JP2016076454A - Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2016076454A
JP2016076454A JP2014207648A JP2014207648A JP2016076454A JP 2016076454 A JP2016076454 A JP 2016076454A JP 2014207648 A JP2014207648 A JP 2014207648A JP 2014207648 A JP2014207648 A JP 2014207648A JP 2016076454 A JP2016076454 A JP 2016076454A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
oxide
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207648A
Other languages
Japanese (ja)
Other versions
JP2016076454A5 (en
JP6520037B2 (en
Inventor
孝博 山木
Takahiro Yamaki
孝博 山木
将成 織田
Masanari Oda
将成 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014207648A priority Critical patent/JP6520037B2/en
Priority to PCT/JP2015/078464 priority patent/WO2016056586A1/en
Publication of JP2016076454A publication Critical patent/JP2016076454A/en
Publication of JP2016076454A5 publication Critical patent/JP2016076454A5/ja
Application granted granted Critical
Publication of JP6520037B2 publication Critical patent/JP6520037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material capable of developing a high potential and inhibiting a metal element from being eluted, and also to provide a lithium ion secondary battery which is excellent in capacity and high temperature life.SOLUTION: A positive electrode active material for a lithium ion secondary battery includes: a composite oxide with Li (lithium) and transition metal containing at least Mn (manganese); and a surface oxide which is an oxide having a metal element of a bivalence or more. In the composite oxide, a surface layer part (B) is fluorinated and a central part (C) is not fluorinated. The surface oxide (A) exists on the surface of the composite oxide and is fluorinated.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用正極活物質と、それを用いたリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、エネルギー密度が高いことから、携帯情報端末などの小型電源として広く普及している。近年、電気自動車やハイブリッド型電気自動車などの車両用途、又は電力貯蔵などの定置型産業用途に用いる大型電源としても、リチウムイオン二次電池は用いられ始めている。   Lithium ion secondary batteries are widely used as compact power sources for portable information terminals and the like because of their high energy density. In recent years, lithium ion secondary batteries have begun to be used as large-scale power sources used in vehicle applications such as electric vehicles and hybrid electric vehicles, or stationary industrial applications such as power storage.

大型電源として用いる場合、多数のリチウムイオン二次電池が用いられる。電池は、必要に応じ多直列で使用されうる。従来のリチウムイオン二次電池の電圧は4V前後であるが、よりエネルギー密度の高い電池として、又は電池の直列数を低減する目的で、さらに高電圧のリチウムイオン二次電池が求められている。   When used as a large power source, a large number of lithium ion secondary batteries are used. The batteries can be used in multiple series as needed. Although the voltage of the conventional lithium ion secondary battery is around 4 V, a higher voltage lithium ion secondary battery is required as a battery having a higher energy density or for the purpose of reducing the number of batteries in series.

高電圧のリチウムイオン二次電池には、その正極に金属リチウム基準で4.5V以上の高電位を安定して発現する正極活物質を用いる。   In a high voltage lithium ion secondary battery, a positive electrode active material that stably expresses a high potential of 4.5 V or more on the basis of metallic lithium is used for the positive electrode.

従来は、一般式LiMO(MはCo、Ni、又はMnを主成分とする遷移金属)で表記される層状岩塩型の結晶構造を持つ正極活物質が、4.3V前後の上限電位で使用されてきた。近年では、この正極活物質の上限電位の引き上げが試みられている。 Conventionally, a positive electrode active material having a layered rock salt type crystal structure represented by the general formula LiMO 2 (M is a transition metal mainly composed of Co, Ni, or Mn) is used at an upper limit potential of around 4.3V. It has been. In recent years, attempts have been made to raise the upper limit potential of the positive electrode active material.

一方、4.5V以上の電位を安定して発現する正極活物質として、一般式LiMn2−X(MはNi、Co、Cr、Fe、又はCuなど)で表記されるMnの一部を遷移金属で置換したスピネル型複合酸化物が知られている。スピネル型複合酸化物は、Mnの酸化還元による4V前後の電位を発現するが、上記の遷移金属の置換により、遷移金属の酸化還元による4.5V以上の電位を安定して発現する。特に、Mnの一部をNiで置換したスピネル型複合酸化物は、特に安定した性能を発現することが知られている。 On the other hand, as a positive electrode active material that stably develops a potential of 4.5 V or more, Mn represented by the general formula LiMn 2 -X M X O 4 (M is Ni, Co, Cr, Fe, Cu, etc.) A spinel type complex oxide partially substituted with a transition metal is known. The spinel-type composite oxide expresses a potential of about 4 V due to Mn oxidation-reduction, but stably expresses a potential of 4.5 V or more due to the transition metal oxidation-reduction by the above-described transition metal substitution. In particular, it is known that a spinel complex oxide in which a part of Mn is substituted with Ni exhibits particularly stable performance.

一方、高電圧のリチウムイオン二次電池は、総じて高温寿命(高温(40℃〜60℃で一般的には50℃以上)で動作したときの寿命)が短いという課題があることが知られている。この主因の1つが、高電位の正極表面での電解液の酸化分解の進行であることも、よく知られている。   On the other hand, high-voltage lithium ion secondary batteries are generally known to have a problem of short high-temperature life (life when operated at a high temperature (generally 50 ° C. to 40 ° C. to 60 ° C.)). Yes. It is well known that one of the main causes is the progress of oxidative decomposition of the electrolyte solution on the surface of the positive electrode at a high potential.

また、この課題の別の主因が、高電位の正極活物質からの遷移金属元素の溶出であることも知られている。金属元素の溶出により正極活物質が劣化するとともに、溶出した金属元素が負極に析出することで負極の性能をも低下させる。正極電位が高いほど、溶出量は増加する傾向がある。   It is also known that another main cause of this problem is the elution of transition metal elements from a high potential positive electrode active material. The elution of the metal element degrades the positive electrode active material, and the eluted metal element is deposited on the negative electrode, thereby reducing the performance of the negative electrode. As the positive electrode potential is higher, the elution amount tends to increase.

充電状態のスピネル型複合酸化物では、例えば50℃の高温環境でMnが電解液中に溶出するという課題がよく知られている。4.5V以上を発現する遷移金属置換のスピネル型複合酸化物においても、その使用電位が高いことから、金属元素の溶出量は著しく増加する。   In the spinel-type complex oxide in a charged state, for example, the problem that Mn elutes into the electrolytic solution in a high temperature environment of 50 ° C. is well known. Even in the transition metal-substituted spinel composite oxide that expresses 4.5 V or higher, the elution amount of the metal element is remarkably increased because of its high potential.

この課題に対する先行技術として、例えば以下のような技術がある。特許文献1には、特定のカチオンを置換したスピネル型複合酸化物が開示されている。しかし、金属元素の溶出を抑制するという効果は、必ずしも十分ではない。特許文献2には、アニオンであるフッ素で酸素の一部を置換したスピネル型複合酸化物が開示されている。しかし、フッ素の置換量が増えるに従い容量が著しく低下し、活物質としての性能が低下するという課題がある。また、高電位正極における、金属元素の溶出を抑制する効果は、十分に明らかではない。   As a prior art for this problem, for example, there are the following techniques. Patent Document 1 discloses a spinel complex oxide in which a specific cation is substituted. However, the effect of suppressing elution of metal elements is not always sufficient. Patent Document 2 discloses a spinel complex oxide in which a part of oxygen is substituted with fluorine as an anion. However, there is a problem that the capacity is remarkably lowered as the fluorine substitution amount is increased, and the performance as an active material is lowered. In addition, the effect of suppressing elution of metal elements in the high potential positive electrode is not sufficiently clear.

この課題に対する他の先行技術として、正極活物質の表面に関するものがある。例えば、特許文献3には、フッ素化合物でコーティングした正極活物質が開示されている。しかし、コーティング層内のリチウムイオンの拡散性の低下から正極活物質とリチウムイオンとの反応が阻害され、高負荷特性など活物質としての性能が低下する課題がある。特許文献4には、結晶性の金属ハロゲン化物を含むフッ素置換スピネル層を設けた正極活物質が開示されている。しかし、金属元素の溶出を抑制するという効果は、必ずしも十分ではない。   Another prior art for this problem is related to the surface of the positive electrode active material. For example, Patent Document 3 discloses a positive electrode active material coated with a fluorine compound. However, the reaction between the positive electrode active material and the lithium ions is hindered due to a decrease in the diffusibility of lithium ions in the coating layer, and there is a problem that the performance as an active material such as high load characteristics decreases. Patent Document 4 discloses a positive electrode active material provided with a fluorine-substituted spinel layer containing a crystalline metal halide. However, the effect of suppressing elution of metal elements is not always sufficient.

特開2005−322480号公報JP 2005-322480 A 特開2002−75366号公報JP 2002-75366 A 特表2008−536285号公報Special table 2008-536285 gazette 特開2000−128539号公報JP 2000-128539 A

上述したように、高電圧のリチウムイオン二次電池は、正極活物質から遷移金属元素が溶出することで、高温寿命が短いという課題がある。先行技術では、この課題を十分に解決できておらず、容量の低下を招く場合もある。   As described above, the high voltage lithium ion secondary battery has a problem that the high temperature life is short because the transition metal element is eluted from the positive electrode active material. In the prior art, this problem cannot be solved sufficiently, and the capacity may be reduced.

本発明の目的は、高電位を発現でき、金属元素の溶出を抑制できる正極活物質と、容量と高温寿命に優れたリチウムイオン二次電池を提供することである。   An object of the present invention is to provide a positive electrode active material capable of expressing a high potential and suppressing elution of a metal element, and a lithium ion secondary battery excellent in capacity and high-temperature life.

本発明によるリチウムイオン二次電池用正極活物質は、次のような特徴を有する。Li(リチウム)と少なくともMn(マンガン)を含む遷移金属との複合酸化物と、2価以上の金属元素を有する酸化物である表面酸化物とを有する。前記複合酸化物は、表層部がフッ素化しており、中央部がフッ素化していない。前記表面酸化物は、前記複合酸化物の表面に存在し、フッ素化している。   The positive electrode active material for a lithium ion secondary battery according to the present invention has the following characteristics. A composite oxide of Li (lithium) and a transition metal containing at least Mn (manganese) and a surface oxide that is an oxide having a divalent or higher valent metal element are included. In the composite oxide, the surface portion is fluorinated and the central portion is not fluorinated. The surface oxide exists on the surface of the composite oxide and is fluorinated.

本発明によると、高電位を発現でき、金属元素の溶出を抑制できる正極活物質を提供できる。この正極活物質を用いることにより、容量と高温寿命に優れたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material which can express a high electric potential and can suppress elution of a metal element can be provided. By using this positive electrode active material, it is possible to provide a lithium ion secondary battery having excellent capacity and high temperature life.

正極活物質の断面のSEM像の写真であり、正極活物質の構成元素の比率を求めた測定箇所の例を示す図。It is a photograph of the SEM image of the cross section of a positive electrode active material, and is a figure which shows the example of the measurement location which calculated | required the ratio of the structural element of a positive electrode active material. 正極充電用のラミネートセルの模式図。The schematic diagram of the lamination cell for positive electrode charge. ラミネート型のリチウムイオン二次電池の模式図。1 is a schematic diagram of a laminate type lithium ion secondary battery. FIG. 実施例1(正極活物質4A)と比較例1(正極活物質4Z)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 1 (positive electrode active material 4A) and Comparative Example 1 (positive electrode active material 4Z) . 実施例2(正極活物質5N)と比較例2(正極活物質ZN、及び正極活物質FN)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。In Example 2 (positive electrode active material 5N) and Comparative Example 2 (positive electrode active material ZN and positive electrode active material FN), the surface oxide of the positive electrode active material, the surface layer portion of the composite oxide, and the central portion of the composite oxide FIG. 実施例2(正極活物質5T)と比較例2(正極活物質ZT)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 2 (positive electrode active material 5T) and Comparative Example 2 (positive electrode active material ZT) . 実施例3(正極活物質5G)と比較例3(正極活物質ZG)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 3 (positive electrode active material 5G) and Comparative Example 3 (positive electrode active material ZG) . 実施例4(正極活物質5M)と比較例4(正極活物質ZM)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 4 (positive electrode active material 5M) and Comparative Example 4 (positive electrode active material ZM) . 実施例4(正極活物質5E)と比較例4(正極活物質ZE)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 4 (positive electrode active material 5E) and Comparative Example 4 (positive electrode active material ZE) . 実施例5(正極活物質5C)と比較例5(正極活物質ZC)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 5 (positive electrode active material 5C) and Comparative Example 5 (positive electrode active material ZC) . 実施例5(正極活物質5U)と比較例5(正極活物質ZU)における、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率を示す図。The figure which shows the element ratio in the surface oxide of the positive electrode active material, the surface layer part of complex oxide, and the center part of complex oxide in Example 5 (positive electrode active material 5U) and Comparative Example 5 (positive electrode active material ZU) .

本発明によるリチウムイオン二次電池用正極活物質は、Li(リチウム)と少なくともMn(マンガン)を含む遷移金属との複合酸化物と、2価以上の金属元素を有する酸化物である表面酸化物とを有し、複合酸化物は、表層部がフッ素化しており、中央部がフッ素化しておらず、表面酸化物は、複合酸化物の表面に存在し、フッ素化していることを特徴とする。   The positive electrode active material for a lithium ion secondary battery according to the present invention is a surface oxide which is a composite oxide of Li (lithium) and a transition metal containing at least Mn (manganese), and an oxide having a divalent or higher metal element. The composite oxide is characterized in that the surface layer portion is fluorinated, the central portion is not fluorinated, and the surface oxide exists on the surface of the composite oxide and is fluorinated. .

本発明によるリチウムイオン二次電池用正極活物質の特徴を、以下に詳述する。   The characteristics of the positive electrode active material for a lithium ion secondary battery according to the present invention will be described in detail below.

高電位の正極活物質からの金属イオンの溶出は、正極活物質と非水電解液との界面で進行する。この反応は、電解液中に不純物として存在する水分や、リチウム塩であるフッ素化合物由来の微量のフッ素イオンが関与するといわれている。   The elution of metal ions from the high potential positive electrode active material proceeds at the interface between the positive electrode active material and the non-aqueous electrolyte. This reaction is said to involve water present as impurities in the electrolyte and a small amount of fluorine ions derived from a fluorine compound that is a lithium salt.

本発明による正極活物質の特徴の1つは、正極活物質として作用する複合酸化物の表層部がフッ素化していることである。すなわち、複合酸化物の表層部に、酸素に比べ電気陰性度の大きいフッ素が存在し、このフッ素が遷移金属と結合している。これにより、遷移金属とアニオンとの結合力が強くなり、遷移金属の溶出が抑制される作用があると考えられる。なお、複合酸化物の表層部の全てがフッ素化している必要はない。すなわち、複合酸化物は、表層部の一部がフッ素化していてもよく、フッ素化した表層部が複合酸化物を完全に覆わなくてもよい。また、複合酸化物の中央部は、フッ素化していない。   One of the features of the positive electrode active material according to the present invention is that the surface layer portion of the composite oxide that acts as the positive electrode active material is fluorinated. That is, fluorine having a higher electronegativity than oxygen exists in the surface layer portion of the composite oxide, and this fluorine is bonded to the transition metal. Thereby, it is considered that the binding force between the transition metal and the anion becomes stronger, and the elution of the transition metal is suppressed. Note that it is not necessary that the entire surface portion of the composite oxide is fluorinated. That is, in the composite oxide, a part of the surface layer portion may be fluorinated, and the fluorinated surface layer portion may not completely cover the composite oxide. Further, the central portion of the composite oxide is not fluorinated.

本発明による正極活物質の特徴のもう1つは、複合酸化物の表面に、2価以上の金属元素を有する酸化物が存在し、この酸化物(以下「表面酸化物」と称する)がフッ素化していることである。表面酸化物の作用の1つは、正極活物質と電解液との直接の接触を防ぐ物理的作用である。さらに、正極活物質に代わり水分やフッ素イオンと反応することで、正極活物質の溶出反応を防ぐ作用もあると推定される。ただし、この水分やフッ素イオンとの反応により、表面酸化物を構成する金属元素が溶出する可能性もありうる。そこで、表面酸化物をフッ素化する。表面酸化物をある程度フッ素化することにより、金属元素とアニオンとの結合力が強くなり、金属元素の溶出を抑制しつつ上記の作用を発現するものと推定される。   Another feature of the positive electrode active material according to the present invention is that an oxide having a divalent or higher valent metal element is present on the surface of the composite oxide, and this oxide (hereinafter referred to as “surface oxide”) is fluorine. It is becoming. One of the actions of the surface oxide is a physical action that prevents direct contact between the positive electrode active material and the electrolytic solution. Furthermore, it is presumed that there is an action to prevent the elution reaction of the positive electrode active material by reacting with moisture and fluorine ions instead of the positive electrode active material. However, there is a possibility that the metal element constituting the surface oxide is eluted by this reaction with moisture or fluorine ions. Therefore, the surface oxide is fluorinated. By fluorinating the surface oxide to some extent, it is presumed that the binding force between the metal element and the anion becomes strong, and the above action is exhibited while suppressing the elution of the metal element.

なお、表面酸化物は、必ずしも複合酸化物の表面の全てを覆うように存在する必要はない。表面酸化物が複合酸化物の表面の一部を覆うように存在すると、表面酸化物が複合酸化物の表面の全てを覆うように存在する場合に比べて、リチウムイオンの複合酸化物への挿入・脱離が阻害されなくなり、電池の抵抗の増大や容量の低下を防止することができる。   Note that the surface oxide does not necessarily have to cover the entire surface of the composite oxide. When the surface oxide is present so as to cover a part of the surface of the composite oxide, the insertion of lithium ions into the composite oxide is compared to the case where the surface oxide is present so as to cover the entire surface of the composite oxide. -Desorption is not hindered, and an increase in battery resistance and a decrease in capacity can be prevented.

酸化物のフッ素化とは、酸化物のフッ素化合物が存在するようになることである。例えば、酸化物の酸素の一部がフッ素と置換することにより、酸化物がフッ素化する。   The fluorination of an oxide means that an oxide fluorine compound is present. For example, when a part of oxygen in the oxide is replaced with fluorine, the oxide is fluorinated.

上記の作用と効果は、正極活物質の使用電位が高いほど、具体的には4.5V以上で、より顕著になる。このような高電位では、複合酸化物の表層部と表面酸化物との両方がフッ素化することで、正極活物質から金属が溶出するのを抑制する効果が得られるものと考えられる。言い換えると、複合酸化物の表層部と表面酸化物との少なくともどちらか一方(例えば、表面酸化物)がフッ素化していない場合には、フッ素化していない方(表面酸化物)からの金属の溶出が集中して進行する恐れがある。   The above actions and effects become more remarkable as the working potential of the positive electrode active material is higher, specifically at 4.5 V or higher. At such a high potential, it is considered that both the surface layer portion of the composite oxide and the surface oxide are fluorinated, thereby obtaining an effect of suppressing the elution of the metal from the positive electrode active material. In other words, when at least one of the surface layer portion of the composite oxide and the surface oxide (for example, the surface oxide) is not fluorinated, elution of the metal from the non-fluorinated one (surface oxide) There is a risk that will concentrate.

ここで、本発明によるリチウムイオン二次電池用正極活物質について、正極活物質として作用する複合酸化物について説明する。   Here, the composite oxide which acts as a positive electrode active material for the positive electrode active material for a lithium ion secondary battery according to the present invention will be described.

本発明による正極活物質は、リチウム(Li)と少なくともマンガン(Mn)を含む遷移金属との複合酸化物を有し、複合酸化物が容量を発現する。複合酸化物には、LiとMnを含めば、特に限定はない。例えば、複合酸化物は、一般式LiMO(Mは、Mnを含み、CoとNiのうち一方又は両方を含む)で表記される層状岩塩型の結晶構造の複合酸化物であってもよい。Mnを主構成元素として含むスピネル型複合酸化物は、4.5V以上の電位を安定して発現するので、正極活物質としてより望ましい。 The positive electrode active material according to the present invention has a composite oxide of lithium (Li) and a transition metal containing at least manganese (Mn), and the composite oxide exhibits capacity. The composite oxide is not particularly limited as long as Li and Mn are included. For example, the composite oxide may be a composite oxide having a layered rock salt type crystal structure represented by a general formula LiMO 2 (M includes Mn and includes one or both of Co and Ni). A spinel-type composite oxide containing Mn as a main constituent element stably expresses a potential of 4.5 V or more, and thus is more desirable as a positive electrode active material.

スピネル型複合酸化物は、一般式LiMnで表記される立方晶スピネル型結晶構造であり、Mnの酸化還元により4V前後の放電電位を安定に発現する。ここで、Mnの一部を特定の遷移金属元素で置換する事により、4.5V以上の酸化還元電位を安定して発現する。このような遷移金属元素としては、Ni、Cr、Fe、Co、及びCuなどが知られている。 The spinel type complex oxide has a cubic spinel type crystal structure represented by the general formula LiMn 2 O 4 , and stably expresses a discharge potential of about 4 V by oxidation and reduction of Mn. Here, by substituting a part of Mn with a specific transition metal element, an oxidation-reduction potential of 4.5 V or more is stably expressed. As such a transition metal element, Ni, Cr, Fe, Co, Cu and the like are known.

特に、Mnの一部をNiで置換した一般式LiNiMn2−xで表記されるスピネル型複合酸化物は、4.6V付近に大きくかつ安定した容量を発現する。4.6V付近の容量は、上記の一般式において、xの増大とともに増大し、x=0.5において理論上は最大に達する。 In particular, a spinel complex oxide represented by the general formula LiNi x Mn 2−x O 4 in which a part of Mn is substituted with Ni exhibits a large and stable capacity in the vicinity of 4.6V. The capacity near 4.6V increases with increasing x in the above general formula, and reaches a theoretical maximum at x = 0.5.

本発明による正極活物質に用いられる上記のNiで置換したスピネル型複合酸化物は、一般式LiNiMn4+α(Mは、Ti、Ge、Mg、Fe、Co、及びCuのうちの少なくとも1種、0.3≦x≦0.55、1.2≦y≦1.6、0≦Z≦0.4、1.9≦x+y+z≦2.05、0.95≦a≦1.1、−0.2≦α≦0.1)と記載することができる。 The above-described spinel complex oxide substituted with Ni used for the positive electrode active material according to the present invention has the general formula Li a Ni x Mn y M z O 4 + α (M is Ti, Ge, Mg, Fe, Co, and Cu). At least one of 0.3 ≦ x ≦ 0.55, 1.2 ≦ y ≦ 1.6, 0 ≦ Z ≦ 0.4, 1.9 ≦ x + y + z ≦ 2.05, 0.95 ≦ a ≦ 1.1, −0.2 ≦ α ≦ 0.1).

Niの置換量xが0.3未満では、4.5V未満で容量を発現する遷移金属元素の比率が大きく、必ずしも望ましくない。xが0.55超えると、異相生成の恐れがある。このため、0.3≦x≦0.55であるのが望ましい。   When the substitution amount x of Ni is less than 0.3, the ratio of transition metal elements that develop capacity at less than 4.5 V is large, which is not always desirable. If x exceeds 0.55, there is a risk of heterogeneous formation. For this reason, it is desirable that 0.3 ≦ x ≦ 0.55.

元素Mは、Ti、Ge、Mg、Fe、Co、及びCuのうちの1種以上であり、必ずしも正極活物質に含まれなくてもよい(z=0でもよい)。元素Mの作用は、元素の種類により異なる。Ti、Ge、及びMgは、これら自身の酸化還元による4.5V以上での容量の発現には必ずしも寄与しないが、結晶構造を安定化させ、遷移金属の溶出の抑制に対してある程度の効果が期待できる。Fe、Co、及びCuは、結晶構造の安定化の他、4.5V以上での容量の発現にも寄与しうる。元素Mの適した置換量zは、元素の種類と他の元素の置換量などにより必ずしも一定ではないが、0.4を超えると異相生成の恐れがある。このため、0≦Z≦0.4であるのが望ましい。   The element M is at least one of Ti, Ge, Mg, Fe, Co, and Cu, and is not necessarily included in the positive electrode active material (z = 0 may be satisfied). The action of the element M varies depending on the type of element. Ti, Ge, and Mg do not necessarily contribute to the development of capacity at 4.5 V or higher by their own redox, but stabilize the crystal structure and have some effect on the suppression of transition metal elution. I can expect. Fe, Co, and Cu can contribute to the development of capacity at 4.5 V or more in addition to stabilization of the crystal structure. The suitable substitution amount z of the element M is not necessarily constant depending on the kind of element and the substitution amount of other elements, but if it exceeds 0.4, there is a risk of heterogeneous formation. For this reason, it is desirable that 0 ≦ Z ≦ 0.4.

また、元素Mに、上記の元素以外の金属元素が含まれていてもよい。   The element M may contain a metal element other than the above elements.

Mnの組成比yの値は、スピネル型複合酸化物の構造を維持するため、1.2≦y≦1.6であるのが望ましい。   The value of the composition ratio y of Mn is preferably 1.2 ≦ y ≦ 1.6 in order to maintain the structure of the spinel complex oxide.

上記の一般式LiNiMn4+αにおけるNi、Mn、及び元素Mの組成比率の和(x+y+z)は、LiMnと同じ2前後が望ましいが、製造時の不定比化により1.9≦x+y+z≦2.05の範囲となることがある。x+y+zの値が上記の範囲外では、異相の生成する恐れがあり好ましくない。 In the above general formula Li a Ni x Mn y M z O 4 + α , the sum of the composition ratios of Ni, Mn, and element M (x + y + z) is preferably around 2 which is the same as LiMn 2 O 4. 1.9 ≦ x + y + z ≦ 2.05 in some cases. If the value of x + y + z is out of the above range, a different phase may be generated, which is not preferable.

aの値は、製造時のLiの不定比性を示す値である。aが0.95未満となると容量が低下する恐れがあり、1.1を超えると異相が生成する恐れがある。このため、0.95≦a≦1.1であるのが望ましい。   The value of a is a value indicating the non-stoichiometry of Li during production. If a is less than 0.95, the capacity may decrease, and if it exceeds 1.1, a foreign phase may be generated. For this reason, it is desirable that 0.95 ≦ a ≦ 1.1.

αの値は、製造時の酸素の不定比性を示す値である。−0.2≦α≦0.1の範囲外では、異相の生成する恐れがあり、好ましくない。   The value of α is a value indicating the non-stoichiometry of oxygen during production. Outside the range of −0.2 ≦ α ≦ 0.1, a heterogeneous phase may be generated, which is not preferable.

本発明による正極活物質では、正極活物質として作用する複合酸化物の表層部がフッ素化している。表層部がフッ素化した複合酸化物は、複合酸化物を一般式LiNiMn4+αで表した場合には、LiNiMn4+α−ββのように、酸素の一部がフッ素に置換していると表記することができる。フッ素の量は、測定法、測定箇所、及び測定範囲に影響を受けるが、上記の一般式においては、βが0.5以下の範囲が好ましい。フッ素の量が多いほど、金属の溶出の抑制に対してより高い効果を期待できるが、フッ素の量が多すぎると、スピネル構造を維持できない恐れがあり、容量の低下やリチウムとの反応性の低下などにより、活物質としての性能が低下する恐れがある。このため、0<β≦0.5であるのが望ましい。 In the positive electrode active material according to the present invention, the surface layer portion of the composite oxide that acts as the positive electrode active material is fluorinated. When the composite oxide is represented by the general formula Li a Ni x Mn y M z O 4 + α , the complex oxide having a fluorinated surface layer portion is like Li a Ni x Mn y M z O 4 + α-β F β . In addition, it can be expressed that a part of oxygen is substituted with fluorine. The amount of fluorine is affected by the measurement method, measurement location, and measurement range, but in the above general formula, β is preferably in the range of 0.5 or less. The higher the amount of fluorine, the higher the effect of suppressing the elution of metal can be expected.However, if the amount of fluorine is too large, the spinel structure may not be maintained. There is a risk that the performance as an active material may be reduced due to a decrease or the like. For this reason, it is desirable that 0 <β ≦ 0.5.

本発明による正極活物質は、複合酸化物の表層部がフッ素化しており、複合酸化物の中央部はフッ素化していない。複合酸化物の中央部までフッ素化すると、容量の低下といった活物質としての性能低下を招く恐れがある。このため、複合酸化物の表層部のみをフッ素化し、中央部はフッ素化しない。   In the positive electrode active material according to the present invention, the surface portion of the composite oxide is fluorinated, and the central portion of the composite oxide is not fluorinated. If the fluorination is performed up to the center of the composite oxide, the performance as an active material such as a decrease in capacity may be reduced. For this reason, only the surface portion of the composite oxide is fluorinated, and the central portion is not fluorinated.

ここで、本発明によるリチウムイオン二次電池用正極活物質について、複合酸化物の表面に存在する表面酸化物について説明する。   Here, the surface oxide which exists in the surface of complex oxide is demonstrated about the positive electrode active material for lithium ion secondary batteries by this invention.

本発明による正極活物質は、複合酸化物の表面に、2価以上の金属元素を有する酸化物(表面酸化物)が存在し、表面酸化物がフッ素化している。複合酸化物の表面に、フッ素化した表面酸化物が存在することで、正極活物質と電解液との直接の接触を防ぐとともに、正極活物質からの金属元素の溶出を抑制できると考えられる。複合酸化物の表面に、酸化物ではなくフッ化物がコーティングされていると、フッ化物のフッ素とリチウムイオンとの結合力が強すぎるため、リチウムイオンの拡散が阻害され、活物質としての性能が低下する恐れがある。さらに、フッ化物では電解液中のフッ素イオンとの反応が進行せず、正極活物質の溶出反応を防ぐ作用が得られない恐れがある。   In the positive electrode active material according to the present invention, an oxide (surface oxide) having a bivalent or higher valent metal element exists on the surface of the composite oxide, and the surface oxide is fluorinated. The presence of the fluorinated surface oxide on the surface of the composite oxide is considered to prevent direct contact between the positive electrode active material and the electrolytic solution and to suppress elution of metal elements from the positive electrode active material. If the surface of the composite oxide is coated with fluoride instead of oxide, the binding force between the fluoride fluorine and lithium ions is too strong, which inhibits the diffusion of lithium ions and improves the performance as an active material. May fall. Furthermore, there is a possibility that the reaction with the fluorine ions in the electrolyte does not proceed with the fluoride and the effect of preventing the elution reaction of the positive electrode active material cannot be obtained.

表面酸化物を構成する金属元素は、1価であると酸化物としての安定性が劣るので、2価以上とする。表面酸化物を構成する2価以上の金属元素は、その種類を特に限定しないが、Al、Ti、Ge、Y、Zr、Nb、In、Sn、及びTaのうちの少なくとも1種を含むことが好ましい。この理由の1つとして、酸化物としての安定性が高く、フッ素との結合エネルギーが高いことが考えられる。   When the metal element constituting the surface oxide is monovalent, the stability as an oxide is inferior. The divalent or higher-valent metal element constituting the surface oxide is not particularly limited, but may contain at least one of Al, Ti, Ge, Y, Zr, Nb, In, Sn, and Ta. preferable. One reason for this is considered to be high stability as an oxide and high binding energy with fluorine.

表面酸化物は、上述の金属元素とリチウムとの複合物であり、かつフッ素化していることがより好ましい。すなわち、表面酸化物がリチウム化かつフッ素化していることが好ましい。表面酸化物がリチウム化していると、表面酸化物中のリチウムの拡散速度が上がる効果、又は拡散するリチウム量が増大する効果が期待できる。表面酸化物におけるリチウムと金属元素との比率は、量論組成である必要はない。   It is more preferable that the surface oxide is a composite of the above-described metal element and lithium and is fluorinated. That is, the surface oxide is preferably lithiated and fluorinated. When the surface oxide is lithiated, an effect of increasing the diffusion rate of lithium in the surface oxide or an effect of increasing the amount of diffused lithium can be expected. The ratio of lithium to metal element in the surface oxide need not be stoichiometric.

なお、表面酸化物のリチウム化とは、表面酸化物のリチウム化合物が存在するようになることである。例えば、表面酸化物の酸素の一部がリチウムと置換することにより、表面酸化物がリチウム化する。   The lithiation of the surface oxide means that a surface oxide lithium compound is present. For example, the surface oxide is lithiated by replacing a part of oxygen in the surface oxide with lithium.

リチウム化かつフッ素化した表面酸化物を構成する金属元素としては、Nb、Ta、又はTiが好ましい。この理由としては、酸化物としての安定性やフッ素との結合エネルギーが高いことに加え、リチウム化がある程度容易であることが考えられる。   As the metal element constituting the lithiated and fluorinated surface oxide, Nb, Ta, or Ti is preferable. The reason for this is considered that the stability as an oxide and the binding energy with fluorine are high, and that lithiation is easy to some extent.

本発明による正極活物質は、例えば、以下の方法で得ることができる。   The positive electrode active material according to the present invention can be obtained, for example, by the following method.

本発明による正極活物質は、複合酸化物を作製し、その表面に表面酸化物を設けた後、これらをフッ素化することで得ることができる。好ましくは、フッ素化とともに又はフッ素化後に、表面酸化物をリチウム化する。この他に、作製した複合酸化物の表面をフッ素化後、この表面にフッ素化した表面酸化物を設けることで得ることもできる。これ以外に、作製した複合酸化物の表面をフッ素化後、この表面に表面酸化物を設けてから表面酸化物をフッ素化して得ることもできる。以下では、複合酸化物を作製し、その表面に表面酸化物を設けた後、これらをフッ素化する方法を記載する。   The positive electrode active material according to the present invention can be obtained by preparing a composite oxide, providing a surface oxide on the surface thereof, and then fluorinating these. Preferably, the surface oxide is lithiated with or after fluorination. In addition, after fluorinating the surface of the produced composite oxide, it can be obtained by providing a fluorinated surface oxide on the surface. In addition, after fluorinating the surface of the produced composite oxide, the surface oxide can be obtained by providing a surface oxide on the surface and then fluorinating the surface oxide. In the following, a method is described in which a composite oxide is prepared, a surface oxide is provided on the surface thereof, and then these are fluorinated.

複合酸化物は、一般的な無機化合物の合成方法と同様の方法で得ることができる。所望する元素の比率になるように、原料を秤量し、均質に混合し、熱処理することで、複合酸化物を得ることができる。解砕又は造粒の工程を入れてもよい。   The composite oxide can be obtained by a method similar to a general method for synthesizing inorganic compounds. The composite oxide can be obtained by weighing the raw materials so as to obtain a desired element ratio, mixing them uniformly, and heat-treating them. A crushing or granulating step may be included.

原料となる化合物は、それぞれの元素の好適な酸化物、水酸化物、塩化物、硝酸塩、又は炭酸塩などを用いることができる。また、2つ以上の元素を含む化合物を原料として用いることもできる。原料となる化合物は、例えば、MnやNiなどの遷移金属元素が溶解した溶液を弱アルカリ性とし、複合水酸化物として沈殿させて得ることもできる。又は、原料となる金属元素が溶解した溶液を噴霧乾燥して得ることもできる。   As the compound as a raw material, a suitable oxide, hydroxide, chloride, nitrate, carbonate or the like of each element can be used. A compound containing two or more elements can also be used as a raw material. The compound as the raw material can be obtained, for example, by making a solution in which a transition metal element such as Mn or Ni is dissolved weakly alkaline and precipitating it as a composite hydroxide. Alternatively, it can be obtained by spray drying a solution in which a metal element as a raw material is dissolved.

原料の混合と熱処理の工程は、必要に応じて繰り返してもよい。その際の混合条件と熱処理条件は、適宜に選択できる。また、混合と熱処理を繰り返す際に原料を適宜追加し、最終の熱処理において目的とする組成比になるようにしてもよい。例えば、MnとNiの原料を混合し熱処理して酸化物とし、これにリチウム原料を加えてより低温の熱処理をし、所望の組成の複合酸化物を得ることもできる。   You may repeat the process of mixing of a raw material and heat processing as needed. The mixing conditions and heat treatment conditions at that time can be appropriately selected. In addition, when repeating mixing and heat treatment, raw materials may be added as appropriate so that the desired composition ratio is obtained in the final heat treatment. For example, a composite oxide having a desired composition can be obtained by mixing Mn and Ni raw materials and heat-treating them to form oxides, and adding lithium raw materials thereto and performing heat treatment at a lower temperature.

複合酸化物に表面酸化物を設ける方法は、限定されない。液相法であれば、表面酸化物の原料を溶解した水溶液中に複合酸化物を投入後、pHを調整して表面酸化物を析出してもよく、又はこの水溶液を噴霧して乾燥させてもよい。又は、金属アルコキシドを溶解した有機溶液中に複合酸化物を投入して撹拌し、溶媒を蒸発させて除去することで得ることもできる。気相法であれば、複合酸化物を投入した流動床の反応容器に表面酸化物の原料を導入し、反応させて析出させてもよい。いずれの方法でも、反応が完結していない表面酸化物を設けた状態から、酸化処理、又は熱処理をし、所望の表面酸化物としてもよい。   The method of providing the surface oxide on the composite oxide is not limited. In the case of the liquid phase method, the composite oxide may be poured into an aqueous solution in which the raw material for the surface oxide is dissolved, and then the pH may be adjusted to precipitate the surface oxide, or the aqueous solution may be sprayed and dried. Also good. Alternatively, the composite oxide can be put into an organic solution in which a metal alkoxide is dissolved and stirred, and the solvent can be removed by evaporation. In the case of the gas phase method, the raw material of the surface oxide may be introduced into the reaction vessel of the fluidized bed into which the composite oxide is charged, and reacted to be deposited. In any method, a desired surface oxide may be obtained by performing oxidation treatment or heat treatment from a state in which a surface oxide that has not been completely reacted is provided.

フッ素化処理の方法も、限定されない。表面酸化物を設けた複合酸化物にフッ化アンモニウム又は酸性フッ化アンモニウムとの熱処理を行うことで、これらの酸化物をフッ素化することができる。   The method for the fluorination treatment is not limited. These oxides can be fluorinated by subjecting the composite oxide provided with a surface oxide to heat treatment with ammonium fluoride or acidic ammonium fluoride.

また、複合酸化物とフッ化リチウムとの熱処理により、酸化物のフッ素化とともに表面酸化物をリチウム化することができる。   Further, the surface oxide can be lithiated together with the fluorination of the oxide by heat treatment of the composite oxide and lithium fluoride.

本発明による正極活物質の形態と組成は、正極活物質又はこれを用いた正極に対し、適切な前処理を施して機器分析を行うことで知ることができる。電池内の正極活物質については、電池を不活性雰囲気内で解体して正極を取り出し、適切な前処理を施して同様の機器分析を行うことにより知ることができる。   The form and composition of the positive electrode active material according to the present invention can be known by performing an appropriate pretreatment on the positive electrode active material or the positive electrode using the positive electrode active material and performing instrumental analysis. The positive electrode active material in the battery can be known by disassembling the battery in an inert atmosphere, taking out the positive electrode, performing an appropriate pretreatment, and conducting the same instrumental analysis.

電池から取り出した正極を、電解液と同成分の有機溶媒やアセトンなどで洗浄することで、分析用の正極が得られる。さらに、正極から活物質を含む合剤部をサンプリングし、バインダーや正極活物質の表面の電解質由来の成分をN−メチル−2−ピロリドン(NMP)などの有機溶媒で除去し、固体粉末成分を取り出す。導電剤と正極活物質とは、走査型電子顕微鏡(SEM)による形態観察とエネルギー分散型X線分光分析(EDX)による組成分析などの手段により、用意に区別できる。   The positive electrode for analysis is obtained by washing the positive electrode taken out of the battery with an organic solvent having the same component as the electrolytic solution or acetone. Furthermore, the mixture part containing the active material is sampled from the positive electrode, the component derived from the electrolyte on the surface of the binder and the positive electrode active material is removed with an organic solvent such as N-methyl-2-pyrrolidone (NMP), and the solid powder component is removed. Take out. The conductive agent and the positive electrode active material can be easily distinguished by means such as morphological observation by a scanning electron microscope (SEM) and composition analysis by energy dispersive X-ray spectroscopic analysis (EDX).

本発明による正極活物質、複合酸化物とその表層部、及び表面酸化物の組成は、X線光電子分光法(XPS)、オージェ電子分光法(AES)、蛍光X線(XRF)分析、又は二次イオン質量分析(SIMS)などの手段により知ることもできる。   The composition of the positive electrode active material, composite oxide and its surface layer, and surface oxide according to the present invention can be determined by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), X-ray fluorescence (XRF) analysis, or It can also be known by means such as secondary ion mass spectrometry (SIMS).

本発明の正極活物質の形態と組成を知るには、活物質の断面について、分析範囲をサブミクロンオーダー以下にまで極めて絞りAESやSIMSで元素分析することが、好的な手段の1つである。   In order to know the form and composition of the positive electrode active material of the present invention, it is one of the preferred means that the analysis range of the cross section of the active material is extremely narrowed to the submicron order or less and elemental analysis is performed by AES or SIMS. is there.

活物質の断面を観察するには、正極活物質を樹脂中などに埋め、切断する方法がある。又は、正極活物質を固めた後、切断することも可能であり、場合により正極の形態で切断する方法もある。   In order to observe the cross section of the active material, there is a method in which the positive electrode active material is embedded in a resin and cut. Alternatively, after the positive electrode active material is hardened, it can be cut, and in some cases, there is a method of cutting in the form of a positive electrode.

次に、本発明によるリチウムイオン二次電池の構成例を説明する。本発明によるリチウムイオン二次電池は、正極と、負極と、電解液とを備える。   Next, a configuration example of the lithium ion secondary battery according to the present invention will be described. The lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, and an electrolytic solution.

正極は、本発明の正極活物質を有し、例えば以下の手順で作製する。正極活物質とカーボンブラック(CB)などの導電剤の粒子を混合し、これにバインダーを溶解した溶液を加えて混合して撹拌し、正極合剤スラリーを作製する。このスラリーをアルミニウム箔などの正極集電体に塗工して乾燥させた後、このアルミニウム箔にプレスなどの成型や所望の大きさにする裁断を行い、正極を作製する。なお、正極集電体の一端部は、正極合剤スラリーを塗工しない未塗工部とする。   A positive electrode has the positive electrode active material of this invention, for example, is produced in the following procedures. A positive electrode active material and particles of a conductive agent such as carbon black (CB) are mixed, and a solution in which a binder is dissolved is added thereto, mixed and stirred to prepare a positive electrode mixture slurry. The slurry is applied to a positive electrode current collector such as an aluminum foil and dried, and then the aluminum foil is subjected to molding such as pressing or cutting to a desired size to produce a positive electrode. In addition, let the one end part of a positive electrode electrical power collector be an uncoated part which does not apply a positive mix slurry.

バインダーの材料は、特に限定されない。ポリビニリデンフロライドなどのフッ素系樹脂、セルロース系高分子、スチレン系樹脂、又はアクリル系樹脂など、公知のバインダーを用いることができる。バインダーは、材料の種類に応じ、水やNMPなどの溶媒に溶解し、溶液として用いることができる。   The material of the binder is not particularly limited. A known binder such as a fluorine resin such as polyvinylidene fluoride, a cellulose polymer, a styrene resin, or an acrylic resin can be used. Depending on the type of material, the binder can be dissolved in a solvent such as water or NMP and used as a solution.

負極に用いる負極活物質は、特に限定されない。金属リチウム、各種の炭素材料、金属リチウム、チタン酸リチウム、スズやシリコンなどの酸化物、スズやシリコンなどのリチウムと合金化する金属、又はこれらの材料の複合材料を用いることができる。電池電圧を高くするには、比較的電位の低い黒鉛、易黒鉛化炭素、又は難黒鉛化炭素などの炭素材料を負極に用いることができる。   The negative electrode active material used for the negative electrode is not particularly limited. Metal lithium, various carbon materials, metal lithium, lithium titanate, an oxide such as tin or silicon, a metal alloyed with lithium such as tin or silicon, or a composite material of these materials can be used. In order to increase the battery voltage, a carbon material such as graphite, graphitizable carbon, or non-graphitizable carbon having a relatively low potential can be used for the negative electrode.

粉状の負極活物質を用いる場合、負極は、例えば以下のように作製する。所望の合剤組成となるように負極活物質、バインダーを溶解した溶液、及び必要に応じてCBなどの導電剤を秤量して混合し、負極合剤スラリーを作製する。このスラリーを銅箔などの負極集電体に塗工して乾燥させた後、この銅箔にプレスなどの成型や所望の大きさにする裁断を行い、負極を作製する。なお、負極集電体の一端部は、負極合剤スラリーを塗工しない未塗工部とする。   When using a powdery negative electrode active material, a negative electrode is produced as follows, for example. A negative electrode active material, a solution in which a binder is dissolved, and a conductive agent such as CB, if necessary, are weighed and mixed so as to obtain a desired mixture composition, thereby preparing a negative electrode mixture slurry. The slurry is applied to a negative electrode current collector such as a copper foil and dried, and then the copper foil is subjected to molding such as pressing or cutting to a desired size to produce a negative electrode. One end of the negative electrode current collector is an uncoated portion where the negative electrode mixture slurry is not applied.

電解液は、特に限定されず、従来のリチウムイオン二次電池に用いられている、リチウム塩を非水溶媒に溶解した非水電解液を用いることができる。   The electrolytic solution is not particularly limited, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent, which is used in a conventional lithium ion secondary battery, can be used.

リチウム塩として、LiClO、LiCFSO、LiPF、LiBF、又はLiAsFなどを、単独で又は2種類以上で用いることができる。 As the lithium salt, LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , or LiAsF 6 can be used alone or in combination of two or more.

非水溶媒として、各種環状カーボネートや鎖状カーボネートなどを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、又はジエチルカーボネートなどを用いることができる。又は、より耐酸化性を有するとされる、カーボネートの水素の一部をフッ素などで置換した誘導体を用いることもできる。さらに、本発明の目的を妨げない範囲で、非水電解液に各種の添加剤を加えることもでき、例えば、電池寿命の向上のためにビニレンカーボネートを添加することや、難燃性の付与のためにリン酸エステルなどを添加することもできる。非水溶媒としては、イミゾダゾリウム/フルオロスルホニルイミドなどの、常温で液体の塩である、イオン性液体を用いることもできる。   As the non-aqueous solvent, various cyclic carbonates and chain carbonates can be used. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, or the like can be used. Alternatively, a derivative obtained by substituting a part of hydrogen of carbonate with fluorine or the like, which is more resistant to oxidation, can also be used. Furthermore, various additives can be added to the non-aqueous electrolyte as long as the object of the present invention is not hindered. For example, vinylene carbonate can be added to improve battery life, or flame retardancy can be imparted. For this purpose, phosphate esters and the like can be added. As the non-aqueous solvent, an ionic liquid that is a salt that is liquid at room temperature, such as imidazolium / fluorosulfonylimide, can also be used.

以上に説明した正極、負極、及び電解液を用い、本発明のリチウムイオン二次電池を作製する。本発明のリチウムイオン二次電池は、ボタン型、円筒型、角型、又はラミネート型などの形状を持つことができる。   The lithium ion secondary battery of the present invention is produced using the positive electrode, negative electrode, and electrolytic solution described above. The lithium ion secondary battery of the present invention can have a button shape, a cylindrical shape, a square shape, a laminate shape, or the like.

円筒型の電池は、例えば、以下のようにして作製する。正極と負極とを帯状に裁断し、電流を取り出すための端子を未塗工部に設ける。これらの正極と負極との間にセパレータを挟み、これを円筒状に捲回して電極群を作製し、SUSやアルミニウム製の円筒型容器に収納する。この電極群を収納した容器に、乾燥空気中又は不活性ガス雰囲気で非水電解液を注入し、容器を封止して円筒型リチウムイオン二次電池を作製する。   The cylindrical battery is manufactured as follows, for example. The positive electrode and the negative electrode are cut into strips, and terminals for taking out current are provided in the uncoated part. A separator is sandwiched between the positive electrode and the negative electrode, and this is wound into a cylindrical shape to produce an electrode group, which is then stored in a cylindrical container made of SUS or aluminum. A non-aqueous electrolyte is injected into a container containing the electrode group in dry air or in an inert gas atmosphere, and the container is sealed to produce a cylindrical lithium ion secondary battery.

セパレータには、ポリエチレン、ポリプロピレン、又はアラミドなどの樹脂製多孔質絶縁物フィルムや、これらにアルミナなどの無機化合物層を設けたものなどを用いることができる。   As the separator, a porous resin insulating film such as polyethylene, polypropylene, or aramid, or an inorganic compound layer such as alumina provided thereon can be used.

角型の電池は、例えば、以下のようにして作製する。上記の円筒型の電池の作製手順での捲回において、捲回軸を二軸とし、楕円形の電極群を作製する。この後、この電極群を角型容器に収納し、円筒型の電池と同様に、電解液を注入後、密封する。   The square battery is manufactured as follows, for example. In the winding in the above-described cylindrical battery manufacturing procedure, the winding axis is biaxial, and an elliptical electrode group is manufactured. Thereafter, this electrode group is housed in a rectangular container, and is sealed after injecting an electrolytic solution, similarly to a cylindrical battery.

円筒型と角型の電池において、捲回の代わりに、セパレータ、正極、セパレータ、負極、セパレータの順に積層した電極群を用いることもできる。   In cylindrical and prismatic batteries, an electrode group in which a separator, a positive electrode, a separator, a negative electrode, and a separator are stacked in this order can be used instead of winding.

ラミネート型の電池は、例えば、以下のようにして作製する。上記の積層した電極群を、ポリエチレンやポリプロピレンなどの絶縁性シートで内張りした袋状のアルミラミネートシートに収納する。開口部から電極の端子が突き出た状態として、アルミラミネートシートの袋に電解液を注入後、開口部を封止する。   A laminate-type battery is produced, for example, as follows. The laminated electrode group is stored in a bag-like aluminum laminate sheet lined with an insulating sheet such as polyethylene or polypropylene. With the electrode terminal protruding from the opening, the electrolyte is injected into the bag of the aluminum laminate sheet, and then the opening is sealed.

本発明によるリチウムイオン二次電池の用途は、特に限定されない。例えば、電気自動車やハイブリッド型電気自動車などの動力用電源、運動エネルギーの少なくとも一部を回収するシステムを備えるエレベータなどの産業用機器、業務用や家庭用の蓄電システム用の電源、及び太陽光や風力などの自然エネルギー発電システム用電源など、各種の大型電源として用いることができる。また、携帯型機器、情報機器、家庭用電気機器、及び電動工具などの、各種の小型電源として用いることもできる。   The use of the lithium ion secondary battery according to the present invention is not particularly limited. For example, power sources for power sources such as electric vehicles and hybrid electric vehicles, industrial equipment such as elevators equipped with a system that recovers at least a part of kinetic energy, power sources for power storage systems for business use and home use, solar power, It can be used as various large power sources such as a power source for a natural energy power generation system such as wind power. Moreover, it can also be used as various small power sources such as portable devices, information devices, household electric devices, and electric tools.

以下、本発明によるリチウムイオン二次電池用正極活物質の詳細な実施例を示し、具体的に説明する。但し、本発明は、以下に述べる実施例に限定されるものではない。   Hereinafter, detailed examples of the positive electrode active material for a lithium ion secondary battery according to the present invention will be shown and described in detail. However, the present invention is not limited to the examples described below.

実施例1では、複合酸化物の組成がLi1.06Mn1.94であり、表面酸化物がフッ素化とリチウム化したチタン酸化物である正極活物質4Aを作製した。 In Example 1, a positive electrode active material 4A in which the composition of the composite oxide was Li 1.06 Mn 1.94 O 4 and the surface oxide was a fluorinated and lithiated titanium oxide was produced.

(正極活物質の作製)
原料である二酸化マンガン(MnO)と炭酸リチウム(LiCO)とを秤量し、遊星型粉砕機で純水を用いてこれらを湿式混合した。混合物を乾燥後、アルミナ製のるつぼに入れ、電気炉により800℃で20時間、空気雰囲気で焼成した。焼成物を粉砕して、複合酸化物を得た。
(Preparation of positive electrode active material)
Manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) as raw materials were weighed and wet-mixed with pure water using a planetary pulverizer. After drying the mixture, it was placed in an alumina crucible and baked in an electric furnace at 800 ° C. for 20 hours in an air atmosphere. The fired product was pulverized to obtain a composite oxide.

表面酸化物の原料として、チタンイソプロポキシドを用いた。フラスコに、得られた複合酸化物と、複合酸化物に対し3重量%のチタンイソプロポキシドを溶解したイソプロピルアルコールとを投入した。これらを50℃温浴で撹拌しつつ減圧し、アルコールを蒸発させて乾燥させた。得られた粉末をフラスコからとりだし、80℃にて空気中で乾燥させた。   Titanium isopropoxide was used as a raw material for the surface oxide. The obtained composite oxide and isopropyl alcohol in which 3% by weight of titanium isopropoxide was dissolved in the composite oxide were added to the flask. These were decompressed while stirring in a 50 ° C. warm bath, and the alcohol was evaporated to dryness. The obtained powder was taken out from the flask and dried in air at 80 ° C.

乾燥して得られたこの粉末と、フッ化リチウムと水酸化リチウムとを混合した。混合物をアルミナ製のるつぼに入れ、電気炉により700℃で5時間、空気雰囲気で焼成し、正極活物質4Aを得た。   This powder obtained by drying was mixed with lithium fluoride and lithium hydroxide. The mixture was put in an alumina crucible and baked in an air atmosphere at 700 ° C. for 5 hours in an electric furnace to obtain a positive electrode active material 4A.

[比較例1]
比較例1として、組成がLi1.06Mn1.943.90.1であり、複合酸化物の表面に表面酸化物が存在しない正極活物質4Zを作製した。実施例1で用いたMnOとLiCOに加えてフッ化リチウム(LiF)を用い、実施例1と同様にして複合酸化物を得た。この複合酸化物を、正極活物質4Zとした。
[Comparative Example 1]
As Comparative Example 1, a positive electrode active material 4Z having a composition of Li 1.06 Mn 1.94 O 3.9 F 0.1 and having no surface oxide on the surface of the composite oxide was produced. In addition to MnO 2 and Li 2 CO 3 used in Example 1, lithium fluoride (LiF) was used to obtain a composite oxide in the same manner as in Example 1. This composite oxide was designated as a positive electrode active material 4Z.

(正極の作製)
正極活物質88重量%に、導電剤としてCB6重量%を混合した後、結着剤としてアクリル系バインダー6重量%のNMP溶液を添加して混合し、正極合剤スラリーを作製した。このスラリーを、アルミニウム箔(正極集電体)の片面に塗布した。スラリーの乾燥後、このアルミニウム箔を裁断し、プレス機により圧縮成形し、未塗工部にアルミニウム製の端子を溶接し、電池評価用の正極を作製した。また、これとは別に、分析用の正極と溶出試験用の正極も作製した。分析用及び溶出試験用の正極は、スラリーの乾燥後のアルミニウム箔を20mm径に打ち抜いた後で圧縮成形して、作製した。
(Preparation of positive electrode)
After mixing 6 wt% of CB as a conductive agent with 88 wt% of the positive electrode active material, an NMP solution containing 6 wt% of an acrylic binder as a binder was added and mixed to prepare a positive electrode mixture slurry. This slurry was applied to one side of an aluminum foil (positive electrode current collector). After drying the slurry, the aluminum foil was cut and compression molded with a press, and an aluminum terminal was welded to the uncoated part to produce a positive electrode for battery evaluation. Separately, a positive electrode for analysis and a positive electrode for dissolution test were also produced. The positive electrode for analysis and dissolution test was prepared by punching the aluminum foil after drying the slurry into a 20 mm diameter and then compression molding.

(負極の作製)
負極材料として、人造黒鉛92重量%と、PVDF(ポリフッ化ビニリデン)8重量%をNMPに溶解した溶液とを混合し、負極合剤スラリーを作製した。このスラリーを、銅箔(負極集電体)の片面に塗布した。スラリーの乾燥後、この銅箔を裁断し、プレス機により圧縮成形し、未塗工部にニッケル製の端子を溶接し、負極を作製した。
(Preparation of negative electrode)
As a negative electrode material, 92% by weight of artificial graphite and a solution of 8% by weight of PVDF (polyvinylidene fluoride) dissolved in NMP were mixed to prepare a negative electrode mixture slurry. This slurry was applied to one side of a copper foil (negative electrode current collector). After drying the slurry, the copper foil was cut and compression-molded with a press, and a nickel terminal was welded to the uncoated part to produce a negative electrode.

(正極活物質の元素分析)
正極活物質の元素分析では、分析用の正極をイオンミリングにより断面加工し、正極活物質の断面をAES(電子銃加速電圧10kV、電流10nA、ビーム径約25nm)で測定して、正極活物質の構成元素の比率を求めた。
(Elemental analysis of positive electrode active material)
In elemental analysis of the positive electrode active material, a cross section of the positive electrode for analysis is processed by ion milling, and the cross section of the positive electrode active material is measured by AES (electron gun acceleration voltage 10 kV, current 10 nA, beam diameter of about 25 nm). The ratio of the constituent elements of was determined.

図1は、正極活物質の断面のSEM像の写真であり、正極活物質の構成元素の比率を求めた測定箇所の例を示す図である。測定は、正極活物質の最表面(複合酸化物の表面)に存在する表面酸化物(A)、複合酸化物の表層部(B)、複合酸化物の中央部(C)の3箇所とした。   FIG. 1 is a photograph of an SEM image of a cross section of a positive electrode active material, showing an example of a measurement location where the ratio of constituent elements of the positive electrode active material was obtained. The measurement was performed at three locations: the surface oxide (A) present on the outermost surface of the positive electrode active material (the surface of the composite oxide), the surface layer portion (B) of the composite oxide, and the central portion (C) of the composite oxide. .

(正極の溶出試験)
正極の溶出試験では、正極充電用のラミネートセルを作製して溶出試験用の正極を充電し、充電後の溶出試験用の正極を高温の電解液中に浸沈し、電解液中に溶出した金属イオンの量を測定した。
(Elution test of positive electrode)
In the elution test of the positive electrode, a laminate cell for charging the positive electrode was prepared and the positive electrode for the elution test was charged, and the positive electrode for the elution test after charging was immersed in a high-temperature electrolytic solution and eluted into the electrolytic solution. The amount of metal ions was measured.

図2は、作製した正極充電用のラミネートセルの模式図である。アルミニウム製の集電箔11の上に、20mm径の溶出試験用の正極12、厚さ30μmのポリプロピレン製の多孔質セパレータ13、金属リチウム箔14、及び銅製の集電箔15を、この順で積層した。この積層体を、ポリプロピレンで内張りした6cm四方のラミネートシート16で挟み、集電箔11、15がラミネートシート16から突出するようにして、ラミネートシート16の3辺を封止した。袋状のラミネートシート16に非水電解液を注液し、減圧により電解液を電極とセパレータに含浸させた後、ラミネートシート16の底辺(封止していない1辺)を封止して、正極充電用のラミネートセルを作製した。   FIG. 2 is a schematic view of the produced positive electrode charging laminate cell. On a current collector foil 11 made of aluminum, a positive electrode 12 for a dissolution test having a diameter of 20 mm, a porous separator 13 made of polypropylene having a thickness of 30 μm, a metal lithium foil 14 and a current collector foil 15 made of copper in this order. Laminated. This laminate was sandwiched between 6 cm square laminate sheets 16 lined with polypropylene, and the current collector foils 11 and 15 protruded from the laminate sheet 16 so that the three sides of the laminate sheet 16 were sealed. After injecting a non-aqueous electrolyte into the bag-shaped laminate sheet 16 and impregnating the electrolyte with the electrode and the separator by reducing the pressure, the bottom side (one side not sealed) of the laminate sheet 16 is sealed, A laminate cell for charging the positive electrode was produced.

このラミネートセルに対し、充放電電流が時間率0.2CAで充電上限電圧が4.3Vであり総充電時間が6時間の定電流定電圧充電と、放電下限電圧が3.5Vの定電流放電とを3回繰り返した後、充放電電流が0.2CAで上限電圧が4.3Vであり総充電時間が6時間の定電流定電圧充電を行った。   For this laminate cell, constant current and constant voltage charge with a charge / discharge current of 0.2 CA in time, a charge upper limit voltage of 4.3 V and a total charge time of 6 hours, and a constant current discharge with a discharge lower limit voltage of 3.5 V After repeating the above three times, constant current and constant voltage charging was performed with a charging / discharging current of 0.2 CA, an upper limit voltage of 4.3 V, and a total charging time of 6 hours.

この後、セルを解体して、充電した正極を取り出した。取り出した正極と5cmの電解液とをテフロン(登録商標)製の密閉容器に入れて密封し、50℃の環境で7日間保存した。保存後の電解液を高周波誘導プラズマ分光分析(ICP)により分析し、正極活物質を構成するLiを除く金属元素の濃度を測定し、電解液中の金属元素の総量(mol)を求めた。そして、正極活物質の重量(g)当たりの、金属元素の溶出量(mol/g)を求めた。 Thereafter, the cell was disassembled, and the charged positive electrode was taken out. The taken-out positive electrode and 5 cm 3 of the electrolytic solution were sealed in a Teflon (registered trademark) sealed container and stored in an environment of 50 ° C. for 7 days. The electrolytic solution after storage was analyzed by high frequency induction plasma spectroscopy (ICP), the concentration of metal elements excluding Li constituting the positive electrode active material was measured, and the total amount (mol) of metal elements in the electrolytic solution was determined. And the elution amount (mol / g) of the metal element per weight (g) of the positive electrode active material was determined.

電解液には、エチレンカーボネートとジメチルカーボネートとを体積比3:7で混合した非水混合溶媒に、リチウム塩として六フッ化リン酸リチウムを1mol/dm溶解した非水電解液を用いた。 As the electrolytic solution, a nonaqueous electrolytic solution in which 1 mol / dm 3 of lithium hexafluorophosphate as a lithium salt was dissolved in a nonaqueous mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7 was used.

(電池の作製)
図3は、作製したラミネート型のリチウムイオン二次電池の模式図である。塗工部が40mm×27mmである正極22、厚さ30μmのポリプロピレン製の多孔質セパレータ23、塗工部が42mm×30mmである負極27を、この順で積層した。この積層体を、ポリプロピレンで内張りした7cm四方のラミネートシート26で挟み、ニッケル製の負極端子28とアルミニウム製の正極端子29がラミネートシート26から突出するようにして、ラミネートシート26の底辺(端子28、29が突出している辺に対向する辺)を除く3辺を封止した。袋状のラミネートシート26に電解液を注液し、減圧により電解液を電極とセパレータに含浸させた後、底辺を封止して、ラミネート型の電池を作製した。電池は、実施例1の正極活物質4Aを用いた電池と、比較例1の正極活物質4Zを用いた電池を、それぞれ作製した。
(Production of battery)
FIG. 3 is a schematic diagram of the manufactured laminate-type lithium ion secondary battery. A positive electrode 22 having a coating portion of 40 mm × 27 mm, a polypropylene porous separator 23 having a thickness of 30 μm, and a negative electrode 27 having a coating portion of 42 mm × 30 mm were laminated in this order. The laminate is sandwiched between 7 cm square laminate sheets 26 lined with polypropylene, and a negative electrode terminal 28 made of nickel and a positive electrode terminal 29 made of aluminum protrude from the laminate sheet 26 so that the bottom side of the laminate sheet 26 (terminal 28 , 29 except for the side opposite to the side from which 29 protrudes. An electrolyte solution was poured into the bag-shaped laminate sheet 26, and the electrode and the separator were impregnated with the electrolyte solution under reduced pressure, and then the bottom side was sealed to produce a laminate type battery. As the batteries, a battery using the positive electrode active material 4A of Example 1 and a battery using the positive electrode active material 4Z of Comparative Example 1 were produced.

電解液には、エチレンカーボネートとジメチルカーボネートとを体積比3:7で混合した非水混合溶媒に、リチウム塩として六フッ化リン酸リチウムを1mol/dm溶解した非水電解液を用いた。 As the electrolytic solution, a nonaqueous electrolytic solution in which 1 mol / dm 3 of lithium hexafluorophosphate as a lithium salt was dissolved in a nonaqueous mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7 was used.

(充放電試験と高温寿命試験)
作製した電池に対し、充放電試験と高温寿命試験を行った。
(Charge / discharge test and high temperature life test)
The prepared battery was subjected to a charge / discharge test and a high temperature life test.

充放電試験の充電条件は、充電電流が時間率0.2CAで充電上限電圧が4.2Vであり、総充電時間が6時間の定電流定電圧充電である。放電条件は、放電電流が0.2CAで放電下限電圧が3Vの定電流放電である。この充放電サイクルを5サイクル行い、5サイクル目の放電容量を電池容量として求めた。ついで、レート試験として、この充電条件での充電後、放電電流が1CAで放電下限電圧が3Vの定電流放電を行い、電池容量を測定し、0.2CAでの放電後の電池容量に対する比率を容量比として求めた。   The charging conditions of the charging / discharging test are constant current and constant voltage charging, in which the charging current is a time rate of 0.2 CA, the charging upper limit voltage is 4.2 V, and the total charging time is 6 hours. The discharge conditions are constant current discharge with a discharge current of 0.2 CA and a discharge lower limit voltage of 3V. This charge / discharge cycle was repeated five times, and the discharge capacity at the fifth cycle was determined as the battery capacity. Next, as a rate test, after charging under this charging condition, a constant current discharge with a discharge current of 1 CA and a discharge lower limit voltage of 3 V was performed, the battery capacity was measured, and the ratio to the battery capacity after discharge at 0.2 CA was determined. The volume ratio was obtained.

ついで、高温寿命試験を行った。上記の充電条件での充電後、電池を50℃の環境で7日間保存した。その後、室温で、0.2CAで3Vの定電流放電後、電池容量の測定と同様の条件で充放電を1サイクル行い、この際の放電容量を高温寿命試験後の電池容量とし、高温寿命試験前の電池容量との比率を維持率として求めた。維持率が高いと、高温寿命が長くなる。   Subsequently, a high temperature life test was conducted. After charging under the above charging conditions, the battery was stored in an environment of 50 ° C. for 7 days. Then, after 3V constant current discharge at 0.2CA at room temperature, charge and discharge are performed in one cycle under the same conditions as the measurement of the battery capacity. The discharge capacity at this time is defined as the battery capacity after the high temperature life test, and the high temperature life test. The ratio with the previous battery capacity was determined as the maintenance rate. If the maintenance rate is high, the high temperature life is prolonged.

図4は、実施例1と比較例1における正極活物質の元素分析の結果を示す図であり、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率(mol%)を示す図である。   FIG. 4 is a diagram showing the results of elemental analysis of the positive electrode active material in Example 1 and Comparative Example 1, in the surface oxide of the positive electrode active material, the surface layer portion of the composite oxide, and the central portion of the composite oxide. It is a figure which shows an element ratio (mol%).

実施例1の正極活物質4Aでは、チタンを含む表面酸化物からフッ素とリチウムが検出された。また、複合酸化物の表層部からフッ素が検出されたが、中央部からはフッ素が検出されなかった。したがって、正極活物質4Aは、本発明による正極活物質であることが確認できた。   In the positive electrode active material 4A of Example 1, fluorine and lithium were detected from the surface oxide containing titanium. Further, although fluorine was detected from the surface layer portion of the composite oxide, fluorine was not detected from the central portion. Therefore, it was confirmed that the positive electrode active material 4A was a positive electrode active material according to the present invention.

一方、比較例1の正極活物質4Zは、表面酸化物を有せず、複合酸化物の表層部と中央部の両方からフッ素が検出され、本発明による正極活物質ではないことが確認できた。   On the other hand, the positive electrode active material 4Z of Comparative Example 1 did not have a surface oxide, and fluorine was detected from both the surface layer portion and the central portion of the composite oxide, confirming that it was not the positive electrode active material according to the present invention. .

表1に、実施例1の正極活物質4Aと比較例1の正極活物質4Zの、金属元素の溶出量、及びこれらの正極活物質を用いて作製したリチウムイオン二次電池の電池容量、1CA放電時の容量比、高温寿命試験後の維持率を示す。   Table 1 shows the amount of elution of metal elements of the positive electrode active material 4A of Example 1 and the positive electrode active material 4Z of Comparative Example 1, and the battery capacity and 1CA of a lithium ion secondary battery produced using these positive electrode active materials. The capacity ratio during discharge and the maintenance rate after the high-temperature life test are shown.

Figure 2016076454
Figure 2016076454

実施例1の正極活物質4Aは、比較例1の正極活物質4Zに比べ、金属元素の溶出量が少ない。この結果、正極活物質4Aを用いて作製した実施例1の電池は、正極活物質4Zを用いて作製した比較例1の電池に比べ、維持率が高いという効果が得られた。また、実施例1の電池は、比較例1の電池に比べ、電池容量が高いという効果が得られた。この理由は、正極活物質4Zは複合酸化物の全体がフッ素化しているのに対し、正極活物質4Aは中央部がフッ素化していないためだと考えられる。   The positive electrode active material 4A of Example 1 has a smaller amount of metal element elution than the positive electrode active material 4Z of Comparative Example 1. As a result, the battery of Example 1 manufactured using the positive electrode active material 4A had an effect that the maintenance rate was higher than that of the battery of Comparative Example 1 manufactured using the positive electrode active material 4Z. Moreover, the battery of Example 1 had the effect that the battery capacity was high compared with the battery of Comparative Example 1. The reason is considered that the positive electrode active material 4Z is entirely fluorinated while the positive electrode active material 4A is not fluorinated at the center.

実施例2では、複合酸化物の組成がLiNi0.46Mn1.54である正極活物質5Nと、LiNi0.45Mn1.35Ti0.2である正極活物質5Tとを作製した。表面酸化物は、どちらの正極活物質も、フッ素化とリチウム化したニオブ酸化物である。 In Example 2, a positive electrode active material 5N having a composite oxide composition of LiNi 0.46 Mn 1.54 O 4 , a positive electrode active material 5T having LiNi 0.45 Mn 1.35 Ti 0.2 O 4 , and Was made. The surface oxide is a fluorinated and lithiated niobium oxide for both positive electrode active materials.

正極活物質5Nと正極活物質5Tの作製方法を説明する。まず、リチウムを除く金属元素の複合酸化物の原料を作製した。正極活物質5Nについては、MnO、及び酸化ニッケル(NiO)を秤量、混合した。正極活物質5Tについては、MnO、酸化ニッケル、及び酸化チタン(TiO)を秤量、混合した。これらの混合物を、それぞれアルミナ製のるつぼに入れ、電気炉により1000℃で12時間、空気雰囲気で焼成し、正極活物質5Nと正極活物質5Tの複合酸化物の原料を得た。それぞれの複合酸化物の原料、及びLiCOを秤量、混合し、800℃で20時間、空気雰囲気で焼成した。焼成物を粉砕して、正極活物質5Nと正極活物質5Tの複合酸化物を得た。 A method for producing the positive electrode active material 5N and the positive electrode active material 5T will be described. First, a raw material for a composite oxide of metal elements excluding lithium was prepared. For the positive electrode active material 5N, MnO 2 and nickel oxide (NiO) were weighed and mixed. For the positive electrode active material 5T, MnO 2 , nickel oxide, and titanium oxide (TiO 2 ) were weighed and mixed. Each of these mixtures was placed in an alumina crucible and fired in an electric furnace at 1000 ° C. for 12 hours in an air atmosphere to obtain a composite oxide material of the positive electrode active material 5N and the positive electrode active material 5T. The raw materials for each composite oxide and Li 2 CO 3 were weighed and mixed, and calcined at 800 ° C. for 20 hours in an air atmosphere. The fired product was pulverized to obtain a composite oxide of the positive electrode active material 5N and the positive electrode active material 5T.

表面酸化物の原料として、ペンタエトキシニオブを用いた。得られたそれぞれの複合酸化物に対して2重量%のペンタエトキシニオブをエチルアルコールに溶解した。以下、得られたそれぞれの複合酸化物と、ペンタエトキシニオブを溶解したエチルアルコールとを用いて、実施例1と同様にして、正極活物質5Nと正極活物質5Tを作製した。   Pentaethoxyniobium was used as a raw material for the surface oxide. 2 wt% of pentaethoxyniobium was dissolved in ethyl alcohol with respect to each of the obtained composite oxides. Hereinafter, a positive electrode active material 5N and a positive electrode active material 5T were produced in the same manner as in Example 1 using the obtained composite oxides and ethyl alcohol in which pentaethoxyniobium was dissolved.

[比較例2]
比較例2として、複合酸化物の表面に表面酸化物が存在しない正極活物質を3種類作製した。
[Comparative Example 2]
As Comparative Example 2, three types of positive electrode active materials having no surface oxide on the surface of the composite oxide were prepared.

組成が正極活物質5Nと同じLiNi0.46Mn1.54である複合酸化物を、実施例2と同様にして作製し、これを正極活物質ZNとした。 A composite oxide having the same composition as LiNi 0.46 Mn 1.54 O 4 as the positive electrode active material 5N was produced in the same manner as in Example 2, and this was used as the positive electrode active material ZN.

組成がLiNi0.46Mn1.543.90.1である複合酸化物を、LiFも原料に用いて、実施例2と同様に作製し、これを正極活物質FNとした。 A composite oxide having a composition of LiNi 0.46 Mn 1.54 O 3.9 F 0.1 was prepared in the same manner as in Example 2 using LiF as a raw material, and this was used as a positive electrode active material FN.

組成が正極活物質5Tと同じ組成LiNi0.45Mn1.35Ti0.2である複合酸化物を、実施例2と同様に作製し、これを正極活物質ZTとした。 A composite oxide having the same composition LiNi 0.45 Mn 1.35 Ti 0.2 O 4 as the positive electrode active material 5T was produced in the same manner as in Example 2, and this was used as the positive electrode active material ZT.

(正極の溶出試験)
正極の溶出試験は、充電上限電圧を4.9Vとした以外は、実施例1と同様に行った。
(Elution test of positive electrode)
The elution test of the positive electrode was performed in the same manner as in Example 1 except that the charge upper limit voltage was set to 4.9V.

(電池の作製)
作製した実施例2と比較例2の正極活物質を用いて、ラミネート型のリチウムイオン二次電池を、実施例1と同様にしてそれぞれ作製した。
(Production of battery)
Using the produced positive electrode active materials of Example 2 and Comparative Example 2, laminate type lithium ion secondary batteries were produced in the same manner as in Example 1.

(充放電試験と高温寿命試験)
充放電試験と高温寿命試験は、充電上限電圧を4.8Vとした以外は、実施例1と同様に行った。
(Charge / discharge test and high temperature life test)
The charge / discharge test and the high-temperature life test were performed in the same manner as in Example 1 except that the upper limit voltage of charge was 4.8V.

図5及び図6は、実施例2と比較例2における正極活物質の元素分析の結果を示す図であり、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率(mol%)を示す図である。図5には、正極活物質5N、正極活物質ZN、及び正極活物質FNの結果を、図6には、正極活物質5T、及び正極活物質ZTの結果を、それぞれ示す。   5 and 6 are diagrams showing the results of elemental analysis of the positive electrode active material in Example 2 and Comparative Example 2, and the surface oxide of the positive electrode active material, the surface layer portion of the composite oxide, and the center of the composite oxide It is a figure which shows the element ratio (mol%) in a part. FIG. 5 shows the results of the positive electrode active material 5N, the positive electrode active material ZN, and the positive electrode active material FN, and FIG. 6 shows the results of the positive electrode active material 5T and the positive electrode active material ZT.

実施例2の正極活物質5Nと正極活物質5Tでは、ニオブを含む表面酸化物からフッ素とリチウムが検出された。また、複合酸化物の表層部からフッ素が検出されたが、中央部からはフッ素が検出されなかった。したがって、正極活物質5Nと正極活物質5Tは、本発明による正極活物質であることが確認できた。   In the positive electrode active material 5N and the positive electrode active material 5T of Example 2, fluorine and lithium were detected from the surface oxide containing niobium. Further, although fluorine was detected from the surface layer portion of the composite oxide, fluorine was not detected from the central portion. Therefore, it was confirmed that the positive electrode active material 5N and the positive electrode active material 5T are positive electrode active materials according to the present invention.

一方、比較例2の正極活物質ZN、正極活物質FN、及び正極活物質ZTは、表面酸化物を有せず、正極活物質ZN、及び正極活物質ZTからはフッ素が検出されず、正極活物質FNは複合酸化物の表層部と中央部の両方からフッ素が検出された。したがって、正極活物質ZN、正極活物質FN、及び正極活物質ZTは、本発明による正極活物質ではないことが確認できた。   On the other hand, the positive electrode active material ZN, the positive electrode active material FN, and the positive electrode active material ZT of Comparative Example 2 have no surface oxide, and no fluorine is detected from the positive electrode active material ZN and the positive electrode active material ZT. In the active material FN, fluorine was detected from both the surface layer portion and the central portion of the composite oxide. Therefore, it was confirmed that the positive electrode active material ZN, the positive electrode active material FN, and the positive electrode active material ZT were not positive electrode active materials according to the present invention.

表2に、実施例2の正極活物質5N、及び正極活物質5Tと、比較例2の正極活物質ZN、正極活物質FN、及び正極活物質ZTの、金属元素の溶出量、及びこれらの正極活物質を用いて作製したリチウムイオン二次電池の電池容量、1CA放電時の容量比、高温寿命試験後の維持率を示す。   Table 2 shows the amount of elution of metal elements of the positive electrode active material 5N and the positive electrode active material 5T of Example 2 and the positive electrode active material ZN, the positive electrode active material FN, and the positive electrode active material ZT of Comparative Example 2, and these The battery capacity of the lithium ion secondary battery produced using a positive electrode active material, the capacity ratio at the time of 1CA discharge, and the maintenance factor after a high temperature life test are shown.

Figure 2016076454
Figure 2016076454

実施例2の正極活物質5N、及び正極活物質5Tは、比較例2の中で最も溶出量の少ない正極活物質FNと比較しても、金属元素の溶出量が少ない。この結果、正極活物質5N、5Tを用いて作製した実施例2の電池は、正極活物質ZN、FN、ZT用いて作製した比較例2の電池と比較して、維持率が高いという効果が得られた。   The positive electrode active material 5N and the positive electrode active material 5T of Example 2 have less metal element elution than the positive electrode active material FN with the smallest elution amount in Comparative Example 2. As a result, the battery of Example 2 manufactured using the positive electrode active materials 5N and 5T has an effect that the maintenance rate is higher than the battery of Comparative Example 2 manufactured using the positive electrode active materials ZN, FN, and ZT. Obtained.

また、正極活物質5N、5Tを用いて作製した実施例2の電池は、正極活物質FNを用いて作製した比較例2の電池と比較して、電池容量が高いという効果が得られた。この理由は、正極活物質FNは複合酸化物の全体がフッ素化しているのに対し、正極活物質5N、5Tは中央部がフッ素化していないためだと考えられる。また、正極活物質5N、5Tを用いて作製した実施例2の電池は、正極活物質ZN、ZTを用いて作製した比較例2の電池に比べて、容量を発現しない表面酸化物が正極活物質に存在するため僅かに電池容量が小さいものの、容量比は同程度であり、維持率が高いという効果が得られた。   Moreover, the battery of Example 2 produced using the positive electrode active materials 5N and 5T had the effect that the battery capacity was high compared with the battery of the comparative example 2 produced using the positive electrode active material FN. The reason is considered that the positive electrode active material FN is entirely fluorinated, whereas the positive electrode active materials 5N and 5T are not fluorinated at the center. In addition, the battery of Example 2 manufactured using the positive electrode active materials 5N and 5T has a surface oxide that does not exhibit capacity compared to the battery of Comparative Example 2 manufactured using the positive electrode active materials ZN and ZT. Although the battery capacity is slightly small because it exists in the substance, the capacity ratio is about the same, and the effect that the maintenance ratio is high is obtained.

実施例3では、複合酸化物の組成がLiNi0.45Mn1.45Ge0.1である正極活物質5Gを作製した。表面酸化物は、フッ素化した酸化アルミニウムである。 In Example 3, a positive electrode active material 5G having a composite oxide composition of LiNi 0.45 Mn 1.45 Ge 0.1 O 4 was produced. The surface oxide is fluorinated aluminum oxide.

正極活物質5Gの作製方法を説明する。正極活物質5Gの作製方法は、実施例2の正極活物質5Nと正極活物質5Tの作製方法と同様である。まず、MnO、酸化ニッケル、及び酸化ゲルマニウム(GeO)を秤量、混合した。この混合物を、それぞれアルミナ製のるつぼに入れ、電気炉により1000℃で12時間、空気雰囲気で焼成し、正極活物質5Gの複合酸化物の原料を得た。この複合酸化物の原料、及びLiCOを秤量、混合し、800℃で20時間、空気雰囲気で焼成した。焼成物を粉砕して、正極活物質5Gの複合酸化物を得た。 A method for producing the positive electrode active material 5G will be described. The method for producing the positive electrode active material 5G is the same as the method for producing the positive electrode active material 5N and the positive electrode active material 5T in Example 2. First, MnO 2 , nickel oxide, and germanium oxide (GeO 2 ) were weighed and mixed. This mixture was put in an alumina crucible and fired in an electric furnace at 1000 ° C. for 12 hours in an air atmosphere to obtain a composite oxide material of the positive electrode active material 5G. This composite oxide raw material and Li 2 CO 3 were weighed and mixed, and calcined at 800 ° C. for 20 hours in an air atmosphere. The fired product was pulverized to obtain a composite oxide of the positive electrode active material 5G.

表面酸化物の原料として、アルミニウムトリイソプロポキシドを用いた。得られた複合酸化物と、複合酸化物に対し1.5重量%のアルミニウムトリイソプロポキシドを用い、実施例1と同じ手順で乾燥した粉末を得た。   Aluminum triisopropoxide was used as a raw material for the surface oxide. Using the obtained composite oxide and 1.5% by weight of aluminum triisopropoxide based on the composite oxide, a powder dried by the same procedure as in Example 1 was obtained.

乾燥して得られたこの粉末と、フッ化リチウムと水酸化リチウムとを混合した。混合物をアルミナ製のるつぼに入れ、電気炉により700℃で5時間、空気雰囲気で焼成した。焼成物を蒸留水で洗浄して乾燥させた後、不活性雰囲気にて400℃で12時間、再度、熱処理し、正極活物質5Gを得た。   This powder obtained by drying was mixed with lithium fluoride and lithium hydroxide. The mixture was placed in an alumina crucible and fired in an electric furnace at 700 ° C. for 5 hours in an air atmosphere. The fired product was washed with distilled water and dried, and then heat treated again at 400 ° C. for 12 hours in an inert atmosphere to obtain a positive electrode active material 5G.

[比較例3]
比較例3として、組成が実施例3と同じ複合酸化物の表面を、フッ化アルミニウムでコーティングした正極活物質ZGを作製した。すなわち、正極活物質ZGは、複合酸化物の表面に、フッ化アルミニウムのコーティング部を有する。
[Comparative Example 3]
As Comparative Example 3, a positive electrode active material ZG in which the surface of the composite oxide having the same composition as in Example 3 was coated with aluminum fluoride was produced. That is, the positive electrode active material ZG has a coating portion of aluminum fluoride on the surface of the composite oxide.

ビーカーに、硝酸アルミニウム水溶液と、実施例3と同様に作製した複合酸化物とを投入し、これらを温度80℃で撹拌しながら、フッ化アンモニウム水溶液を徐々に添加した。その後、80℃で24時間撹拌した後、ろ過して粉末物を得た。この粉末物を蒸留水で洗浄・乾燥後、不活性雰囲気にて400℃で熱処理し、正極活物質ZGを作製した。   An aluminum nitrate aqueous solution and a composite oxide produced in the same manner as in Example 3 were added to a beaker, and an ammonium fluoride aqueous solution was gradually added while stirring them at a temperature of 80 ° C. Then, after stirring at 80 degreeC for 24 hours, it filtered and the powdery material was obtained. This powder was washed with distilled water and dried, and then heat-treated at 400 ° C. in an inert atmosphere to prepare a positive electrode active material ZG.

(正極活物質の元素分析)
実施例3の表面酸化物及び比較例3のコーティング部の元素分析に限り、これらを断面としたときの両者の厚さが薄いことから、活物質表面からのAESで元素比を測定した。
(Elemental analysis of positive electrode active material)
Only in the elemental analysis of the surface oxide of Example 3 and the coating part of Comparative Example 3, since the thickness of both was thin, the element ratio was measured by AES from the active material surface.

(電池の作製)
作製した実施例3と比較例3の正極活物質を用いて、ラミネート型のリチウムイオン二次電池を、実施例2と同様にしてそれぞれ作製した。
(Production of battery)
Using the produced positive electrode active materials of Example 3 and Comparative Example 3, laminate type lithium ion secondary batteries were produced in the same manner as in Example 2.

(充放電試験と高温寿命試験)
充放電試験と高温寿命試験は、実施例2と同様に行った。
(Charge / discharge test and high temperature life test)
The charge / discharge test and the high-temperature life test were performed in the same manner as in Example 2.

図7は、実施例3と比較例3における正極活物質の元素分析の結果を示す図であり、正極活物質の表面酸化物(比較例3ではコーティング部)、複合酸化物の表層部、及び複合酸化物の中央部での元素比率(mol%)を示す図である。   FIG. 7 is a diagram showing the results of elemental analysis of the positive electrode active material in Example 3 and Comparative Example 3, in which the surface oxide of the positive electrode active material (coating portion in Comparative Example 3), the surface layer portion of the composite oxide, It is a figure which shows the element ratio (mol%) in the center part of complex oxide.

実施例3の正極活物質5Gでは、アルミニウムを含む表面酸化物からフッ素が検出され、リチウムはほぼ検出されなかった。また、複合酸化物の表層部からフッ素が検出されたが、中央部からはフッ素が検出されなかった。したがって、正極活物質5Gは、本発明による正極活物質であることが確認できた。   In the positive electrode active material 5G of Example 3, fluorine was detected from the surface oxide containing aluminum, and lithium was hardly detected. Further, although fluorine was detected from the surface layer portion of the composite oxide, fluorine was not detected from the central portion. Therefore, it was confirmed that the positive electrode active material 5G was a positive electrode active material according to the present invention.

一方、比較例3の正極活物質ZGは、コーティング部から酸素が不純物的に検出されたが、コーティング部がアルミニウムとフッ素で構成されており、表面酸化物が存在せず、本発明による正極活物質ではないことが確認できた。   On the other hand, in the positive electrode active material ZG of Comparative Example 3, oxygen was detected in impurities from the coating portion, but the coating portion was composed of aluminum and fluorine, and there was no surface oxide, so that the positive electrode active material according to the present invention was used. It was confirmed that it was not a substance.

表3に、実施例3の正極活物質5Gと比較例3の正極活物質ZGの、金属元素の溶出量、及びこれらの正極活物質を用いて作製したリチウムイオン二次電池の電池容量、1CA放電時の容量比、高温寿命試験後の維持率を示す。   Table 3 shows the amount of elution of metal elements of the positive electrode active material 5G of Example 3 and the positive electrode active material ZG of Comparative Example 3, and the battery capacity, 1CA of a lithium ion secondary battery produced using these positive electrode active materials The capacity ratio during discharge and the maintenance rate after the high-temperature life test are shown.

Figure 2016076454
Figure 2016076454

実施例3の正極活物質5Gは、比較例3の正極活物質ZGに比べ、金属元素の溶出量が少ない。この結果、正極活物質5Gを用いて作製した実施例3の電池は、正極活物質ZGを用いて作製した比較例3の電池に比べ、維持率が高いという効果が得られた。また、実施例3の電池は、比較例3の電池に比べ、電池容量と容量比がともに高いという効果が得られた。この理由は、正極活物質5Gの表面酸化物は、リチウムイオン拡散性が、正極活物質ZGのコーティング部よりも優れているためだと推定される。   The positive electrode active material 5G of Example 3 has less metal element elution than the positive electrode active material ZG of Comparative Example 3. As a result, the battery of Example 3 manufactured using the positive electrode active material 5G had an effect that the maintenance rate was higher than that of the battery of Comparative Example 3 manufactured using the positive electrode active material ZG. In addition, the battery of Example 3 had an effect that both the battery capacity and the capacity ratio were higher than those of Comparative Example 3. This is presumably because the surface oxide of the positive electrode active material 5G is superior in lithium ion diffusibility to the coating portion of the positive electrode active material ZG.

実施例4では、複合酸化物の組成がLiNi0.45Mn1.5Mg0.05である正極活物質5Mと、LiNi0.4Mn1.4Fe0.2である正極活物質5Eとを作製した。表面酸化物は、どちらの正極活物質も、フッ素化とリチウム化したチタン酸化物である。 In Example 4, a positive electrode active material 5M having a composite oxide composition of LiNi 0.45 Mn 1.5 Mg 0.05 O 4 and a positive electrode having LiNi 0.4 Mn 1.4 Fe 0.2 O 4 Active material 5E was produced. The surface oxide is a fluorinated and lithiated titanium oxide for both positive electrode active materials.

正極活物質5Mと正極活物質5Eの作製方法を説明する。正極活物質5Mについては、MnO、酸化ニッケル、及び酸化マグネシウム(MgO)を用い、正極活物質5Eについては、MnO、酸化ニッケル、及び酸化鉄(Fe)を用い、実施例2と同様の方法でそれぞれの複合酸化物の原料を得て、実施例2と同様の方法でそれぞれの複合酸化物を得た。 A method for producing the positive electrode active material 5M and the positive electrode active material 5E will be described. For the positive electrode active material 5M, MnO 2 , nickel oxide, and magnesium oxide (MgO) are used, and for the positive electrode active material 5E, MnO 2 , nickel oxide, and iron oxide (Fe 2 O 3 ) are used. The raw material of each composite oxide was obtained by the same method as that described above, and each composite oxide was obtained by the same method as in Example 2.

これらの複合酸化物を用い、実施例1と同様の方法で複合酸化物に表面酸化物を設け、正極活物質5Mと正極活物質5Eとを作製した。   Using these composite oxides, a surface oxide was provided on the composite oxide in the same manner as in Example 1 to produce a positive electrode active material 5M and a positive electrode active material 5E.

[比較例4]
比較例4として、実施例4と同じ複合酸化物を用い、複合酸化物の表面に表面酸化物を設けずにフッ素化及びリチウム化処理をした正極活物質を2種類作製した。
[Comparative Example 4]
As Comparative Example 4, the same composite oxide as in Example 4 was used, and two types of positive electrode active materials that were fluorinated and lithiated without providing a surface oxide on the surface of the composite oxide were produced.

組成が実施例4の正極活物質5Mと同じ複合酸化物と、フッ化リチウムと水酸化リチウムとを混合した。混合物をアルミナ製のるつぼに入れ、700℃で5時間、空気雰囲気で焼成し、正極活物質ZMを得た。   A composite oxide having the same composition as that of the positive electrode active material 5M of Example 4, lithium fluoride, and lithium hydroxide were mixed. The mixture was put in an alumina crucible and fired at 700 ° C. for 5 hours in an air atmosphere to obtain a positive electrode active material ZM.

同様に、組成が実施例4の正極活物質5Eと同じ複合酸化物を用い、正極活物質ZEを得た。   Similarly, a positive electrode active material ZE was obtained using the same composite oxide as the positive electrode active material 5E of Example 4.

(正極の溶出試験)
正極の溶出試験は、実施例2と同様に行った。
(Elution test of positive electrode)
The elution test of the positive electrode was performed in the same manner as in Example 2.

(電池の作製)
作製した実施例4と比較例4の正極活物質を用いて、ラミネート型のリチウムイオン二次電池を、実施例2と同様にしてそれぞれ作製した。
(Production of battery)
Using the produced positive electrode active materials of Example 4 and Comparative Example 4, laminate type lithium ion secondary batteries were produced in the same manner as in Example 2.

(充放電試験と高温寿命試験)
充放電試験と高温寿命試験は、実施例2と同様に行った。
(Charge / discharge test and high temperature life test)
The charge / discharge test and the high-temperature life test were performed in the same manner as in Example 2.

図8及び図9は、実施例4と比較例4における正極活物質の元素分析の結果を示す図であり、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率(mol%)を示す図である。図8には、正極活物質5M、及び正極活物質ZMの結果を、図9には、正極活物質5E、及び正極活物質ZEの結果を、それぞれ示す。   8 and 9 are diagrams showing the results of elemental analysis of the positive electrode active material in Example 4 and Comparative Example 4, and are the surface oxide of the positive electrode active material, the surface layer portion of the composite oxide, and the center of the composite oxide. It is a figure which shows the element ratio (mol%) in a part. FIG. 8 shows the results of the positive electrode active material 5M and the positive electrode active material ZM, and FIG. 9 shows the results of the positive electrode active material 5E and the positive electrode active material ZE, respectively.

実施例4の正極活物質5Mと正極活物質5Eでは、チタンを含む表面酸化物からフッ素とリチウムが検出された。また、複合酸化物の表層部からフッ素が検出されたが、中央部からはフッ素が検出されなかった。したがって、正極活物質5Mと正極活物質5Eは、本発明による正極活物質であることが確認できた。   In the positive electrode active material 5M and the positive electrode active material 5E of Example 4, fluorine and lithium were detected from the surface oxide containing titanium. Further, although fluorine was detected from the surface layer portion of the composite oxide, fluorine was not detected from the central portion. Therefore, it was confirmed that the positive electrode active material 5M and the positive electrode active material 5E are positive electrode active materials according to the present invention.

なお、図8ではマグネシウムのプロットは他の元素のプロットと重なっており見えるように描かれていないが、実施例4の正極活物質5Mでは、複合酸化物の表層部と中央部からマグネシウムが検出され、表面酸化物からはマグネシウムが検出されなかった。   In FIG. 8, the magnesium plot is not drawn so as to overlap with the plots of other elements, but in the positive electrode active material 5M of Example 4, magnesium is detected from the surface layer portion and the central portion of the composite oxide. Magnesium was not detected from the surface oxide.

一方、比較例4の正極活物質ZM、及び正極活物質ZEは、複合酸化物の表層部からフッ素が検出され、中央部からフッ素が検出されなかった。しかし、正極活物質ZM、及び正極活物質ZEは、表面酸化物を有しない。したがって、正極活物質ZM、及び正極活物質ZEは、本発明による正極活物質ではないことが確認できた。   On the other hand, in the positive electrode active material ZM and the positive electrode active material ZE of Comparative Example 4, fluorine was detected from the surface layer portion of the composite oxide, and fluorine was not detected from the center portion. However, the positive electrode active material ZM and the positive electrode active material ZE do not have a surface oxide. Therefore, it was confirmed that the positive electrode active material ZM and the positive electrode active material ZE were not the positive electrode active material according to the present invention.

表4に、実施例4の正極活物質5M、及び正極活物質5Eと、比較例4の正極活物質ZM、及び正極活物質ZEの、金属元素の溶出量、及びこれらの正極活物質を用いて作製したリチウムイオン二次電池の電池容量、1CA放電時の容量比、高温寿命試験後の維持率を示す。   Table 4 uses the positive electrode active material 5M and positive electrode active material 5E of Example 4 and the amount of elution of metal elements of the positive electrode active material ZM and positive electrode active material ZE of Comparative Example 4, and these positive electrode active materials. The battery capacity of the lithium ion secondary battery produced in this way, the capacity ratio during 1 CA discharge, and the maintenance rate after the high-temperature life test are shown.

Figure 2016076454
Figure 2016076454

実施例4の正極活物質5M、及び正極活物質5Eは、比較例4の正極活物質ZM、及び正極活物質ZEと比較して、ともに金属元素の溶出量が少ない。この結果、正極活物質5M、5Eを用いて作製した実施例4の電池は、正極活物質ZM、ZEを用いて作製した比較例4の電池と比較して、維持率が高いという効果が得られた。また、実施例4の電池は、比較例4の電池と比較して、電池容量が同程度か僅かながら高く、容量比が僅かながら高いという効果が得られた。   The positive electrode active material 5M and the positive electrode active material 5E of Example 4 both have a smaller amount of metal element elution than the positive electrode active material ZM and the positive electrode active material ZE of Comparative Example 4. As a result, the battery of Example 4 manufactured using the positive electrode active materials 5M and 5E has an effect that the maintenance rate is higher than the battery of Comparative Example 4 manufactured using the positive electrode active materials ZM and ZE. It was. Moreover, the battery of Example 4 had the effect that the battery capacity was comparable or slightly higher than the battery of Comparative Example 4, and the capacity ratio was slightly higher.

実施例5では、複合酸化物の組成がLiNi0.4Mn1.4Co0.2である正極活物質5Cと、LiNi0.4Mn1.5Cu0.1である正極活物質5Uとを作製した。表面酸化物は、どちらの正極活物質も、フッ素化とリチウム化したタンタル酸化物である。 In Example 5, the positive electrode active material 5C having a composite oxide composition of LiNi 0.4 Mn 1.4 Co 0.2 O 4 and the positive electrode having LiNi 0.4 Mn 1.5 Cu 0.1 O 4 An active material 5U was prepared. The surface oxide is fluorinated and lithiated tantalum oxide for both positive electrode active materials.

正極活物質5Cと正極活物質5Uの作製方法を説明する。正極活物質5Cについては、MnO、酸化ニッケル、及び酸化コバルト(Co)を用い、正極活物質5Uについては、MnO、酸化ニッケル、及び酸化銅(CuO)を用い、実施例2と同様の方法でそれぞれの複合酸化物の原料を得て、実施例2と同様の方法でそれぞれの複合酸化物を得た。 A method for producing the positive electrode active material 5C and the positive electrode active material 5U will be described. For positive electrode active material 5C, MnO 2 , nickel oxide, and cobalt oxide (Co 2 O 3 ) are used, and for positive electrode active material 5U, MnO 2 , nickel oxide, and copper oxide (CuO) are used. The raw material of each composite oxide was obtained by the same method as that described above, and each composite oxide was obtained by the same method as in Example 2.

表面酸化物の原料として、ペンタエトキシタンタルを用いた。得られた複合酸化物と、複合酸化物に対し2重量%のペンタエトキシタンタルを用い、実施例2と同様の方法で複合酸化物に表面酸化物を設けて、フッ素化処理とリチウム化処理を行い、正極活物質5Cと正極活物質5Uとを作製した。   Pentaethoxytantalum was used as a raw material for the surface oxide. Using the obtained composite oxide and 2 wt% pentaethoxytantalum with respect to the composite oxide, a surface oxide was provided on the composite oxide in the same manner as in Example 2, and fluorination treatment and lithiation treatment were performed. The positive electrode active material 5C and the positive electrode active material 5U were produced.

[比較例5]
比較例5として、実施例5と同じ複合酸化物を用い、実施例5と同じタンタル酸化物の表面酸化物を複合酸化物の表面に設けたが、表面酸化物にフッ素化処理とリチウム化処理を行わない正極活物質を2種類作製した。
[Comparative Example 5]
As Comparative Example 5, the same composite oxide as in Example 5 was used, and the same surface oxide of tantalum oxide as in Example 5 was provided on the surface of the composite oxide, but the surface oxide was subjected to fluorination treatment and lithiation treatment. Two types of positive electrode active materials not subjected to the above were prepared.

実施例5の正極活物質5Cと同じ複合酸化物を作製し、実施例5と同様に表面酸化物を設ける処理を行い(フッ素化処理とリチウム化処理は行わない)、正極活物質ZCを作製した。   The same composite oxide as that of the positive electrode active material 5C of Example 5 was produced, and a treatment for providing a surface oxide was performed in the same manner as in Example 5 (the fluorination treatment and lithiation treatment were not performed) to produce the positive electrode active material ZC did.

同様に、実施例5の正極活物質5Uと同じ複合酸化物を用い、正極活物質ZUを作製した。   Similarly, a positive electrode active material ZU was produced using the same composite oxide as the positive electrode active material 5U of Example 5.

(正極の溶出試験)
正極の溶出試験は、充電上限電圧を5.0Vとした以外は、実施例2と同様に行った。
(Elution test of positive electrode)
The elution test of the positive electrode was performed in the same manner as in Example 2 except that the upper limit voltage for charging was set to 5.0V.

(電池の作製)
作製した実施例5と比較例5の正極活物質を用いて、ラミネート型のリチウムイオン二次電池を、実施例2と同様にしてそれぞれ作製した。
(充放電試験と高温寿命試験)
充放電試験と高温寿命試験は、充電上限電圧を4.9Vとした以外は、実施例2と同様に行った。
(Production of battery)
Using the produced positive electrode active materials of Example 5 and Comparative Example 5, laminated lithium ion secondary batteries were produced in the same manner as in Example 2.
(Charge / discharge test and high temperature life test)
The charge / discharge test and the high-temperature life test were performed in the same manner as in Example 2 except that the upper limit charge voltage was 4.9V.

図10及び図11は、実施例5と比較例5における正極活物質の元素分析の結果を示す図であり、正極活物質の表面酸化物、複合酸化物の表層部、及び複合酸化物の中央部での元素比率(mol%)を示す図である。図10には、正極活物質5C、及び正極活物質ZCの結果を、図11には、正極活物質5U、及び正極活物質ZUの結果を、それぞれ示す。   10 and 11 are diagrams showing the results of elemental analysis of the positive electrode active material in Example 5 and Comparative Example 5, and the surface oxide of the positive electrode active material, the surface layer portion of the composite oxide, and the center of the composite oxide It is a figure which shows the element ratio (mol%) in a part. FIG. 10 shows the results of the positive electrode active material 5C and the positive electrode active material ZC, and FIG. 11 shows the results of the positive electrode active material 5U and the positive electrode active material ZU.

実施例5の正極活物質5Cと正極活物質5Uでは、タンタルを含む表面酸化物からフッ素とリチウムが検出された。また、複合酸化物の表層部からフッ素が検出されたが、中央部からはフッ素が検出されなかった。したがって、正極活物質5Cと正極活物質5Uは、本発明による正極活物質であることが確認できた。   In the positive electrode active material 5C and the positive electrode active material 5U of Example 5, fluorine and lithium were detected from the surface oxide containing tantalum. Further, although fluorine was detected from the surface layer portion of the composite oxide, fluorine was not detected from the central portion. Therefore, it was confirmed that the positive electrode active material 5C and the positive electrode active material 5U were positive electrode active materials according to the present invention.

一方、比較例5の正極活物質ZCと正極活物質ZUでは、タンタルを含む表面酸化物、及び複合酸化物の表層部のいずれもからフッ素が検出されなかった。したがって、正極活物質ZC、及び正極活物質ZUは、本発明による正極活物質ではないことが確認できた。   On the other hand, in the positive electrode active material ZC and the positive electrode active material ZU of Comparative Example 5, no fluorine was detected in any of the surface oxide containing tantalum and the surface layer portion of the composite oxide. Therefore, it was confirmed that the positive electrode active material ZC and the positive electrode active material ZU were not the positive electrode active material according to the present invention.

表5に、実施例5の正極活物質5C、及び正極活物質5Uと、比較例5の正極活物質ZC、及び正極活物質ZUの、金属元素の溶出量、及びこれらの正極活物質を用いて作製したリチウムイオン二次電池の電池容量、1CA放電時の容量比、高温寿命試験後の維持率を示す。   In Table 5, the amount of elution of metal elements of the positive electrode active material 5C and the positive electrode active material 5U of Example 5 and the positive electrode active material ZC and the positive electrode active material ZU of Comparative Example 5 and these positive electrode active materials are used. The battery capacity of the lithium ion secondary battery produced in this way, the capacity ratio during 1 CA discharge, and the maintenance rate after the high-temperature life test are shown.

Figure 2016076454
Figure 2016076454

実施例5の正極活物質5C、及び正極活物質5Uは、比較例5の正極活物質ZC、及び正極活物質ZUと比較して、ともに金属元素の溶出量が少ない。この結果、正極活物質5C、5Uを用いて作製した実施例5の電池は、正極活物質ZC、ZUを用いて作製した比較例5の電池と比較して、維持率が高いという効果が得られた。また、実施例5の電池は、比較例5の電池と比較して、電池容量と容量比が同程度か僅かながら高いという効果が得られた。   Compared with the positive electrode active material ZC and the positive electrode active material ZU of Comparative Example 5, both the positive electrode active material 5C and the positive electrode active material 5U of Example 5 have a smaller amount of metal element elution. As a result, the battery of Example 5 manufactured using the positive electrode active materials 5C and 5U has an effect that the maintenance rate is higher than the battery of Comparative Example 5 manufactured using the positive electrode active materials ZC and ZU. It was. Moreover, the battery of Example 5 had the effect that the battery capacity and the capacity ratio were comparable or slightly higher than those of the battery of Comparative Example 5.

以上の実施例で示したように、本発明によると、高電位を発現できて金属元素の溶出を抑制できる正極活物質と、容量と高温寿命に優れたリチウムイオン二次電池とを提供することができる。   As shown in the above examples, according to the present invention, it is possible to provide a positive electrode active material capable of expressing a high potential and suppressing elution of a metal element, and a lithium ion secondary battery excellent in capacity and high-temperature life. Can do.

11…アルミニウム製の集電箔、12…溶出試験用の正極、13…多孔質セパレータ、14…金属リチウム箔、15…銅製の集電箔、16…ラミネートシート、22…正極、23…多孔質セパレータ、26…ラミネートシート、27…負極、28…負極端子、29…正極端子。   DESCRIPTION OF SYMBOLS 11 ... Current collecting foil made of aluminum, 12 ... Positive electrode for dissolution test, 13 ... Porous separator, 14 ... Metal lithium foil, 15 ... Current collecting foil made of copper, 16 ... Laminate sheet, 22 ... Positive electrode, 23 ... Porous Separator, 26 ... laminate sheet, 27 ... negative electrode, 28 ... negative electrode terminal, 29 ... positive electrode terminal.

Claims (7)

Liと少なくともMnを含む遷移金属との複合酸化物と、
2価以上の金属元素を有する酸化物である表面酸化物と、を有し、
前記複合酸化物は、表層部がフッ素化しており、中央部がフッ素化しておらず、
前記表面酸化物は、前記複合酸化物の表面に存在し、フッ素化している、
ことを特徴とするリチウムイオン二次電池用正極活物質。
A composite oxide of Li and a transition metal containing at least Mn;
And a surface oxide that is an oxide having a bivalent or higher valent metal element,
The composite oxide has a fluorinated surface portion, a fluorinated center portion,
The surface oxide exists on the surface of the composite oxide and is fluorinated.
A positive electrode active material for a lithium ion secondary battery.
前記複合酸化物は、Mnを含むスピネル型複合酸化物である、請求項1に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the composite oxide is a spinel composite oxide containing Mn. 前記複合酸化物は、一般式LiNiMnMzO4+α(Mは、Ti、Ge、Mg、Fe、Co、及びCuのうちの少なくとも1つ、0.3≦x≦0.55、1.2≦y≦1.6、0≦Z≦0.4、1.9≦x+y+z≦2.05、0.95≦a≦1.1、−0.2≦α≦0.1)で表される、請求項2に記載のリチウムイオン二次電池用正極活物質。 The composite oxide has a general formula Li a Ni x Mn y MzO 4 + α (M is at least one of Ti, Ge, Mg, Fe, Co, and Cu, 0.3 ≦ x ≦ 0.55, 1 .2 ≦ y ≦ 1.6, 0 ≦ Z ≦ 0.4, 1.9 ≦ x + y + z ≦ 2.05, 0.95 ≦ a ≦ 1.1, −0.2 ≦ α ≦ 0.1) The positive electrode active material for lithium ion secondary batteries according to claim 2. 前記表面酸化物は、前記金属元素としてAl、Ti、Ge、Y、Zr、Nb、In、Sn、及びTaのうち少なくとも1つを含む、請求項2又は3に記載のリチウムイオン二次電池用正極活物質。   The lithium ion secondary battery according to claim 2, wherein the surface oxide includes at least one of Al, Ti, Ge, Y, Zr, Nb, In, Sn, and Ta as the metal element. Positive electrode active material. 前記表面酸化物は、リチウム化している、請求項4に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 4, wherein the surface oxide is lithiated. 前記表面酸化物は、前記金属元素としてNb、Ta、及びTiのうち少なくとも1つを含み、リチウム化している、請求項2又は3に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 2, wherein the surface oxide includes at least one of Nb, Ta, and Ti as the metal element and is lithiated. 正極と、負極と、電解液とを備え、
前記正極は、正極活物質として、請求項1から請求項6のいずれか1項に記載のリチウムイオン二次電池用正極活物質を有することを特徴とするリチウムイオン二次電池。
A positive electrode, a negative electrode, and an electrolytic solution;
The said positive electrode has a positive electrode active material for lithium ion secondary batteries of any one of Claims 1-6 as a positive electrode active material, The lithium ion secondary battery characterized by the above-mentioned.
JP2014207648A 2014-10-09 2014-10-09 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP6520037B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014207648A JP6520037B2 (en) 2014-10-09 2014-10-09 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
PCT/JP2015/078464 WO2016056586A1 (en) 2014-10-09 2015-10-07 Positive-electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207648A JP6520037B2 (en) 2014-10-09 2014-10-09 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2016076454A true JP2016076454A (en) 2016-05-12
JP2016076454A5 JP2016076454A5 (en) 2017-09-14
JP6520037B2 JP6520037B2 (en) 2019-05-29

Family

ID=55653194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207648A Expired - Fee Related JP6520037B2 (en) 2014-10-09 2014-10-09 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6520037B2 (en)
WO (1) WO2016056586A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058628A (en) 2016-11-24 2018-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
CN109546096A (en) * 2017-09-22 2019-03-29 丰田自动车株式会社 Positive electrode and the lithium secondary battery for using the positive electrode
JP2019067506A (en) * 2017-09-28 2019-04-25 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20190065324A (en) 2016-10-12 2019-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for producing cathode active material particles and cathode active material particles
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
JP2020135950A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
JP2020135948A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
JP2020135949A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
CN112292350A (en) * 2018-04-26 2021-01-29 罗地亚经营管理公司 Fluorinated oxides based on Li and Mn
KR20210148261A (en) 2019-04-05 2021-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of forming a cathode active material
KR20210148169A (en) 2019-04-05 2021-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of forming a cathode active material
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
KR20230052905A (en) 2020-08-20 2023-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary Batteries, Electronic Devices, and Vehicles
KR20230053601A (en) 2020-08-20 2023-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of cathode active material
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260659A (en) * 2001-03-05 2002-09-13 Mitsubishi Materials Corp Positive electrode active material for lithium secondary battery, its manufacturing method, and the lithium secondary battery using the material
JP2005228653A (en) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mixture for it
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same
WO2010090185A1 (en) * 2009-02-05 2010-08-12 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material for lithium ion secondary battery, and method for producing same
JP2011146390A (en) * 2011-02-16 2011-07-28 Nichia Corp Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
WO2012176902A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium-ion rechargeable batteries, positive electrode for lithium-ion rechargeable batteries, and lithium-ion rechargeable battery
JP2013235857A (en) * 2013-08-05 2013-11-21 Toda Kogyo Corp Lithium complex compound particle powder, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2014075177A (en) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260659A (en) * 2001-03-05 2002-09-13 Mitsubishi Materials Corp Positive electrode active material for lithium secondary battery, its manufacturing method, and the lithium secondary battery using the material
JP2005228653A (en) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mixture for it
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same
WO2010090185A1 (en) * 2009-02-05 2010-08-12 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material for lithium ion secondary battery, and method for producing same
JP2014075177A (en) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2011146390A (en) * 2011-02-16 2011-07-28 Nichia Corp Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
WO2012176902A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium-ion rechargeable batteries, positive electrode for lithium-ion rechargeable batteries, and lithium-ion rechargeable battery
JP2013235857A (en) * 2013-08-05 2013-11-21 Toda Kogyo Corp Lithium complex compound particle powder, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
DE202017007644U1 (en) 2016-10-12 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particles
KR20220038810A (en) 2016-10-12 2022-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20230098921A (en) 2016-10-12 2023-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20230101939A (en) 2016-10-12 2023-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20190065324A (en) 2016-10-12 2019-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for producing cathode active material particles and cathode active material particles
KR20230066123A (en) 2016-10-12 2023-05-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20220038809A (en) 2016-10-12 2022-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20200000489A (en) 2016-10-12 2020-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20200000488A (en) 2016-10-12 2020-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20190142300A (en) 2016-11-24 2019-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
KR20240023089A (en) 2016-11-24 2024-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
KR20180058628A (en) 2016-11-24 2018-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
KR20190142299A (en) 2016-11-24 2019-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
KR20220038617A (en) 2016-11-24 2022-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and method for manufacturing positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
CN109546096B (en) * 2017-09-22 2022-01-25 丰田自动车株式会社 Positive electrode material and lithium secondary battery using the same
JP6997943B2 (en) 2017-09-22 2022-01-18 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using it
US10892480B2 (en) 2017-09-22 2021-01-12 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using same
JP2019057450A (en) * 2017-09-22 2019-04-11 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using the same
CN109546096A (en) * 2017-09-22 2019-03-29 丰田自动车株式会社 Positive electrode and the lithium secondary battery for using the positive electrode
US11171334B2 (en) 2017-09-28 2021-11-09 Nichia Corporation Positive-electrode active material for non-aqueous electrolyte secondary battery and method for producing same
JP2019067506A (en) * 2017-09-28 2019-04-25 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
CN112292350B (en) * 2018-04-26 2023-12-19 罗地亚经营管理公司 Fluorinated oxides based on Li and Mn
CN112292350A (en) * 2018-04-26 2021-01-29 罗地亚经营管理公司 Fluorinated oxides based on Li and Mn
JP2020135950A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
JP7246199B2 (en) 2019-02-13 2023-03-27 三井金属鉱業株式会社 Active material, positive electrode mixture and solid battery using the same
JP7348728B2 (en) 2019-02-13 2023-09-21 三井金属鉱業株式会社 Active materials, positive electrode mixtures and solid batteries using the same
JP2020135949A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
JP2020135948A (en) * 2019-02-13 2020-08-31 三井金属鉱業株式会社 Active material, and positive electrode mixture and solid battery using the same
KR20230042421A (en) 2019-04-05 2023-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming positive electrode active material
KR20210148169A (en) 2019-04-05 2021-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of forming a cathode active material
KR20210148261A (en) 2019-04-05 2021-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of forming a cathode active material
KR20230053601A (en) 2020-08-20 2023-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of cathode active material
KR20230052905A (en) 2020-08-20 2023-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary Batteries, Electronic Devices, and Vehicles

Also Published As

Publication number Publication date
WO2016056586A1 (en) 2016-04-14
JP6520037B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6520037B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6394754B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2016076454A5 (en)
CN107431242B (en) Battery with a battery cell
JP6952247B2 (en) Positive electrode active material and battery
JP6604080B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6846627B2 (en) Positive electrode active material and battery
Pang et al. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide
WO2014104234A1 (en) Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
WO2017099137A1 (en) Positive electrode active material for potassium ion secondary cell
JP2018085324A (en) Cathode active material for battery, and battery using cathode active material
KR20110094980A (en) Cathode and lithium battery using same
JPWO2018163518A1 (en) Positive electrode active material and battery
KR20150134161A (en) Composite cathode active material, lithium battery comprising the same, and preparation method thereof
JP6665483B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN112292350A (en) Fluorinated oxides based on Li and Mn
CN107431203B (en) Positive electrode active material and battery
WO2020044652A1 (en) Positive electrode active material and battery provided with same
WO2020044653A1 (en) Positive electrode active material and battery provided with same
WO2020049792A1 (en) Positive electrode active material and battery comprising same
JP2022520866A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
JP7054863B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2022523183A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
KR102084499B1 (en) Method for Manufacturing Cathode Active Material Including Carbon Source and Cathode Active Material Manufactured Thereby
JP7031296B2 (en) Manufacturing method of nickel composite oxide and positive electrode active material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees