JP2016075642A - Method and apparatus for making propeller related characteristic of free-running model ship similar to that of actual ship - Google Patents

Method and apparatus for making propeller related characteristic of free-running model ship similar to that of actual ship Download PDF

Info

Publication number
JP2016075642A
JP2016075642A JP2014207707A JP2014207707A JP2016075642A JP 2016075642 A JP2016075642 A JP 2016075642A JP 2014207707 A JP2014207707 A JP 2014207707A JP 2014207707 A JP2014207707 A JP 2014207707A JP 2016075642 A JP2016075642 A JP 2016075642A
Authority
JP
Japan
Prior art keywords
ship
free
propeller
speed
running model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207707A
Other languages
Japanese (ja)
Other versions
JP6562335B2 (en
Inventor
道雄 上野
Michio Ueno
道雄 上野
吉昭 塚田
Yoshiaki Tsukada
吉昭 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2014207707A priority Critical patent/JP6562335B2/en
Publication of JP2016075642A publication Critical patent/JP2016075642A/en
Application granted granted Critical
Publication of JP6562335B2 publication Critical patent/JP6562335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make propeller related characteristics of a free-running model ship similar to those of an actual ship.SOLUTION: On the basis of basic performance estimation of an actual ship, ship speed which varies under external force of a free-running model ship is measured and on the basis of the measured ship speed, propeller rotation frequency of the free-running model ship and output of auxiliary thrust means are controlled, thereby making propeller related characteristics of the free-running model ship under external force similar to those of the actual ship.SELECTED DRAWING: Figure 1

Description

本発明は、模型船の自走試験における自由航走模型船の推進器関連特性を実船相似にする方法及び自由航走模型船の推進器関連特性実船相似装置に関する。   The present invention relates to a method for making a propulsion unit-related characteristic of a free-running model ship similar to a real ship in a self-propelled test of a model ship, and a propulsion unit-related characteristic real ship similarity device for a free-running model ship.

補助推力装置を用いて曳航水槽での自航試験と同等の摩擦修正を行った自由航走模型試験方法が開示されている(特許文献1)。自由航走模型船が操舵を伴う場合あるいは波や風などの外乱が作用する場合はこれらが誘起する旋回や斜航のため船速が時々刻々変化する可能性がある。このような状況下でも、時々刻々船速に応じた補助推力を発生させることで摩擦修正が可能である。   A free-running model test method in which friction correction equivalent to that of a self-propulsion test in a towed water tank is performed using an auxiliary thrust device is disclosed (Patent Document 1). When a free-running model ship is accompanied by steering, or when disturbances such as waves and winds are applied, the ship speed may change from moment to moment due to turning and tilting induced by these. Even under such circumstances, the friction can be corrected by generating an auxiliary thrust according to the ship speed every moment.

摩擦修正は、本来、模型船のプロペラ荷重度を実船と相似にすることによってプロペラ推進力に関する力学的相似則を確保し、その条件下での模型試験によって実船の有効伴流率、プロペラ効率比、有効馬力など船の推進性能を推定するために用いられる方法の一つである。   Friction correction originally secures a mechanical similarity law for propeller propulsive force by making the propeller load of the model ship similar to that of the actual ship, and the effective wake ratio, propeller of the actual ship is verified by model tests under that condition. It is one of the methods used to estimate ship propulsion performance such as efficiency ratio and effective horsepower.

また、圧縮窒素ガス等により摩擦修正推力を模型船に対して真っ直ぐ後ろ向きに発生でき、摩擦修正推力の発生源を模型船体上に搭載しない自由航走模型試験方法が開示されている(特許文献2)。さらに、模型船の航走計画の変更が模型船からの遠隔操作で可能な模型船試験装置が開示されている(特許文献3)。   Further, a free-running model test method is disclosed in which a friction correction thrust can be generated straightly backward with respect to the model ship by compressed nitrogen gas or the like, and the source of the friction correction thrust is not mounted on the model hull (Patent Document 2). ). Furthermore, a model ship test apparatus is disclosed in which the model ship navigation plan can be changed by remote control from the model ship (Patent Document 3).

一方、自由航走模型試験は一般に推進性能を調べるためだけの試験ではなく、操縦性能試験など推進性能以外の性能を調べる目的でも実施される。   On the other hand, the free-running model test is generally performed not only for examining propulsion performance but also for the purpose of examining performance other than propulsion performance, such as a steering performance test.

補助推力装置を装備していない従来の自由航走模型船を用いた操縦性能試験では、模型船のプロペラ荷重度が実船に比べて相対的に大きいため舵効きが実船よりも相対的に良くなることが知られている。すなわち、自由航走模型船を使った従来の操縦性試験結果は厳密にはそのまま実船の操縦性能とはみなすことができない。   In a pilot performance test using a conventional free-running model ship that is not equipped with an auxiliary thrust device, the propeller load of the model ship is relatively larger than that of the actual ship, so the rudder effectiveness is relatively higher than that of the actual ship. It is known to improve. In other words, the conventional maneuverability test results using a free-running model ship cannot be regarded as the actual ship maneuvering performance.

実船の操縦性能をより合理的に推定する手法として、プロペラと舵を有した自由航走可能な模型船を用いて、模型船に補助推力のみを付加し、舵効きの相似性を確保するように船速に基づいて計算した補助推力のみを制御し、模型船に実船に対する舵効きの相似性を確保する技術が開示されている(非特許文献1)。   As a method for more reasonably estimating the maneuvering performance of an actual ship, a model ship with a propeller and rudder that can freely travel is used, and only auxiliary thrust is added to the model ship to ensure the similarity of rudder effectiveness. As described above, a technique is disclosed in which only the auxiliary thrust calculated based on the ship speed is controlled to ensure the similarity of the steering effect to the actual ship in the model ship (Non-patent Document 1).

特開2012−112878号公報JP 2012-112878 A 特開2001−174364号公報JP 2001-174364 A 特開2009−264781号公報JP 2009-264781 A

上野道雄、塚田吉昭、谷澤克治、北川泰士;日本船舶海洋工学会講演会論文集第16号、pp.325−326.Michio Ueno, Yoshiaki Tsukada, Katsuharu Tanizawa, Yasushi Kitagawa; Proceedings of the 16th Annual Meeting of the Japan Society of Marine Science and Technology, pp. 325-326.

ところで、実船と相似の船速応答を有する模型船を実験で再現するためには、実船の本的性能推定に基づき、外力下において変化する船側の前後方向成分を測定しながら、その計測データに基づいてプロペラ回転数と補助推力装置の出力の双方を制御することが必要である。   By the way, in order to reproduce a model ship with a ship speed response similar to that of an actual ship, the measurement is performed while measuring the ship's longitudinal components that change under external force based on the actual performance estimation of the actual ship. It is necessary to control both the propeller rotation speed and the output of the auxiliary thrust device based on the data.

また、波・風等の外力による船の船速低下は、船の基本的な性能の一つに属し、運航計画を左右する重要な要素となる。近年では、国連海事機関を中心として船からの温暖化ガスの排出削減を目的とした規制が始まっており、その指標にも波・風が併存する実海域環境下での船速低下率が考慮されている。その一方で、国連海事機関の規制を満足するような燃料消費量の少ない船の開発が進む中、必要以上に出力の小さい機関を搭載した船が荒天下で操船不能になって海難事故に至る可能性が増加することが指摘されている。   In addition, a decrease in ship speed due to external forces such as waves and wind belongs to one of the basic performances of the ship and is an important factor that affects the operation plan. In recent years, regulations aimed at reducing greenhouse gas emissions from ships have been started mainly by the United Nations Maritime Organization, and the rate of ship speed reduction in an actual sea area where waves and winds coexist is also taken into consideration for the indicators. Has been. On the other hand, while the development of ships with low fuel consumption that satisfy the regulations of the United Nations Maritime Organization is progressing, ships equipped with engines with lower output than necessary become impossible to maneuver under stormy weather, leading to maritime accidents It is pointed out that the possibility increases.

荒天下でどの程度船速が低下するのか、どの程度荒れた海象まで操船可能であるのかといったことを推定するための手法としては現状では推定計算によるほかない。波浪中における抵抗の増加に関する研究実績に基づき、外力下における通常航行時の船速低下に関する推定計算は実用的な水準に達していると考えられる。しかし、通常航行時の船速低下とは異なり、荒天下で操船不能近くまで船速が低下する状況では外力の船の前後方向成分だけではなく左右方向成分と回頭モーメント成分まで精度良く推定し、さらに操舵力も含めて船の航行状態を推定する必要がある。ところが、特に波漂流力の左右方向成分と回頭モーメント成分の実用的な推定法は現段階では確立されているとは言えない。   At present, estimation calculation is the only method for estimating how much the ship speed drops under stormy weather and how rough the sea can be. Based on the results of research on the increase in resistance in the waves, it is considered that the estimation calculation for ship speed reduction during normal navigation under external force has reached a practical level. However, unlike the ship speed drop during normal navigation, in a situation where the ship speed drops to near impossible to maneuver under stormy weather, it accurately estimates not only the longitudinal component of the ship of the external force but also the lateral component and turning moment component, Furthermore, it is necessary to estimate the navigational state of the ship including the steering force. However, practical estimation methods for the left-right direction component and the turning moment component of wave drift force are not established at this stage.

本発明は、航行中のプロペラ回転数と補助推力手段の出力を制御できる自由航走模型船を用いて、外力下における推進器関連特性を前記実船と相似にした自由航走模型船の推進器関連特性を実船相似にする方法及び自由航走模型船の推進器関連特性実船相似装置を提供する。   The present invention uses a free-running model ship capable of controlling the propeller rotation speed during navigation and the output of auxiliary thrust means, and propulsion of a free-running model ship whose characteristics related to the propeller under external force are similar to those of the actual ship. A method for making vessel-related characteristics similar to actual ships and a propulsion unit-related characteristics actual ship similarity device for a free-running model ship are provided.

本発明の請求項1に係る自由航走模型船の推進器関連特性を実船相似にする方法は、実船の基本的性能推定を基に、自由航走模型船の外力下で変化する船速を計測し、計測した前記船速に基づき前記自由航走模型船のプロペラ回転数と補助推力手段の出力を制御し、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にすることを特徴とする。   The method for making the propulsion unit related characteristics of a free-running model ship according to claim 1 of the present invention similar to an actual ship is based on the basic performance estimation of an actual ship and changes under the external force of the free-running model ship. The propulsion speed of the free-running model ship and the output of the auxiliary thrust means are controlled based on the measured ship speed, and the propeller-related characteristics under the external force of the free-running model ship are measured. It is characterized by being similar to.

ここで、前記自由航走模型船の前記プロペラ回転数と前記補助推力手段の出力を、

Figure 2016075642
:実船の推力減少率
T’s : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船の推力減少率
T’:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
TA :補助推力係数
T’SFC:摩擦修正に必要な力(無次元値、船速の関数)
を基に導出される前記自由航走模型船のプロペラ回転数と補助推力係数fTAに基づき制御することが好適である。 Here, the output of the propeller rotation speed and the auxiliary thrust means of the free-running model ship,
Figure 2016075642
t s: actual ship thrust reduction rate T's: propeller propulsion of the actual ship (dimensionless value, a function of the propeller speed and boat speed)
t m : Thrust reduction rate of a free-running model ship T ' m : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
f TA : Auxiliary thrust coefficient T ' SFC : Force required for friction correction (dimension value, function of ship speed)
It is preferred to the basis of the propeller speed of the free sailing model ship and the auxiliary thrust coefficient f TA control derived based on.

また、前記実船の前記基本的性能推定は、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは逆転を含む任意のプロペラ回転数変化を含むことが好適である。   In addition, it is preferable that the basic performance estimation of the actual ship includes any change in propeller rotation speed including constant propeller rotation speed, constant propeller torque, constant propeller output, or reverse rotation.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合または別途確保される場合について、前記実船と前記自由航走模型船の外力下でのプロペラ推進力の相似性を考慮し、前記自由航走模型船の船速応答の相似性を確保することが好適である。   In addition, in the case where similarity of steering / slope navigation / turning resistance is not necessary or separately secured, considering the similarity of propeller propulsion force under the external force of the actual ship and the free-running model ship, It is preferable to ensure the similarity of the speed response of the free-running model ship.

具体的には、

Figure 2016075642
Ts’ : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
で表される前記プロペラ推進力の相似性を確保するために前記補助推力係数fTAを1として前記自由航走模型船のプロペラ回転数を求めて制御することが好適である。 In particular,
Figure 2016075642
Ts': Propeller propulsive force of actual ship (dimensionless value, propeller rotation speed and ship speed function)
T m ' : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
In order to ensure the similarity of the propeller propulsion force represented by the formula (1), it is preferable that the auxiliary thrust coefficient fTA is set to 1 to determine and control the propeller rotational speed of the free-running model ship.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラトルクの相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することが好適である。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. It is preferable to ensure the similarity of the speed response of the free-running model ship based on the similarity of torque.

具体的には、前記数式(1)と、

Figure 2016075642
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することが好適である。 Specifically, the mathematical formula (1) and
Figure 2016075642
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
It is preferable that the propeller rotational speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラ回転数の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することが好適である。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. It is preferable to ensure the similarity of the ship speed response of the free-running model ship based on the similarity of the rotational speed.

具体的には、前記数式(1)と、

Figure 2016075642
’:実船のプロペラ回転数(無次元値)
’: 自由航走模型船のプロペラ回転数(無次元値)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することが好適である。 Specifically, the mathematical formula (1) and
Figure 2016075642
ns ': Propeller rotation speed of actual ship (dimensionless value)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
It is preferable that the propeller rotational speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下での馬力の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することが好適である。   In addition, when the similarity of steering / slope navigation / turning resistance is not necessary or when similarity of steering / slope navigation / turning resistance is ensured separately, the horsepower under the external force of the actual ship and the free-running model ship It is preferable to ensure the similarity of the ship speed response of the free-running model ship based on the similarity.

具体的には、前記数式(1)と、

Figure 2016075642
’ :実船のプロペラ回転数(無次元値)
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラ回転数(無次元値)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することが好適である。 Specifically, the mathematical formula (1) and
Figure 2016075642
n s ': Propeller rotation speed of actual ship (dimensionless value)
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
It is preferable that the propeller rotational speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラスリップ比を一致させて前記自由航走模型船の船速応答の相似性を確保することが好適である。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. It is preferable that the similarity of the ship speed response of the free-running model ship is ensured by matching the slip ratio.

具体的には、前記数式(1)と、

Figure 2016075642
:実船のプロペラスリップ比(プロペラ回転数と船速の関数)
:自由航走模型船のプロペラスリップ比(プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することが好適である。 Specifically, the mathematical formula (1) and
Figure 2016075642
S s : Propeller slip ratio of actual ship (propeller speed and ship speed function)
S m : Propeller slip ratio of a free-running model ship (function of propeller rotation speed and ship speed)
It is preferable that the propeller rotational speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled.

請求項14に記載の自由航走模型船の推進器関連特性実船相似装置は、プロペラと補助推力手段を有した自由航走模型船と、前記自由航走模型船の船速を計測する船速計測手段と、実船の基本的性能推定と計測した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力手段の出力を制御する制御手段を備え、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にすることを特徴とする。   15. A propulsion device-related characteristic actual ship similarity device for a free-running model ship according to claim 14, a free-running model ship having a propeller and auxiliary thrust means, and a ship for measuring the speed of the free-running model ship Speed measuring means and control means for controlling the propeller rotation speed of the propeller and the output of the auxiliary thrust means based on the estimated basic performance of the actual ship and the measured ship speed, and under the external force of the free-running model ship The propulsion device-related characteristics in are similar to those of the actual ship.

ここで、前記制御手段は、上記自由航走模型船の推進器関連特性を実船相似にする方法を実行することが好適である。   Here, it is preferable that the control means executes a method of making the propulsion unit related characteristics of the free-running model ship similar to an actual ship.

また、前記制御手段は、上記自由航走模型船の推進器関連特性を実船相似にする方法により予め求めた前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAの前記船速との関係を記憶して制御することが好適である。 Further, the control means, the ship speed of the free sailing model ship previously obtained the free cruising model ship propeller speed and the auxiliary thrust coefficient f TA by a method of the thruster associated properties actual ship similarity of It is preferable to store and control the relationship between

また、前記船速計測手段は、前記自由航走模型船の船速の前後方向成分を計測することが好適である。   Further, it is preferable that the ship speed measuring means measures a longitudinal component of a ship speed of the free-running model ship.

本発明の請求項1に係る自由航走模型船の推進器関連特性を実船相似にする方法によれば、実船の基本的性能推定を基に、自由航走模型船の外力下で変化する船速を計測し、計測した前記船速に基づき前記自由航走模型船のプロペラ回転数と補助推力手段の出力を制御し、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にすることによって、模型船を用いて外力下における操縦性能試験を実施し、外力下における実船の操船特性を推定及び確認することができる。   According to the method for making the propulsion unit-related characteristics of a free-running model ship according to claim 1 of the present invention similar to an actual ship, it changes under the external force of the free-running model ship based on the basic performance estimation of the actual ship. The propulsion speed of the free-running model ship and the output of the auxiliary thrust means are controlled based on the measured ship speed, and the propeller-related characteristics under the external force of the free-running model ship are measured. By making it similar to an actual ship, a maneuvering performance test under an external force can be performed using a model ship, and the maneuvering characteristics of the actual ship under an external force can be estimated and confirmed.

ここで、前記自由航走模型船の前記プロペラ回転数と前記補助推力手段の出力を、

Figure 2016075642
:実船の推力減少率
T’s : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船の推力減少率
T’:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
TA :補助推力係数
T’SFC:摩擦修正に必要な力(無次元値、船速の関数)
を基に導出される前記自由航走模型船のプロペラ回転数と補助推力係数fTAに基づき制御することによって、模型船を用いて実船の操船特性を推定及び確認する具体的な方法を提供することができる。 Here, the output of the propeller rotation speed and the auxiliary thrust means of the free-running model ship,
Figure 2016075642
t s: actual ship thrust reduction rate T's: propeller propulsion of the actual ship (dimensionless value, a function of the propeller speed and boat speed)
t m : Thrust reduction rate of a free-running model ship T ' m : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
f TA : Auxiliary thrust coefficient T ' SFC : Force required for friction correction (dimension value, function of ship speed)
By controlling basis the propeller rotational speed of the free-sailing model ship and the auxiliary thrust coefficient f TA derived based on, providing a specific method for estimating and confirming the maneuvering characteristics of the actual ship using a model ship can do.

また、前記実船の前記基本的性能推定は、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは逆転を含む任意のプロペラ回転数変化を含むことによって、それぞれの条件下における実船の操船特性を推定及び確認する操縦性能試験を実施することができる。   In addition, the basic performance estimation of the actual ship includes any propeller speed change including constant propeller speed, constant propeller torque, constant propeller output, or reverse rotation. A maneuvering performance test to estimate and confirm the maneuvering characteristics can be performed.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合または別途確保される場合について、前記実船と前記自由航走模型船の外力下でのプロペラ推進力の相似性を考慮し、前記自由航走模型船の船速応答の相似性を確保することによって、船速変化とプロペラ推進力を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施することができる。   In addition, in the case where similarity of steering / slope navigation / turning resistance is not necessary or separately secured, considering the similarity of propeller propulsion force under the external force of the actual ship and the free-running model ship, A maneuverability test that estimates and confirms the maneuvering characteristics of an actual ship using a model ship under similar conditions of speed change and propeller propulsion by ensuring similarity in ship speed response of a free-running model ship Can be implemented.

具体的には、

Figure 2016075642
Ts’ : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
で表される前記プロペラ推進力の相似性を確保するために前記補助推力係数fTAを1として前記自由航走模型船のプロペラ回転数を求めて制御することによって、船速変化とプロペラ推進力を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。 In particular,
Figure 2016075642
Ts': Propeller propulsive force of actual ship (dimensionless value, propeller rotation speed and ship speed function)
T m ' : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
In order to ensure the similarity of the propeller propulsion force represented by the following formula, the auxiliary thrust coefficient fTA is set to 1 to obtain and control the propeller rotational speed of the free-running model ship, thereby controlling the change in ship speed and the propeller propulsion force. It is possible to provide a specific method for conducting a maneuverability test for estimating and confirming the maneuvering characteristics of an actual ship using a model ship under similar conditions.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラトルクの相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することによって、船速変化とプロペラトルクを相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施することができる。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. By ensuring the similarity of the ship speed response of the free-running model ship based on the similarity of torque, the ship maneuvering characteristics of the actual ship can be measured using the model ship under the conditions where the ship speed change and the propeller torque are similar. A pilot performance test can be performed to estimate and confirm.

具体的には、前記数式(7)と、

Figure 2016075642
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することによって、船速変化とプロペラトルクを相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。 Specifically, the mathematical formula (7) and
Figure 2016075642
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
It said free cruising propeller speed of a model ship and by the controlled seek auxiliary thrust coefficient f TA, actual using model ship under conditions in which the boat speed change and the propeller torque similar ship be simultaneous with It is possible to provide a specific method for conducting a maneuvering performance test for estimating and confirming the ship maneuvering characteristics.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラ回転数の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することによって、船速変化とプロペラ回転数を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施することができる。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. By ensuring the similarity of the ship speed response of the free-running model ship based on the similarity of the rotational speed, the maneuvering of the actual ship using the model ship under the condition that the ship speed change and the propeller rotational speed are similar A maneuverability test can be performed to estimate and confirm the characteristics.

具体的には、前記数式(7)と、

Figure 2016075642
’:実船のプロペラ回転数(無次元値)
’: 自由航走模型船のプロペラ回転数(無次元値)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することによって、船速変化とプロペラ回転数を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。 Specifically, the mathematical formula (7) and
Figure 2016075642
ns ': Propeller rotation speed of actual ship (dimensionless value)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
Wherein by controlling seeking propeller speed free sailing model ship and the auxiliary thrust coefficient f TA, using a model ship under conditions in which the boat speed changes and propeller speed in similar by causing simultaneous real A specific method for conducting a maneuvering performance test for estimating and confirming the maneuvering characteristics of the ship can be provided.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下での馬力の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保することによって、船速変化と馬力を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。   In addition, when the similarity of steering / slope navigation / turning resistance is not necessary or when similarity of steering / slope navigation / turning resistance is ensured separately, the horsepower under the external force of the actual ship and the free-running model ship By ensuring the similarity of the speed response of the free-running model ship based on the similarity of the ship, the ship maneuvering characteristics of the actual ship were estimated using the model ship under conditions similar to the ship speed change and horsepower. It is possible to provide a specific method for performing the steering performance test to be confirmed.

具体的には、前記数式(7)と、

Figure 2016075642
’ :実船のプロペラ回転数(無次元値)
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラ回転数(無次元値)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することによって、船速変化と馬力を相似にした条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。 Specifically, the mathematical formula (7) and
Figure 2016075642
n s ': Propeller rotation speed of actual ship (dimensionless value)
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
By controlling seeking the auxiliary thrust coefficient f TA and propeller speed of said free cruising model ship by causing simultaneous equations, using a model ship under conditions in which the boat speed changes and horsepower similarity of actual ship A specific method for conducting a maneuvering performance test for estimating and confirming the maneuvering characteristics can be provided.

また、操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラスリップ比を一致させて前記自由航走模型船の船速応答の相似性を確保することによって、船速変化の相似と共にプロペラスリップ比を一致させた条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。   In addition, when similarity of steering / slope / turning resistance is not required or when similarity of steering / slope / turning resistance is ensured separately, the propeller under the external force of the actual ship and the free-running model ship is used. By matching the slip ratio and ensuring the similarity of the speed response of the free-running model ship, it is possible to operate the actual ship using the model ship under the condition that the propeller slip ratio is matched with the similarity of the ship speed change. A specific method for conducting a maneuverability test to estimate and confirm characteristics can be provided.

具体的には、前記数式(7)と、

Figure 2016075642
:実船のプロペラスリップ比(プロペラ回転数と船速の関数)
:自由航走模型船のプロペラスリップ比(プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御することによって、船速変化の相似と共にプロペラスリップ比を一致させた条件下において模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施する具体的な方法を提供することができる。 Specifically, the mathematical formula (7) and
Figure 2016075642
S s : Propeller slip ratio of actual ship (propeller speed and ship speed function)
S m : Propeller slip ratio of a free-running model ship (function of propeller rotation speed and ship speed)
The model ship is used under the condition where the propeller slip ratio is matched with the similarity of the ship speed by obtaining and controlling the propeller rotation speed and the auxiliary thrust coefficient fTA of the free-running model ship Thus, it is possible to provide a specific method for conducting a maneuvering performance test for estimating and confirming the maneuvering characteristics of an actual ship.

請求項14に記載の自由航走模型船の推進器関連特性実船相似装置は、プロペラと補助推力手段を有した自由航走模型船と、前記自由航走模型船の船速を計測する船速計測手段と、実船の基本的性能推定と計測した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力手段の出力を制御する制御手段を備え、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にすることによって、特に、前記制御手段は、上記自由航走模型船の推進器関連特性を実船相似にする方法を実行することよって、模型船を用いて操縦性能試験を実施し、実船の操船特性を推定及び確認することが可能な実船相似装置を実現することができる。   15. A propulsion device-related characteristic actual ship similarity device for a free-running model ship according to claim 14, a free-running model ship having a propeller and auxiliary thrust means, and a ship for measuring the speed of the free-running model ship Speed measuring means and control means for controlling the propeller rotation speed of the propeller and the output of the auxiliary thrust means based on the estimated basic performance of the actual ship and the measured ship speed, and under the external force of the free-running model ship In particular, the control means performs the method of making the propulsion unit-related characteristics of the free-running model ship similar to the actual ship. It is possible to implement an actual ship similarity device that can be used to perform a maneuvering performance test and to estimate and confirm the ship maneuvering characteristics of the actual ship.

また、前記制御手段は、上記自由航走模型船の推進器関連特性を実船相似にする方法により予め求めた前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAの前記船速との関係を記憶して制御することによって、リアルタイムで制御に必要なパラメータを算出することなく、模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施することができる。 Further, the control means, the ship speed of the free sailing model ship previously obtained the free cruising model ship propeller speed and the auxiliary thrust coefficient f TA by a method of the thruster associated properties actual ship similarity of By storing and controlling the relationship, the maneuvering performance test for estimating and confirming the maneuvering characteristics of the actual ship using the model ship can be performed without calculating the parameters necessary for the control in real time.

また、前記船速計測手段は、前記自由航走模型船の船速の前後方向成分を計測することにより、前記自由航走模型船の船速の前後方向成分に応じて模型船を用いて実船の操船特性を推定及び確認する操縦性能試験を実施することができる。   Further, the ship speed measuring means measures the longitudinal speed component of the free-running model ship by using a model ship according to the longitudinal component of the free-running model ship speed. A maneuverability test to estimate and confirm the maneuvering characteristics of the ship can be conducted.

実船のプロペラ回転数n’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。It is a figure which shows the simulation calculation result of the free-running model ship test when propeller rotation speed n s ' of an actual ship is made constant. 実船のプロペラ回転数n’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。It is a figure which shows the simulation calculation result of the free-running model ship test when propeller rotation speed n s ' of an actual ship is made constant. 実船のプロペラトルクQ’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。Is a diagram showing a simulation calculation result of free sailing model ship tests when a constant propeller torque Q s' of actual ship. 実船のプロペラトルクQ’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。Is a diagram showing a simulation calculation result of free sailing model ship tests when a constant propeller torque Q s' of actual ship. 実船の馬力P’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。Is a diagram showing a simulation calculation result of free sailing model ship tests when the constant horsepower P s' of actual ship. 実船の馬力P’を一定としたときの自由航走模型船試験のシミュレーション計算結果を示す図である。Is a diagram showing a simulation calculation result of free sailing model ship tests when the constant horsepower P s' of actual ship. 本発明の実施の形態における自由航走模型船試験装置の一例を示す図である。It is a figure which shows an example of the free-running model ship test apparatus in embodiment of this invention. 本発明の実施の形態における自由航走模型船試験装置の別例を示す図である。It is a figure which shows another example of the free-running model ship test apparatus in embodiment of this invention. 本発明の実施の形態における自由航走模型船試験装置の別例を示す図である。It is a figure which shows another example of the free-running model ship test apparatus in embodiment of this invention.

[第1の実施の形態]
<自由航走模型船試験方法>
本実施の形態では、実船の基本的性能推定に基づき、外力下で変化する船速の前後方向成分uを計測しながらその計測データに基づきプロペラ回転数と補助推力装置の出力を制御することで外力下における模型船の船速応答を実船と相似にする。外力下では船は一般に操舵を必要とする。操舵は舵抵抗と斜航・旋回抵抗を誘起するので、船速応答を相似にするためにはこれらの抵抗成分も模型船と実船で相似にする必要がある。
[First Embodiment]
<Free-running model ship test method>
In this embodiment, based on the basic performance estimation of the actual ship, the propeller rotational speed and the output of the auxiliary thrust device are controlled based on the measurement data while measuring the longitudinal component u of the ship speed that changes under external force. Thus, the ship speed response of the model ship under external force is similar to that of the actual ship. Under external force, ships generally require steering. Steering induces rudder resistance and tilt / turning resistance, so these resistance components must be similar between the model ship and the actual ship in order to make the ship speed response similar.

外力下における船舶の前後方向の運動は数式(13)で表わされる。

Figure 2016075642
ここで、水の密度ρ、船の長さL、重力加速度gを用いて、質量はρL、速度は√(g/L)、力はrLg、時間は√(L/g)によって無次元化を行っている。また、無次元値を’(ダッシュ)をつけて表す。変数の上の点は無次元時間に関する微分を表す。水の密度ρと船の長さLについては実船と模型船それぞれに対応する値を用いる。 The movement of the ship in the front-rear direction under external force is expressed by Equation (13).
Figure 2016075642
Here, using the density ρ of water, the length L of the ship, and the acceleration of gravity g, the mass is ρL 3 , the speed is √ (g / L), the force is rL 3 g, and the time is √ (L / g). It is dimensionless. In addition, dimensionless values are indicated with a '(dash). The point above the variable represents the derivative with respect to dimensionless time. As the water density ρ and the ship length L, values corresponding to the actual ship and the model ship are used.

また、mは船の質量、mは船の前後揺れに起因する前後方向の付加質量をそれぞれ示す。uは船速の前後方向成分(以下特に断らない限り「船速」と記す)、tは推力減少率、Tはプロペラ推進力、Rは船の平水中直進時の抵抗、Eは波と風による外力、Fは操舵・斜航・旋回による抵抗を示す。 Also, m denotes the mass of the ship, m x is the longitudinal direction of the additional mass due to the back and forth swinging of the ship, respectively. u is the longitudinal component of the ship speed (hereinafter referred to as “ship speed” unless otherwise specified), t is the thrust reduction rate, T is the propeller propulsion force, R is the resistance of the ship when traveling straight water, E is the wave and wind External force F, F represents resistance due to steering, tilting and turning.

波との出会周期の船体動揺や波による水粒子の円運動が伴流係数などの自航要素やプロペラ有効流入速度への影響は高周波数の成分として無視し得るか別途考慮する。   Consider separately whether the hull motion of the encounter cycle with waves and the circular motion of water particles due to waves affect the self-propulsion factors such as the wake coefficient and the effective inflow velocity of propellers can be ignored as high-frequency components.

また、後述する船速の左右方向成分v’と無次元回頭角速度r’が伴流係数などの自航要素に及ぼす影響に関しては、直接ではなく、これらが船速u’や後述するプロペラ荷重度に及ぼす影響を通して考慮できると仮定する。   Further, the effects of the left-right component v ′ of the ship speed and the dimensionless turning angular velocity r ′, which will be described later, on the self-propulsion factors such as the wake coefficient are not direct, but these are not directly related to the ship speed u ′ and the propeller load degree described later. Suppose that it can be considered through the effects on

上記を考慮すると無次元化プロペラ推進力T’は次のような関数型と見なすことができる。

Figure 2016075642
ここで、n’は次式で表される無次元プロペラ回転数である。
Figure 2016075642
さらに、無次元化された船の平水中直進時の抵抗R’は次のような関数型と考えられる。
Figure 2016075642
ここで、Rは水を対象としたレイノルズ数、u’は無次元船速を示す。無次元化の定義によりu’は船速の前後方向成分を代表船速としたフルード数と同義である。 Considering the above, the dimensionless propeller thrust T ′ can be regarded as the following function type.
Figure 2016075642
Here, n ′ is a dimensionless propeller rotational speed represented by the following equation.
Figure 2016075642
Furthermore, the resistance R ′ of the dimensionless ship when it goes straight in the flat water is considered to be the following function type.
Figure 2016075642
Here, R n represents the Reynolds number for water, and u ′ represents the dimensionless ship speed. By the definition of non-dimensionalization, u ′ is synonymous with the fluid number in which the longitudinal component of the ship speed is the representative ship speed.

また、無次元化された波と風による外力E’は次のような関数型と見なすことができる。

Figure 2016075642
ここで、Wは船と波との出会角と波長船長比、波振幅船長比に代表される波に関する条件を示す。Wは風向と無次元風速に代表される風に関する条件を示す。WとWはフルードの相似則に基づいて決められる。 Further, the external force E ′ caused by the non-dimensionalized wave and wind can be regarded as the following function type.
Figure 2016075642
Here, W a indicates a condition relating to a wave represented by an encounter angle between a ship and a wave, a wavelength ship length ratio, and a wave amplitude ship length ratio. W i indicates the conditions for the wind, which is represented by the wind direction and the non-dimensional wind speed. W i and W a are determined based on Froude's similarity law.

本実施の形態では、波と風の影響を表す無次元化された波と風による外力E’には波との出会周波数の高周波数成分を無視してゆっくり変動する低周波数成分のみを考慮する。また、風の力には空気に関するレイノルズ数の影響が考えられるが、本実施の形態では水面下の現象に着目することとし、風のレイノルズ数の影響は無視し得るか実験技術上別途解決できるものとして変数としては扱わない。   In the present embodiment, the non-dimensionalized wave and wind external force E ′ representing the influence of the wave and the wind considers only the low frequency component that fluctuates slowly ignoring the high frequency component of the encounter frequency with the wave. To do. In addition, although the influence of the Reynolds number on the air can be considered in the wind force, in this embodiment, the effect of the Reynolds number of the wind can be ignored by focusing on the phenomenon under the surface of the water. It is not treated as a variable.

無次元化された操舵・斜航・旋回による抵抗F’には船の質量に基づく遠心力成分と付加質量に基づく流体力成分が含まれる。これらは無次元化された船の質量m’と同じように実船と模型船の幾何学的相似によって実船と模型船で同じ値とすることができるから、この部分を分けて標記すると次式となる。

Figure 2016075642
The resistance F ′ caused by the non-dimensional steering / tilting / turning includes a centrifugal force component based on the mass of the ship and a fluid force component based on the additional mass. Since these can be set to the same value for the actual ship and the model ship by the geometrical similarity between the actual ship and the model ship as well as the non-dimensionalized ship's mass m ', It becomes an expression.
Figure 2016075642

なお、m及びm26は船の左右揺れに起因する左右方向及び船の船首揺れに起因する左右方向の付加質量をそれぞれ示す。ここで、F’は次のような関数型と見なすことができる。

Figure 2016075642
ここで、δは舵角、v’は船速の左右成分、r’は無次元回頭角速度をそれぞれ示す。 Incidentally, m y and m 26 denotes a additional mass in the horizontal direction due to the bow swing in the horizontal direction and the ship due to the sway of the ship. Here, F 0 ′ can be regarded as the following function type.
Figure 2016075642
Here, δ is the rudder angle, v ′ is the left / right component of the ship speed, and r ′ is the dimensionless turning angular velocity.

無次元回頭角速度r’は次式で定義される。

Figure 2016075642
The dimensionless turning angular velocity r ′ is defined by the following equation.
Figure 2016075642

以上の変数のうち模型実験で状態変数として与えることができるのは無次元プロペラ回転数n’と風向と無次元風速に代表される風に関する条件Wと船と波との出会角と波長船長比、波振幅船長比に代表される波に関する条件Wである。ここで、WとWは実船が想定する気海象に応じて任意に与えることができる。 Meeting angle and wavelength of the representative Condition for W i and ships and waves regarding wind dimensionless propeller speed n 'the wind direction and the dimensionless wind velocity can be given as the state variables in the model experiments of more variables This is a condition W a related to a wave represented by a ship length ratio and a wave amplitude ship length ratio. Here, W i and W a can be arbitrarily given according to the sea and sea conditions assumed by the actual ship.

ところで、外力の変動成分が船の慣性力に比べて小さく、船速の応答が十分ゆっくりしたものであるとすると式(13)は准定常的取り扱いが可能となる。ここで、外力が作用しない平水中定常直進時には次式の釣り合い式が成り立つ。

Figure 2016075642
By the way, if the fluctuation component of the external force is small compared to the inertial force of the ship and the response of the ship speed is sufficiently slow, Equation (13) can be handled quasi-steady. Here, the following balance formula is established during steady straight running in plain water where no external force is applied.
Figure 2016075642

式(21)は実船でも模型船でも成り立つべき関係であるが、レイノルズ数が実船と模型船で大きく異なるため式(21)を満足しながらも無次元化プロペラ推進力T’と無次元化された船の平水中直進時の抵抗R’は実船と模型船でそれぞれ異なる値となる。R’が模型船と実船で異なるため、無次元船速u’が同じであっても無次元プロペラ回転数n’は実船と模型船で異なる。   Expression (21) is a relationship that should be established for both a real ship and a model ship, but the Reynolds number differs greatly between the actual ship and the model ship. The resistance R ′ of the converted ship when it goes straight in flat water has different values for the actual ship and the model ship. Since R ′ is different between the model ship and the actual ship, the dimensionless propeller rotational speed n ′ is different between the actual ship and the model ship even if the dimensionless ship speed u ′ is the same.

平水中では式(13)の第2項と第3項の和が0であることで実船と模型船の相似を確保することができる。しかしながら、外力下において実船と模型船が同じWとWの環境下で船速が変化した場合、変化した船速に対して無次元化プロペラ推進力T’と無次元化された船の平水中直進時の抵抗R’は異なった挙動を示すため、第2項と第3項の和は外力下では一般に0にならず、かつ実船と模型船で一般に同じ値にならない。その結果、外力下での船速の変化は実船と模型船で相似にならない。 In plain water, the similarity between the actual ship and the model ship can be ensured by the sum of the second and third terms of equation (13) being zero. However, if the actual ship and model ship under external forces boat speed changes in the environment of the same W i and W a, altered with respect to the boat speed and the non-dimensional propeller thrust T 'dimensionless ship Since the resistance R ′ when traveling straight in flat water shows different behavior, the sum of the second term and the third term generally does not become zero under an external force, and generally does not become the same value between an actual ship and a model ship. As a result, the change in ship speed under external force is not similar between the actual ship and the model ship.

そこで、外力下船速変化の相似性確保するために模型船に補助推力装置を設けた場合について考察する。ここで、補助推力装置とは、自由航走模型船に搭載したダクト式ファンや圧縮空気吹き出し装置、あるいは自由航走する模型船を追尾・併走する曳引台車等によって船の他の運動に影響を与えることなく前後方向にのみ力を加えることができる機構・装置すべてを含むものとする。   Therefore, a case where an auxiliary thrust device is provided on the model ship will be considered in order to ensure the similarity of ship speed change under external force. Here, the auxiliary thrust device affects the other movements of the ship by a duct type fan, a compressed air blowing device mounted on a free-running model ship, or a towing cart that tracks and runs along a free-running model ship. It includes all mechanisms and devices that can apply force only in the front-rear direction without giving any.

模型船に補助推力T’を負荷した場合の運動方程式を実船の運動方程式と対比すると次式となる。

Figure 2016075642
ここで、添字のsは実船の値を示し、mは模型船の値であることを示す。実船と模型船で同じ値に設定できる変数には添字をつけない。 When the equation of motion when the auxiliary thrust T A 'is applied to the model ship is compared with the equation of motion of the actual ship, the following equation is obtained.
Figure 2016075642
Here, the subscript s indicates the value of the actual ship, and m indicates the value of the model ship. Variables that can be set to the same value on the actual ship and model ship are not subscripted.

実船と模型船が同じWとWの環境下で船速応答が相似になる、すなわち無次元船速u’が同じ応答になるためには、無次元船速u’の変化に対して式(21)の右辺の変化が実船と模型船で同じであればよい。 Actual ship and model ship boat speed response is similar in the environment of the same W i and W a, i.e. dimensionless ship speed u 'to have the same response, dimensionless ship speed u' to changes in It is only necessary that the change on the right side of equation (21) is the same for the actual ship and the model ship.

式(17)より、同じ無次元船速u’であれば同じWとWの設定によって次式が成り立つ。

Figure 2016075642
From equation (17), the following equation holds the same set of W i and W a given the same dimensionless ship speed u '.
Figure 2016075642

さらに、同じ無次元船速u’について舵角δ、船速の左右方向成分v’及び無次元回頭角速度r’が実船と模型船で同じであれば式(24)が成り立つ。

Figure 2016075642
Further, if the rudder angle δ, the horizontal component v ′ of the ship speed, and the dimensionless turning angular velocity r ′ are the same for the same dimensionless ship speed u ′, the equation (24) is established.
Figure 2016075642

ただし、式(24)は実船と模型船の無次元船速u’と舵角δ、船速の左右方向成分v’及び無次元回頭角速度r’がある与えられた無次元プロペラ回転数n’等の条件下で結果として同じになったときに成立するものであってプロペラ回転数や風・波の条件のように設定によって与えられるものではない。舵角δ、船速の左右方向成分v’及び無次元回頭角速度r’の影響が相似となるようにするためには舵効きが相似であることが必要である。   However, the equation (24) shows that a given dimensionless propeller rotational speed n having a dimensionless ship speed u ′ and a rudder angle δ, a horizontal component v ′ of the ship speed and a dimensionless turning angular speed r ′ of an actual ship and a model ship. It is established when the result becomes the same under the condition of ', etc., and is not given by setting like the condition of the propeller rotation speed and the wind / wave. In order to make the effects of the steering angle δ, the horizontal component v ′ of the ship speed, and the dimensionless turning angular velocity r ′ similar, it is necessary that the steering effects are similar.

式(21)の右辺第2項については実船と模型船で等しくすることはできない。したがって、補助推力を使わない場合は右辺第1項も等しくすることはできない。これが通常の自由航走模型試験において外力下船速応答が相似性を維持できない理由である。本実施の形態では、補助推力を使うことによって補助推力項T’を与えることができる。そこで、舵効きの相似を前提とすれば、任意の無次元船速u’について式(25)が成立すれば実船と模型船の相似性が確保される。

Figure 2016075642
The second term on the right side of Equation (21) cannot be made equal between the actual ship and the model ship. Therefore, when the auxiliary thrust is not used, the first term on the right side cannot be made equal. This is the reason why the ship speed response under external force cannot maintain the similarity in the normal free-running model test. In the present embodiment, the auxiliary thrust term T A ′ can be given by using the auxiliary thrust. Therefore, assuming the similarity in rudder effect, the similarity between the actual ship and the model ship is ensured if Expression (25) holds for an arbitrary dimensionless ship speed u ′.
Figure 2016075642

すなわち、実験条件の設定によって式(23)が成り立つようにし、舵効きを相似にすることで式(24)を成立させ、さらに補助推力項T’の制御によって式(25)が成立するようにすることで式(22)の右辺が実船と模型船でu’に対して等しく振る舞うようにできる。これによって、船速応答の相似性が確保される。 That is, equation (23) is established by setting the experimental conditions, equation (24) is established by making the steering effect similar, and equation (25) is established by controlling the auxiliary thrust term T A ′. By doing so, the right side of the equation (22) can behave equally with respect to u ′ in the actual ship and the model ship. As a result, similarity in ship speed response is ensured.

なお、外力が船に対して左右対称の場合や舵角δ、船速の左右方向成分v’及び無次元回頭角速度r’が小さい等の理由によって式(24)の両辺とも0に近い場合は特殊な場合として舵効きの相似性確保の条件は除外し得る。   In the case where the external force is symmetric with respect to the ship, or when both sides of equation (24) are close to 0 due to the small steering angle δ, the horizontal component v ′ of the ship speed, and the dimensionless turning angular velocity r ′, etc. As a special case, the condition for ensuring the similarity of rudder effect can be excluded.

ここで、摩擦修正に必要な補助推力を表す補助推力係数を導入する。補助推力項T’は任意に与えることができるので、次式のように補助推力係数fTAといわゆる摩擦修正に必要な力TSFC’を導入して補助推力項T’を定めることができる。

Figure 2016075642
摩擦修正に必要な力TSFC’は次式で定義される無次元船速u’とレイノルズ数Rの関数である。
Figure 2016075642
Here, an auxiliary thrust coefficient representing the auxiliary thrust required for friction correction is introduced. Since the auxiliary thrust term T A ′ can be given arbitrarily, the auxiliary thrust term T A ′ can be determined by introducing the auxiliary thrust coefficient f TA and the force T SFC ′ necessary for so-called friction correction as in the following equation: it can.
Figure 2016075642
Power T SFC necessary friction modifiers 'is dimensionless ship velocity u, which is defined by the following expression' a function of the Reynolds number R n and.
Figure 2016075642

式(27)を用いると式(25)は式(28)に書き直すことができる。

Figure 2016075642
Using equation (27), equation (25) can be rewritten into equation (28).
Figure 2016075642

有効伴流率を推力一致法で求めた場合、実船の無次元化プロペラ推進力T’と模型船の無次元化プロペラ推進力T’はプロペラ単独特性を用いて次式で表現できる。

Figure 2016075642
ここで、D’はプロペラ直径の無次元値を示し、次式で定義される。
Figure 2016075642
If found effective wake rate thrust matching method, 'dimensionless propeller thrust T m of a the model ship' dimensionless propeller thrust T s of the actual ship it can be expressed by the following equation using the Propeller characteristics .
Figure 2016075642
Here, D ′ represents a dimensionless value of the propeller diameter and is defined by the following equation.
Figure 2016075642

TsとKTmは実船と模型船のプロペラ単独特性を示し、それぞれ次式で定義される実船と模型船のプロペラ前進率の関数である。

Figure 2016075642
ここで、wは有効伴流率を示す。 K Ts and K Tm indicate the propeller independent characteristics of the actual ship and the model ship, and are functions of the propeller advance rate of the actual ship and the model ship, respectively, defined by the following equations.
Figure 2016075642
Here, w represents an effective wake rate.

推力減少係数1−tと有効伴流係数1−wはプロペラ荷重度tの関数として取り扱われることが多い。ここで、プロペラ荷重度tは次式で定義される。

Figure 2016075642
The thrust reduction coefficient 1-t and the effective wake coefficient 1-w are often handled as functions of the propeller load degree t. Here, the propeller load degree t is defined by the following equation.
Figure 2016075642

式(32)式のJは船の見かけの前進率を示し、次式で表される。

Figure 2016075642
J H in the equation (32) represents an apparent advance rate of the ship and is represented by the following equation.
Figure 2016075642

相似とする対象となる実船の状態を考えると、対象船の形状影響係数と相当平板摩擦抵抗係数、造波抵抗係数、推力減少係数1−t、有効伴流係数1−w、プロペラ単独特性及びこれらの尺度影響はその有無も含めて既知である。無次元船速u’の変化に応じた実船の状態は実船の無次元プロベラ回転数n’によって異なるものになる。 Considering the state of the actual ship to be similar, the shape influence coefficient of the target ship, the equivalent plate friction resistance coefficient, the wave resistance coefficient, the thrust reduction coefficient 1-t, the effective wake coefficient 1-w, the propeller single characteristics These scale effects are known, including their presence or absence. The state of the actual ship according to the change in the dimensionless ship speed u ′ differs depending on the dimensionless prober rotation speed n s ′ of the actual ship.

無次元プロベラ回転数n’は、プロペラ回転数一定とプロペラトルク一定、馬力一定等の条件下において推定することができる。すなわち、基準となる平水時に式(21)を満足する無次元船速u’、実船の無次元プロベラ回転数n’、プロペラトルク、馬力の組み合わせを決め、上記に例を示した条件のいずれかに応じて船速が変化したときの状態量の変化を推定する。この推定値のいずれかを後述する船速変化を相似にする方法において拘束条件として用いる。 The dimensionless prober rotation speed n s ′ can be estimated under conditions such as constant propeller rotation speed, constant propeller torque, and constant horsepower. That is, the combination of the dimensionless ship speed u ′ that satisfies the formula (21), the dimensionless prober rotation speed n s ′ of the actual ship, the propeller torque, and the horsepower when the standard level water is satisfied. The change of the state quantity when the ship speed changes according to either is estimated. Any one of the estimated values is used as a constraint condition in a method of making a ship speed change similar to that described later.

なお、実船状態の推定には機関特性を考慮した方法を用いてもよい。ただし、前述のように波との出会周期で変動するような高周波成分は無視してゆっくり変動する低周波数成分のみを考慮することが好適である。   Note that a method considering engine characteristics may be used for estimating the actual ship state. However, as described above, it is preferable to consider only the low-frequency component that slowly changes while ignoring the high-frequency component that changes in the encounter period with the wave.

以下、外力下において実船と模型船とにおいて船速変化を相似にする方法について説明する。   Hereinafter, a method of making the ship speed change similar between an actual ship and a model ship under external force will be described.

式(28)における未知数は模型船の無次元プロペラ回転数n’と補助推力係数fTAの2つである。拘束条件は式(24)を満足するための舵効きの相似である。式(24)を満足させるための舵効きの相似(uRm’=uRs’)を拘束条件として、式(25)を解く場合は未知数の無次元プロペラ回転数n’と補助推力係数fTAは一意に定まる。ここで、uRm’は模型船の舵有効流入速度の無次元前後方向成分であり、uRs’は実船の舵有効流入速度の無次元前後方向成分である。 There are two unknowns in the equation (28): the dimensionless propeller rotation speed n m ′ of the model ship and the auxiliary thrust coefficient f TA . The constraint condition is similar to the steering effect for satisfying the equation (24). When solving the equation (25) using the steering effect similarity (u Rm '= u Rs ') for satisfying the equation (24) as a constraint, the unknown dimensionless propeller rotation number nm and the auxiliary thrust coefficient f TA is uniquely determined. Here, u Rm ′ is a dimensionless longitudinal component of the rudder effective inflow speed of the model ship, and u Rs ′ is a dimensionless longitudinal component of the rudder effective inflow speed of the actual ship.

一方、舵効きの相似を舵角の補正或いは舵面積の修正等の別の方法によって確保する場合、又は前述のように対称性等の理由によって舵効きの相似が拘束条件とならない場合は式(25)に対して未知数が2つあるため解の組み合わせは無数となる。補助推力係数fTAを0とする補助推力を使わない解も、模型船の無次元プロペラ推進力T’を0とするプロペラを使わない解のいずれもあり得る。なお、舵効きの相似を舵角の補正又は舵面積の修正で確保する場合は式(25)を満足する無次元プロペラ回転数n’と補助推力係数fTAの組み合わせに対応した補正または修正が必要である。以下、模型船を用いた実験の実用性を考慮して幾つかの方法を提案する。 On the other hand, when the similarity of rudder effectiveness is secured by another method such as correction of rudder angle or correction of rudder area, or when similarity of rudder effectiveness is not a constraint condition for reasons such as symmetry as described above, Since there are two unknowns for 25), there are innumerable combinations of solutions. There can be either a solution that does not use the auxiliary thrust with the auxiliary thrust coefficient fTA being 0, or a solution that does not use the propeller with the dimensionless propeller thrust Tm ′ of the model ship being 0. In addition, when ensuring the effectiveness of the rudder by correcting the rudder angle or by revising the rudder area, the correction or correction corresponding to the combination of the dimensionless propeller rotational speed n m ′ and the auxiliary thrust coefficient f TA satisfying equation (25) is necessary. In the following, several methods are proposed in consideration of the practicality of experiments using model ships.

(1)船速変化とプロペラ推進力を相似にする方法
第1の方法では、船速変化の相似性だけではなく、プロペラ推進力の相似性も確保する。当該方法は、外力下でのプロペラ推進力の変化やこれに関係する現象を調べるための模型実験などに適している。
(1) Method for Similarity of Ship Speed Change and Propeller Propulsion Force In the first method, not only similarity of ship speed change but also similarity of propeller thrust force is ensured. This method is suitable for a model experiment for examining changes in propeller propulsion force under external force and phenomena related thereto.

プロペラ推進力の相似は式(34)で表される。

Figure 2016075642
Similarity of propeller propulsion force is expressed by equation (34).
Figure 2016075642

このとき、式(29)より式(35)が導出される。

Figure 2016075642
At this time, Expression (35) is derived from Expression (29).
Figure 2016075642

無次元船速u’が実船と模型船で同じ値であるとき、式(32)と式(33)を考慮すると式(36)を得る。

Figure 2016075642
When the dimensionless ship speed u ′ is the same value for the actual ship and the model ship, Expression (36) is obtained by considering Expression (32) and Expression (33).
Figure 2016075642

すなわち、プロペラ推進力の相似は、プロペラ荷重度が実船と模型船で等しいことを意味する。さらに、推力減少係数1−tがプロペラ荷重度t又は無次元船速u’の関数であるとすれば式(37)が成り立つ。

Figure 2016075642
That is, the similarity of the propeller propulsion force means that the propeller load degree is equal between the actual ship and the model ship. Furthermore, if the thrust reduction coefficient 1-t is a function of the propeller load degree t or the dimensionless ship speed u ′, Expression (37) is established.
Figure 2016075642

式(37)と式(28)を比較すると、プロペラ推進力の相似は式(38)と同値である。

Figure 2016075642
Comparing equation (37) and equation (28), the similarity of the propeller thrust is equivalent to equation (38).
Figure 2016075642

このとき式(26)より式(39)の関係が得られる。

Figure 2016075642
At this time, the relationship of the equation (39) is obtained from the equation (26).
Figure 2016075642

すなわち、プロペラ推進力の相似はいわゆる摩擦修正によって得られることがわかる。プロペラ推進力を実船と模型船で相似にするためには補助推力係数fTAを1とおいた上で式(25)により模型船の無次元プロペラ回転数n’を無次元船速u’の関数として求めてやればよい。 That is, it can be seen that the similarity of propeller thrust is obtained by so-called friction correction. In order to make the propeller propulsive force similar between the actual ship and the model ship, the auxiliary thrust coefficient f TA is set to 1 and the dimensionless propeller rotation speed n m ′ of the model ship is set to the dimensionless ship speed u ′ according to Equation (25). It can be obtained as a function of.

(2)船速変化とプロペラトルクを相似にする方法
第2の方法では、船速変化の相似性だけではなく、プロペラトルクの相似性も確保する。当該方法は、外力下でのプロペラトルクの変化やこれに関係する現象、特に外力下で船速が変化する際に主機にかかる負荷を調べるための模型実験などに適している。
(2) Method for Similarizing Ship Speed Change and Propeller Torque In the second method, not only similarity of ship speed change but also similarity of propeller torque is ensured. This method is suitable for a model experiment for examining a change in propeller torque under an external force and a phenomenon related thereto, in particular, a load applied to the main engine when a ship speed changes under an external force.

実船と模型船のプロペラトルクの相似は式(40)で与えられる。

Figure 2016075642
ここで、Qはプロペラトルクを表し、その無次化にはρLgを用いる。有効伴流係数を推力一致法で求めた場合、プロペラトルクQの無次元値はプロペラ単独性能を用いて式(41)で表現される。
Figure 2016075642
ここで、上式でKはトルクに関するプロペラ単独性能、ηはプロペラ船後効率比を示す。 The similarity between the propeller torque of the actual ship and the model ship is given by equation (40).
Figure 2016075642
Here, Q represents the propeller torque, and ρL 4 g is used for demagnetization. When the effective wake coefficient is obtained by the thrust matching method, the dimensionless value of the propeller torque Q is expressed by equation (41) using the propeller single performance.
Figure 2016075642
Here, in the above equation, K Q is the propeller independent performance related to torque, and η R is the propeller ship efficiency ratio.

この方法では、式(40)を拘束条件として模型船の無次元プロペラ回転数n’を求めた上で(25)式に基づいて対応する補助推力係数fTAを求めることで模型船の無次元プロペラ回転数n’と補助推力係数fTAをそれぞれ無次元船速u’の関数として求めることができる。 In this method, the dimensionless propeller rotation speed n m ′ of the model ship is obtained using Expression (40) as a constraint condition, and the corresponding auxiliary thrust coefficient f TA is obtained based on Expression (25) to obtain the absence of the model ship. The dimensional propeller rotation speed n m ′ and the auxiliary thrust coefficient f TA can be obtained as a function of the dimensionless ship speed u ′.

(3)船速変化とプロペラ回転数を相似にする方法
第3の方法では、船速変化の相似性だけではなく、プロペラ回転数も実船と模型船で相似性を確保する。この場合、式(42)に示すように、見掛けの前進率も実船と模型船で等しくなる。

Figure 2016075642
(3) Method of Similarizing Ship Speed Change and Propeller Rotation Speed In the third method, not only the similarity of ship speed change but also the propeller rotation speed is secured between the actual ship and the model ship. In this case, as shown in the equation (42), the apparent advance rate is also equal between the actual ship and the model ship.
Figure 2016075642

本方法では、式(43)に基づいて、模型船の無次元プロペラ回転数n’を決め、その上で、式(25)に基づいて、対応する補助推力係数fTAを求めることで模型船の無次元プロペラ回転数n’と補助推力係数fTAをそれぞれ無次元船速u’の関数として求めることができる。

Figure 2016075642
In this method, the dimensionless propeller rotation speed n m ′ of the model ship is determined based on the equation (43), and then the corresponding auxiliary thrust coefficient f TA is obtained based on the equation (25). The dimensionless propeller rotation speed n m ′ and the auxiliary thrust coefficient f TA of the ship can be obtained as functions of the dimensionless ship speed u ′.
Figure 2016075642

(4)船速変化と馬力を相似にする方法
第4の方法では、船速変化の相似性だけではなく、馬力の相似性も確保する。外力下での馬力の変化やこれに関係する現象、特に外力下で船速が変化する際の主機馬力を調べるための模型実験などに適している。
(4) Method of Similarizing Ship Speed Change and Horsepower In the fourth method, not only the similarity of ship speed change but also the similarity of horsepower is ensured. It is suitable for model experiments to investigate changes in horsepower under external force and related phenomena, especially main engine horsepower when ship speed changes under external force.

馬力の相似は式(44)で与えられる。

Figure 2016075642
The similarity of horsepower is given by equation (44).
Figure 2016075642

本方法では、式(44)を拘束条件として模型船の無次元プロペラ回転数n’を求めた上で、式(25)に基づいて、対応する補助推力係数fTAを求めることで模型船の無次元プロペラ回転数n’と補助推力係数fTAをそれぞれ無次元船速u’の関数として求めることができる。 In this method, after obtaining the dimensionless propeller rotation speed n m ′ of the model ship using Expression (44) as a constraint, the model ship is obtained by obtaining the corresponding auxiliary thrust coefficient f TA based on Expression (25). The dimensionless propeller rotation speed n m ′ and the auxiliary thrust coefficient f TA can be obtained as a function of the dimensionless ship speed u ′.

(5)船速変化の相似と共にプロペラスリップ比を一致させる方法
第5の方法では、船速変化の相似性だけではなく、プロペラスリップ比も実船と模型船で同じ値にする。このとき、プロペラ前進率も実船と模型船で同じ値となる。異なる伴流中ではあるが、プロペラの作動状況が相似にできるため、外力下で船速が変化する場合のプロペラ特性を調べるための模型実験などに適している。
(5) Method of matching the propeller slip ratio with the similarity of the ship speed change In the fifth method, not only the similarity of the ship speed change but also the propeller slip ratio is set to the same value for the actual ship and the model ship. At this time, the propeller forward rate is also the same for the actual ship and the model ship. Although it is in different wakes, the operating state of the propeller can be made similar, so it is suitable for model experiments to investigate the propeller characteristics when the ship speed changes under external force.

実船及び模型船のプロペラスリップ比s,sは、式(45)により示される。

Figure 2016075642
Propeller slip ratio s s of actual ship and model ship, s m is represented by the formula (45).
Figure 2016075642

プロペラスリップ比s,sの一致は、式(45)から示されるように、一致はプロペラ前進率J及びJの一致にほかならない。 The coincidence between the propeller slip ratios s s and s m is nothing but the coincidence between the propeller advance rates J s and J m , as shown in the equation (45).

この方法では、式(46)を拘束条件として模型船の無次元プロペラ回転数n’を求めた上で、式(25)に基づいて、対応する補助推力係数fTAを求めることで模型船の無次元プロペラ回転数n’と補助推力係数fTAをそれぞれ無次元船速u’の関数として求めることができる。

Figure 2016075642
In this method, after obtaining the dimensionless propeller rotation speed n m ′ of the model ship using Expression (46) as a constraint, the model ship is obtained by obtaining the corresponding auxiliary thrust coefficient f TA based on Expression (25). The dimensionless propeller rotation speed n m ′ and the auxiliary thrust coefficient f TA can be obtained as a function of the dimensionless ship speed u ′.
Figure 2016075642

なお、式(46)は式(47)と同値である。

Figure 2016075642
Equation (46) is equivalent to equation (47).
Figure 2016075642

<計算例>
以下、対象実船をKVLCC1(平水中基準船速15.5kt)とし、その模型船は実船1/110の縮尺模型としたときの計算例について示す。計算対象とする項目は、船速変化を実船と相似にするための模型船の無次元プロペラ回転数n’及び補助推力係数fTAの設定値並びに模型船の舵有効流入速度の無次元前後方向成分uRm’,プロペラスリップ比s,無次元補助推力T’,無次元化プロペラ推進力T’,無次元プロペラトルクQ’,無次元馬力P’の船速に対する変化とした。
<Calculation example>
Hereinafter, an example of calculation when the target actual ship is KVLCC1 (flat water standard ship speed 15.5 kt) and the model ship is a scale model of an actual ship 1/110 will be described. The items to be calculated are the dimensionless propeller rotation speed n m ′ of the model ship and the auxiliary thrust coefficient fTA for setting the ship speed change similar to that of the actual ship, and the dimensionless effective inflow speed of the model ship. Changes in the longitudinal speed component u Rm ′, propeller slip ratio s m , dimensionless auxiliary thrust T A ′, dimensionless propeller thrust T m ′, dimensionless propeller torque Q m ′, dimensionless horsepower P m ′ with respect to ship speed It was.

相似にすべき実船の状態は、プロペラ回転数n’、プロペラトルクQ’及び馬力P’を一定にした3状態のうち1つとする。また、模型船の状態は、船速u’の相似と同時に舵有効流入速度の無次元前後方向成分(舵効き)uRm’、プロペラ推進力T’、プロペラトルクQ’、馬力P’、プロペラスリップ比s、プロペラ回転数n’のいずれかを実船の舵効きuRs’、プロペラ推進力T’、プロペラトルクQ’、馬力P’、プロペラスリップ比s、プロペラ回転数n’と相似にした状態及び補助推力なし(w/oAT)で船速変化を実船と相似にした状態とした。 The state of the actual ship that should be similar is one of the three states in which the propeller rotational speed n s ′, the propeller torque Q ′, and the horsepower P ′ are constant. The model ship is in the same state as the ship speed u ′ and at the same time the dimensionless longitudinal component (rudder effect) u Rm ′ of the rudder effective inflow speed, propeller propulsion force T m ′, propeller torque Q m ′, horsepower P m ', Propeller slip ratio s m , propeller rotation speed n m ' is used to control the actual ship rudder effect u Rs ', propeller propulsion force T s ', propeller torque Q s ', horsepower P s ', propeller slip ratio s s The speed change was made similar to the actual ship without the auxiliary thrust (w / oAT) in a state similar to the propeller rotational speed n s ′.

計算に用いた係数において、平水中抵抗は3次元外挿法によるものとした。尺度影響と粗度修正はITTC法によるものとした。また、実船と模型船のプロペラ単独特性K,K及び有効伴流係数1−wの尺度影響はITTC法によるものとした。また、形状影響係数、造波抵抗係数、推力減少係数1−t、プロペラ船後効率比η、舵位置の伴流係数とプロペラ位置の伴流係数の比ε及びプロペラ後流の増速率に関する係数κに尺度影響は考慮しないものとする。また、プロペラ船後効率比ηは1.0と仮定する。さらに、有効伴流係数1−w及び推力減少係数1−tは船速及びプロペラ荷重度によらず一定値とする。 In the coefficient used for the calculation, the resistance in plain water was determined by a three-dimensional extrapolation method. Scale effect and roughness correction were based on the ITTC method. In addition, the scale effect of the propeller independent characteristics K T and K Q and the effective wake coefficient 1-w of the actual ship and the model ship was determined by the ITTC method. Further, the shape influence coefficient, the wave resistance coefficient, the thrust reduction coefficient 1-t, the propeller ship efficiency ratio η R , the ratio ε between the rudder position wake coefficient and the propeller position wake coefficient, and the propeller wake acceleration rate The scale effect is not considered in the coefficient κ. Further, it is assumed that the efficiency ratio η R after the propeller ship is 1.0. Further, the effective wake coefficient 1-w and the thrust reduction coefficient 1-t are constant values regardless of the ship speed and the propeller load.

図1は、実船のプロペラ回転数n’を一定とし、模型船の舵有効流入速度の前後方向成分uRm’,プロペラ推進力T’,プロペラトルクQ’,馬力P’のいずれかを実船の舵有効流入速度の前後方向成分uRs’、プロペラ推進力T’、プロペラトルクQ’、馬力P’と相似にした状態にしたときの計算結果を示す。計算結果は、船速(無次元船速u’と平水中船速u’との比)を変化させたときの各項目の変化を示す。 FIG. 1 shows that the propeller rotation speed n s ′ of the actual ship is constant, and the longitudinal component u Rm ′ of the rudder effective inflow speed of the model ship, propeller thrust T m ′, propeller torque Q m ′, and horsepower P m ′ The calculation results when one of them is made to be similar to the longitudinal component u Rs ', propeller thrust T s ', propeller torque Q s ', and horsepower P s ' of the rudder effective inflow speed of the actual ship are shown. The calculation results indicate changes in each item when the ship speed (ratio between the dimensionless ship speed u ′ and the flat water ship speed u 0 ′) is changed.

図2は、実船のプロペラ回転数n’を一定とし、模型船の舵有効流入速度の無次元前後方向成分uRm’,プロペラスリップ比s及びプロペラ回転数n’のいずれかを実船の舵有効流入速度の無次元前後方向成分uRs’,プロペラスリップ比s及びプロペラ回転数n’と相似にした状態にしたときの計算結果を示す。また、補助推力Tを与えなかった場合(w/oAT)の計算結果も同時に示す。計算結果は、船速(無次元船速u’を平水中船速u’)を変化させたときの各項目の変化を示す。 Figure 2 is a propeller speed n s in actual ships' was constant, dimensionless longitudinal direction component of the rudder effective inflow velocity of the model ship u Rm ', one of the propeller slip ratio s m and propeller speed n m' The calculation results are shown in a state similar to the dimensionless longitudinal component u Rs ′, propeller slip ratio s s, and propeller speed n s ′ of the effective inflow velocity of the actual ship. The calculation results are also shown at the same time when no given auxiliary thrust T A (w / oAT). The calculation result indicates changes in each item when the ship speed (the dimensionless ship speed u ′ is changed to the flat water ship speed u 0 ′).

図3は、実船のプロペラトルクQ’を一定とし、模型船の舵有効流入速度の前後方向成分uRm’,プロペラ推進力T’,プロペラトルクQ’,馬力P’のいずれかを実船の舵有効流入速度の前後方向成分uRs’、プロペラ推進力T’、プロペラトルクQ’、馬力P’と相似にした状態にしたときの計算結果を示す。計算結果は、船速(無次元船速u’を平水中船速u’)を変化させたときの各項目の変化を示す。 FIG. 3 shows that the propeller torque Q s ′ of the actual ship is constant, and any of the longitudinal component u Rm ′ of the rudder effective inflow speed of the model ship, propeller thrust T m ′, propeller torque Q m ′, and horsepower P m ′ The calculation results when K is made similar to the longitudinal component u Rs ', propeller thrust T s ', propeller torque Q s ', and horsepower P s ' of the rudder effective inflow speed of the actual ship are shown. The calculation result indicates changes in each item when the ship speed (the dimensionless ship speed u ′ is changed to the flat water ship speed u 0 ′).

図4は、実船のプロペラトルクQ’を一定とし、模型船の舵有効流入速度の無次元前後方向成分uRm’,プロペラスリップ比s及びプロペラ回転数n’のいずれかを実船の舵有効流入速度の無次元前後方向成分uRs’,プロペラスリップ比s及びプロペラ回転数n’と相似にした状態にしたときの計算結果を示す。また、補助推力Tを与えなかった場合(w/oAT)の計算結果も同時に示す。計算結果は、船速(無次元船速u’を平水中船速u’)を変化させたときの各項目の変化を示す。 FIG. 4 shows that the propeller torque Q s ′ of the actual ship is constant and any one of the dimensionless longitudinal component u Rm ′, the propeller slip ratio s m, and the propeller rotational speed n m ′ of the model ship's rudder effective inflow speed is realized. ship rudder effective inflow velocity of the dimensionless longitudinal direction component u Rs shows the calculation results when the state of the similar to the 'propeller slip ratio s s and propeller speed n s'. The calculation results are also shown at the same time when no given auxiliary thrust T A (w / oAT). The calculation result indicates changes in each item when the ship speed (the dimensionless ship speed u ′ is changed to the flat water ship speed u 0 ′).

図5は、実船の馬力P’を一定とし、模型船の舵有効流入速度の前後方向成分uRm’,プロペラ推進力T’,プロペラトルクQ’,馬力P’のいずれかを実船の舵有効流入速度の前後方向成分uRs’、プロペラ推進力T’、プロペラトルクQ’、馬力P’と相似にした状態にしたときの計算結果を示す。計算結果は、船速(無次元船速u’を平水中船速u’)を変化させたときの各項目の変化を示す。 FIG. 5 shows that the horsepower P s ′ of the actual ship is constant, and any one of the longitudinal component u Rm ′, propeller thrust T m ′, propeller torque Q m ′, and horse power P m ′ of the effective inflow speed of the model ship. Shows the calculation results when the engine is made similar to the longitudinal component u Rs ', propeller propulsion force T s ', propeller torque Q s ', and horsepower P s ' of the rudder effective inflow speed of the actual ship. The calculation result indicates changes in each item when the ship speed (the dimensionless ship speed u ′ is changed to the flat water ship speed u 0 ′).

図6は、実船の馬力P’を一定とし、模型船の舵有効流入速度の無次元前後方向成分uRm’,プロペラスリップ比s及びプロペラ回転数n’のいずれかを実船の舵有効流入速度の無次元前後方向成分uRs’,プロペラスリップ比s及びプロペラ回転数n’と相似にした状態にしたときの計算結果を示す。また、補助推力Tを与えなかった場合(w/oAT)の計算結果も同時に示す。計算結果は、船速(無次元船速u’を平水中船速u’)を変化させたときの各項目の変化を示す。 FIG. 6 shows that the actual ship's horsepower P s ′ is constant, and any one of the dimensionless longitudinal component u Rm ′, propeller slip ratio s m, and propeller rotation speed n m ′ of the rudder effective inflow speed of the model ship is The calculation results are shown in a state similar to the dimensionless longitudinal component u Rs ′, the propeller slip ratio s s, and the propeller rotational speed n s ′ of the rudder effective inflow speed. The calculation results are also shown at the same time when no given auxiliary thrust T A (w / oAT). The calculation result indicates changes in each item when the ship speed (the dimensionless ship speed u ′ is changed to the flat water ship speed u 0 ′).

<自由航走模型船の推進器関連特性実船相似装置>
図7は、本発明の実施の形態における自由航走模型船試験方法を実現するための自由航走模型船試験装置100を示す図である。
<Proportioner-related characteristics of a free-running model ship>
FIG. 7 is a diagram showing a free-running model ship test apparatus 100 for realizing the free-running model ship test method according to the embodiment of the present invention.

自由航走模型船試験装置100は、図7に示すように、自由航走模型船10に搭載されたアナログ/パルス変換器12、モータ増幅器14、ダクトファンモータ16及び検力計18と、自動追尾台車20に搭載されたカメラ22、検力計増幅器24及び制御コンピュータ(制御PC)26、プロペラ28及びプロペラ駆動部30、を含んで構成される。   As shown in FIG. 7, the free-running model ship test apparatus 100 includes an analog / pulse converter 12, a motor amplifier 14, a duct fan motor 16 and a dynamometer 18 mounted on the free-running model ship 10, and an automatic A camera 22 mounted on the tracking carriage 20, a force meter amplifier 24, a control computer (control PC) 26, a propeller 28, and a propeller drive unit 30 are configured.

自由航走模型船10は、試験対象となる実際の船舶を模倣した模型船である。自由航走模型船10は、以下に説明する補助推力系とは別にプロペラ28等の主推力系を有し、水上を自由航走することができるように構成されている。プロペラ駆動部30は、自由航走模型船10の主駆動系であるプロペラ28を駆動するためのモータを含む。プロペラ駆動部30は、サーボモータ等の回転数を制御可能なモータとすることが好適である。   The free-running model ship 10 is a model ship imitating an actual ship to be tested. The free-running model ship 10 has a main thrust system such as a propeller 28 in addition to the auxiliary thrust system described below, and is configured to be able to freely travel on the water. The propeller drive unit 30 includes a motor for driving the propeller 28 that is the main drive system of the free-running model ship 10. The propeller drive unit 30 is preferably a motor that can control the rotation speed, such as a servo motor.

自動追尾台車20は、カメラ22によって自由航走模型船10を撮像し、その情報に基づいて制御コンピュータ26による制御によって自由航走模型船10を自動に追尾するように構成されている。例えば、自動追尾台車20は、試験用プール上に配置されたレールに取り付けられ、レール上を走行することによって自由航走模型船10を追尾できるように構成される。さらに、自動追尾台車20の追尾によって自由航走模型船10の速度(船速)が測定され、制御コンピュータ26に入力される。   The automatic tracking cart 20 is configured to image the free-running model ship 10 with a camera 22 and automatically track the free-running model ship 10 under the control of the control computer 26 based on the information. For example, the automatic tracking cart 20 is attached to a rail disposed on the test pool, and is configured to track the free-running model ship 10 by traveling on the rail. Further, the speed (ship speed) of the free-running model ship 10 is measured by tracking the automatic tracking carriage 20 and input to the control computer 26.

自動追尾台車20の追尾によって自由航走模型船10の速度(船速)が測定され、制御コンピュータ26に入力される。制御コンピュータ26では、試験条件及び自由航走模型船10の速度に基づいて補助推力及びプロペラ回転数が設定され、設定された補助推力及びプロペラ回転数に応じた補助推力指令信号及びプロペラ回転数指令信号が生成される。補助推力指令信号は、アナログ/パルス変換器12、モータ増幅器14を介してダクトファンモータ16に入力され、ダクトファンモータ16が駆動される。これにより、ダクトファンモータ16によって自由航走模型船10に対して所望の補助推力が与えられる。また、プロペラ回転数指令信号は、プロペラ駆動部30に入力され、これによりプロペラ28の回転数が制御される。   By tracking the automatic tracking carriage 20, the speed (ship speed) of the free-running model ship 10 is measured and input to the control computer 26. In the control computer 26, the auxiliary thrust and the propeller rotational speed are set based on the test conditions and the speed of the free-running model ship 10, and the auxiliary thrust command signal and the propeller rotational speed command corresponding to the set auxiliary thrust and the propeller rotational speed are set. A signal is generated. The auxiliary thrust command signal is input to the duct fan motor 16 via the analog / pulse converter 12 and the motor amplifier 14, and the duct fan motor 16 is driven. Thus, a desired auxiliary thrust is given to the free-running model ship 10 by the duct fan motor 16. Further, the propeller rotational speed command signal is input to the propeller driving unit 30, thereby controlling the rotational speed of the propeller 28.

具体的には、補助推力付加手段としてダクトファンモータ16が搭載されている。ダクトファンモータ16は、アナログ/パルス変換器12に入力された補助推力指令信号に基づいて出力が制御され、その出力が自由航走模型船10の主推力系とは別に設けられた補助推力となる。アナログ/パルス変換器12に補助推力指令信号が入力されると、その信号に応じた推力を生み出すようにダクトファンモータ16を制御するパルス信号に変換され、パルス信号がモータ増幅器14によって増幅されてダクトファンモータ16に入力され、ダクトファンモータ16が駆動される。これにより、ダクトファンモータ16によって自由航走模型船10に対して所望の補助推力が与えられる。   Specifically, a duct fan motor 16 is mounted as auxiliary thrust adding means. The duct fan motor 16 is controlled in output based on the auxiliary thrust command signal input to the analog / pulse converter 12, and the output is an auxiliary thrust provided separately from the main thrust system of the free-running model ship 10. Become. When an auxiliary thrust command signal is input to the analog / pulse converter 12, it is converted into a pulse signal for controlling the duct fan motor 16 so as to generate a thrust according to the signal, and the pulse signal is amplified by the motor amplifier 14. Input to the duct fan motor 16 causes the duct fan motor 16 to be driven. Thus, a desired auxiliary thrust is given to the free-running model ship 10 by the duct fan motor 16.

また、自由航走模型船10には、ダクトファンモータ16の出力を検出して出力する検力計18が搭載されている。検力計18は、ダクトファンモータ16の補助出力を検出して、検力計増幅器24へ出力する。   The free-running model ship 10 is equipped with a dynamometer 18 that detects and outputs the output of the duct fan motor 16. The dynamometer 18 detects the auxiliary output of the duct fan motor 16 and outputs it to the galvanometer amplifier 24.

自動追尾台車20には、検力計増幅器24が搭載されており、検力計18で検出された実際の補助出力が入力される。検力計増幅器24は、実際の補助出力を増幅して制御PC26に出力する。制御PC26は、検力計増幅器24から補助出力に応じた信号を受けて、補助出力を所望の値となるように補助推力指令信号を生成してアナログ/パルス変換器12へ出力する。このように、フィードバック制御を行うことによって、自由航走模型船10に対して所望の補助推力を付与することができる。   A dynamometer amplifier 24 is mounted on the automatic tracking carriage 20 and an actual auxiliary output detected by the dynamometer 18 is input. The dynamometer amplifier 24 amplifies the actual auxiliary output and outputs it to the control PC 26. The control PC 26 receives a signal corresponding to the auxiliary output from the galvanometer amplifier 24, generates an auxiliary thrust command signal so that the auxiliary output becomes a desired value, and outputs the auxiliary thrust command signal to the analog / pulse converter 12. Thus, by performing feedback control, a desired auxiliary thrust can be applied to the free-running model ship 10.

また、図8に示す自由航走模型船試験装置102のような構成としてもよい。自由航走模型船試験装置102では、検力計増幅器24及び制御コンピュータ(制御PC)26も自由航走模型船10に搭載される。なお、自由航走模型船試験装置100と同じ構成については、同一の符号を付して説明を省略する。   Moreover, it is good also as a structure like the free-running model ship test apparatus 102 shown in FIG. In the free-running model ship test apparatus 102, the galvanometer amplifier 24 and the control computer (control PC) 26 are also mounted on the free-running model ship 10. In addition, about the same structure as the free-running model ship test apparatus 100, the same code | symbol is attached | subjected and description is abbreviate | omitted.

自由航走模型船試験装置102では、さらに船速検出器32が自由航走模型船10に搭載される。船速検出器32は、自由航走模型船10の速度(船速)を計測し、制御コンピュータ26に入力する。船速検出器32は、例えば、ピトー管等の速度計測手段から船速を求めてもよいし、GPS等の位置計測手段から得られる自由航走模型船10の位置の時間的な変化から船速を求めてもよい。また、電磁LOGセンサやドップラーLOGセンサ等を用いて対水船速を求めてもよい。   In the free-running model ship test apparatus 102, a ship speed detector 32 is further mounted on the free-running model ship 10. The ship speed detector 32 measures the speed (ship speed) of the free-running model ship 10 and inputs it to the control computer 26. For example, the ship speed detector 32 may obtain the ship speed from speed measuring means such as a Pitot tube, or from the temporal change in the position of the free-running model ship 10 obtained from position measuring means such as GPS. You may seek speed. Further, the speed of the watercraft may be obtained using an electromagnetic LOG sensor, a Doppler LOG sensor, or the like.

また、図9に示す自由航走模型船試験装置104のような構成としてもよい。自由航走模型船試験装置104では、船速検出器32の代わりに、自由航走模型船10には船速情報受信器34が搭載される。船速情報受信器34は、陸上に設けた船速検出器36から自由航走模型船10の船速の情報を受信し、制御コンピュータ26に入力する。船速検出器36は、例えば、光学的方法や無線を用いた方法により自由航走模型船10の船速を求めるようにすればよい。また、GPS等の位置計測手段から得られる自由航走模型船10の位置の時間的な変化から船速を求めてもよい。   Moreover, it is good also as a structure like the free-running model ship test apparatus 104 shown in FIG. In the free-running model ship test apparatus 104, a ship speed information receiver 34 is mounted on the free-running model ship 10 instead of the ship speed detector 32. The ship speed information receiver 34 receives ship speed information of the free-running model ship 10 from a ship speed detector 36 provided on land, and inputs the information to the control computer 26. The boat speed detector 36 may obtain the boat speed of the free-running model ship 10 by, for example, an optical method or a method using radio. Further, the ship speed may be obtained from a temporal change in the position of the free-running model ship 10 obtained from a position measuring means such as GPS.

なお、自由航走模型船試験装置102,104では、自由航走模型船10に電池等の電源を搭載し、試験に必要な電力を当該電源から供給するようにしてもよい。これにより、自動追尾台車20等から外部電力を供給することなく、自由航走模型船10単体で試験を実施することができる。   In the free-running model ship test apparatuses 102 and 104, the free-running model ship 10 may be equipped with a power source such as a battery, and the power necessary for the test may be supplied from the power source. As a result, the test can be performed on the free-running model ship 10 alone without supplying external power from the automatic tracking cart 20 or the like.

[第2の実施の形態]
上記第1の実施の形態では、実船のプロペラ回転数が正転である場合のみを対象とした。しかしながら、同じ考え方はプロペラ逆転による停止性能の推定にも適用できる。実際、IMO操縦性基準に規定された逆転停止試験では逆転停止時に舵を中央に保持することとされており、さらに、プロペラ逆転時は一般に舵は効かないことが知られているからである。
[Second Embodiment]
In the first embodiment, only the case where the propeller rotational speed of the actual ship is normal rotation is targeted. However, the same idea can be applied to estimation of stopping performance by propeller reverse rotation. In fact, in the reverse rotation stop test stipulated in the IMO maneuverability standard, it is assumed that the rudder is held at the center when the reverse rotation is stopped, and it is known that the rudder is generally not effective when the propeller is reversed.

IMO操縦性基準で規定されている平水時に加えて、外乱下において自由航走模型船で逆転停止試験をおこなう場合、どのように補助推力と模型プロペラ回転数を制御すればよいかを以下に示す。   The following shows how to control the auxiliary thrust and the model propeller speed when performing a reverse rotation stop test on a free-running model ship under disturbance in addition to the normal water specified by the IMO maneuverability standard. .

助走時と逆転停止発令後のプロペラ正転中は第1の実施の形態に基づいて計算をおこなう。プロペラ回転数が逆転状態になると、舵の力は0とし、プロペラ逆転による不平衡力の前後力・左右力・回頭モーメント成分を考慮し、船速が0になるまで計算するのが従来の一般的な計算手順である。   During the forward run and during the forward rotation of the propeller after the reverse stop issuance, the calculation is performed based on the first embodiment. When the speed of the propeller is reversed, the rudder force is assumed to be 0, and calculation is performed until the ship speed reaches 0, considering the longitudinal force, left-right force, and turning moment components of the unbalanced force due to the reverse rotation of the propeller. This is a basic calculation procedure.

プロペラ逆転中の不平衡力は、船舶の見掛けの前進率Jの関数として整理される。船舶の見掛けの前進率Jは式(48)で定義される。

Figure 2016075642
The unbalance force during propeller reversal is organized as a function of the ship's apparent forward rate JH . The apparent advance rate JH of the ship is defined by Expression (48).
Figure 2016075642

船舶の見掛けの前進率Jは、船速の前後方向成分u、プロペラ回転数n、プロペラ直径Dによって表わされるが、プロペラ逆転時を考える場合にはプロペラ回転数nは負の値をとる。現在のところプロペラ逆転停止時の不平衡力の推定は模型実験によるしかない。 The apparent advance rate JH of the ship is represented by the forward / backward component u of the ship speed, the propeller rotation speed n, and the propeller diameter D, but the propeller rotation speed n takes a negative value when the propeller reverse rotation is considered. At present, the estimation of the unbalanced force at the time of propeller reverse rotation stop is only possible by model experiments.

理論計算におけるプロペラ逆転時の不平衡力は一般に船舶の見掛けの前進率Jの関数として与えていると思われる。固有の船の逆転停止性能を模型尺度のみで考える場合は逆転時の力を船舶の見掛けの前進率Jの関数として与えて問題ない。なお、プロペラ逆転中の不平衡力を船舶の見掛けの前進率Jではなく、式(48)のプロペラ直径Dをプロペラピッチに置き換えた変数の関数と見なす場合もあるが、計算手順上の本質的な違いはない。 It is considered that the unbalance force at the time of propeller reversal in the theoretical calculation is generally given as a function of the ship's apparent advance rate JH . When considering the reverse stop performance of a specific ship only by a model scale, there is no problem by giving the force at the time of reverse rotation as a function of the ship's apparent forward rate JH . The unbalance force during the reversal of the propeller may be regarded as a function of a variable in which the propeller diameter D in the equation (48) is replaced with the propeller pitch instead of the apparent advance rate JH of the ship. There is no difference.

ここで、プロペラ逆転時の尺度影響を考慮すると、前述の理論計算によれば逆転停止時の船体運動はプロペラ逆転時の不平衡力に支配されるから、尺度影響は船舶の見掛けの前進率Jに支配される。また、プロペラ逆転時の力を考えるとき、プロペラ周りの流場が支配的影響をおよぼすと考えられることから、実船と模型船の尺度影響を考える際にはこれらの力は船舶の見掛けの前進率Jではなくプロペラ前進率Jの関数と見なしたほうが適切と考える。ここで、プロペラ前進率Jは式(49)で定義される。

Figure 2016075642
Here, considering the scale effect at the time of propeller reversal, according to the above theoretical calculation, the hull motion at the time of reverse rotation stop is governed by the unbalanced force at the time of propeller reversal. Dominated by H. In addition, when considering the force at the time of propeller reversal, the flow field around the propeller is considered to have a dominant influence, so when considering the scale effect of the actual ship and the model ship, these forces are the apparent advance of the ship. We consider it more appropriate to consider it as a function of propeller advance rate J rather than rate JH . Here, the propeller advance rate J is defined by equation (49).
Figure 2016075642

尺度影響は伴流係数1−wに現れる。上記の考えに基づき、逆転停止性能の尺度影響を議論するためにプロペラ逆転時の不平衡力をプロペラ前進率Jの関数とみなす。なお、プロペラ前進率Jの関数と見なすことはプロペラスリップsの関数と見なすことに等しい。プロペラスリップsは式(50)で定義される。

Figure 2016075642
ここで、Pはプロペラピッチを示す。 Scale effects appear in the wake coefficient 1-w. Based on the above idea, in order to discuss the scale effect on reverse stop performance, the unbalance force at the time of reverse rotation of the propeller is regarded as a function of the propeller advance rate J. In addition, regarding it as a function of the propeller advance rate J is equivalent to regarding it as a function of the propeller slip s. The propeller slip s is defined by the formula (50).
Figure 2016075642
Here, P represents a propeller pitch.

逆転停止時の相似則を考慮する際に、模型船制御のために解くべき連立方程式について考察する。以下、第2の実施の形態においても、無次元値にダッシュ’を付けて示す。また、模型船と実船で異なる無次元値をとる変数は添え字にmとsをそれぞれ付ける。同じ無次元値をとる変数はmもsも付けない。   When considering the similarity law at the time of reverse stop, we consider simultaneous equations to be solved for model ship control. Hereinafter, also in the second embodiment, a dimensionless value is indicated with a dash '. Variables that have different dimensionless values between the model ship and the actual ship are given m and s as subscripts, respectively. Variables that have the same dimensionless value are not marked with m or s.

プロペラ正転中は舵が効くので一般に舵効きの相似が必要となるので舵効き船速修正を適用する。外乱下の場合は舵効き船速修正が必須である。舵効き船速修正は式(51)で表される。

Figure 2016075642
Since the rudder is effective during normal rotation of the propeller, it is generally necessary to resemble the rudder effect. In case of disturbance, it is essential to adjust the rudder speed. The rudder effect boat speed correction is expressed by equation (51).
Figure 2016075642

式(51)がプロペラ正転中に模型船を制御する補助推力係数fTAと模型船のプロペラ回転数n’を求めるために解くべき方程式である。ただし、平水時のプロペラ正転中には特別な場合がある。平水中において助走時は直進中であり、IMO操縦性基準の規定に従えば逆転停止発令後も舵角0なので実は舵効きの相似は必要なく、プロペラ回転数は模型船自航点であっても実船自航点であってもあるいはそれら以外、たとえばプロペラ前進率Jを模型船と実船で一致させたプロペラ回転数nであっても、船速さえ相似であれば支障ない。 Equation (51) is an equation to be solved in order to obtain the auxiliary thrust coefficient f TA for controlling the model ship during the forward rotation of the propeller and the propeller rotation speed n m ′ of the model ship. However, there is a special case during normal rotation of the propeller during normal water. When running in flat water, the vehicle is running straight, and according to the IMO maneuverability standard, the rudder angle is 0 even after the reverse stop command is issued. Even if it is an actual ship self-propelled point or other than that, for example, even if the propeller rotation speed n is such that the propeller advance rate J is matched between the model ship and the actual ship, there is no problem as long as the ship speed is similar.

プロペラが逆転に入ったら、プロペラ逆転時の不平衡力が相似になるように模型船のプロペラ前進率Jを実船と同じ値にする。プロペラ前進率Jを一致させることでプロペラ逆転時の不平衡力が相似になり、これが誘起する船体運動が相似になるので外乱力も相似になり、結果としての船体運動も相似になる。   When the propeller enters reverse rotation, the propeller advance rate J of the model ship is set to the same value as the actual ship so that the unbalanced force at the time of reverse rotation of the propeller becomes similar. By matching the propeller advance rate J, the unbalance force at the time of reversing the propeller becomes similar, the hull motion induced by this becomes similar, the disturbance force becomes similar, and the resulting hull motion becomes similar.

模型船と実船のプロペラ前進率J及びJは式(52)及び式(53)で表される。

Figure 2016075642
Figure 2016075642
The propeller advance rates J m and J s of the model ship and the actual ship are expressed by Expression (52) and Expression (53).
Figure 2016075642
Figure 2016075642

プロペラ前進率Jの一致と前進速度の相似は次の連立方程式で表される。

Figure 2016075642
The coincidence of the propeller advance rate J and the similarity of the advance speed are expressed by the following simultaneous equations.
Figure 2016075642

式(52)及び式(53)から式(54)は次式と同値である。

Figure 2016075642
Expression (52) and Expression (53) to Expression (54) are equivalent to the following expression.
Figure 2016075642

式(54)又は式(55)がプロペラ逆転中に模型船を制御する補助推力係数fTAと模型プロペラ回転数n’を求めるために解くべき連立方程式である。式(54)又は式(55)を解くためにはまず実船のプロペラ回転数n’を与える必要がある。実船のプロペラ回転数n’は船速に無関係に時間の関数としてたとえば式(56)のように与えられる。

Figure 2016075642
ここで、n0s’は助走時のプロペラ回転数、nrs’は指令逆転回転数を示す。指令逆転回転数nrs’は負の値である。時刻0がプロペラ逆転発令時刻、t’はプロペラ回転数が0となる時刻、t’はプロペラ回転数が指令逆転回転数に達する時刻を示す。u’の初期値u0s’は、助走時のプロペラ回転数n0s’に対応した値として与えられる。逆転発令後のu’は、自由航走模型船の船速u’として時々刻々計測される。 Expression (54) or Expression (55) is a simultaneous equation to be solved in order to obtain the auxiliary thrust coefficient f TA and the model propeller rotational speed n m ′ for controlling the model ship during the propeller reversal. In order to solve the equation (54) or the equation (55), it is first necessary to give the propeller rotational speed n s ′ of the actual ship. The propeller rotation speed n s ′ of the actual ship is given as a function of time, for example, as shown in Expression (56) regardless of the ship speed.
Figure 2016075642
Here, n 0s ′ indicates the propeller rotation speed during the run-up, and n rs ′ indicates the command reverse rotation speed. The command reverse rotation speed n rs ′ is a negative value. Time 0 is the propeller reverse rotation issuing time, t 1 ′ is the time when the propeller rotational speed is 0, and t 2 ′ is the time when the propeller rotational speed reaches the command reverse rotational speed. The initial value u 0s ′ of u ′ is given as a value corresponding to the propeller rotation speed n 0s ′ at the time of running. U ′ after the reverse rotation is measured from time to time as the ship speed u ′ of the free-running model ship.

実船のプロペラ回転数n’と船速u’を条件として、時刻t’までは式(51)を解いて、時刻t’以降は式(54)又は式(55)を解いて模型船のプロペラ回転数n’及び補助推力係数fTAを時々刻々求めて模型船を制御すればよい。 Subject to 'Funesoku u and' propeller speed n s of actual ship, 'until solving the equation (51), the time t 1' after time t 1 is solved equation (54) or formula (55) The model ship may be controlled by obtaining the propeller rotation speed n m ′ and the auxiliary thrust coefficient f TA of the model ship every moment.

本実施の形態によれば、風や波等の外力の影響が考慮された自由航走模型試験を実現することができる。これにより、外力下においても自由航走模型試験によって実船の基本性能を推定することができる。   According to the present embodiment, it is possible to realize a free-running model test that takes into account the influence of external forces such as wind and waves. As a result, the basic performance of the actual ship can be estimated by a free-running model test even under external force.

本発明における自由航走模型船の推進器関連特性を実船相似にする方法及び自由航走模型船の推進器関連特性実船相似装置は、船舶のみならず、外力及び流体から抵抗を受けて自走する物体の運動性能の試験に適用することができる。例えば、船舶以外の浮体、水中航行体等の各種の模型を用いた自由航走試験に適用することができる。   The method of making the propulsion unit related characteristics of the free-running model ship in the present invention similar to the actual ship and the propulsion unit-related characteristics of the free-running model ship receive resistance from not only the ship but also external force and fluid. It can be applied to the test of the motion performance of a self-running object. For example, the present invention can be applied to a free running test using various models such as a floating body other than a ship and an underwater navigation body.

10 自由航走模型船、16 ダクトファンモータ、18 検力計、20 自動追尾台車、26 制御コンピュータ、28 プロペラ、30 プロペラ駆動部、32 船速検出器、34 船速情報受信器、36 船速検出器、100,102,104 自由航走模型船試験装置。   10 Free-running model ship, 16 Duct fan motor, 18 Force meter, 20 Automatic tracking cart, 26 Control computer, 28 propeller, 30 Propeller drive unit, 32 Ship speed detector, 34 Ship speed information receiver, 36 Ship speed Detector, 100, 102, 104 Free-running model ship test equipment.

Claims (17)

実船の基本的性能推定を基に、自由航走模型船の外力下で変化する船速を計測し、計測した前記船速に基づき前記自由航走模型船のプロペラ回転数と補助推力手段の出力を制御し、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にしたことを特徴とする自由航走模型船の推進器関連特性を実船相似にする方法。   Based on the basic performance estimation of the actual ship, the ship speed that changes under the external force of the free-running model ship is measured, and based on the measured ship speed, the propeller rotational speed of the free-running model ship and the auxiliary thrust means A method for controlling a propulsion device-related characteristic of a free-running model ship by controlling an output and making the propulsion-related characteristic under the external force of the free-running model ship similar to the actual ship. 前記自由航走模型船の前記プロペラ回転数と前記補助推力手段の出力を、
Figure 2016075642
:実船の推力減少率
T’s : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船の推力減少率
T’:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
TA :補助推力係数
T’SFC:摩擦修正に必要な力(無次元値、船速の関数)
を基に導出される前記自由航走模型船のプロペラ回転数と補助推力係数fTAに基づき制御したことを特徴とする請求項1に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
The propeller rotation speed of the free-running model ship and the output of the auxiliary thrust means,
Figure 2016075642
t s: actual ship thrust reduction rate T's: propeller propulsion of the actual ship (dimensionless value, a function of the propeller speed and boat speed)
t m : Thrust reduction rate of a free-running model ship T ' m : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
f TA : Auxiliary thrust coefficient T ' SFC : Force required for friction correction (dimension value, function of ship speed)
The propulsion device-related characteristics of the free-running model ship according to claim 1, wherein the propulsion-related characteristics of the free-running model ship are controlled based on the propeller rotational speed and the auxiliary thrust coefficient f TA of the free-running model ship derived based on How to make it similar.
前記実船の前記基本的性能推定は、プロペラ回転数一定、プロペラトルク一定、プロペラ出力一定、あるいは逆転を含む任意のプロペラ回転数変化を含むことを特徴とする請求項2に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   The free flight according to claim 2, wherein the basic performance estimation of the actual ship includes any propeller speed change including constant propeller speed, constant propeller torque, constant propeller output, or reverse rotation. A method to make the propulsion unit-related characteristics of a running model ship similar to an actual ship. 操舵・斜航・旋回抵抗の相似性が必要ない場合または別途確保される場合について、前記実船と前記自由航走模型船の外力下でのプロペラ推進力の相似性を考慮し、前記自由航走模型船の船速応答の相似性を確保したことを特徴とする請求項2又は請求項3に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   In the case where the similarity of steering / slope navigation / turning resistance is not necessary or separately secured, the free navigation is considered in consideration of the similarity of propeller propulsion force under the external force of the actual ship and the free-running model ship. 4. The method of making the propulsion unit related characteristics of a free-running model ship similar to an actual ship according to claim 2 or 3, wherein a similarity in ship speed response of the traveling model ship is secured.
Figure 2016075642
Ts’ : 実船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
:自由航走模型船のプロペラ推進力(無次元値、プロペラ回転数と船速の関数)
で表される前記プロペラ推進力の相似性を確保するために前記補助推力係数fTAを1として前記自由航走模型船のプロペラ回転数を求めて制御したことを特徴とする請求項4に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
Figure 2016075642
Ts': Propeller propulsive force of actual ship (dimensionless value, propeller rotation speed and ship speed function)
T m ' : Propeller propulsion force of a free-running model ship (dimension value, function of propeller rotation speed and ship speed)
5. The propeller rotational speed of the free-running model ship is determined and controlled with the auxiliary thrust coefficient fTA set to 1 in order to ensure similarity of the propeller thrust expressed by To make the propulsion unit-related characteristics of a free-running model ship similar to an actual ship.
操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラトルクの相似性に基づいて前記自由航走模型船の船速応答の相似性を確保したことを特徴とする請求項2又は請求項3に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   When similarity of steering / slope navigation / turning resistance is not required, or when similarity of steering / slope navigation / turning resistance is secured separately, the propeller torque under the external force of the actual ship and the free-running model ship is 4. The propulsion-related characteristics of a free-running model ship according to claim 2 or 3, wherein the similarity in ship speed response of the free-running model ship is secured based on the similarity. How to make. 前記数式(1)と、
Figure 2016075642
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御したことを特徴とする請求項6に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
Formula (1),
Figure 2016075642
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
The propeller-related characteristics of the free-running model ship according to claim 6, wherein the propulsion speed of the free-running model ship and the auxiliary thrust coefficient f TA are obtained and controlled by combining the How to make a ship similar.
操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラ回転数の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保したことを特徴とする請求項2又は請求項3に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   Propeller rotation speed under the external force of the actual ship and the free-running model ship when similarity of steering / slope navigation / turning resistance is not required or when similarity of steering / slope navigation / turning resistance is secured separately 4. The propulsion device-related characteristics of the free-running model ship according to claim 2 or 3, wherein the similarity in ship speed response of the free-running model ship is secured based on the similarity of How to make it similar. 前記数式(1)と、
Figure 2016075642
’:実船のプロペラ回転数(無次元値)
’: 自由航走模型船のプロペラ回転数(無次元値)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御したことを特徴とする請求項8に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
Formula (1),
Figure 2016075642
ns ': Propeller rotation speed of actual ship (dimensionless value)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
9. The propeller-related characteristics of the free-running model ship according to claim 8, wherein the propulsion speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled by combining the How to make a ship similar.
操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下での馬力の相似性に基づいて前記自由航走模型船の船速応答の相似性を確保したことを特徴とする請求項2又は請求項3に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   Similarity of horsepower under the external force of the actual ship and the free-running model ship when similarity of steering / slope navigation / turning resistance is not required or when similarity of steering / slope navigation / turning resistance is secured separately 4. The propulsion device-related characteristics of the free-running model ship according to claim 2 or 3, wherein the similarity in ship speed response of the free-running model ship is secured based on the characteristics. how to. 前記数式(1)と、
Figure 2016075642
’ :実船のプロペラ回転数(無次元値)
’ :実船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
’ :自由航走模型船のプロペラ回転数(無次元値)
’ :自由航走模型船のプロペラトルク(無次元値、プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御したことを特徴とする請求項10に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
Formula (1),
Figure 2016075642
n s ': Propeller rotation speed of actual ship (dimensionless value)
Q S ': Propeller torque of actual ship (dimensionless value, function of propeller rotation speed and ship speed)
n m ': Propeller rotation speed of a free-running model ship (dimensionless value)
Q m ': Propeller torque of a free-running model ship (dimensionless value, function of propeller rotation speed and ship speed)
11. The propulsion device-related characteristics of the free-running model ship according to claim 10, wherein the propulsion speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled by combining the How to make a ship similar.
操舵・斜航・旋回抵抗の相似性が必要ない場合又は操舵・斜航・旋回抵抗の相似性が別途確保される場合、前記実船と前記自由航走模型船の外力下でのプロペラスリップ比を一致させて前記自由航走模型船の船速応答の相似性を確保したことを特徴とする請求項2又は請求項3に記載の自由航走模型船の推進器関連特性を実船相似にする方法。   Propeller slip ratio under the external force of the actual ship and the free-running model ship when similarity of steering / slope navigation / turning resistance is not required or when similarity of steering / slope navigation / turning resistance is secured separately 4. The similarities of the speed response of the free-running model ship are ensured by matching the propulsion unit-related characteristics of the free-running model ship according to claim 2 or 3, how to. 前記数式(1)と、
Figure 2016075642
:実船のプロペラスリップ比(プロペラ回転数と船速の関数)
:自由航走模型船のプロペラスリップ比(プロペラ回転数と船速の関数)
を連立させることで前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAを求めて制御したことを特徴とする請求項12に記載の自由航走模型船の推進器関連特性を実船相似にする方法。
Formula (1),
Figure 2016075642
S s : Propeller slip ratio of actual ship (propeller speed and ship speed function)
S m : Propeller slip ratio of a free-running model ship (function of propeller rotation speed and ship speed)
The propulsion device-related characteristics of the free-running model ship according to claim 12, wherein the propulsion speed of the free-running model ship and the auxiliary thrust coefficient fTA are obtained and controlled by combining the How to make a ship similar.
プロペラと補助推力手段を有した自由航走模型船と、前記自由航走模型船の船速を計測する船速計測手段と、実船の基本的性能推定と計測した前記船速に基づき前記プロペラのプロペラ回転数と前記補助推力手段の出力を制御する制御手段を備え、前記自由航走模型船の外力下における推進器関連特性を前記実船と相似にしたことを特徴とする自由航走模型船の推進器関連特性実船相似装置。   A free-running model ship having a propeller and auxiliary thrust means, a ship speed measuring means for measuring the speed of the free-running model ship, the basic performance estimation of the actual ship and the propeller based on the measured ship speed And a propulsion unit-related characteristic under the external force of the free-running model ship, which is similar to that of the actual ship. Ship propulsion-related characteristics 前記制御手段は、請求項1から請求項13のいずれか1項に記載の自由航走模型船の推進器関連特性を実船相似にする方法を実行したことを特徴とする請求項14に記載の自由航走模型船の推進器関連特性実船相似装置。   The said control means performed the method of making the propulsion apparatus related characteristic of the free-running model ship of any one of Claims 1-13 similar to a real ship, The 14th aspect is characterized by the above-mentioned. Propeller-related characteristics of a free-running model ship. 前記制御手段は、請求項2から請求項13のいずれか1項に記載の自由航走模型船の推進器関連特性を実船相似にする方法により予め求めた前記自由航走模型船のプロペラ回転数と前記補助推力係数fTAの前記船速との関係を記憶して制御したことを特徴とする請求項14に記載の自由航走模型船の推進器関連特性実船相似装置。 The propeller rotation of the free-running model ship obtained in advance by the method for making the propulsion unit-related characteristics of the free-running model ship similar to an actual ship according to any one of claims 2 to 13 The propulsion unit-related characteristics actual ship similarity device of a free-running model ship according to claim 14, wherein the relation between the number of the auxiliary thrust coefficient f TA and the ship speed is stored and controlled. 前記船速計測手段は、前記自由航走模型船の船速の前後方向成分を計測したことを特徴とする請求項14から請求項16のいずれか1項に記載の自由航走模型船の推進器関連特性実船相似装置。
The propulsion of the free-running model ship according to any one of claims 14 to 16, wherein the ship speed measuring means measures a longitudinal component of a ship speed of the free-running model ship. Equipment related characteristics
JP2014207707A 2014-10-09 2014-10-09 A method to make the propulsion unit related characteristics of a free-running model ship similar to a real ship and a propulsion unit-related characteristic of a free-running model ship Active JP6562335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207707A JP6562335B2 (en) 2014-10-09 2014-10-09 A method to make the propulsion unit related characteristics of a free-running model ship similar to a real ship and a propulsion unit-related characteristic of a free-running model ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207707A JP6562335B2 (en) 2014-10-09 2014-10-09 A method to make the propulsion unit related characteristics of a free-running model ship similar to a real ship and a propulsion unit-related characteristic of a free-running model ship

Publications (2)

Publication Number Publication Date
JP2016075642A true JP2016075642A (en) 2016-05-12
JP6562335B2 JP6562335B2 (en) 2019-08-21

Family

ID=55951228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207707A Active JP6562335B2 (en) 2014-10-09 2014-10-09 A method to make the propulsion unit related characteristics of a free-running model ship similar to a real ship and a propulsion unit-related characteristic of a free-running model ship

Country Status (1)

Country Link
JP (1) JP6562335B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144415A (en) * 2017-06-26 2017-09-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Model test TT&C system is lost based on the pure stability of boat mode certainly
KR101853209B1 (en) * 2016-12-19 2018-04-27 한국해양과학기술원 The free running test device of model ship having auxiliary propulsion unit
CN108132137A (en) * 2017-12-15 2018-06-08 浙江海洋大学 A kind of cam mechanism type ship rocks simulator
CN112182972A (en) * 2020-09-30 2021-01-05 大连海事大学 ADAM local weighted regression identification modeling method for ship maneuvering motion
CN112836448A (en) * 2021-02-07 2021-05-25 智慧航海(青岛)科技有限公司 Real ship test method for ship hydrodynamic coefficient
KR20230134805A (en) * 2022-03-15 2023-09-22 한국해양과학기술원 Self-propulsion test method for submerged body with propeller in large cavitation tunnel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899580A (en) * 1987-08-13 1990-02-13 Etat Francais Represente Par Le Delegue General Pour L'armement Device for measuring the wake of a sailing model
JPH0466553U (en) * 1990-10-18 1992-06-11
JP2001174364A (en) * 1999-12-21 2001-06-29 Sumitomo Heavy Ind Ltd Method and device for testing free running model of vessel
JP2009264781A (en) * 2008-04-22 2009-11-12 Ihi Corp Model ship test apparatus
JP2012112878A (en) * 2010-11-26 2012-06-14 National Maritime Research Institute Method and apparatus of load-variable self-propelling test
JP6351045B2 (en) * 2013-04-12 2018-07-04 国立研究開発法人 海上・港湾・航空技術研究所 Free-running model ship test method and free-running model ship test apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899580A (en) * 1987-08-13 1990-02-13 Etat Francais Represente Par Le Delegue General Pour L'armement Device for measuring the wake of a sailing model
JPH0466553U (en) * 1990-10-18 1992-06-11
JP2001174364A (en) * 1999-12-21 2001-06-29 Sumitomo Heavy Ind Ltd Method and device for testing free running model of vessel
JP2009264781A (en) * 2008-04-22 2009-11-12 Ihi Corp Model ship test apparatus
JP2012112878A (en) * 2010-11-26 2012-06-14 National Maritime Research Institute Method and apparatus of load-variable self-propelling test
JP6351045B2 (en) * 2013-04-12 2018-07-04 国立研究開発法人 海上・港湾・航空技術研究所 Free-running model ship test method and free-running model ship test apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853209B1 (en) * 2016-12-19 2018-04-27 한국해양과학기술원 The free running test device of model ship having auxiliary propulsion unit
CN107144415A (en) * 2017-06-26 2017-09-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Model test TT&C system is lost based on the pure stability of boat mode certainly
CN108132137A (en) * 2017-12-15 2018-06-08 浙江海洋大学 A kind of cam mechanism type ship rocks simulator
CN108132137B (en) * 2017-12-15 2019-07-23 浙江海洋大学 A kind of cam mechanism type ship rocks simulator
CN112182972A (en) * 2020-09-30 2021-01-05 大连海事大学 ADAM local weighted regression identification modeling method for ship maneuvering motion
CN112182972B (en) * 2020-09-30 2023-09-22 大连海事大学 Ship maneuvering motion ADAM local weighted regression identification modeling method
CN112836448A (en) * 2021-02-07 2021-05-25 智慧航海(青岛)科技有限公司 Real ship test method for ship hydrodynamic coefficient
KR20230134805A (en) * 2022-03-15 2023-09-22 한국해양과학기술원 Self-propulsion test method for submerged body with propeller in large cavitation tunnel
KR102628981B1 (en) * 2022-03-15 2024-01-25 한국해양과학기술원 Self-propulsion test method for submerged body with propeller in large cavitation tunnel

Also Published As

Publication number Publication date
JP6562335B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP6562335B2 (en) A method to make the propulsion unit related characteristics of a free-running model ship similar to a real ship and a propulsion unit-related characteristic of a free-running model ship
Klinger et al. Control of an unmanned surface vehicle with uncertain displacement and drag
Anderson et al. Maneuvering and stability performance of a robotic tuna
Sarda et al. Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances
Chuang et al. Speed loss of a vessel sailing in oblique waves
JP6351045B2 (en) Free-running model ship test method and free-running model ship test apparatus
Ueno et al. Rudder effectiveness correction for scale model ship testing
Pereira et al. An experimental study of station keeping on an underactuated ASV
Pandey et al. Study on turning manoeuvre of catamaran surface vessel with a combined experimental and simulation method
Poh et al. Gyroscopic stabilisation of rolling motion in simplified marine hull model
Ueno et al. Estimation of stopping ability of full-scale ship using free-running model
Huo et al. Free-running tests on a self-propelled submersible multi-state vehicle model
Jouffroy et al. Towards selective tidal-stream transport for Lagrangian profilers
Steenson et al. The performance of vertical tunnel thrusters on an autonomous underwater vehicle operating near the free surface in waves
JP6425241B2 (en) Method for estimating fluctuation torque or fluctuation thrust of a real ship from free running model test and free running model ship test device used therefor
Ayaz et al. Manoeuvring behaviour of ships in extreme astern seas
Shea et al. Design and testing of the Marport SQX-500 twin-pod AUV
Steenson et al. Maneuvering of an over-actuated autonomous underwater vehicle using both through-body tunnel thrusters and control surfaces
JP5688740B2 (en) Model test self-propelled device and model test self-propelled system
Dhomé et al. Development and initial results of an autonomous sailing drone for oceanic research
Arima et al. Motion characteristics of an underwater glider with independently controllable main wings
Spino et al. Development and testing of unmanned semi-submersible vehicle
Joo A controller comprising tail wing control of a hybrid autonomous underwater vehicle for use as an underwater glider
Refsnes et al. Design of control system of torpedo shaped ROV with experimental results
Chen et al. Design of Unmanned Surface Vehicle for Submarine Pipeline Detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190712

R150 Certificate of patent or registration of utility model

Ref document number: 6562335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250