JP2016078182A - Grinding method of screw shaft and grinder of screw shaft - Google Patents

Grinding method of screw shaft and grinder of screw shaft Download PDF

Info

Publication number
JP2016078182A
JP2016078182A JP2014213034A JP2014213034A JP2016078182A JP 2016078182 A JP2016078182 A JP 2016078182A JP 2014213034 A JP2014213034 A JP 2014213034A JP 2014213034 A JP2014213034 A JP 2014213034A JP 2016078182 A JP2016078182 A JP 2016078182A
Authority
JP
Japan
Prior art keywords
screw shaft
grinding
amount
contraction
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014213034A
Other languages
Japanese (ja)
Other versions
JP2016078182A5 (en
JP6446992B2 (en
Inventor
池田 裕之
Hiroyuki Ikeda
裕之 池田
裕章 藤代
Hiroaki Fujishiro
裕章 藤代
桑野 孝史
Takashi Kuwano
孝史 桑野
慎吾 松尾
Shingo Matsuo
慎吾 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014213034A priority Critical patent/JP6446992B2/en
Priority to PCT/JP2015/078455 priority patent/WO2016060036A1/en
Priority to TW104133358A priority patent/TW201622856A/en
Publication of JP2016078182A publication Critical patent/JP2016078182A/en
Publication of JP2016078182A5 publication Critical patent/JP2016078182A5/ja
Application granted granted Critical
Publication of JP6446992B2 publication Critical patent/JP6446992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/36Thread cutting; Automatic machines specially designed therefor by grinding
    • B23G1/38Thread cutting; Automatic machines specially designed therefor by grinding with grinding discs guided along the workpiece in accordance with the pitch of the required thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grinding method or the like of a screw shaft which can accurately formed two threads or more of thread grooves.SOLUTION: In a grinding method of a screw shaft which performs grinding by moving the screw shaft 10 contacting with an abrasive wheel 5 to an axial direction by a moving amount while rotating it, in order to form n-threads of thread grooves, the first thread groove is formed by: a first process for detecting an elongation/contraction amount of the screw shaft 10, and correcting the moving amount of the screw shaft 10 on the basis of the detection; a second process for correcting a grinding start position on the basis of the elongation/contraction amount which is detected in the first process; and a third process for performing grinding by moving the screw shaft 10 by the moving amount which is corrected in the first process. The second and subsequent thread grooves are formed by a fourth process for changing the grinding start position by rotating the screw shaft 10 by 360/n, and by the first to third processes.SELECTED DRAWING: Figure 1

Description

本発明は、ねじ軸の研削方法、ねじ軸の研削装置に関する。   The present invention relates to a screw shaft grinding method and a screw shaft grinding apparatus.

従来、ねじ軸を研削してねじ溝を形成するための研削装置として、研削による発熱でねじ軸が伸縮変形しても研削精度を良好に保つことを目的としたものが提案されている(例えば、特許文献1を参照。)。   Conventionally, as a grinding apparatus for grinding a screw shaft to form a screw groove, a device for the purpose of maintaining good grinding accuracy even if the screw shaft expands or contracts due to heat generated by grinding has been proposed (for example, , See Patent Document 1).

特許第3700255号公報Japanese Patent No. 3700255

しかしながら、上述のような従来の研削装置は2条以上のねじ溝を形成することについて考慮されていなかった。   However, the conventional grinding apparatus as described above has not been considered for forming two or more thread grooves.

そこで本発明は上記問題点に鑑みてなされたものであり、2条以上のねじ溝を高精度に形成可能なねじ軸の研削方法及び研削装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide a screw shaft grinding method and a grinding apparatus capable of forming two or more thread grooves with high accuracy.

上記課題を解決するために本発明は、
砥石車に接触させたねじ軸を回転させながら軸方向へ所定の移動量だけ移動させることで研削を行うねじ軸の研削方法において、
n条のねじ溝を形成するために、1条目のねじ溝を、
前記ねじ軸の伸縮量を検出し、前記伸縮量に基づいて前記ねじ軸の移動量を補正する第1工程と、
前記第1工程で検出した前記伸縮量に基づいて研削開始位置を補正する第2工程と、
前記ねじ軸を前記第1工程で補正した移動量だけ移動させて研削を行う第3工程とにより形成し、
2条目以降のねじ溝を、
前記ねじ軸を360/n度だけ回転させて研削開始位置を変更する第4工程と、
前記第1〜3工程とにより形成することを特徴とするねじ軸の研削方法を提供する。
In order to solve the above problems, the present invention
In the grinding method of the screw shaft that performs grinding by moving the screw shaft in contact with the grinding wheel by a predetermined movement amount while rotating the screw shaft,
In order to form an n-thread thread groove,
A first step of detecting an amount of expansion and contraction of the screw shaft, and correcting a movement amount of the screw shaft based on the amount of expansion and contraction;
A second step of correcting the grinding start position based on the amount of expansion / contraction detected in the first step;
A third step of grinding by moving the screw shaft by the movement amount corrected in the first step;
The second and subsequent thread grooves
A fourth step of changing the grinding start position by rotating the screw shaft by 360 / n degrees;
Provided is a screw shaft grinding method characterized by forming the first through third steps.

また本発明は、
砥石車に接触させたねじ軸を回転させながら軸方向へ所定の移動量だけ移動させることで研削を行うねじ軸の研削装置において、
前記ねじ軸の伸縮量を検出する検出器と、
前記ねじ軸の移動と回転を制御するNC装置とを有し、
前記NC装置は、n条のねじ溝を形成するために、1条目のねじ溝の研削を、前記伸縮量に基づいて前記ねじ軸の移動量を補正し、前記伸縮量に基づいて研削開始位置を補正し、前記ねじ軸を補正した移動量だけ移動させて行い、2条目以降のねじ溝の研削を、前記ねじ軸を360/n度だけ回転させて研削開始位置を変更し、前記1条目のねじ溝の研削と同様に行うことを特徴とするねじ軸の研削装置を提供する。
The present invention also provides
In a screw shaft grinding apparatus that performs grinding by moving a predetermined amount of movement in the axial direction while rotating the screw shaft in contact with the grinding wheel,
A detector for detecting the amount of expansion and contraction of the screw shaft;
An NC device for controlling the movement and rotation of the screw shaft;
The NC device corrects the amount of movement of the screw shaft based on the amount of expansion / contraction and forms a grinding start position based on the amount of expansion / contraction, in order to form an n number of screw grooves. And the screw shaft is moved by the corrected amount of movement, and grinding of the thread groove after the second thread is performed by rotating the screw shaft by 360 / n degrees to change the grinding start position. A screw shaft grinding apparatus is provided which is performed in the same manner as the thread groove grinding.

本発明によれば、2条以上のねじ溝を高精度に形成可能なねじ軸の研削方法及び研削装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the grinding method and grinding apparatus of the screw shaft which can form two or more thread grooves with high precision can be provided.

図1(a)は本発明の実施形態に係るねじ軸の研削装置を示す概略図であり、図1(b)はねじ軸が伸びた様子を示す図1(a)の部分拡大図である。FIG. 1A is a schematic view showing a screw shaft grinding apparatus according to an embodiment of the present invention, and FIG. 1B is a partially enlarged view of FIG. 1A showing a state in which the screw shaft is extended. . 図2(a)〜図2(d)はねじ軸を研削する様子を示す図である。Fig.2 (a)-FIG.2 (d) are figures which show a mode that a screw shaft is ground. 図3はねじ軸の移動量と累積回転角を示す図である。FIG. 3 is a diagram showing the amount of movement of the screw shaft and the cumulative rotation angle.

はじめに本実施形態に係るねじ軸の研削装置の全体的な構成について図1(a)を参照して説明する。
図1(a)に本実施形態に係る研削装置1は、円柱状の軸部材の外周面を研削して螺旋状のねじ溝を形成するためのものであり、主軸2、テールストック3、送りテーブル4、砥石車5、検出器6及びNC装置8を備えてなる。
First, an overall configuration of a screw shaft grinding apparatus according to the present embodiment will be described with reference to FIG.
A grinding apparatus 1 according to this embodiment shown in FIG. 1 (a) is for grinding the outer peripheral surface of a cylindrical shaft member to form a helical thread groove. The main shaft 2, tail stock 3, feed A table 4, a grinding wheel 5, a detector 6, and an NC device 8 are provided.

主軸2は、ねじ軸10の一端をチャック11を介して支持しかつ伸び拘束するものである。主軸2には、主軸用モータ12が取り付けられている。主軸用モータ12の駆動により主軸2とともにねじ軸10を回転させることができる。   The main shaft 2 supports one end of the screw shaft 10 via the chuck 11 and restrains the expansion. A main shaft motor 12 is attached to the main shaft 2. The screw shaft 10 can be rotated together with the main shaft 2 by driving the main shaft motor 12.

テールストック3は、主軸2に対峙してねじ軸10の他端を支持するものである。詳細には、ばね13でねじ軸10側へ付勢された心押しセンタ14をねじ軸10の端面に設けられた不図示のセンタ穴に押し付けることによってねじ軸10を支持している。この構成により、研削時の発熱により長手方向へ伸縮変形するねじ軸10を安定して支持することができる。以下、ねじ軸10の長手方向(図1(a)の左右方向)を単に「軸方向」という。   The tail stock 3 is opposed to the main shaft 2 and supports the other end of the screw shaft 10. Specifically, the screw shaft 10 is supported by pressing a center pushing center 14 urged toward the screw shaft 10 by a spring 13 into a center hole (not shown) provided on the end surface of the screw shaft 10. With this configuration, the screw shaft 10 that expands and contracts in the longitudinal direction due to heat generated during grinding can be stably supported. Hereinafter, the longitudinal direction of the screw shaft 10 (left-right direction in FIG. 1A) is simply referred to as “axial direction”.

送りテーブル4は、主軸2、主軸用モータ12及びテールストック3を載置するものである。送りテーブル4は、ナット15と送りねじ16を介して送りテーブル用モータ17と連結されている。送りテーブル用モータ17の駆動により主軸用モータ12、テールストック3及びこれらに支持されたねじ軸10を軸方向へ一体的に移動させることができる。   The feed table 4 is used to place the main shaft 2, main shaft motor 12, and tailstock 3. The feed table 4 is connected to a feed table motor 17 via a nut 15 and a feed screw 16. By driving the feed table motor 17, the main shaft motor 12, the tail stock 3, and the screw shaft 10 supported by them can be moved integrally in the axial direction.

砥石車5は、円盤形の砥石を回転させながらねじ軸10に押し付けることでねじ軸10を研削するものである(砥石車5の本体は不図示)。砥石車5の軸方向位置は、送りテーブル4の軸方向位置にかかわらず常に一定である。   The grinding wheel 5 grinds the screw shaft 10 by pressing the disc-shaped grinding wheel against the screw shaft 10 while rotating it (the main body of the grinding wheel 5 is not shown). The axial position of the grinding wheel 5 is always constant regardless of the axial position of the feed table 4.

検出器6は、心押しセンタ14の移動に基づいてねじ軸10の伸縮量を検出するものである(図1(b)を参照。)。検出器6はテールストック3上に配置されている。   The detector 6 detects the amount of expansion and contraction of the screw shaft 10 based on the movement of the tailstock center 14 (see FIG. 1B). The detector 6 is arranged on the tailstock 3.

NC(Numerical Control)装置8は、検出器6の出力に基づいて主軸用モータ12及び送りテーブル用モータ17の駆動を制御するものである。   An NC (Numerical Control) device 8 controls the driving of the spindle motor 12 and the feed table motor 17 based on the output of the detector 6.

上記構成の本実施形態に係る研削装置1は、以下の動作手順にしたがってねじ軸10を研削し2条のねじ溝を形成する。
なお、温度変化によるねじ軸10の軸方向への伸縮は一様とする。ねじ軸10の図1(a)中の左端は主軸2によって伸び拘束されているため、ねじ軸10の伸び変形はテールストック3側、即ち図1(a)の右方へ向かってするものとする。砥石車5の軸方向における位置は一定で、研削はねじ軸10のテールストック3側から主軸2側へ向かって行うものとする。主軸2の回転速度と送りテーブル4の移動速度は一定とする。
The grinding apparatus 1 according to the present embodiment having the above-described configuration grinds the screw shaft 10 according to the following operation procedure to form two thread grooves.
In addition, the expansion and contraction in the axial direction of the screw shaft 10 due to the temperature change is made uniform. Since the left end of the screw shaft 10 in FIG. 1 (a) is stretched and restrained by the main shaft 2, the deformation of the screw shaft 10 is directed toward the tail stock 3 side, that is, to the right in FIG. 1 (a). To do. The position of the grinding wheel 5 in the axial direction is constant, and grinding is performed from the tail stock 3 side of the screw shaft 10 toward the main shaft 2 side. The rotational speed of the spindle 2 and the moving speed of the feed table 4 are constant.

ステップS1:NC装置8が砥石車5を回転させるとともに送りテーブル用モータ17を駆動して送りテーブル4及びねじ軸10を基準移動量Lだけテールストック3側へ移動させる(図2(a)を参照。)。また、NC装置8は送りテーブル用モータ17に同期するように主軸用モータ12を駆動して主軸2及びねじ軸10を回転させる。これにより、ねじ軸10が砥石車5で研削される。ここで、基準移動量Lとは伸縮変形していないねじ軸10に対して予め定められた送りテーブル4の移動量(ストローク)である。なお、研削後、NC装置8は送りテーブル用モータ17を駆動してねじ軸10を主軸2側へ移動させ、研削を開始した研削開始位置(軸方向における位置及び回転方向における位置)を砥石車5の位置まで戻す。   Step S1: The NC device 8 rotates the grinding wheel 5 and drives the feed table motor 17 to move the feed table 4 and the screw shaft 10 to the tail stock 3 side by the reference movement amount L (FIG. 2A). reference.). The NC device 8 drives the main shaft motor 12 to synchronize with the feed table motor 17 to rotate the main shaft 2 and the screw shaft 10. Thereby, the screw shaft 10 is ground by the grinding wheel 5. Here, the reference movement amount L is a predetermined movement amount (stroke) of the feed table 4 with respect to the screw shaft 10 that is not stretched and deformed. After grinding, the NC device 8 drives the feed table motor 17 to move the screw shaft 10 to the main shaft 2 side, and the grinding start position (position in the axial direction and position in the rotational direction) at which grinding is started is a grinding wheel. Return to position 5.

ステップS2:検出器6が心押しセンタ14の移動量からねじ軸10の伸縮量ΔLを検出し(図2(b)を参照。)、アンプ19を介してNC装置8へ出力する。なお、厳密には伸縮量ΔLはねじ軸10全体の伸縮量からねじ溝を形成しないねじ軸10の両端部分の伸縮量を引いたもの、即ちねじ溝が形成された部分の伸縮量を検出することが研削精度向上のために好ましい。   Step S2: The detector 6 detects the expansion / contraction amount ΔL of the screw shaft 10 from the movement amount of the tailstock center 14 (see FIG. 2B), and outputs it to the NC device 8 via the amplifier 19. Strictly speaking, the expansion / contraction amount ΔL is obtained by subtracting the expansion / contraction amount of both ends of the screw shaft 10 not forming the screw groove from the expansion / contraction amount of the entire screw shaft 10, that is, the expansion / contraction amount of the portion where the screw groove is formed. Is preferable for improving grinding accuracy.

ステップS3:NC装置8が上記ステップS2で得られたねじ軸10の伸縮量ΔLに基づいて送りテーブル4の移動量L+ΔLを算出する。   Step S3: The NC device 8 calculates the movement amount L + ΔL of the feed table 4 based on the expansion / contraction amount ΔL of the screw shaft 10 obtained in the above step S2.

ステップS4:NC装置8が送りテーブル4を動作させ、ねじ軸10を上記ステップS1の研削開始位置から上記ステップS2で得た伸縮量ΔLだけ伸縮した方向と反対の方向へ移動させる(図2(c)を参照。)。これにより、ねじ軸10の伸縮によって生じた研削開始位置の軸方向における位置ずれを補正することができる。   Step S4: The NC device 8 operates the feed table 4 to move the screw shaft 10 in the direction opposite to the direction in which the expansion / contraction amount ΔL obtained in Step S2 is expanded / contracted from the grinding start position in Step S1 (FIG. 2). see c)). Thereby, the position shift in the axial direction of the grinding start position caused by the expansion and contraction of the screw shaft 10 can be corrected.

ステップS5:NC装置8が上記ステップS1と同様に砥石車5、主軸2及び送りテーブル4を動作させてねじ軸10の研削を行う。このとき、NC装置8は送りテーブル4を上記ステップS3で得た移動量L+ΔLだけ移動させる(図2(d)を参照。)。   Step S5: The NC device 8 grinds the screw shaft 10 by operating the grinding wheel 5, the main shaft 2 and the feed table 4 in the same manner as in Step S1. At this time, the NC device 8 moves the feed table 4 by the movement amount L + ΔL obtained in step S3 (see FIG. 2D).

ステップS6:砥石車5の種類を適宜変更しながらNC装置8が上記ステップS2〜S5を繰り返して実行することにより、ねじ軸10に粗研削、中粗研削及び仕上げ研削を順に行い、ねじ軸10に1条目のねじ溝が完成する。   Step S6: The NC apparatus 8 repeatedly executes steps S2 to S5 while appropriately changing the type of the grinding wheel 5, thereby performing rough grinding, medium rough grinding and finish grinding on the screw shaft 10 in order. The first thread groove is completed.

ステップS7:NC装置8が主軸2を動作させ、ねじ軸10を180度だけ回転させる。これにより、ねじ軸10の2条目のねじ溝の研削開始位置(回転方向における位置)を設定することができる(図3を参照。)。   Step S7: The NC device 8 operates the main shaft 2 and rotates the screw shaft 10 by 180 degrees. Thereby, the grinding start position (position in the rotation direction) of the second thread groove of the screw shaft 10 can be set (see FIG. 3).

ステップS8:上記ステップS2〜S6を行う。これにより、ねじ軸10に2条目のねじ溝が完成する。   Step S8: Steps S2 to S6 are performed. Thereby, the second thread groove is completed on the screw shaft 10.

本実施形態に係る研削装置1は、粗研削、中粗研削、仕上げ研削で発熱量が異なり、これによってねじ軸10の伸縮量が変化しても、上記ステップS1〜S6によって研削の度にねじ軸10の伸縮量を検出してこれに合わせてねじ軸10の移動量と研削開始位置を補正することで、砥石車5の位置を研削開始位置から研削終了位置までねじ溝に一致させることができ、砥石車5がねじ溝に片当りすることを防ぎながら精度良く1条目のねじ溝を形成することができる。また、上記ステップS7によって2条目のねじ溝の研削開始位置を設定することで1条目のねじ溝に対して2条目のねじ溝の位相合わせを行い、上記ステップS8即ち上記ステップS2〜S6によって1条目のねじ溝と同様の研削を行うことで、1条目のねじ溝に対して位置ずれせずに2条目のねじ溝を高精度に形成することができる。したがって、ピッチ精度の良好な2条のねじ軸10を実現することができる。   The grinding device 1 according to the present embodiment has a different amount of heat generation in rough grinding, intermediate rough grinding, and finish grinding, and even if the expansion / contraction amount of the screw shaft 10 is changed by this, the steps S1 to S6 are used for screwing at each grinding. By detecting the amount of expansion and contraction of the shaft 10 and correcting the amount of movement of the screw shaft 10 and the grinding start position in accordance with this, the position of the grinding wheel 5 can be matched with the screw groove from the grinding start position to the grinding end position. In addition, the first thread groove can be formed with high accuracy while preventing the grinding wheel 5 from coming into contact with the thread groove. In addition, by setting the grinding start position of the second thread groove in the above step S7, the phase of the second thread groove is aligned with the first thread groove, and the above step S8, that is, the above steps S2 to S6, 1 is performed. By performing the same grinding as the thread groove of the stripe, the second thread groove can be formed with high accuracy without being displaced with respect to the first thread groove. Accordingly, it is possible to realize the two screw shafts 10 with good pitch accuracy.

上記構成により本実施形態に係る研削装置1は、粗研削時の切り込み量を大きくすることができる。また、中粗研削及び仕上げ研削時に砥石車5がねじ溝に片当りすることがなくなり、中粗研削及び仕上げ研削の回数を減らすことができる。また、2条のねじ溝を良好なピッチ精度で研削できる。これらにより、研削能率が向上するため、低コスト化を図ることもできる。   With the above-described configuration, the grinding apparatus 1 according to the present embodiment can increase the cutting amount during rough grinding. In addition, the grinding wheel 5 does not come into contact with the thread groove at the time of medium rough grinding and finish grinding, and the number of times of medium rough grinding and finish grinding can be reduced. Also, the two thread grooves can be ground with good pitch accuracy. As a result, the grinding efficiency is improved, so that the cost can be reduced.

本実施形態では、上述した動作手順のステップS1、S5において、ねじ軸10の移動と回転の同期は、ねじ軸10の移動と回転を同時に開始して同時に終了する、即ちねじ軸10の移動が完了するタイミングまでねじ軸10を回転させ続けることで行われている。しかしこれに限られず、上記ステップS3において、上記ステップS5でねじ軸10を移動量L+ΔLだけ移動させる際にねじ軸10の移動に回転を同期させるためのねじ軸10の回転量(累積回転角θという)を算出するようにしてもよい(図3を参照。)。これにより、上記ステップS5でねじ軸10を移動量L+ΔLだけ移動させ、これと同時にねじ軸10を累積回転角θだけ回転させることで、ねじ軸10の移動と回転をより精度良く同期させることができ、より高精度にねじ軸10の研削を行うことができる。なお、ねじ軸10の移動と回転の同期は、上記ステップS5におけるねじ軸10の移動量L+ΔLに合わせて、ねじ軸10の回転速度や移動速度を変更することで行うようにしてもよい。   In the present embodiment, in steps S1 and S5 of the operation procedure described above, the synchronization of the movement and rotation of the screw shaft 10 starts and ends simultaneously with the movement and rotation of the screw shaft 10, that is, the movement of the screw shaft 10 is completed. This is done by continuing to rotate the screw shaft 10 until the completion timing. However, the present invention is not limited to this. In step S3, when the screw shaft 10 is moved by the movement amount L + ΔL in step S5, the rotation amount (cumulative rotation angle θ) for synchronizing the rotation with the movement of the screw shaft 10 is determined. May be calculated (see FIG. 3). As a result, the screw shaft 10 is moved by the movement amount L + ΔL in step S5, and at the same time, the screw shaft 10 is rotated by the cumulative rotation angle θ, thereby synchronizing the movement and rotation of the screw shaft 10 with higher accuracy. Thus, the screw shaft 10 can be ground with higher accuracy. Note that the movement and rotation of the screw shaft 10 may be synchronized by changing the rotation speed or movement speed of the screw shaft 10 in accordance with the movement amount L + ΔL of the screw shaft 10 in step S5.

上述した動作手順において、1条目のねじ溝を形成する際にステップS2で得たねじ軸10の伸縮量ΔLをNC装置8がデータとして蓄積保存し、2条目のねじ溝を形成する際に、ステップS3におけるねじ軸10の移動量L+ΔLの算出及びステップS4における研削開始位置の補正に前記データも併せて考慮するようにしてもよい。これにより、より高精度にねじ軸10の研削を行うことができる。   In the operation procedure described above, the NC device 8 accumulates and stores the expansion / contraction amount ΔL of the screw shaft 10 obtained in step S2 when forming the first thread groove, and when forming the second thread groove, The above data may also be taken into account in the calculation of the movement amount L + ΔL of the screw shaft 10 in step S3 and the correction of the grinding start position in step S4. Thereby, the screw shaft 10 can be ground with higher accuracy.

本実施形態に係る研削装置1は、上記ステップS7及びS8を繰り返し実行することで、ねじ軸10に3条以上のねじ溝を形成することもできる。具体的には、n条(nは整数)のねじ溝を形成する場合には、上記ステップS7で研削開始位置(回転方向における位置)を設定する際に、ねじ軸10を360/n度だけ回転させるようにすればよい(例えば、3条のねじ軸なら120度、4条のねじ軸なら90度回転させる)。これにより、n条のねじ溝の研削を高精度に行うことができる。   The grinding apparatus 1 according to the present embodiment can also form three or more thread grooves on the screw shaft 10 by repeatedly executing steps S7 and S8. Specifically, in the case of forming n threads (n is an integer), when setting the grinding start position (position in the rotation direction) in step S7, the screw shaft 10 is set to 360 / n degrees. What is necessary is just to make it rotate (for example, if it is 3 screw shafts, if it is 4 screw shafts, it will be rotated 90 degrees). As a result, the n-thread groove can be ground with high accuracy.

本実施形態に係る研削装置1では、テールストック3の代わりにねじ軸10の一端を振止め装置で支持してもよい。この場合、ねじ軸10端面の不図示のセンタ穴にボール状のフィーラを押し付け、検出器6がフィーラの変位からねじ軸10の伸縮量を検出する構成とすればよい。   In the grinding device 1 according to the present embodiment, one end of the screw shaft 10 may be supported by a swinging device instead of the tail stock 3. In this case, a ball-like feeler may be pressed against a center hole (not shown) on the end face of the screw shaft 10 so that the detector 6 detects the amount of expansion / contraction of the screw shaft 10 from the displacement of the feeler.

1 研削装置
2 主軸
3 テールストック
4 送りテーブル
5 砥石車
6 検出器
8 NC装置
10 ねじ軸
12 主軸用モータ
17 送りテーブル用モータ
DESCRIPTION OF SYMBOLS 1 Grinding device 2 Spindle 3 Tailstock 4 Feed table 5 Grinding wheel 6 Detector 8 NC device 10 Screw shaft 12 Spindle motor 17 Feed table motor

Claims (3)

砥石車に接触させたねじ軸を回転させながら軸方向へ所定の移動量だけ移動させることで研削を行うねじ軸の研削方法において、
n条のねじ溝を形成するために、1条目のねじ溝を、
前記ねじ軸の伸縮量を検出し、前記伸縮量に基づいて前記ねじ軸の移動量を補正する第1工程と、
前記第1工程で検出した前記伸縮量に基づいて研削開始位置を補正する第2工程と、
前記ねじ軸を前記第1工程で補正した移動量だけ移動させて研削を行う第3工程とにより形成し、
2条目以降のねじ溝を、
前記ねじ軸を360/n度だけ回転させて研削開始位置を変更する第4工程と、
前記第1〜3工程とにより形成することを特徴とするねじ軸の研削方法。
In the grinding method of the screw shaft that performs grinding by moving the screw shaft in contact with the grinding wheel by a predetermined movement amount while rotating the screw shaft,
In order to form an n-thread thread groove,
A first step of detecting an amount of expansion and contraction of the screw shaft, and correcting a movement amount of the screw shaft based on the amount of expansion and contraction;
A second step of correcting the grinding start position based on the amount of expansion / contraction detected in the first step;
A third step of grinding by moving the screw shaft by the movement amount corrected in the first step;
The second and subsequent thread grooves
A fourth step of changing the grinding start position by rotating the screw shaft by 360 / n degrees;
A method for grinding a screw shaft, comprising forming the first through third steps.
前記ねじ軸の一端を伸び拘束として前記各工程を行うことを特徴とする請求項1に記載のねじ軸の研削方法。   The method for grinding a screw shaft according to claim 1, wherein each of the steps is performed with one end of the screw shaft as an elongation constraint. 砥石車に接触させたねじ軸を回転させながら軸方向へ所定の移動量だけ移動させることで研削を行うねじ軸の研削装置において、
前記ねじ軸の伸縮量を検出する検出器と、
前記ねじ軸の移動と回転を制御するNC装置とを有し、
前記NC装置は、n条のねじ溝を形成するために、1条目のねじ溝の研削を、前記伸縮量に基づいて前記ねじ軸の移動量を補正し、前記伸縮量に基づいて研削開始位置を補正し、前記ねじ軸を補正した移動量だけ移動させて行い、2条目以降のねじ溝の研削を、前記ねじ軸を360/n度だけ回転させて研削開始位置を変更し、前記1条目のねじ溝の研削と同様に行うことを特徴とするねじ軸の研削装置。
In a screw shaft grinding apparatus that performs grinding by moving a predetermined amount of movement in the axial direction while rotating the screw shaft in contact with the grinding wheel,
A detector for detecting the amount of expansion and contraction of the screw shaft;
An NC device for controlling the movement and rotation of the screw shaft;
The NC device corrects the amount of movement of the screw shaft based on the amount of expansion / contraction and forms a grinding start position based on the amount of expansion / contraction, in order to form an n number of screw grooves. And the screw shaft is moved by the corrected amount of movement, and grinding of the thread groove after the second thread is performed by rotating the screw shaft by 360 / n degrees to change the grinding start position. The screw shaft grinding apparatus is characterized in that it is performed in the same manner as the thread groove grinding.
JP2014213034A 2014-10-17 2014-10-17 Screw shaft grinding method, screw shaft grinding device, screw shaft manufacturing method Active JP6446992B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014213034A JP6446992B2 (en) 2014-10-17 2014-10-17 Screw shaft grinding method, screw shaft grinding device, screw shaft manufacturing method
PCT/JP2015/078455 WO2016060036A1 (en) 2014-10-17 2015-10-07 Threaded shaft grinding method, and threaded shaft grinding device
TW104133358A TW201622856A (en) 2014-10-17 2015-10-12 Method for grinding screw shaft and apparatus for grinding screw shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213034A JP6446992B2 (en) 2014-10-17 2014-10-17 Screw shaft grinding method, screw shaft grinding device, screw shaft manufacturing method

Publications (3)

Publication Number Publication Date
JP2016078182A true JP2016078182A (en) 2016-05-16
JP2016078182A5 JP2016078182A5 (en) 2017-08-17
JP6446992B2 JP6446992B2 (en) 2019-01-09

Family

ID=55746583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213034A Active JP6446992B2 (en) 2014-10-17 2014-10-17 Screw shaft grinding method, screw shaft grinding device, screw shaft manufacturing method

Country Status (3)

Country Link
JP (1) JP6446992B2 (en)
TW (1) TW201622856A (en)
WO (1) WO2016060036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012151A (en) * 2016-07-20 2018-01-25 株式会社ジェイテクト Method for manufacturing worm
CN109834346A (en) * 2017-11-24 2019-06-04 株式会社三信 Ball-screw grinding method and its device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112775446B (en) * 2020-12-15 2022-08-26 大连德迈仕精密科技股份有限公司 Screw thread chamfering device and process method for screw shaft part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728823A (en) * 1970-05-05 1973-04-24 Toyoda Machine Works Ltd Thread grinding machine
JPS60228019A (en) * 1984-04-23 1985-11-13 Yamazaki Mazak Corp Method of cutting controllably multiple thread screw in numerical control lathe
JPS62236652A (en) * 1986-04-01 1987-10-16 Nachi Fujikoshi Corp Nc broaching machine
JPH01295713A (en) * 1988-05-20 1989-11-29 Nippon Seiko Kk In-process measuring method and device for thread shaft effective diameter
JPH05189019A (en) * 1992-01-09 1993-07-30 Toshiba Mach Co Ltd Numerical controller for machine tool
JP3700255B2 (en) * 1996-06-04 2005-09-28 日本精工株式会社 Screw shaft grinding method and screw shaft expansion and contraction correction grinding apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107210B2 (en) * 2013-02-20 2017-04-05 日本精工株式会社 Thread part processing method and processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728823A (en) * 1970-05-05 1973-04-24 Toyoda Machine Works Ltd Thread grinding machine
JPS60228019A (en) * 1984-04-23 1985-11-13 Yamazaki Mazak Corp Method of cutting controllably multiple thread screw in numerical control lathe
JPS62236652A (en) * 1986-04-01 1987-10-16 Nachi Fujikoshi Corp Nc broaching machine
JPH01295713A (en) * 1988-05-20 1989-11-29 Nippon Seiko Kk In-process measuring method and device for thread shaft effective diameter
JPH05189019A (en) * 1992-01-09 1993-07-30 Toshiba Mach Co Ltd Numerical controller for machine tool
JP3700255B2 (en) * 1996-06-04 2005-09-28 日本精工株式会社 Screw shaft grinding method and screw shaft expansion and contraction correction grinding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012151A (en) * 2016-07-20 2018-01-25 株式会社ジェイテクト Method for manufacturing worm
CN109834346A (en) * 2017-11-24 2019-06-04 株式会社三信 Ball-screw grinding method and its device

Also Published As

Publication number Publication date
WO2016060036A1 (en) 2016-04-21
TW201622856A (en) 2016-07-01
JP6446992B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6446992B2 (en) Screw shaft grinding method, screw shaft grinding device, screw shaft manufacturing method
JP6023598B2 (en) Grinding method
JP6252270B2 (en) Truing method for grinding wheel of grinding machine and grinding machine
JP2011056629A (en) Machine tool and machining method
JP2015030029A (en) Ring rolling mill
JP5778805B2 (en) Tool changer with function to detect turret index position
US9238297B2 (en) Actual grinding depth measurement method, machining method, and machine tool
JP6089774B2 (en) Grinding machine and grinding method
CN104139335B (en) Grinding machine
JP5395570B2 (en) Cylindrical grinding method and apparatus
JP6303568B2 (en) Tapered roller grinding apparatus and tapered roller grinding method
JP2016078182A5 (en)
JP2019104082A (en) Nc grinding device and method of grinding workpiece
JP6578772B2 (en) Cylindrical grinding method and cylindrical grinding machine
JP2008188742A (en) Machining system
JP6277705B2 (en) Grinding machine and grinding method
JP2018069412A (en) Method for manufacturing multiple ball screws, and machine tool
JP5611061B2 (en) Internal grinding machine
JP5133770B2 (en) Workpiece grinding method using a grinding machine
KR20150050261A (en) Device for compensating thermal displacement of ball screw for a machine tool and method thereof
JP6102502B2 (en) Grinding machine and grinding method
JP6576370B2 (en) Grinding apparatus and grinding method
JP6135287B2 (en) Grinder
JP6909190B2 (en) Honing processing method and honing processing equipment
JP6089752B2 (en) Grinding machine and grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6446992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150