JP2016075612A - Measurement device of mechanical characteristic in high pressure gas - Google Patents

Measurement device of mechanical characteristic in high pressure gas Download PDF

Info

Publication number
JP2016075612A
JP2016075612A JP2014206951A JP2014206951A JP2016075612A JP 2016075612 A JP2016075612 A JP 2016075612A JP 2014206951 A JP2014206951 A JP 2014206951A JP 2014206951 A JP2014206951 A JP 2014206951A JP 2016075612 A JP2016075612 A JP 2016075612A
Authority
JP
Japan
Prior art keywords
load
test piece
measuring
container
internal cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014206951A
Other languages
Japanese (ja)
Inventor
慎一 大宮
Shinichi Omiya
慎一 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014206951A priority Critical patent/JP2016075612A/en
Publication of JP2016075612A publication Critical patent/JP2016075612A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device capable of measuring a load working on a test piece with high accuracy in a measurement device for measuring mechanical characteristics of a material in a high pressure gas.SOLUTION: A measurement device 1 for measuring mechanical characteristics of a test piece a comprises: a container 10 for storing the test piece a; and a measurement mechanism 15 inserted into the container 10 and measuring a load applied on the test piece a. The measurement mechanism 15 includes: a load rod 20 for applying a load to the test piece a and an outer cylindrical part 21 for storing the load rod 20 on the upper part thereof and storing the inner cavity member inside thereof; and a sensor member for measuring the load working between the load rod 20 and the test piece a. The load rod 20 can be placed in an airtight space 12 storing the test piece a by connecting the outer cylindrical part 21 in a sealed state to the airtight space 12 storing the test piece a in a sealed state. The load loaded on the test piece a can be highly accurately measured by the sensor member provided on the side wall of the inner cavity member.SELECTED DRAWING: Figure 1

Description

本発明は、高圧ガス中において金属、セラミックス、樹脂などからなる材料の機械的特性を測定する測定装置に関する。   The present invention relates to a measuring apparatus for measuring mechanical properties of a material made of metal, ceramics, resin, or the like in high-pressure gas.

高圧ガス中では、金属、セラミックス、樹脂などからなる材料の機械的特性が変化することが知られている。例えば高圧水素ガス中では、鋼材はいわゆる水素脆性により強度が低下することが知られている。   In high-pressure gas, it is known that the mechanical properties of materials made of metal, ceramics, resin, and the like change. For example, in high-pressure hydrogen gas, it is known that the strength of steel materials decreases due to so-called hydrogen embrittlement.

一方近年では、燃料電池や製鉄分野などにおいて水素ガスの使用が種々検討されている。水素ガスを用いるためには、水素ガスを高圧で安定に貯蔵する容器が必要となるが、水素ガスが存在すると容器の亀裂伝播が早まる傾向にあり、高圧であれば容器材料へのガスの侵入量も増えるため、更に亀裂に対する対策が必要となる。   On the other hand, in recent years, various studies have been made on the use of hydrogen gas in the fields of fuel cells and iron making. In order to use hydrogen gas, a container that stably stores hydrogen gas at high pressure is required. However, if hydrogen gas is present, crack propagation of the container tends to be accelerated, and if it is high pressure, gas can enter the container material. As the amount increases, further countermeasures against cracks are required.

また、金属の腐食等の現象を介して機械的特性に影響を与えるガスとしては、硫化水素などが知られている。これら硫化水素等のガス中での材料の特性を正確に把握することも、構造物の設計に必要である。   Further, hydrogen sulfide or the like is known as a gas that affects mechanical properties through phenomena such as metal corrosion. It is also necessary for designing the structure to accurately grasp the characteristics of the material in the gas such as hydrogen sulfide.

このように、各種の高圧ガス中における材料の機械的特性を精度良く測定することは重要であり、そのためには特別な装置が必要となる。かかる装置に関し、特許文献1、2には、試験片を収納した高圧容器内にガスを導入して機械的特性を測定する装置が開示されている。これら装置では、試験片は高圧ガスが充填された圧力容器の内部に保持され、試験片の一端に取付具を介して設けられた荷重測定棒が圧力容器外に配置された荷重計に連結されている。そのため、これら装置では、圧力容器を貫通する荷重測定棒の部分に容器内の高圧雰囲気を維持するためのOリングなどのシール部材が必要となる。しかし、シール部材で荷重測定棒に摩擦力が作用するため、圧力容器外に配置された荷重計で測定される荷重値は、試験片に作用する荷重とシール部分で荷重測定棒に作用する摩擦力の合成されたものとなり、試験片に純粋に作用している荷重を正確に測定することが困難となる。   Thus, it is important to accurately measure the mechanical properties of materials in various high-pressure gases, and a special device is required for this purpose. With respect to such an apparatus, Patent Documents 1 and 2 disclose apparatuses for measuring mechanical characteristics by introducing gas into a high-pressure vessel containing a test piece. In these devices, the test piece is held inside a pressure vessel filled with high-pressure gas, and a load measuring rod provided at one end of the test piece via a fitting is connected to a load meter arranged outside the pressure vessel. ing. Therefore, in these apparatuses, a seal member such as an O-ring for maintaining a high-pressure atmosphere in the container is required at the portion of the load measuring rod that penetrates the pressure container. However, since the frictional force acts on the load measuring rod with the seal member, the load value measured by the load meter placed outside the pressure vessel is the load acting on the test piece and the friction acting on the load measuring rod at the seal part. As a result, it is difficult to accurately measure the load that is purely acting on the specimen.

一方、シール部での摩擦を回避し容器内部で荷重を検知するための技術として、特許文献3には高圧容器の内部に歪みゲージ式のロードセルを配置し荷重を直接測定する手段が、特許文献4にはセンサー類がガスにふれることなく高圧容器の内部に作用する荷重を測定する手段が開示されている。   On the other hand, as a technique for avoiding friction at the seal portion and detecting the load inside the container, Patent Document 3 discloses a means for directly measuring the load by disposing a strain gauge type load cell inside the high-pressure container. No. 4 discloses a means for measuring a load acting on the inside of the high-pressure vessel without touching the gas with the sensors.

特開2004−340920号公報JP 2004-340920 A 特開2006−349487号公報JP 2006-349487 A 特開2007−78474号公報JP 2007-78474 A 特開2013−167513号公報JP 2013-167513 A

しかしながら、特許文献3の方法においては、センサーとしての歪ゲージが高圧ガス容器内部に設置されているため、歪ゲージ自体がガスの影響を受けないことを保証する必要がある。また、特許文献4の方法は、高圧容器を非常に高いガス圧に耐える構造とした場合、ひずみや変位の絶対値が小さく、十分な荷重測定精度が得られない可能性がある。   However, in the method of Patent Document 3, since the strain gauge as a sensor is installed inside the high-pressure gas container, it is necessary to ensure that the strain gauge itself is not affected by the gas. Moreover, when the method of patent document 4 makes a high pressure container the structure which can bear very high gas pressure, the absolute value of a distortion and a displacement is small and sufficient load measurement accuracy may not be obtained.

本発明は、かかる点に鑑みてなされたものであり、高圧ガス中で試験片の機械的特性を測定する測定装置において、試験片に作用する荷重を、シール部の摩擦力やガスの影響を受けずに高精度に測定できる測定装置を提供することを目的とする。   The present invention has been made in view of such points, and in a measuring device for measuring the mechanical properties of a test piece in high-pressure gas, the load acting on the test piece is influenced by the frictional force of the seal part and the influence of gas. An object of the present invention is to provide a measuring apparatus capable of measuring with high accuracy without receiving.

上記課題を解決する本発明は、試験片の機械的特性を測定する測定装置であって、試験片が収納され、内部に高圧ガスが導入される容器と、前記容器に挿入され、試験片に負荷される荷重を測定する測定機構と、前記容器と前記測定機構との隙間を封止するシール部材とを備え、前記測定機構は、試験片に荷重を負荷する負荷棒と、前記負荷棒を内部に収納する外筒部と、前記負荷棒上部に内部が空洞となる内部空洞部材を有し、前記内部空洞部材の内部に荷重を測定するセンサー部材を有することを特徴とする測定装置が提供される。   The present invention that solves the above problems is a measuring device for measuring the mechanical properties of a test piece, in which a test piece is housed and a high-pressure gas is introduced inside, and the test piece is inserted into the container. A measurement mechanism for measuring a load to be applied; and a seal member for sealing a gap between the container and the measurement mechanism, the measurement mechanism including a load rod for applying a load to a test piece, and the load rod. Provided is a measuring apparatus comprising an outer cylinder portion housed inside, an internal cavity member having a hollow inside at an upper portion of the load rod, and a sensor member for measuring a load inside the internal cavity member. Is done.

この測定装置においては、センサー部材で測定されるひずみをより大きくし、より高精度な測定を可能とする目的で、前記内部空洞部材を鉄鋼材料よりもヤング率の低い材料、例えばアルミ合金やチタン合金とすることが好ましい。   In this measuring apparatus, the internal cavity member is made of a material having a lower Young's modulus than a steel material, for example, an aluminum alloy or titanium, for the purpose of increasing the strain measured by the sensor member and enabling more accurate measurement. An alloy is preferable.

また、高精度な測定を可能とする目的で、前記内部空洞部材の内圧を調節する内圧調節機構をもたせてもよい。内圧調節機構の一例としては、外部から内部空洞部材の内部にガス(例えば内部のセンサー等に影響を与えない窒素やアルゴン等の不活性ガス等)を導入する機構がある。空洞部材の内部を加圧することで、試験片収納容器内部の高圧力による変形を抑制することができるため、内部空洞部材により薄い材料を使用することができ、センサー部材で測定されるひずみをより大きくし、より高精度な測定が可能となる。   For the purpose of enabling highly accurate measurement, an internal pressure adjusting mechanism for adjusting the internal pressure of the internal cavity member may be provided. As an example of the internal pressure adjusting mechanism, there is a mechanism for introducing a gas (for example, an inert gas such as nitrogen or argon which does not affect the internal sensor or the like) from the outside into the internal cavity member. By pressurizing the inside of the hollow member, deformation due to high pressure inside the test specimen storage container can be suppressed, so that a thinner material can be used for the inner hollow member, and the strain measured by the sensor member can be further reduced. Larger and more accurate measurement is possible.

本発明の測定装置にあっては、試験片を収納している密閉空間に対して外筒部をシールした状態で接続することにより、試験片を収納している密閉空間に負荷棒を置くことができる。そして、密閉空間に置いた負荷棒によって試験片に対して負荷される荷重を、負荷棒上部にある内部空洞部材の内部に設けられたひずみゲージからなるセンサー部材により、ガスの影響を受けずに高精度に測定することができる。   In the measuring apparatus of the present invention, the load rod is placed in the sealed space containing the test piece by connecting the sealed outer space to the sealed space containing the test piece. Can do. The load applied to the test piece by the load rod placed in the sealed space is not affected by gas by the sensor member consisting of a strain gauge provided inside the internal cavity member above the load rod. It can be measured with high accuracy.

本発明の実施の形態にかかる測定装置の概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the measuring apparatus concerning embodiment of this invention. 本発明の実施の形態にかかる測定機構の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the measurement mechanism concerning embodiment of this invention. 荷重装置の荷重と、試験片に負荷される荷重と、摩擦力の関係を示す説明図である。It is explanatory drawing which shows the relationship between the load of a load apparatus, the load loaded on a test piece, and a frictional force.

以下、本発明の実施の形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。   Embodiments of the present invention will be described below. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に示すように、本発明の実施の形態にかかる測定装置1では、容器10の上面に、穴11が形成されている。容器10の内部は、高圧ガスが充填される密閉空間12となっている。この密閉空間12には、試験片aが収納されている。容器10の底面には、試験片aの下面の両端部を支持する一対の支持部13が設けられている。   As shown in FIG. 1, in the measuring apparatus 1 according to the embodiment of the present invention, a hole 11 is formed on the upper surface of a container 10. The inside of the container 10 is a sealed space 12 filled with high-pressure gas. A test piece a is stored in the sealed space 12. A pair of support portions 13 that support both end portions of the lower surface of the test piece a are provided on the bottom surface of the container 10.

密閉空間12内には、容器10の上面に形成された穴11を通じて、測定機構15が挿入されている。この測定機構15により、容器10内に収納された試験片aに負荷される荷重Fの大きさが測定される。更に、測定機構15の上方には、測定機構15を介して試験片aに荷重を負荷する荷重装置16が取り付けられている。ただし、後述するように、このとき荷重装置16により負荷される荷重Ftと試験片aに負荷される荷重Faは、シール部材30と外筒部21の間に働く摩擦力Ffの分だけ異なる。   A measurement mechanism 15 is inserted into the sealed space 12 through a hole 11 formed in the upper surface of the container 10. With this measuring mechanism 15, the magnitude of the load F applied to the test piece a stored in the container 10 is measured. Further, a load device 16 for applying a load to the test piece a via the measurement mechanism 15 is attached above the measurement mechanism 15. However, as will be described later, the load Ft applied by the load device 16 and the load Fa applied to the test piece a at this time differ by the frictional force Ff acting between the seal member 30 and the outer cylinder portion 21.

本発明の実施の形態にかかる測定機構15は、図2に示すように棒形状の負荷棒20と、この負荷棒20を内部に収納した外筒部21を有している。負荷棒20の下端20aは外筒部21の下端21aよりも更に下方に突出している。負荷棒20の上部には内部空洞部材23があり、さらにその上部には外筒部21の上端21bがある。   As shown in FIG. 2, the measuring mechanism 15 according to the embodiment of the present invention has a rod-shaped load rod 20 and an outer cylinder portion 21 in which the load rod 20 is housed. The lower end 20 a of the load rod 20 protrudes further downward than the lower end 21 a of the outer cylinder portion 21. There is an internal cavity member 23 in the upper part of the load rod 20, and there is an upper end 21 b of the outer cylinder part 21 in the upper part.

内部空洞部材23の下端23aと負荷棒20の上端20bおよび、内部空洞部材23の上端23bと外筒部21の上端21bは接着、溶接、ねじ等の手段で接合されており、内部空洞部材23と外筒部21は23bと21bのみが接触している。また、負荷棒20は、上端20bが内部空洞部材23を介して外筒部上端21bに接触する以外は、外筒部21と一切接触しない構造とする。このため、試験片aに荷重を負荷する際には、外筒部21の内部において、負荷棒20が外筒部21の内側面に接触することがない。なお、内部空洞部材23と負荷棒20および内部空洞部材23と外筒部21を同一材質にて作製する場合は、少なくともどちらかを一体の構造としても良い。   The lower end 23a of the internal cavity member 23 and the upper end 20b of the load rod 20, and the upper end 23b of the internal cavity member 23 and the upper end 21b of the outer cylinder portion 21 are joined by means such as adhesion, welding, and screws. The outer cylinder portion 21 is in contact with only 23b and 21b. Further, the load rod 20 has a structure in which the upper end 20b is not in contact with the outer cylinder part 21 except that the upper end 20b is in contact with the outer cylinder part upper end 21b via the internal cavity member 23. For this reason, when a load is applied to the test piece a, the load rod 20 does not contact the inner surface of the outer cylinder portion 21 inside the outer cylinder portion 21. In addition, when producing the internal cavity member 23, the load rod 20, and the internal cavity member 23, and the outer cylinder part 21 with the same material, it is good also considering at least any one as an integral structure.

内部空洞部材23内部には空間24があり、内部空洞部材23の内側面には、負荷棒20が試験片aに負荷する荷重Faを測定するセンサー部材25が装着されている。センサー部材25には、例えばひずみゲージなどが利用できる。   There is a space 24 inside the internal cavity member 23, and a sensor member 25 for measuring the load Fa applied by the load rod 20 to the test piece a is mounted on the inner surface of the internal cavity member 23. For the sensor member 25, for example, a strain gauge can be used.

図1に示すように、測定機構15の外筒部21を、容器10の上面中央に形成された穴11に上から挿入することにより、測定機構15は容器10に取り付けられる。この場合、外筒部21には、封止部材としてのOリング等のシール部材30が取り付けられる。このシール部材30によって穴11の内面と外筒部21との隙間が封止され、密閉空間12内が密閉された状態となる。この状態で容器10内に高圧水素ガスを供給すると、容器10内は高圧水素ガス雰囲気となり、容器10内の試験片aが、高圧水素ガス雰囲気に曝される。   As shown in FIG. 1, the measurement mechanism 15 is attached to the container 10 by inserting the outer cylinder portion 21 of the measurement mechanism 15 into the hole 11 formed at the center of the upper surface of the container 10 from above. In this case, a sealing member 30 such as an O-ring as a sealing member is attached to the outer cylinder portion 21. The gap between the inner surface of the hole 11 and the outer cylinder portion 21 is sealed by the seal member 30, and the sealed space 12 is sealed. When high-pressure hydrogen gas is supplied into the container 10 in this state, the inside of the container 10 becomes a high-pressure hydrogen gas atmosphere, and the test piece a in the container 10 is exposed to the high-pressure hydrogen gas atmosphere.

また、このように測定機構15を容器10内に挿入することにより、外筒部21の下端21aよりも更に下方に突出している負荷棒20の下端20aが、容器10内に収納されている試験片aの上面に接触する。そして、この状態で、測定機構15の上方から荷重装置16によって荷重が負荷されると、負荷棒20を介して試験片aに荷重が負荷されることとなる。   Further, by inserting the measurement mechanism 15 into the container 10 in this way, a test in which the lower end 20a of the load rod 20 protruding further downward than the lower end 21a of the outer cylinder portion 21 is accommodated in the container 10 is performed. It contacts the upper surface of the piece a. In this state, when a load is applied by the load device 16 from above the measurement mechanism 15, the load is applied to the test piece a through the load rod 20.

こうして、密閉空間12内の高圧水素ガス雰囲気中において、試験片aの強度試験が行われる。この強度試験中、密閉空間12内の試験片aに負荷される荷重の大きさは、高圧水素ガス雰囲気の影響を受けずに、センサー部材25によって測定される。   Thus, the strength test of the test piece a is performed in the high-pressure hydrogen gas atmosphere in the sealed space 12. During the strength test, the magnitude of the load applied to the test piece a in the sealed space 12 is measured by the sensor member 25 without being affected by the high-pressure hydrogen gas atmosphere.

ここで、荷重装置16により負荷される荷重Ftと、試験片aに負荷される荷重Faと、シール部材30から外筒部21に働く摩擦力Ffは、図3に示すような関係となる。すなわち、荷重装置16により負荷された荷重Ftに対して、シール部材30から外筒部21に働く摩擦力Ffが抵抗力となり、試験片aには、摩擦力Ffが相殺された荷重Fa(Fa=Ft−Ff)が作用することとなる。したがって、荷重装置16により負荷される荷重Ftによって試験片aに負荷される荷重Faを正確に求めることはできない。しかるに、この測定装置1にあっては、センサー部材25により、負荷棒20と外筒部21との間に作用する荷重として、試験片aに負荷される荷重Faを、摩擦力Ffの影響を受けることなく、正確に求めることが可能となる。   Here, the load Ft loaded by the load device 16, the load Fa loaded on the test piece a, and the frictional force Ff acting on the outer cylinder portion 21 from the seal member 30 have a relationship as shown in FIG. That is, the friction force Ff applied from the seal member 30 to the outer cylinder portion 21 becomes a resistance force against the load Ft loaded by the load device 16, and the load Fa (Fa) in which the friction force Ff is canceled is applied to the test piece a. = Ft-Ff) will act. Therefore, the load Fa applied to the test piece a by the load Ft applied by the load device 16 cannot be accurately obtained. However, in this measuring apparatus 1, the load Fa applied to the test piece a as the load acting between the load rod 20 and the outer cylinder portion 21 by the sensor member 25 is influenced by the frictional force Ff. It is possible to obtain it accurately without receiving it.

ここで、内部空洞部材23そのものは、高圧水素ガスにはさらされるものの、水素ガスを封入することを目的とした部材ではないため、設計で想定する高圧水素ガスの圧力と試験片に負荷する荷重に耐えるだけの板厚があれば良い。一方、(特許文献4など)高圧水素ガスを封入することを担う場合には、圧力に対して一定の安全率(圧力容器の設計においては通常4)を見込んで設計する必要があり、本発明の方法に対し大きな板厚が必要となり、歪の測定精度が低下する。   Here, the internal cavity member 23 itself is exposed to the high-pressure hydrogen gas, but is not a member intended to enclose the hydrogen gas, so the pressure of the high-pressure hydrogen gas assumed in the design and the load applied to the test piece It only needs to have a thickness that can withstand On the other hand, when taking charge of high-pressure hydrogen gas (such as Patent Document 4), it is necessary to design with a certain safety factor against pressure (usually 4 in the design of pressure vessels). This method requires a large plate thickness and reduces the measurement accuracy of strain.

さらに、内部空洞部材23に使用する材料として、鉄鋼材料よりもヤング率の低いアルミ合金やチタン合金を使用することにより、同じ荷重が負荷された場合の内部空洞部材23の側壁23cに生じる変形を大きくすることができる。これにより、同じ荷重が負荷された場合にセンサー部材25でより大きな変形を検知できることになり、より高精度の荷重測定をすることが可能である。   Further, by using an aluminum alloy or a titanium alloy having a Young's modulus lower than that of the steel material as a material used for the internal cavity member 23, deformation caused on the side wall 23c of the internal cavity member 23 when the same load is applied. Can be bigger. As a result, when the same load is applied, a larger deformation can be detected by the sensor member 25, and a more accurate load measurement can be performed.

また、内部空洞部材23内部の空間24に外部から不活性ガス等を導入することにより内圧を調節するような内圧調節機構をそなえることにより、容器10内の空間12に導入されたガスの圧力と空間24との圧力差を軽減することができ、容器10内の空間12に導入されたガスの圧力に耐えるために必要な内部空洞部材23の側壁23cの板厚を薄くすることが可能になる。これにより、同じ荷重が負荷された場合にセンサー部材25でより大きな変形を検知できることになり、より高精度の荷重測定をすることが可能である。   Further, by providing an internal pressure adjusting mechanism that adjusts the internal pressure by introducing an inert gas or the like into the space 24 inside the internal cavity member 23 from the outside, the pressure of the gas introduced into the space 12 in the container 10 can be reduced. The pressure difference with the space 24 can be reduced, and the thickness of the side wall 23c of the internal cavity member 23 required to withstand the pressure of the gas introduced into the space 12 in the container 10 can be reduced. . As a result, when the same load is applied, a larger deformation can be detected by the sensor member 25, and a more accurate load measurement can be performed.

以上、本発明の実施の形態の一例を説明したが、本発明はかかる形態に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to this form. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

この測定装置1は試験片aに対する種々の強度試験を実施でき、例えば荷重装置16によって繰り返し荷重を試験片aに加えることにより疲労試験を行うこともできる。また、容器10内に供給する高圧ガスは水素ガスに限らず、他の種類の高圧ガスにも適用できる。試験片aは引張試験片やCT試験片など目的に応じて適宜選択し、単純に試験片を押すだけでなく、必要に応じてネジやピンを用いて試験片に荷重を伝達できることは言うまでもない。   The measuring device 1 can perform various strength tests on the test piece a. For example, the fatigue test can be performed by repeatedly applying a load to the test piece a by the load device 16. Further, the high-pressure gas supplied into the container 10 is not limited to hydrogen gas but can be applied to other types of high-pressure gas. Needless to say, the test piece a is appropriately selected according to the purpose, such as a tensile test piece or a CT test piece, and not only simply pressing the test piece but also using a screw or a pin as needed to transmit the load to the test piece. .

本発明は、高圧ガス中における試験片の機械的特性試験に有用である。   The present invention is useful for testing the mechanical properties of test pieces in high-pressure gas.

a 試験片
1 測定装置
10 容器
11 穴
12 密閉空間
13 支持部
15 測定機構
16 荷重装置
20 負荷棒
21 外筒部
23 内部空洞部材
24 空間
25 センサー部材
30 シール部材














a Test piece 1 Measuring device 10 Container 11 Hole 12 Sealed space 13 Support portion 15 Measuring mechanism 16 Loading device 20 Load rod 21 Outer cylinder portion 23 Internal cavity member 24 Space 25 Sensor member 30 Sealing member














Claims (5)

試験片の機械的特性を測定する測定装置であって、
試験片が収納され、内部に高圧ガスが導入される容器と、
前記容器に挿入され、試験片に負荷される荷重を測定する測定機構と、
前記容器と前記測定機構との隙間を封止するシール部材とを備え、
前記測定機構は、
試験片に荷重を負荷する負荷棒と、
前記負荷棒を内部に収納する外筒部と、
前記負荷棒上部に内部が空洞となる内部空洞部材を有し、
前記内部空洞部材の内部に荷重を測定するセンサー部材を有することを特徴とする測定装置。
A measuring device for measuring the mechanical properties of a test piece,
A container in which a test piece is stored and a high-pressure gas is introduced inside;
A measuring mechanism that is inserted into the container and measures a load applied to the test piece;
A seal member for sealing a gap between the container and the measurement mechanism;
The measurement mechanism is
A load bar for applying a load to the test piece;
An outer tube portion that houses the load rod therein;
An internal cavity member having an internal cavity at the top of the load rod;
A measuring apparatus comprising a sensor member for measuring a load inside the internal cavity member.
前記内部空洞部材の材質が鉄鋼材料よりもヤング率の低い材料からなることを特徴とする請求項1に記載の測定装置。   The measuring apparatus according to claim 1, wherein the material of the internal cavity member is made of a material having a Young's modulus lower than that of a steel material. 前記内部空洞部材の内圧を調節する内圧調節機構を備えていることを特徴とする請求項1又は2に記載の測定装置。   The measuring apparatus according to claim 1, further comprising an internal pressure adjusting mechanism that adjusts an internal pressure of the internal cavity member. 前記センサー部材は、ひずみゲージであることを特徴とする請求項1〜3のいずれか一項に記載の測定装置。   The said sensor member is a strain gauge, The measuring apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. 前記内部空洞部材は、前記負荷棒又は前記外筒部の少なくともいずれか一方と一体に形成されていることを特徴とする請求項1〜4のいずれか一項に記載の測定装置。
The measuring apparatus according to claim 1, wherein the internal cavity member is formed integrally with at least one of the load rod and the outer cylinder portion.
JP2014206951A 2014-10-08 2014-10-08 Measurement device of mechanical characteristic in high pressure gas Pending JP2016075612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206951A JP2016075612A (en) 2014-10-08 2014-10-08 Measurement device of mechanical characteristic in high pressure gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206951A JP2016075612A (en) 2014-10-08 2014-10-08 Measurement device of mechanical characteristic in high pressure gas

Publications (1)

Publication Number Publication Date
JP2016075612A true JP2016075612A (en) 2016-05-12

Family

ID=55949799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206951A Pending JP2016075612A (en) 2014-10-08 2014-10-08 Measurement device of mechanical characteristic in high pressure gas

Country Status (1)

Country Link
JP (1) JP2016075612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034957A (en) * 2019-09-23 2021-03-31 한국수력원자력 주식회사 Method for compensation of friction force at sealing parts in actuator of autoclave

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100838A (en) * 1982-11-30 1984-06-11 Shimadzu Corp Device for correcting and detecting test load in material testing machine
JPS61176438U (en) * 1985-04-23 1986-11-04
JP2001033319A (en) * 1999-07-16 2001-02-09 Teac Corp Manufacture of load cell
JP2003294581A (en) * 2002-03-29 2003-10-15 Meiji Univ Fatigue testing device for ball screw
JP2004101520A (en) * 2002-08-23 2004-04-02 National Institute Of Advanced Industrial & Technology High pressure atmospheric container for material test
JP2006057782A (en) * 2004-08-23 2006-03-02 Komori Corp Abnormality detecting device for bearing
JP2013167513A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Measurement mechanism for test device in high pressure gas
JP2013167512A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Test device in high pressure gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100838A (en) * 1982-11-30 1984-06-11 Shimadzu Corp Device for correcting and detecting test load in material testing machine
JPS61176438U (en) * 1985-04-23 1986-11-04
JP2001033319A (en) * 1999-07-16 2001-02-09 Teac Corp Manufacture of load cell
JP2003294581A (en) * 2002-03-29 2003-10-15 Meiji Univ Fatigue testing device for ball screw
JP2004101520A (en) * 2002-08-23 2004-04-02 National Institute Of Advanced Industrial & Technology High pressure atmospheric container for material test
JP2006057782A (en) * 2004-08-23 2006-03-02 Komori Corp Abnormality detecting device for bearing
JP2013167513A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Measurement mechanism for test device in high pressure gas
JP2013167512A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Test device in high pressure gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034957A (en) * 2019-09-23 2021-03-31 한국수력원자력 주식회사 Method for compensation of friction force at sealing parts in actuator of autoclave
KR102315381B1 (en) 2019-09-23 2021-10-21 한국수력원자력 주식회사 Method for compensation of friction force at sealing parts in actuator of autoclave

Similar Documents

Publication Publication Date Title
US10139327B2 (en) Indentation device, instrumented measurement system, and a method for determining the mechanical properties of materials by the indentation method
Aghajari et al. Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure
CN103278131A (en) Method for measuring axial deformation of rock sample
JP2008064569A (en) Mechanical characteristic testing device, and strain gage for hydrogen atmosphere used therefor
CN202351136U (en) Bending test deflection loading device
CN105910919B (en) A kind of high temperature axial compression test device and test method
KR101560145B1 (en) Batch measurement method for gas permeation, penetration damage and mechanical property, apparatus using thereof
JP5606865B2 (en) Instrument for measuring crack opening in high-pressure gas
JP2014048144A (en) Unit for performing evaluation test on tabular test piece
KR101381808B1 (en) High temperature and high pressure water environmental fatigue test apparatus, method for correcting and measuring fatigue load using the same
JP2006349487A (en) Testing machine of mechanical characteristics
Hyde et al. Some considerations on specimen types for small sample creep tests
JP2016075612A (en) Measurement device of mechanical characteristic in high pressure gas
JP4441466B2 (en) Mechanical property test equipment
JP2004340920A (en) Mechanical characteristic test apparatus
JP5851272B2 (en) Test equipment in high pressure gas
US11231265B2 (en) System for measuring a bending deformation of a surface of a material
JP2013167513A (en) Measurement mechanism for test device in high pressure gas
JP3864109B2 (en) Crack opening displacement measuring instrument and its material testing apparatus
JP4859224B2 (en) Compression test method, compression tester, and program
CN204101377U (en) Thin plate band permanent distortional stress corrosion test fixture
JP2018169225A (en) Hydrogen quantity detector and hydrogen storage alloy container
CN107542077B (en) A kind of static sounding probe of non-hollow structure
CN206504785U (en) Fully-automatic intelligent novel spring scale mechanism for testing
JP2017173149A (en) Hydrogen residual quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508