examples 27-29 is shown. 実施例9、比較例30〜32の保存試験における類縁物質総量の経時的推移を示す。The time-dependent transition of the related substance total amount in the storage test of Example 9 and Comparative Examples 30-32 is shown.

本発明における「安定」とは、熱や湿度に直接的に暴露される開放保存条件に比べ、乾燥剤等を含むまたは含まない気密条件で保存することにより、オランザピンの個々の類縁物質や、それらを含む類縁物質総量の増加が抑制された状態を指す。   In the present invention, “stable” means individual olanzapine-related substances and their related substances by storing them in airtight conditions with or without a desiccant compared to open storage conditions that are directly exposed to heat and humidity. Refers to a state in which the increase in the total amount of related substances including is suppressed.

本発明における「脱酸素機能付き乾燥剤」とは、有機物が酸化される際に酸素を吸着する機構を利用した脱酸素剤に、乾燥剤が同封された物を指す。具体的には、ファーマキープ(登録商標)KD、CD(三菱ガス化学)が挙げられる。   The “desiccant with a deoxygenating function” in the present invention refers to a product in which a desiccant is enclosed in a deoxygenating agent using a mechanism that adsorbs oxygen when an organic substance is oxidized. Specific examples include PharmaKeep (registered trademark) KD and CD (Mitsubishi Gas Chemical).

本発明における「包装形態」は、医薬品に対して一般的に使用されるピロー包装及び瓶包装を指し、瓶包装の材質はプラスチック及びガラスが好適である。オランザピン口腔内崩壊錠は、ピロー包装の場合は事前にPTPを施したのち封入する。瓶包装の場合は、直接瓶に充填する。この時、PTPの素材は特に限定されるものではない。   The “packaging form” in the present invention refers to pillow packaging and bottle packaging generally used for pharmaceuticals, and plastic and glass are suitable for the bottle packaging material. Olanzapine orally disintegrating tablets are encapsulated after PTP is applied beforehand in the case of pillow packaging. In the case of bottle packaging, the bottle is filled directly. At this time, the PTP material is not particularly limited.

本発明におけるオランザピン口腔内崩壊錠は、成分として賦形剤、崩壊剤、結合剤、滑沢剤などを用い、普通錠を得る公知の方法で製造したもので良い。賦形剤は、D−マンニトール、エリスリトール、ソルビトールなどの糖アルコール、乳糖、マルトースなどの糖類、リン酸水素カルシウムなどの無機塩類やセルロース類などが例示される。崩壊剤は、クロスポビドン、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、カルメロースカルシウム、カルメロース、デンプングリコール酸ナトリウム、部分アルファー化デンプン、デンプンなどが例示される。結合剤は、トウモロコシデンプン、バレイショデンプン、コムギデンプン、デキストリン、部分アルファー化デンプン、アルファー化デンプンなどのデンプン系結合剤、ヒドロキシプロピルセルロース、ヒプロメロース、ポビドン、コポリビドン、ポリビニルアルコールなどの水溶性合成高分子が例示される。滑沢剤は、ステアリン酸マグネシウム、フマル酸ステアリルナトリウム、ステアリン酸カルシウム、タルク、ショ糖脂肪酸エステルが例示される。そのほか、必要に応じて流動化剤、甘味剤、矯味剤、着色剤、コーティング剤、香料などを配合することもできる。   The olanzapine orally disintegrating tablet in the present invention may be prepared by a known method for obtaining ordinary tablets using excipients, disintegrants, binders, lubricants and the like as components. Examples of the excipient include sugar alcohols such as D-mannitol, erythritol, and sorbitol, sugars such as lactose and maltose, inorganic salts such as calcium hydrogen phosphate, and celluloses. Examples of the disintegrant include crospovidone, low-substituted hydroxypropylcellulose, croscarmellose sodium, carmellose calcium, carmellose, sodium starch glycolate, partially pregelatinized starch, and starch. Binders include starch-based binders such as corn starch, potato starch, wheat starch, dextrin, partially pregelatinized starch, pregelatinized starch, and water-soluble synthetic polymers such as hydroxypropylcellulose, hypromellose, povidone, copolyvidone, and polyvinyl alcohol. Illustrated. Examples of the lubricant include magnesium stearate, sodium stearyl fumarate, calcium stearate, talc, and sucrose fatty acid ester. In addition, a fluidizing agent, a sweetening agent, a corrigent, a coloring agent, a coating agent, a fragrance and the like can be blended as necessary.

口腔内崩壊錠の製造方法は、特に限定されるものではないが、薬物と賦形剤、崩壊剤等を流動層造粒機、撹拌造粒機、乾式造粒機などの一般的造粒装置を用いて造粒する方法が例示される。この中で、好ましくは流動層造粒法が挙げられる。造粒によって得た顆粒に滑沢剤を混合し、打錠機を用いて打錠すれば、普通錠と同様の方法で簡便に口腔内崩壊錠を得ることができる。   The method for producing an orally disintegrating tablet is not particularly limited, but a general granulating apparatus such as a fluidized bed granulator, a stirrer granulator, a dry granulator, etc. containing a drug and an excipient, a disintegrant, etc. An example is a method of granulating using a slag. Among these, a fluidized bed granulation method is preferable. If a lubricant is mixed with granules obtained by granulation and tableting is performed using a tableting machine, an orally disintegrating tablet can be easily obtained in the same manner as ordinary tablets.

本発明の好適な実施形態の例を以下に説明するが、本発明は例示の条件に限定されるものではない。   Examples of preferred embodiments of the present invention will be described below, but the present invention is not limited to the exemplified conditions.

比較例1〜2:過酸化物含量の異なるクロスポビドンの比較
特許文献3には、過酸化物含量が80ppm以下のクロスポビドンを用いると4’−N−オキシド体(類縁物質C)の生成が抑制されることが開示されている。包装形態の比較に先立ち、クロスポビドン中の過酸化物含量の影響を調査するため、過酸化物含量規格が400ppm以下であるポリプラスドン(登録商標)XL−10(ISP製、用いたロットの過酸化物含量試験成績書値は89ppm)と、同規格が50ppm以下であるポリプラスドンULTRA10(同、16ppm)を比較した。
表1に示す処方に従い、D−マンニトール(三菱商事フードテック製、マンニットP)2479g、軽質無水ケイ酸(日本アエロジル製、アエロジル(登録商標)200)63.4g、炭酸マグネシウム(協和化学工業製、炭酸マグネシウム)99.0gを混合後、ピンミル(ホソカワミクロン製、ファインインパクトミル100UPZ)で14000回転にて粉砕した。この粉砕品を373.5g採り、低置換度ヒドロキシプロピルセルロース(信越化学工業製、L−HPC(登録商標)LH22)31.9g、クロスポビドン(ISP製、ポリプラスドンXL−10:比較例1またはULTRA10:比較例2)14.0g及びオランザピン14.0gを混合したのち、流動層造粒機(パウレック製、MP−01)に投入した。これに、精製水793.1gにトウモロコシデンプン(日澱化学製、トウモロコシデンプンST−C)24.6g、ショ糖脂肪酸エステル(第一工業製薬製、DKエステルSS)0.38g及びL−アルギニン(和光純薬工業製、試薬特級)1.9gを分散し、加熱して得た液242.7gを噴霧して造粒した。得られた顆粒にステアリン酸マグネシウム(日油製、ステアリン酸マグネシウムS)を混合後、ロータリー式打錠機(菊水製作所製、VIRG0518SS2AZ)で打錠して製剤を得た。錠剤は1錠中にオランザピンを5mg含み、質量を160mg、形状はφ8.0mm、9.5Rとした。
Comparative Examples 1 and 2: Comparison of crospovidone having different peroxide contents According to Patent Document 3, when crospovidone having a peroxide content of 80 ppm or less is used, a 4'-N-oxide (related substance C) is produced. It is disclosed that it is suppressed. Prior to the comparison of the packaging forms, in order to investigate the influence of the peroxide content in crospovidone, polyplastidone (registered trademark) XL-10 (produced by ISP, with a peroxide content standard of 400 ppm or less) Peroxide content test report value was 89 ppm), and polyplastidone ULTRA10 (same as 16 ppm) whose same standard is 50 ppm or less was compared.
In accordance with the formulation shown in Table 1, 2479 g of D-mannitol (manufactured by Mitsubishi Corporation Foodtech, Mannit P), 63.4 g of light anhydrous silicic acid (manufactured by Nippon Aerosil, Aerosil (registered trademark) 200), magnesium carbonate (manufactured by Kyowa Chemical Industry) After mixing 99.0 g of magnesium carbonate, the mixture was pulverized with a pin mill (manufactured by Hosokawa Micron Corporation, Fine Impact Mill 100 UPZ) at 14,000 rotations. 373.5 g of this pulverized product was taken, 31.9 g of low-substituted hydroxypropylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., L-HPC (registered trademark) LH22), crospovidone (manufactured by ISP, polyplastidone XL-10: Comparative Example 1 Alternatively, ULTRA10: Comparative Example 2) 14.0 g and Olanzapine 14.0 g were mixed and then charged into a fluid bed granulator (manufactured by Paulek, MP-01). To this, 793.1 g of purified water, 24.6 g of corn starch (manufactured by Nippon Star Chemical Co., Ltd., corn starch ST-C), 0.38 g of sucrose fatty acid ester (Daiichi Kogyo Seiyaku Co., Ltd., DK Ester SS) and L-arginine ( 1.9 g (manufactured by Wako Pure Chemical Industries, special grade of reagent) was dispersed and granulated by spraying 242.7 g of a liquid obtained by heating. Magnesium stearate (manufactured by NOF Co., Ltd., magnesium stearate S) was mixed with the obtained granules, and tableted with a rotary tableting machine (manufactured by Kikusui Seisakusho, VIRG0518SS2AZ) to obtain a preparation. The tablet contained 5 mg of olanzapine in one tablet, the mass was 160 mg, and the shape was φ8.0 mm, 9.5R.

得られた製剤を高密度ポリエチレン(HDPE)製容器に100錠充填したのち、40℃75%RHの恒温恒湿器に気密(1gのアロフェン製乾燥剤付蓋)及び開放(蓋なし)で保存し、一定期間後に取り出して以下に示す高速液体クロマトグラフィ(HPLC)条件で類縁物質総量を測定した。その結果、図1に示すように類縁物質総量の増加は過酸化物含量の少ないホリプラスドンULTRA10を用いた比較例2が小さく、開放条件で顕著な差が認められた。この差は図2に示す類縁物質C量に依存しており、クロスポビドン中の過酸化物含量が類縁物質Cの増加抑制に影響することが確認された。一方、図3及び図4に示す通り、ポリプラスドンULTRA10に類縁物質Bやチオラクタム体を抑制する効果は全くなかった。
以降の比較試験は、特に記載しない限り、クロスポビドンはポリプラスドンULTRA10を用いた。
(HPLCによる類縁物質測定条件)
装置:LC−2010CHT(島津製作所)
検出器:紫外吸光光度計(220nm)
カラム:オクチルジイソプロピルシリル化シリカゲル
カラム温度:35℃
移動相:30mMドデシル硫酸ナトリウム水溶液にリン酸3.3mLを加え、25%(w/v)水酸化ナトリウム水溶液でpHを2.5に調整し、1Lとする(A液)。A液520mLにアセトニトリル480mLを混合し、B液とする。また、A液300mLにアセトニトリル700mLを混合し、C液とする。B液とC液を以下の時間で濃度勾配制御する。
時間(分) 移動相B液 移動相C液
0〜20 100→0 0→100
20〜25 0 100
25〜27 0→100 100→0
27〜35 100 0
流量:約1.5mL/分(オランザピンの保持時間を約13分に調整する)
注入量:20μL
After filling 100 tablets of the obtained preparation into a container made of high-density polyethylene (HDPE), it is stored in a thermo-hygrostat at 40 ° C. and 75% RH in an airtight manner (1 g of allophane lid with desiccant) and opened (without lid). Then, it was taken out after a certain period and the total amount of related substances was measured under the following high performance liquid chromatography (HPLC) conditions. As a result, as shown in FIG. 1, the increase in the total amount of the related substances was small in Comparative Example 2 using poliplastidone ULTRA10 having a low peroxide content, and a significant difference was observed under the open conditions. This difference depends on the amount of related substance C shown in FIG. 2, and it was confirmed that the peroxide content in crospovidone affects the increase in the related substance C. On the other hand, as shown in FIGS. 3 and 4, polyplastidone ULTRA10 had no effect of suppressing the related substance B or thiolactam body.
In the subsequent comparative tests, polyplastidone ULTRA10 was used as the crospovidone unless otherwise specified.
(Related substances measurement conditions by HPLC)
Equipment: LC-2010CHT (Shimadzu Corporation)
Detector: UV absorption photometer (220nm)
Column: Octyl diisopropylsilylated silica gel Column temperature: 35 ° C
Mobile phase: 3.3 mL of phosphoric acid is added to a 30 mM sodium dodecyl sulfate aqueous solution, and the pH is adjusted to 2.5 with a 25% (w / v) aqueous sodium hydroxide solution to 1 L (solution A). Mix 520 mL of acetonitrile with 520 mL of A solution to make B solution. Moreover, 700 mL of acetonitrile is mixed with 300 mL of A solution to prepare C solution. Concentration control is performed for the B liquid and the C liquid at the following times.
Time (minutes) Mobile phase B liquid Mobile phase C liquid 0-20 100 → 0 0 → 100
20-25 0 100
25-27 0 → 100 100 → 0
27-35 100 0
Flow rate: About 1.5 mL / min (Adjust olanzapine retention time to about 13 minutes)
Injection volume: 20 μL

比較例3〜8:開放状態、瓶包装気密で乾燥剤なし、あるいは乾燥剤を封入した例
瓶包装において、各種乾燥剤の安定化効果を開放条件と比較調査した。
表2に示す処方に従い、D−マンニトール12470g、軽質無水ケイ酸321.3g、炭酸マグネシウム502gを混合後、整粒機(パウレック製、クアドロコーミル197S)で解砕した。この解砕品13240gに低置換度ヒドロキシプロピルセルロース1200g、クロスポビドン480g及びオランザピン500gを混合して流動層造粒機(フロイント産業製、NFLO−15SJ)に投入した。これを、精製水8307.6gにトウモロコシデンプン258g、L−アルギニン(味の素製、L−アルギニン)21.5g、ショ糖脂肪酸エステル4.3g、及び食用黄色4号(三栄源エフ・エフ・アイ製、食用黄色4号)8.6gを分散し、加熱して得た液8000gを噴霧して造粒した。得られた造粒品15376gをV型混合機(ツカサ工業製、PM−V−70−S)に投入し、ステアリン酸マグネシウム313.6gを混合後、ロータリー式打錠機で打錠して製剤を得た。
Comparative Example 3-8: open, without desiccant bottle packaging airtight, or in the example bottle packaging enclosing the desiccant, the stabilizing effect of various drying agents compared investigation and open conditions.
According to the formulation shown in Table 2, 12470 g of D-mannitol, 321.3 g of light anhydrous silicic acid, and 502 g of magnesium carbonate were mixed, and then crushed with a granulator (Paulec, Quadrocomil 197S). 1200 g of low-substituted hydroxypropylcellulose, 480 g of crospovidone and 500 g of olanzapine were mixed with 13240 g of this pulverized product, and the mixture was put into a fluidized bed granulator (manufactured by Freund Sangyo Co., Ltd., NFLO-15SJ). This was purified from 8307.6 g of purified water, 258 g of corn starch, 21.5 g of L-arginine (Ajinomoto, L-arginine), 4.3 g of sucrose fatty acid ester, and edible yellow No. 4 (manufactured by Saneigen FFI Corporation) , Edible Yellow No. 4) 8.6 g was dispersed and heated to spray 8000 g of the liquid, and granulated. 15376 g of the obtained granulated product is put into a V-type mixer (manufactured by Tsukasa Kogyo Co., Ltd., PM-V-70-S), mixed with 313.6 g of magnesium stearate, and then tableted with a rotary tableting machine to prepare a formulation. Got.

得られた製剤をHDPE製容器に100錠充填したのち、比較例3:開放(蓋なし)、蓋を締めた気密として比較例4:乾燥剤なし、比較例5:活性炭入りシリカゲル(ドライヤーン(登録商標)DO)0.75g、比較例6:アロフェン1g、比較例7:合成ゼオライト2.5g、比較例8:アイディ(登録商標)PK(蓋組込み)を各1個同封し、25℃60%RH並びに40℃75%RHの恒温恒湿器に保存した。これらを一定期間後に取り出して、類縁物質を測定した。
測定の結果、図5に示すように、25℃60%RHでは各乾燥剤の有無は安定性にほとんど影響せず、比較例7(合成ゼオライト)はむしろ類縁物質総量の増加が多かった。図6に示すように、合成ゼオライトは類縁物質C及びチオラクタム体の増加が多く、これに伴って総量が多くなった。なお、チオラクタム体は図4でも示した通り湿度暴露下では増加せず、むしろ減少するのに対し、乾燥剤同封では維持または増加することが分かった。合成ゼオライトは水分除去力が強いことから、水によるチオラクタム体の二次的な分解を阻害し、蓄積させていると考えられた。
一方、40℃75%RHでは開放及び各乾燥剤に大きな差は認められなかった。個々の類縁物質量は、開放状態では水分の影響で生じる類縁物質Bの増加が大きかったものの、気密にするだけで増加は抑制されており、乾燥剤を用いても更なる抑制効果は認められなかった。類縁物質Cについても、乾燥剤で増加が抑制されることはなかった。
これらの結果から、医薬品の一般的包装形態である気密状態では、乾燥剤を使用しても類縁物質の増加抑制は期待できないことが判明した。
After filling the obtained formulation into 100 HDPE containers, Comparative Example 3: Open (without lid), Airtight with lid closed, Comparative Example 4: No desiccant, Comparative Example 5: Silica gel with activated carbon (Dryane ( (Registered Trademark) DO) 0.75 g, Comparative Example 6: Allophane 1 g, Comparative Example 7: Synthetic Zeolite 2.5 g, Comparative Example 8: IDI (registered trademark) PK (incorporated with a lid) one each, enclosed at 25 ° C. 60 And stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH. These were taken out after a certain period and the related substances were measured.
As a result of the measurement, as shown in FIG. 5, the presence or absence of each desiccant hardly affected the stability at 25 ° C. and 60% RH, and Comparative Example 7 (synthetic zeolite) rather increased the total amount of related substances. As shown in FIG. 6, the synthetic zeolite had a large increase in related substances C and thiolactam bodies, and the total amount increased accordingly. In addition, it was found that the thiolactam body does not increase under humidity exposure as shown in FIG. 4, but rather decreases, whereas it maintains or increases when the desiccant is enclosed. Synthetic zeolite has a strong ability to remove water, so it was thought that the secondary decomposition of thiolactam by water was inhibited and accumulated.
On the other hand, at 40 ° C. and 75% RH, no significant difference was found between the opening and each desiccant. In the open state, the amount of each related substance was greatly increased due to the influence of moisture, but the increase was suppressed only by airtightness. Even if a desiccant was used, a further inhibitory effect was observed. There wasn't. Regarding the related substance C, the increase was not suppressed by the desiccant.
From these results, it was found that, in an airtight state, which is a general packaging form of pharmaceuticals, it is not possible to expect an increase in the related substances even if a desiccant is used.

実施例1、比較例9〜11:瓶包装で脱酸素機能付き乾燥剤を使用した例
瓶包装において、乾燥剤と脱酸素機能付き乾燥剤の安定化効果を比較した。
表3に示す処方に従い、D−マンニトール12470g、軽質無水ケイ酸301.2g、炭酸マグネシウム502gを混合後、整粒機で解砕した。この解砕品13220gに低置換度ヒドロキシプロピルセルロース1200g、クロスポビドン480g及びオランザピン500gを混合して流動層造粒機に投入した。これを、精製水8286gにトウモロコシデンプン258g、L−アルギニン43g、ショ糖脂肪酸エステル4.3g、及び食用黄色4号8.6gを分散し、加熱して得た液8000gを噴霧して造粒した。得られた造粒品15542gをV型混合機に投入し、ステアリン酸マグネシウム316.9gを混合後、ロータリー式打錠機で打錠して製剤を得た。
Example 1, Comparative Example 9-11 In the example bottles packaged using deoxygenated function desiccant bottle packaging, to compare the stabilizing effect of the desiccant and oxygen function desiccant.
In accordance with the formulation shown in Table 3, 12470 g of D-mannitol, 301.2 g of light anhydrous silicic acid, and 502 g of magnesium carbonate were mixed and then pulverized with a granulator. 1200 g of low-substituted hydroxypropylcellulose, 480 g of crospovidone and 500 g of olanzapine were mixed with 13220 g of this pulverized product and put into a fluidized bed granulator. In this, 258 g of corn starch, 43 g of L-arginine, 4.3 g of sucrose fatty acid ester, and 8.6 g of edible yellow No. 4 were dispersed in 8286 g of purified water, and 8000 g of the liquid obtained by heating was sprayed and granulated. . 15542 g of the resulting granulated product was put into a V-type mixer, mixed with 316.9 g of magnesium stearate, and then tableted with a rotary tableting machine to obtain a preparation.

得られた製剤をHDPE製容器に100錠充填したのち、実施例1として脱酸素機能付き乾燥剤(三菱ガス化学製、ファーマキープKD−10S)、比較例9として乾燥剤のアロフェン1gを、さらに比較例10としてアロフェン2gを同封して蓋を締めた。また、比較例11として蓋なしの開放を用意し、25℃60%RH及び40℃75%RHの恒温恒湿器に保存した(比較例11は40℃のみ)のち、一定期間後に取り出して類縁物質を測定した。その結果、脱酸素機能付き乾燥剤を用いた実施例1では、図7に示した通りいずれの条件においても明らかに類縁物質総量の増加が抑制された。図8には個々の類縁物質の推移を示した。チオラクタム体は、乾燥剤を同封した比較例9及び10は増加傾向にあり、乾燥剤量の多い比較例10の方が増加したのに対し、実施例1ではほとんど増加しなかった。ラクタム体も、比較例9及び10は増加したのに対して、実施例1は開放と同じくほとんど増加せずに推移した。さらに類縁物質Cの増加も、比較例9及び10に比べて実施例1は明らかに抑制されており、類縁物質Bは乾燥剤と同等程度に抑制された。   After filling the obtained formulation with 100 tablets in a container made of HDPE, as Example 1, a desiccant with a deoxygenating function (manufactured by Mitsubishi Gas Chemical, Pharmakeep KD-10S), as Comparative Example 9, 1 g of allophane as a desiccant, As Comparative Example 10, 2 g of allophane was enclosed and the lid was tightened. In addition, as a comparative example 11, an opening without a lid was prepared and stored in a constant temperature and humidity chamber at 25 ° C. and 60% RH and 40 ° C. and 75% RH (comparative example 11 is only 40 ° C.) and then taken out after a certain period of time. The substance was measured. As a result, in Example 1 using the desiccant with a deoxygenating function, an increase in the total amount of related substances was clearly suppressed under any conditions as shown in FIG. FIG. 8 shows the transition of individual related substances. The thiolactam body showed an increasing tendency in Comparative Examples 9 and 10 in which the desiccant was enclosed, and increased in Comparative Example 10 having a larger amount of desiccant, whereas it hardly increased in Example 1. The lactam body also increased in Comparative Examples 9 and 10, whereas Example 1 remained almost unchanged as in the case of opening. Furthermore, the increase in the related substance C was clearly suppressed in Example 1 as compared with Comparative Examples 9 and 10, and the related substance B was suppressed to the same extent as the desiccant.

実施例2、比較例12〜16:PTPで脱酸素機能付き乾燥剤を使用した例
PTP包装において、乾燥剤と脱酸素機能付き乾燥剤の安定化効果を比較した。
表3に示す処方の製剤をポリプロピレン製PTPに包装したのち、比較例12としてPTP単独(アルミピローなし)、以降は比較例13として乾燥剤なし、比較例14としてシリカゲル2.5g、比較例15として合成ゼオライト1g、比較例16としてアイディシート(30×70mm)と共にアルミピロー包装したもの、さらに実施例2として脱酸素機能付き乾燥剤(三菱ガス化学製、ファーマキープKD−20)と共にアルミピロー包装したものを用意し、25℃60%RH及び40℃75%RHの恒温恒湿器に保存して、一定期間後に取り出して類縁物質を測定した。その結果、図9に示すようにPTP単独と比べてアルミピロー包装を施すことで類縁物質の増加は抑制されたが、各種乾燥剤を同封した比較例14〜16は、乾燥剤を同封しなかった比較例13とほぼ同じ値であった。すなわち、瓶包装と同様にPTPのアルミピロー包装においても、乾燥剤には類縁物質の増加を抑制する効果が認められなかった。一方で、実施例2のみは各比較例と比べて明らかに類縁物質の増加が抑制されており、脱酸素機能付き乾燥剤には顕著な安定化効果が認められた。
Example 2, Comparative Examples 12 to 16: Examples using PTP desiccant with deoxygenation function In PTP packaging, the stabilizing effects of desiccant and desiccant with deoxygenation function were compared.
After packaging the preparations shown in Table 3 in polypropylene PTP, PTP alone (no aluminum pillow) was used as Comparative Example 12; thereafter, there was no desiccant as Comparative Example 13, 2.5 g of silica gel as Comparative Example 14, and Comparative Example 15 1 g of synthetic zeolite, aluminum pillow package with ID sheet (30 × 70 mm) as comparative example 16, and aluminum pillow package with desiccant with deoxidation function (manufactured by Mitsubishi Gas Chemical, Pharmakeep KD-20) as example 2. The prepared material was prepared and stored in a constant temperature and humidity chamber at 25 ° C. and 60% RH and 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured. As a result, as shown in FIG. 9, the increase in related substances was suppressed by applying aluminum pillow packaging as compared with PTP alone, but Comparative Examples 14 to 16 enclosing various desiccants did not enclose the desiccant. The values were almost the same as those of Comparative Example 13. That is, in the case of PTP aluminum pillow packaging as well as bottle packaging, the desiccant did not have the effect of suppressing the increase of related substances. On the other hand, only in Example 2, the increase in related substances was clearly suppressed as compared with each Comparative Example, and a remarkable stabilizing effect was recognized in the desiccant with a deoxygenating function.

実施例3、比較例17〜20:脱酸素剤と乾燥剤を併用した例
瓶包装において、脱酸素機能付き乾燥剤に加え、比較として脱酸素剤と乾燥剤を併用したほか、脱酸素剤及び乾燥剤をそれぞれ単独で用いた。
表3に示す処方の製剤をHDPE製容器に100錠充填したのち、実施例3として脱酸素機能付き乾燥剤(三菱ガス化学製、ファーマキープCD−1G)、比較例17として合成ゼオライト1g、比較例18として脱酸素剤(三菱ガス化学製、T−10N:鉄の酸化機構を利用したもの)を各1個入れ、比較例19としては脱酸素剤と合成ゼオライトを1個ずつ併用し、蓋を締めて気密とした。また、比較例20として蓋なしの開放を用意した。これらを40℃75%RHの恒温恒湿器に保存して、一定期間後に取り出して類縁物質を測定した。
個々及び類縁物質の総量を図10に示した。比較例17の合成ゼオライトは類縁物質Bを顕著に抑制したが、類縁物質C及びチオラクタム体の増加が多く、類縁物質総量は比較例20の開放に次いで多かった。比較例18の脱酸素剤は、比較例17とは逆に類縁物質Cとチオラクタム体の抑制に有効であったが、水分に起因する類縁物質Bは増加傾向にあった。脱酸素剤と合成ゼオライトを併用した比較例19の類縁物質挙動は合成ゼオライトに近く、脱酸素剤に比べて類縁物質Cとチオラクタム体が増加した。一方で、脱酸素機能付き乾燥剤を用いた実施例3は類縁物質Cとチオラクタム体を中心に全体を抑制した結果、類縁物質総量を最も抑制した。
Example 3, Comparative Example 17 to 20: In combination with Example bottle wrapped with deoxidant drying agent, in addition to the oxygen function desiccant, in addition to a combination of oxygen scavenger and drying agent as a comparative, oxygen scavenger and Each desiccant was used alone.
After filling the HDPE container with 100 tablets of the formulation shown in Table 3, Example 3 as a desiccant with deoxygenating function (manufactured by Mitsubishi Gas Chemical, Pharmakeep CD-1G), as Comparative Example 17 1 g of synthetic zeolite, As Example 18, one oxygen scavenger (Mitsubishi Gas Chemical Co., Ltd., T-10N: using iron oxidation mechanism) was put in each, and as Comparative Example 19, one oxygen scavenger and one synthetic zeolite were used together, and the lid Tightened to make it airtight. As Comparative Example 20, an opening without a lid was prepared. These were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured.
The total amount of individual and related substances is shown in FIG. The synthetic zeolite of Comparative Example 17 markedly suppressed the related substance B, but there were many increases in related substance C and thiolactam bodies, and the total amount of related substances was the second largest after the opening of Comparative Example 20. In contrast to Comparative Example 17, the oxygen scavenger of Comparative Example 18 was effective in suppressing related substance C and thiolactam, but related substance B due to moisture tended to increase. The behavior of the related substance of Comparative Example 19 in which the oxygen scavenger and the synthetic zeolite were used in combination was close to that of the synthetic zeolite, and the related substance C and the thiolactam body increased compared to the oxygen scavenger. On the other hand, Example 3 using the desiccant with a deoxygenating function suppressed the whole related substance C and the thiolactam body as a whole, and as a result, suppressed the related substance total amount most.

実施例4〜5:瓶包装で脱酸素機能付き乾燥剤に乾燥剤を併用した例
表3と同じ処方及び製法で得られた製剤をHDPE製容器に100錠充填したのち、実施例4として脱酸素機能付き乾燥剤(ファーマキープ(登録商標)CD−1G)、実施例5として脱酸素機能付き乾燥剤と乾燥剤のアロフェン1gを併用し、蓋を締めて25℃60%RHの恒温恒湿器に保存した。これらを一定期間後に取り出して、類縁物質を測定した。
類縁物質総量を図11に示した。実施例4の脱酸素機能付き乾燥剤はこれまでの比較例に比べて類縁物質の増加を抑制しているが、さらにアロフェンを併用した実施例5は類縁物質がほとんど増加しておらず、極めて高い安定化効果を示した。
Examples 4 to 5: Examples of using desiccant in combination with desiccant with deoxygenation function in bottle packaging After filling 100 tablets of HDPE containers with the same formulation and production method as in Table 3, removal as Example 4 Desiccant with oxygen function (Pharmakeep (registered trademark) CD-1G), as Example 5, 1 g of desiccant with deoxygenation function and 1 g of allophane desiccant were used together, the lid was closed, and constant temperature and humidity at 25 ° C. and 60% RH Stored in a container. These were taken out after a certain period and the related substances were measured.
The total amount of related substances is shown in FIG. The desiccant with a deoxygenating function of Example 4 suppressed the increase of related substances as compared with the comparative examples so far, but Example 5 combined with allophane further did not increase the related substances very much. High stabilization effect was shown.

比較例21〜23、実施例6:結晶セルロース配合製剤で安定性を比較した例
表1〜3とは異なる成分を含む製剤での安定性を調査するため、結晶セルロースを配合した製剤を用い、乾燥剤による安定化効果を比較した。
表4に処方を示す比較例21〜23及び実施例6の製剤は、D−マンニトール693.8g及び結晶セルロース(旭化成ケミカルズ製、セオラス(登録商標)UF711)94.1gを混合後、JP30号ふるいで篩過したのち372.4gを秤量し、これにオランザピン14.0g、低置換度ヒドロキシプロピルセルロース31.9g、クロスポビドン(ポリプラスドンXL−10)14.0gを混合して流動層造粒機に投入した。これに、精製水543.2gにトウモロコシデンプン16.8gを分散し、加熱して得た糊液242.7gを噴霧して造粒した。この造粒品395.0gにステアリン酸マグネシウム5.0gを混合後、ロータリー式打錠機で打錠して得た。
Comparative Examples 21 to 23, Example 6: Example in which stability was compared with crystalline cellulose compounded formulation In order to investigate the stability in a formulation containing components different from Tables 1 to 3, a formulation formulated with crystalline cellulose was used, The stabilization effect by the desiccant was compared.
The formulations of Comparative Examples 21 to 23 and Example 6 shown in Table 4 were prepared by mixing 693.8 g of D-mannitol and 94.1 g of crystalline cellulose (Asahi Kasei Chemicals, Theolas (registered trademark) UF711). After sieving, 372.4 g was weighed and mixed with 14.0 g of olanzapine, 31.9 g of low-substituted hydroxypropylcellulose and 14.0 g of crospovidone (Polyplastidone XL-10), and fluidized bed granulation. I put it in the machine. To this, 16.8 g of corn starch was dispersed in 543.2 g of purified water, and 242.7 g of a paste obtained by heating was sprayed and granulated. This granulated product (395.0 g) was mixed with 5.0 g of magnesium stearate and then tableted with a rotary tableting machine.

得られた製剤をHDPE製容器に100錠充填したのち、比較例21:開放(蓋なし)、蓋を締めた気密として比較例22:乾燥剤なし、比較例23として乾燥剤のアロフェン1g、実施例6として脱酸素機能付き乾燥剤のファーマキープCD−1Gを各1個入れた。これらを40℃75%RHの恒温恒湿器に保存し、一定期間後に取り出して類縁物質を測定した。
類縁物質総量を図12に示した。類縁物質の増加程度は、比較例21の開放条件では表1〜3までの処方よりも大きかったが、乾燥剤なしの比較例22とアロフェン同封の比較例23では同程度に抑制され、脱酸素機能付き乾燥剤を用いた実施例6はさらに抑制効果が高かった。
After filling 100 tablets of the obtained preparation into a container made of HDPE, Comparative Example 21: Open (without lid), Airtight with the lid closed, Comparative Example 22: No desiccant, 1 g of desiccant allophane as Comparative Example 23 As Example 6, one pharmakeep CD-1G, a desiccant with a deoxygenating function, was added. These were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured.
The total amount of related substances is shown in FIG. The increase in the related substances was larger than the prescriptions shown in Tables 1 to 3 under the open conditions of Comparative Example 21, but was suppressed to the same extent in Comparative Example 22 without desiccant and Comparative Example 23 with allophane enclosed, and deoxygenated. Example 6 using a desiccant with a function had a higher inhibitory effect.

比較例24〜26、実施例7:結晶セルロース・カルメロースナトリウム配合製剤で安定性を比較した例
処方の影響を調査するため、結晶セルロース・カルメロースナトリウムを配合した製剤を用い、乾燥剤による安定化効果を比較した。
比較例24〜26及び実施例7は、表5の通り、比較例21〜23及び実施例6と比べ結晶セルロースを結晶セルロース・カルメロースナトリウム(旭化成ケミカルズ製、セオラスRC-A591NF)に替えた以外は同じ処方及び製法で製剤を得た。
Comparative Examples 24-26, Example 7: Comparative Example of Stability Comparison with Crystalline Cellulose / Carmellose Sodium Formulation Formulation In order to investigate the effect of the formulation, a formulation containing crystalline cellulose / carmellose sodium was used, and stability with a desiccant was used. We compared the effects.
Comparative Examples 24-26 and Example 7 were as shown in Table 5, except that the crystalline cellulose was replaced with crystalline cellulose / carmellose sodium (Theoras RC-A591NF, manufactured by Asahi Kasei Chemicals) as compared with Comparative Examples 21-23 and Example 6. Obtained a preparation with the same formulation and manufacturing method.

得られた製剤をHDPE製容器に100錠充填したのち、比較例24:開放(蓋なし)、蓋を締めた気密として比較例25:乾燥剤なし、比較例26として乾燥剤のアロフェン1g、実施例7として脱酸素機能付き乾燥剤のファーマキープCD−1Gを各1個入れた。これらを40℃75%RHの恒温恒湿器に保存し、一定期間後に取り出して類縁物質を測定した。
類縁物質総量を図13に示した。類縁物質の増加程度は、比較例24の開放条件では表1〜3までの処方よりも大きかったが、乾燥剤なしの比較例25とアロフェン同封の比較例26は同程度に抑制し、脱酸素機能付き乾燥剤を用いた実施例7はさらに抑制する効果が高かった。
After filling 100 tablets of the obtained preparation into a container made of HDPE, Comparative Example 24: Open (no lid), Airtight with the lid closed, Comparative Example 25: No desiccant, 1 g of desiccant allophane as Comparative Example 26 As Example 7, one pharmakeep CD-1G, a desiccant with a deoxygenating function, was added. These were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured.
The total amount of related substances is shown in FIG. The increase in the related substances was larger than the prescriptions shown in Tables 1 to 3 under the open conditions of Comparative Example 24, but Comparative Example 25 without desiccant and Comparative Example 26 with allophane were suppressed to the same extent, and deoxygenation. Example 7 using a desiccant with a function had a higher inhibitory effect.

比較例27〜29、実施例8:ケイ酸アルミニウム配合製剤で安定性を比較した例
処方の影響を調査するため、ケイ酸アルミニウムを配合した製剤を用い、乾燥剤による安定化効果を比較した。
表6に処方を示す比較例27〜29及び実施例8の製剤は、D−マンニトール769.1g及びケイ酸アルミニウム(和光純薬工業製、試薬)18.8gを混合後、JP30号ふるいで篩過したのち375.2gを秤量し、これにオランザピン14.0g、低置換度ヒドロキシプロピルセルロース31.9g、クロスポビドン(ポリプラスドンXL−10)14.0gを混合して流動層造粒機に投入した。これに、精製水543.2gにトウモロコシデンプン16.8gを分散し、加熱して得た糊液242.7gを噴霧して造粒した。この造粒品395.0gにステアリン酸マグネシウム5.0gを混合後、ロータリー式打錠機で打錠して得た。
Comparative Examples 27-29, Example 8: Examples in which stability was compared with a preparation containing aluminum silicate In order to investigate the influence of the preparation, a preparation containing aluminum silicate was used, and the stabilizing effect of the desiccant was compared.
The preparations of Comparative Examples 27 to 29 and Example 8 shown in Table 6 were mixed with 769.1 g of D-mannitol and 18.8 g of aluminum silicate (manufactured by Wako Pure Chemical Industries, Ltd.), and then sieved with JP 30 sieve. After that, 375.2 g was weighed, and 14.0 g of olanzapine, 31.9 g of low-substituted hydroxypropylcellulose, and 14.0 g of crospovidone (Polyplastidone XL-10) were mixed into the fluidized bed granulator. I put it in. To this, 16.8 g of corn starch was dispersed in 543.2 g of purified water, and 242.7 g of a paste obtained by heating was sprayed and granulated. This granulated product (395.0 g) was mixed with 5.0 g of magnesium stearate and then tableted with a rotary tableting machine.

得られた製剤をHDPE製容器に100錠充填したのち、比較例27:開放(蓋なし)、蓋を締めた気密として比較例28:乾燥剤なし、比較例29として乾燥剤のアロフェン1g、実施例8として脱酸素機能付き乾燥剤のファーマキープCD−1Gを各1個入れた。これらを40℃75%RHの恒温恒湿器に保存し、一定期間後に取り出して類縁物質を測定した。
類縁物質総量を図14に示した。類縁物質の増加程度は、比較例27の開放条件では表1〜3までの処方と比べて極めて大きいのに対し、アロフェン同封の比較例23と乾燥剤なしの比較例22は同程度に抑制され、脱酸素機能付き乾燥剤を用いた実施例6は最も抑制した。
After filling 100 tablets of the obtained preparation into a container made of HDPE, Comparative Example 27: Open (no lid), Airtight with the lid closed, Comparative Example 28: No desiccant, 1 g of desiccant allophane as Comparative Example 29 In Example 8, one pharmakeep CD-1G, a desiccant with a deoxygenating function, was added. These were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured.
The total amount of related substances is shown in FIG. The increase in the related substances is extremely large in the open condition of Comparative Example 27 as compared to the formulations shown in Tables 1 to 3, whereas Comparative Example 23 with allophane enclosed and Comparative Example 22 without desiccant are suppressed to the same extent. Example 6 using a desiccant with a deoxygenating function was most suppressed.

比較例30〜32、実施例9:タルク配合製剤で安定性を比較した例
処方の影響を調査するため、タルクを配合した製剤を用い、乾燥剤による安定化効果を比較した。
比較例30〜32及び実施例9は、表7の通り、比較例27〜29及び実施例8と比べケイ酸アルミニウムをタルク(松村産業製、ハイ・フィラー(登録商標)♯17)に替えた以外は同じ処方及び製法で製剤を得た。
Comparative Examples 30 to 32, Example 9: Examples in which stability was compared with a talc formulation In order to investigate the influence of the formulation, a formulation blended with talc was used, and the stabilization effect by the desiccant was compared.
In Comparative Examples 30 to 32 and Example 9, as shown in Table 7, aluminum silicate was replaced with talc (manufactured by Matsumura Sangyo, High Filler (registered trademark) # 17) as compared with Comparative Examples 27 to 29 and Example 8. Except for the above, a preparation was obtained by the same formulation and production method.

得られた製剤をHDPE製容器に100錠充填したのち、比較例30:開放(蓋なし)、蓋を締めた気密として比較例31:乾燥剤なし、比較例32として乾燥剤のアロフェン1g、実施例9として脱酸素機能付き乾燥剤のファーマキープCD−1Gを各1個入れた。これらを40℃75%RHの恒温恒湿器に保存し、一定期間後に取り出して類縁物質を測定した。
類縁物質総量を図15に示した。類縁物質の増加程度は、比較例30の開放条件では大きいのに対し、乾燥剤なしの比較例31とアロフェン同封の比較例32は同程度に抑制し、脱酸素機能付き乾燥剤を用いた実施例9はさらに抑制する効果が高かった。
After filling 100 tablets of the obtained preparation into a container made of HDPE, Comparative Example 30: Open (no lid), Airtight with the lid closed, Comparative Example 31: No desiccant, 1 g of desiccant allophane as Comparative Example 32 As Example 9, one pharmakeep CD-1G, a desiccant with a deoxygenating function, was added. These were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, taken out after a certain period of time, and related substances were measured.
The total amount of related substances is shown in FIG. The degree of increase in related substances is large under the open conditions of Comparative Example 30, whereas Comparative Example 31 without a desiccant and Comparative Example 32 with allophane enclosed are suppressed to the same extent, and an experiment using a desiccant with a deoxygenating function is performed. In Example 9, the effect of further suppressing was high.

表4〜7の製剤は、いずれも表1〜3の製剤と比べて類縁物質の増加量が大きかった。気密状態では乾燥剤を使用してもほとんどの製剤で安定性向上に寄与しなかったのに対し、脱酸素機能付き乾燥剤を用いた場合は全ての製剤で類縁物質の増加が最も抑制され、安定な状態を維持できることが確認された。   All of the preparations in Tables 4 to 7 had a large increase in related substances compared to the preparations in Tables 1 to 3. In the airtight state, the use of a desiccant did not contribute to stability improvement in most preparations, whereas when a desiccant with a deoxygenating function was used, the increase in related substances was most suppressed in all preparations. It was confirmed that a stable state can be maintained.

本発明によれば、オランザピン口腔内崩壊錠の包装に脱酸素機能付き乾燥剤を使用することで、オランザピン由来のほとんどの類縁物質の増加を抑制することができ、長期間にわたって安定な品質を維持することができる。   According to the present invention, by using a desiccant with a deoxidizing function in the packaging of olanzapine orally disintegrating tablets, it is possible to suppress an increase in most related substances derived from olanzapine and maintain stable quality over a long period of time. can do.

Claims (3)

有機物の酸化機構を利用した脱酸素機能を有する乾燥剤が封入された包装形態中に保存された、オランザピンの口腔内崩壊錠。   An olanzapine orally disintegrating tablet stored in a packaging form in which a desiccant having a deoxygenating function utilizing an oxidation mechanism of organic substances is enclosed. さらに追加で乾燥剤が封入された請求項1に記載のオランザピンの口腔内崩壊錠。   The olanzapine orally disintegrating tablet according to claim 1, further comprising a desiccant encapsulated. 包装形態がピロー包装または瓶包装である、請求項1〜2に記載のオランザピン口腔内崩壊錠。
The olanzapine orally disintegrating tablet according to claim 1 or 2, wherein the packaging form is pillow packaging or bottle packaging.
JP2014210544A 2014-10-15 2014-10-15 Olanzapine formulation in which stability is improved by packaging Pending JP2016079120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210544A JP2016079120A (en) 2014-10-15 2014-10-15 Olanzapine formulation in which stability is improved by packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210544A JP2016079120A (en) 2014-10-15 2014-10-15 Olanzapine formulation in which stability is improved by packaging

Publications (1)

Publication Number Publication Date
JP2016079120A true JP2016079120A (en) 2016-05-16

Family

ID=55957629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210544A Pending JP2016079120A (en) 2014-10-15 2014-10-15 Olanzapine formulation in which stability is improved by packaging

Country Status (1)

Country Link
JP (1) JP2016079120A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524650A (en) * 2003-04-16 2006-11-02 シントン・ベスローテン・フェンノートシャップ Orally disintegrating tablets
WO2014112531A1 (en) * 2013-01-15 2014-07-24 富士フイルム株式会社 Package for solid preparation including 5-hydroxy-1h-imidazole-4-carboxamide or salt or hydrate thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524650A (en) * 2003-04-16 2006-11-02 シントン・ベスローテン・フェンノートシャップ Orally disintegrating tablets
WO2014112531A1 (en) * 2013-01-15 2014-07-24 富士フイルム株式会社 Package for solid preparation including 5-hydroxy-1h-imidazole-4-carboxamide or salt or hydrate thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARKIVOC, JPN6018017234, 2008, pages 195 - 201, ISSN: 0003928858 *
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 54, no. 4, JPN6018017232, 2011, pages 667 - 673, ISSN: 0003928857 *
PHARM.TECH.JPN., vol. 20, no. 10, JPN6018017237, 2004, pages 2017 - 2024, ISSN: 0003928860 *
PHARMACEUTICAL TECHNOLOGY, vol. 36, no. 4, JPN6018017236, 2012, pages 76 - 86, ISSN: 0003928859 *

Similar Documents

Publication Publication Date Title
US20090281136A1 (en) Prasugrel pharmaceutical formulations
AU2016378482A1 (en) Pharmaceutical composition comprising amorphous lenalidomide and an antioxidant
ES2285205T3 (en) STABLE PHARMACEUTICAL PREPARATION THAT INCLUDES AN AMORFA ACTIVE SUBSTANCE.
JP6072778B2 (en) Compositions containing fusidic acid and packages therefor
KR101461841B1 (en) Pharmaceuticals
JP6168673B2 (en) Arylalkylamine compound-containing pharmaceutical composition
JP2018076372A (en) Anagliptin-containing solid formulation
BRPI0611058A2 (en) and methods for suppressing oxidation of an active ingredient and oxygen permeation of a sugar coated layer, and for producing a sugar coated preparation
WO2020090969A1 (en) Package for medical composition containing anti-tumor agent
US9481652B2 (en) Packaged product of solid preparation containing 5-hydroxy-1H-imidazole-4-carboxamide or salt thereof, or hydrate thereof
JP5823592B2 (en) Formulation with improved stability
MX2012009689A (en) Solid pharmaceutical formulations of ramipril and amlodipine besylate, and their preparation.
KR102427007B1 (en) Solid formulation with improved photostability
JP2016079120A (en) Olanzapine formulation in which stability is improved by packaging
JP6188091B2 (en) Film coating formulation containing a prodrug having a medoxomil group
KR20140001648A (en) Oral dosage form product of clopidogrel hydrogen sulfate with improved stability
JP2016222714A (en) Pharmaceutical
WO2017061621A1 (en) Pharmaceutical composition containing aryl alkyl amine compound
WO2020111089A1 (en) Pharmaceutical composition
JP2020012009A (en) Medicine
CN111944529B (en) Sodium bicarbonate slow release tablet for packaging sodium bicarbonate injection
JP2024023047A (en) Vildagliptin-containing medicines
UA72535C2 (en) Analgesic and antipyretic pharmaceutical composition and method for its manufacture
JP2023070196A (en) Package for suppressing increase in analogs of bisoprolol fumarate-containing oral solid preparation
JP2014034574A (en) Medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181129