JP2016075420A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2016075420A
JP2016075420A JP2014205668A JP2014205668A JP2016075420A JP 2016075420 A JP2016075420 A JP 2016075420A JP 2014205668 A JP2014205668 A JP 2014205668A JP 2014205668 A JP2014205668 A JP 2014205668A JP 2016075420 A JP2016075420 A JP 2016075420A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
gas flow
flow path
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014205668A
Other languages
Japanese (ja)
Inventor
司 小原
Tsukasa Obara
司 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Industrial Co Ltd
Original Assignee
Futaba Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Industrial Co Ltd filed Critical Futaba Industrial Co Ltd
Priority to JP2014205668A priority Critical patent/JP2016075420A/en
Priority to PCT/JP2015/075841 priority patent/WO2016056349A1/en
Publication of JP2016075420A publication Critical patent/JP2016075420A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Fuel Cell (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which heat is exchanged between an inner tube and an outer tube and in which entire area in the inner tube is filled with gas, resulting in improvement of the heat exchange efficiency of the heat exchanger.SOLUTION: A heat exchanger 10 comprises an outer tube 11 of rectangular parallelepiped shape and a cylindrical-shaped inner tube 12 formed inside the outer tube 11. The inner tube 12 forms an exhaust gas flow passage 12F in it. The exhaust gas flow passage 12F is formed to connect an exhaust gas inlet 13 with an exhaust gas outlet 14. The outer tube 11 forms an air flow passage 11F between an outer circumferential surface of the inner tube 12 and an inner circumferential surface of the outer tube 11. A resisting member 17 is arranged inside the inner tube 12. The resisting member 17 is an exhaust gas flow passage 12F and provided between the exhaust gas inlet 13 and the exhaust gas outlet 14. The resisting member 17 acts as a partition plate which has a plurality of through-holes and closes the exhaust gas flow passage 12F. The resisting member 17 provides throttling to the exhaust gas flow passage 12F to increase an inner pressure in the exhaust gas flow passage 12F.SELECTED DRAWING: Figure 2

Description

本発明は、燃料電池装置に用いられる熱交換器に関する。   The present invention relates to a heat exchanger used in a fuel cell device.

燃料電池装置に用いられる熱交換器において、排ガスと受熱流体となる酸化剤ガスとの熱交換効率を向上させるため、熱交換器を二重管構造にし、内管に排ガス流路管が形成され、外管に受熱流体となる空気流路が形成され、排ガスと空気との熱交換を行う技術が提案されている。   In a heat exchanger used in a fuel cell device, in order to improve the heat exchange efficiency between the exhaust gas and the oxidant gas as the heat receiving fluid, the heat exchanger has a double pipe structure, and an exhaust gas passage pipe is formed in the inner pipe. In addition, a technique has been proposed in which an air flow path serving as a heat receiving fluid is formed in the outer pipe and heat exchange between exhaust gas and air is performed.

例えば、特許文献1の熱交換器では、ケース内に、排ガス導入路と排ガス排出流路を有する排ガス流路管が収納され、排ガスの導入側から排出側に向かって複数本並列して形成されている。発電用の空気流路はケースと排ガス流路管との間に形成されており、ケース内を流れる酸化剤ガスは、ガイド板にガイドされながら複数の排ガス流路管の外周を蛇行して流れるように構成され、これにより、流入空気と排ガスとの熱交換が行われる。   For example, in the heat exchanger of Patent Document 1, an exhaust gas passage pipe having an exhaust gas introduction passage and an exhaust gas discharge passage is accommodated in a case, and a plurality of exhaust pipes are formed in parallel from the exhaust gas introduction side to the exhaust side. ing. The power generation air flow path is formed between the case and the exhaust gas flow pipe, and the oxidant gas flowing in the case flows meandering around the outer periphery of the plurality of exhaust gas flow pipes while being guided by the guide plate. Thus, heat exchange between the inflowing air and the exhaust gas is performed.

特開2012−14921号公報JP 2012-14921 A

ところで、熱交換器のケースと排ガス流路管との間に空気流路を形成したり、又はこれとは逆に、熱交換器のケースと空気流路管との間に排ガス流路を形成したりした場合、特許文献1の熱交換器のように、ケースの隅などには空気又はガスが流れ込まず、排ガス流路管又は空気流路管の外周全域に対して空気又はガスを行き渡らせることができなかった。したがって、排ガスと空気との熱交換効率が低かった。特に、排ガス又は空気の導入口又は排出口をケースの端部以外に形成した場合には、導入口の上流側又は排出口の下流側にはガス又は空気が充満せず、当該箇所における熱交換効率は一層低くなっていた。   By the way, an air flow path is formed between the case of the heat exchanger and the exhaust gas flow path pipe, or conversely, an exhaust gas flow path is formed between the case of the heat exchanger and the air flow path pipe. In such a case, as in the heat exchanger of Patent Document 1, air or gas does not flow into the corners of the case and the like, but the air or gas is distributed over the entire outer periphery of the exhaust gas channel pipe or air channel tube. I couldn't. Therefore, the heat exchange efficiency between exhaust gas and air was low. In particular, when the exhaust gas or air inlet or outlet is formed other than the end of the case, the upstream side of the inlet or the downstream side of the outlet is not filled with gas or air. Efficiency was even lower.

本発明はこのような課題に鑑みてなされたものであり、その目的は、内管と外管との間で熱交換を行う熱交換器において、内管の全域にガスを行き渡らせることで熱交換効率を高めた熱交換器を提供する。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a heat exchanger that performs heat exchange between the inner tube and the outer tube, and distributes gas over the entire area of the inner tube. A heat exchanger with improved exchange efficiency is provided.

上記課題を解決するために、本発明に係る熱交換器は、第1のガス流路を形成する内管と、前記内管の外周に形成され、前記内管の外周面との間に第2のガス流路を形成する外管と、を備え、前記内管は、ガスを流入させるガス流入口と、ガスを排出されるガス排出口と、前記ガス流入口と前記ガス排出口とを繋ぐ前記第1のガス流路を絞る抵抗体と、備え、前記抵抗体は、前記ガス流入口と前記ガス排出口との間に形成される。   In order to solve the above problems, a heat exchanger according to the present invention is formed between an inner tube forming a first gas flow path and an outer periphery of the inner tube, and between the outer peripheral surface of the inner tube. An outer pipe that forms a gas flow path, and the inner pipe includes a gas inlet through which a gas flows, a gas outlet through which the gas is discharged, the gas inlet, and the gas outlet. A resistor for restricting the first gas flow path to be connected, and the resistor is formed between the gas inlet and the gas outlet.

以上の態様によれば、内管の第1のガス流路に抵抗体を設け、この抵抗体により第1のガス流路に絞りを与えることで、第1のガス流路の内圧を高めることができる。これにより、第1のガス流路全域にガスを行き渡らせることが可能になり、内管と外管との間における熱交換効率の高めることができるようになる。   According to the above aspect, the internal pressure of the first gas flow path is increased by providing the resistor in the first gas flow path of the inner tube and providing the throttle to the first gas flow path by the resistance body. Can do. As a result, the gas can be spread over the entire first gas flow path, and the heat exchange efficiency between the inner tube and the outer tube can be increased.

好ましくは、前記抵抗体は、複数の貫通孔が形成された仕切り板であり、前記第1のガス流路を塞ぐように前記内管に形成される。この態様では、複数の貫通孔を形成した仕切り板を内管に形成するという簡易な構成により、第1のガス流路に抵抗体を配置することが可能になる。   Preferably, the resistor is a partition plate in which a plurality of through holes are formed, and is formed on the inner pipe so as to close the first gas flow path. In this aspect, it is possible to dispose the resistor in the first gas flow path with a simple configuration in which the partition plate having a plurality of through holes is formed in the inner tube.

また、好ましくは、前記内管は、前記第1のガス流路の表面積を増加させるように、壁面に凹凸を備える。この態様では、抵抗体により第1のガス流路の内圧を高めてガスを流路内に行き渡らせつつ、内管における第1のガス流路の表面積を増加させることにより、内管と外管との熱交換効率をより高めることが可能になる。   Further, preferably, the inner pipe has irregularities on the wall surface so as to increase the surface area of the first gas flow path. In this aspect, the inner tube and the outer tube are increased by increasing the surface area of the first gas flow channel in the inner tube while increasing the internal pressure of the first gas flow channel by the resistor and spreading the gas into the flow channel. The heat exchange efficiency with can be further increased.

また、好ましくは、前記凹凸は、前記内管の壁面にスパイラル状に形成される。この態様では、凹凸をスパイラル状に形成することで、第1のガス流路の表面積を増加させることができるだけでなく、抵抗体に加えて第1のガス流路の内圧を高めるように作用させることができる。したがって、ガスを第1のガス流路全域により行き渡らせることができ、内管と外管との間における熱交換効率をより一層高めることができるようになる。   Preferably, the unevenness is formed in a spiral shape on the wall surface of the inner tube. In this aspect, by forming the irregularities in a spiral shape, not only can the surface area of the first gas channel be increased, but also the internal pressure of the first gas channel can be increased in addition to the resistor. be able to. Therefore, the gas can be spread all over the first gas flow path, and the heat exchange efficiency between the inner tube and the outer tube can be further enhanced.

本発明によれば、内管と外管との間で熱交換を行う熱交換器において内管の全域にガスを行き渡らせることで熱交換効率を高めた熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the heat exchanger which performs heat exchange between an inner tube | pipe and an outer tube | pipe, the heat exchanger which improved heat exchange efficiency can be provided by spreading gas over the whole region of an inner tube | pipe.

本発明の熱交換器が組み込まれた燃料電池装置の全体構成を示すブロック図。The block diagram which shows the whole structure of the fuel cell apparatus incorporating the heat exchanger of this invention. 本発明の熱交換器の全体構成を示す断面模式図。The cross-sectional schematic diagram which shows the whole structure of the heat exchanger of this invention. 図2のA−A断面図。AA sectional drawing of FIG. 本発明の熱交換器の他の実施形態を示す断面模式図。The cross-sectional schematic diagram which shows other embodiment of the heat exchanger of this invention.

以下、添付図面を参照しながら本発明の実施形態(以下、本実施形態という。)について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, embodiments of the present invention (hereinafter referred to as the present embodiment) will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

図1を参照して、本実施形態の熱交換器10が組み込まれた燃料電池装置100の全体構成を示す。図1に示されるとおり、燃料電池装置100は、従来の燃料電池装置と同様の構成であり、本実施形態の熱交換器10と、燃料改質器20と、燃料電池スタック30と、インバータ40と、制御装置50と、を備える。   With reference to FIG. 1, the whole structure of the fuel cell apparatus 100 in which the heat exchanger 10 of this embodiment was integrated is shown. As shown in FIG. 1, the fuel cell device 100 has the same configuration as that of a conventional fuel cell device, and the heat exchanger 10, the fuel reformer 20, the fuel cell stack 30, and the inverter 40 of the present embodiment. And a control device 50.

燃料改質器20は、ガスと水蒸気を反応させガスより水素を取り出す手段である。燃料電池スタック30は、燃料改質器20から供給される水素に酸化剤ガス(発電用空気)CGを反応させて電気を発生させる手段である。インバータ40は、燃料電池スタック30で発生した直流の電気を交流の電気に変換する手段である。制御装置50は、燃料電池装置100全体の制御を行う手段である。   The fuel reformer 20 is means for taking out hydrogen from the gas by reacting the gas with water vapor. The fuel cell stack 30 is a means for generating electricity by reacting oxidant gas (power generation air) CG with hydrogen supplied from the fuel reformer 20. The inverter 40 is means for converting direct current electricity generated in the fuel cell stack 30 into alternating current electricity. The control device 50 is means for controlling the entire fuel cell device 100.

本実施形態における熱交換器10は、燃料電池スタック30で燃焼により発生する排ガスEGの熱により外部から導入される酸化剤ガスCGを加熱する手段である。   The heat exchanger 10 in the present embodiment is means for heating the oxidant gas CG introduced from the outside by the heat of the exhaust gas EG generated by combustion in the fuel cell stack 30.

続いて図2及び図3を参照して、熱交換器10の構成について説明する。図2は、熱交換器10の全体構成を示す平断面図であり、図3は、図2のA−A断面図である。   Then, with reference to FIG.2 and FIG.3, the structure of the heat exchanger 10 is demonstrated. 2 is a cross-sectional plan view showing the overall configuration of the heat exchanger 10, and FIG. 3 is a cross-sectional view taken along the line AA in FIG.

図2及び図3に示されるとおり、熱交換器10は、直方体形状の外管11と、外管11の内部に形成される円筒形状の内管12と、を備える。言い換えれば、内管12の外周に外管11が形成されている。本実施形態において、外管11は、熱交換器10のケースを兼ねているが、本発明ではこのような態様に限られず、ケースと外管11とを分けて構成しても構わない。   As shown in FIGS. 2 and 3, the heat exchanger 10 includes a rectangular parallelepiped outer tube 11 and a cylindrical inner tube 12 formed inside the outer tube 11. In other words, the outer tube 11 is formed on the outer periphery of the inner tube 12. In the present embodiment, the outer tube 11 also serves as the case of the heat exchanger 10, but the present invention is not limited to such an embodiment, and the case and the outer tube 11 may be configured separately.

図2に示されるとおり、内管12は、内部に排ガス流路(第1のガス流路)12Fを形成する。排ガス流路12Fは、排ガス流入口13と排ガス排出口14とを繋ぐように形成されている。すなわち、図1で示した燃料改質器20から排出された排ガスEGは、排ガス流入口13から流入され、内管12内の排ガス流路12Fを通過した後、排ガス排出口14から外部に排出される。   As shown in FIG. 2, the inner pipe 12 forms an exhaust gas passage (first gas passage) 12 </ b> F inside. The exhaust gas flow path 12 </ b> F is formed so as to connect the exhaust gas inlet 13 and the exhaust gas outlet 14. That is, the exhaust gas EG discharged from the fuel reformer 20 shown in FIG. 1 flows from the exhaust gas inlet 13, passes through the exhaust gas passage 12 </ b> F in the inner pipe 12, and is discharged to the outside from the exhaust gas outlet 14. Is done.

排ガス流入口13と排ガス排出口14とは、筒状パイプにより形成され、外管11及び内管12の壁面に貫通して取り付けられている。排ガス流入口13及び排ガス排出口14により、内管12は外管11に対して支持固定されている。   The exhaust gas inlet 13 and the exhaust gas outlet 14 are formed of a cylindrical pipe and are attached to the wall surfaces of the outer tube 11 and the inner tube 12. The inner pipe 12 is supported and fixed to the outer pipe 11 by the exhaust gas inlet 13 and the exhaust gas outlet 14.

外管11は、内管12の外周面と、外管11の内周面との間に、空気流路(第2のガス流路)11Fを形成する。すなわち、空気流路11Fは、円筒状の内管12の外周面全体にわたって形成されている。また、空気流路11Fは、空気流入口15と空気排出口16とを繋ぐように形成されている。すなわち、受熱流体である酸化剤ガスCGは、外部から供給されて空気流入口15から流入され、空気流路11Fを通過しながら加熱された後、図1で説明した通り、空気排出口16から燃料電池スタック30に供給される。   The outer tube 11 forms an air flow path (second gas flow path) 11 </ b> F between the outer peripheral surface of the inner tube 12 and the inner peripheral surface of the outer tube 11. That is, the air flow path 11 </ b> F is formed over the entire outer peripheral surface of the cylindrical inner tube 12. The air flow path 11 </ b> F is formed so as to connect the air inlet 15 and the air outlet 16. That is, the oxidant gas CG which is a heat receiving fluid is supplied from the outside, flows in from the air inlet 15 and is heated while passing through the air flow path 11F, and then, from the air outlet 16 as described in FIG. The fuel cell stack 30 is supplied.

空気流入口15と空気排出口16とは、排ガス流入口13と排ガス排出口14と同様、筒状パイプにより形成され、外管11の壁面に貫通して取り付けられている。外管11に対する空気流入口15と空気排出口16との取付け位置は任意であるが、空気流路11Fの流れを考慮し、図2に示されるとおり長手方向両端部に取り付けるのが好ましい。   The air inlet 15 and the air outlet 16 are formed of a cylindrical pipe and are attached to the wall surface of the outer tube 11 in the same manner as the exhaust gas inlet 13 and the exhaust gas outlet 14. Although the attachment position of the air inlet 15 and the air outlet 16 with respect to the outer tube 11 is arbitrary, it is preferable to attach to both ends in the longitudinal direction as shown in FIG. 2 in consideration of the flow of the air flow path 11F.

図2に示されるとおり、内管12の内部には、抵抗体17が設けられている。抵抗体17は、排ガス流路12Fであって、排ガス流入口13と排ガス排出口14との間に設けられている。抵抗体17は、排ガス流路12Fに絞りを与え、排ガス流路12Fにおける内圧を高めるためのものであり、排ガス流路12Fを塞ぐ仕切り板となっている。   As shown in FIG. 2, a resistor 17 is provided inside the inner tube 12. The resistor 17 is an exhaust gas flow path 12 </ b> F and is provided between the exhaust gas inlet 13 and the exhaust gas outlet 14. The resistor 17 is for partitioning the exhaust gas passage 12F and increasing the internal pressure in the exhaust gas passage 12F, and is a partition plate that blocks the exhaust gas passage 12F.

図3も参照して抵抗体17の詳細な構成を示す。図2及び3に示されるとおり、抵抗体17は、全体形状が円形で平板部17Aと取付部17Bとからなる盆状をなす。すなわち、円板状の平板部17Aに対して、取付部17Bが平板部17Aの外周で鉛直方向に立ち上がって形成されている。   The detailed structure of the resistor 17 is also shown with reference to FIG. As shown in FIGS. 2 and 3, the resistor 17 has a circular shape as a whole and has a tray shape including a flat plate portion 17 </ b> A and a mounting portion 17 </ b> B. That is, the mounting portion 17B is formed to rise in the vertical direction on the outer periphery of the flat plate portion 17A with respect to the disc-shaped flat plate portion 17A.

平板部17Aには、複数の貫通孔17Cが形成されている。貫通孔17Cは、排ガス流路12Fをなし、排ガス流路12Fに対して絞りを与える部分である。取付部17Bは、内管12の内周面に溶接等により固定するための取付け代である。なお、抵抗体17を内管12と一体に成形する場合や平板部17Aの端部をそのまま取り付ける場合には、取付部17Bは省略可能である。   A plurality of through holes 17C are formed in the flat plate portion 17A. The through-hole 17C is a portion that forms the exhaust gas passage 12F and that restricts the exhaust gas passage 12F. The attachment portion 17B is an attachment allowance for fixing to the inner peripheral surface of the inner tube 12 by welding or the like. When the resistor 17 is formed integrally with the inner tube 12 or when the end of the flat plate portion 17A is attached as it is, the attaching portion 17B can be omitted.

以上の熱交換器10によれば、内管12の排ガス流路12Fに抵抗体17を設け、この抵抗体17により排ガス流路12Fに絞りを与えることで、排ガス流路12Fの内圧を高めることができる。これにより、排ガス流路12F全域に排ガスEGを行き渡らせることが可能になる。したがって、内管12を流れる排ガスEGの熱を、内管12全域にわたって外管11を流れる酸化剤ガスCGに伝導させることができ、熱交換器10の熱交換効率の高めることができるようになる。   According to the heat exchanger 10 described above, the resistor 17 is provided in the exhaust gas passage 12F of the inner pipe 12, and the exhaust gas passage 12F is throttled by the resistor 17 to increase the internal pressure of the exhaust gas passage 12F. Can do. As a result, the exhaust gas EG can be spread over the entire exhaust gas flow path 12F. Therefore, the heat of the exhaust gas EG flowing through the inner pipe 12 can be conducted to the oxidant gas CG flowing through the outer pipe 11 over the entire inner pipe 12, and the heat exchange efficiency of the heat exchanger 10 can be increased. .

特に、図2の例に示されるように、排ガス流入口13が、内管12の端部ではなく、排ガス流路12Fの中央寄りに形成されるような場合には、排ガス流路12Fの上流側の隅には、排ガスが充満し難い状況となる。この点、熱交換器10によれば、抵抗体17により、内管12内部の内圧を高めることができるので、排ガス流路12Fの上流側の隅にも排ガスを充満させることができる。したがって、排ガス流入口13や排ガス排出口14を設ける位置がどこであっても、熱交換器10の熱交換効率を高く保つことが可能になる。   In particular, as shown in the example of FIG. 2, in the case where the exhaust gas inlet 13 is formed near the center of the exhaust gas flow channel 12F instead of the end of the inner pipe 12, the upstream side of the exhaust gas flow channel 12F. The corners on the side are difficult to fill with exhaust gas. In this respect, according to the heat exchanger 10, since the internal pressure of the inner pipe 12 can be increased by the resistor 17, the exhaust gas can be filled in the corner on the upstream side of the exhaust gas passage 12F. Therefore, the heat exchange efficiency of the heat exchanger 10 can be kept high regardless of the position where the exhaust gas inlet 13 and the exhaust gas outlet 14 are provided.

また、内管12に対して、複数の貫通孔17Cを形成した仕切り板を取り付けるという簡易な構成により、抵抗体17を排ガス流路12Fに自由に配置することができる。   Further, the resistor 17 can be freely arranged in the exhaust gas flow path 12F by a simple configuration in which a partition plate in which a plurality of through holes 17C are formed is attached to the inner pipe 12.

続いて、図4を参照して、熱交換器10の他の態様となる熱交換器10Aについて説明する。なお、熱交換器10と同様の構成について同様の符号を付し、説明を省略する。また、図4では説明の便宜上、抵抗体17を図示していないが、図2で示されるのと同様に、熱交換器10Aにおいても抵抗体17は形成されているものとする。   Then, with reference to FIG. 4, 10 A of heat exchangers which become the other aspect of the heat exchanger 10 are demonstrated. In addition, the same code | symbol is attached | subjected about the structure similar to the heat exchanger 10, and description is abbreviate | omitted. 4 does not show the resistor 17 for convenience of explanation, it is assumed that the resistor 17 is also formed in the heat exchanger 10A as shown in FIG.

図4に示されるとおり、熱交換器10Aは、内管12Aの壁面の構成に改良を加えたものである。内管12Aは、排ガス流路12Fの表面積を増加させるように、壁面に凹凸12A1を備える。凹凸12A1は、内管12Aの壁面にスパイラル状に形成されている。   As shown in FIG. 4, the heat exchanger 10 </ b> A is obtained by improving the configuration of the wall surface of the inner tube 12 </ b> A. The inner pipe 12A includes irregularities 12A1 on the wall surface so as to increase the surface area of the exhaust gas passage 12F. The unevenness 12A1 is formed in a spiral shape on the wall surface of the inner tube 12A.

以上の熱交換器10Aでは、抵抗体17により排ガス流路12Fの内圧を高めて排ガスを排ガス流路12F内に行き渡らせつつ、内管12における排ガス流路12Fの表面積を増加させることにより、内管12Aと外管11との熱交換効率をさらに高めることが可能になる。   In the above heat exchanger 10A, the internal pressure of the exhaust gas passage 12F in the inner pipe 12 is increased by increasing the internal pressure of the exhaust gas passage 12F by the resistor 17 and spreading the exhaust gas into the exhaust gas passage 12F. The heat exchange efficiency between the pipe 12A and the outer pipe 11 can be further increased.

また、凹凸12A1をスパイラル状に形成することで、排ガス流路12Fの表面積を増加させることができるだけでなく、排ガス流路12Fにおいて排ガスをスムーズに流すことができる。したがって、排ガスEGを排ガス流路12F全域により行き渡らせることができ、なおかつ排ガスをスムーズに流すことにより内管12Aと外管11との間における熱交換効率をより一層高めることができるようになる。   Further, by forming the irregularities 12A1 in a spiral shape, not only can the surface area of the exhaust gas passage 12F be increased, but also the exhaust gas can flow smoothly in the exhaust gas passage 12F. Therefore, the exhaust gas EG can be spread over the entire exhaust gas flow path 12F, and the heat exchange efficiency between the inner pipe 12A and the outer pipe 11 can be further enhanced by flowing the exhaust gas smoothly.

以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention.

本実施形態において抵抗体17は、複数の貫通孔17Cを形成した板状体により構成しているが、本発明における抵抗体としては、このような態様に限られず、排ガス流路12Fの内圧を高めるために、排ガス流れの抵抗となるものであれば広く含みうる。例えば、内管12内部に、内管12の中央方向に突出させ、排ガス流路12Fに絞りを与えるオリフィス板を設置して構成することも可能である。また、内管12を円周状で内側に潰すことで、内管12のガス流路側に突出させて排ガス流路12Fの絞りとして構成することも可能である。また、抵抗体は、必ずしも内管12に同一円周上に設ける必要はなく、内管12の長手方向に分割して形成することも可能であるし、同一円周上において一円でなく間隔を置いて形成することも可能である。   In the present embodiment, the resistor 17 is configured by a plate-like body in which a plurality of through holes 17C are formed. However, the resistor in the present invention is not limited to such an embodiment, and the internal pressure of the exhaust gas passage 12F is In order to increase, it can be widely included as long as it becomes a resistance of the exhaust gas flow. For example, an orifice plate that protrudes toward the center of the inner pipe 12 and that restricts the exhaust gas flow path 12F can be installed inside the inner pipe 12. Further, by crushing the inner pipe 12 in a circumferential shape, the inner pipe 12 can be protruded toward the gas flow path side of the inner pipe 12 and configured as a throttle of the exhaust gas flow path 12F. Further, the resistors are not necessarily provided on the inner circumference of the inner tube 12, and can be formed by being divided in the longitudinal direction of the inner tube 12. It is also possible to form by placing.

また、本実施形態では、外管11に空気流路11Fを形成し、内管12に排ガス流路12Fを形成しているが、本発明は、これを逆にして外管11に排ガス流路を形成し、内管12に空気流路を形成する態様も含み得る。また、外管11と内管12の全体形状は、角管や円管に捉われず、設計に応じて任意に構成し得る。   In this embodiment, the air flow path 11F is formed in the outer tube 11, and the exhaust gas flow channel 12F is formed in the inner tube 12. However, in the present invention, this is reversed and the exhaust gas flow channel is formed in the outer tube 11. And an air flow path may be formed in the inner tube 12. Further, the overall shape of the outer tube 11 and the inner tube 12 is not limited to a square tube or a circular tube, and can be arbitrarily configured according to the design.

そのほか、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなども、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。   In addition, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.

10,10A:熱交換器
11:外管
11F:空気流路
12,12A:内管
12A1:凹凸
12F:排ガス流路
13:排ガス流入口
14:排ガス排出口
15:空気流入口
16:空気排出口
17:抵抗体
17A:平板部
17B:取付部
17C:貫通孔
20:燃料改質器
30:燃料電池スタック
40:インバータ
50:制御装置
100:燃料電池装置
CG:酸化剤ガス
EG:排ガス
10, 10A: Heat exchanger 11: Outer tube 11F: Air channel 12, 12A: Inner tube 12A1: Concavity and convexity 12F: Exhaust gas channel 13: Exhaust gas inlet 14: Exhaust gas outlet 15: Air inlet 16: Air outlet 17: resistor 17A: flat plate portion 17B: mounting portion 17C: through hole 20: fuel reformer 30: fuel cell stack 40: inverter 50: control device 100: fuel cell device CG: oxidant gas EG: exhaust gas

Claims (4)

第1のガス流路を形成する内管と、前記内管の外周に形成され、前記内管の外周面との間に第2のガス流路を形成する外管と、を備え、
前記内管は、ガスを流入させるガス流入口と、ガスを排出されるガス排出口と、前記ガス流入口と前記ガス排出口とを繋ぐ前記第1のガス流路を絞る抵抗体と、備え、
前記抵抗体は、前記ガス流入口と前記ガス排出口との間に形成された、熱交換器。
An inner pipe that forms a first gas flow path, and an outer pipe that is formed on the outer periphery of the inner pipe and that forms a second gas flow path between the outer peripheral surface of the inner pipe,
The inner pipe includes a gas inlet for allowing gas to flow in, a gas outlet for discharging gas, and a resistor for restricting the first gas flow path connecting the gas inlet and the gas outlet. ,
The resistor is a heat exchanger formed between the gas inlet and the gas outlet.
前記抵抗体は、複数の貫通孔が形成された仕切り板であり、前記第1のガス流路を塞ぐように前記内管に形成された、請求項1の熱交換器。   2. The heat exchanger according to claim 1, wherein the resistor is a partition plate in which a plurality of through holes are formed, and is formed in the inner pipe so as to close the first gas flow path. 前記内管は、前記第1のガス流路の表面積を増加させるように、壁面に凹凸を備えた、請求項1又は2の熱交換器。   3. The heat exchanger according to claim 1, wherein the inner pipe is provided with unevenness on a wall surface so as to increase a surface area of the first gas flow path. 前記凹凸は、前記内管の壁面にスパイラル状に形成された、請求項3の熱交換器。   The heat exchanger according to claim 3, wherein the unevenness is formed in a spiral shape on the wall surface of the inner tube.
JP2014205668A 2014-10-06 2014-10-06 Heat exchanger Pending JP2016075420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014205668A JP2016075420A (en) 2014-10-06 2014-10-06 Heat exchanger
PCT/JP2015/075841 WO2016056349A1 (en) 2014-10-06 2015-09-11 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205668A JP2016075420A (en) 2014-10-06 2014-10-06 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2016075420A true JP2016075420A (en) 2016-05-12

Family

ID=55652970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205668A Pending JP2016075420A (en) 2014-10-06 2014-10-06 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2016075420A (en)
WO (1) WO2016056349A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205519A1 (en) 2016-04-04 2017-10-05 Mitutoyo Corporation Measuring probe and measuring probe system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2913748C2 (en) * 1979-04-03 1983-09-29 Borsig Gmbh, 1000 Berlin Tube bundle heat exchanger for cooling slag-containing hot gases from coal gasification
JP4236879B2 (en) * 2002-07-19 2009-03-11 三恵技研工業株式会社 EGR gas cooling device
JP4798655B2 (en) * 2005-12-21 2011-10-19 臼井国際産業株式会社 Multi-tube heat exchanger for exhaust gas cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205519A1 (en) 2016-04-04 2017-10-05 Mitutoyo Corporation Measuring probe and measuring probe system

Also Published As

Publication number Publication date
WO2016056349A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
KR101006276B1 (en) Heat exchanger
KR102105946B1 (en) Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger
JP6075381B2 (en) Heat exchanger
JP6291375B2 (en) Fuel cell module
JP6011280B2 (en) Hot water storage water heater
US20110017428A1 (en) Plane type heat exchanger
CN103994579A (en) Gas water heater integrated stainless steel heat exchanger
US9557075B2 (en) Condensing heat exchanger and boiler/water heater including the same
JP6959307B2 (en) Reformer, cell stack device, fuel cell module and fuel cell device
WO2016056349A1 (en) Heat exchanger
KR101280453B1 (en) Heat exchanger
KR101424947B1 (en) A condensing heat exchanger and a boiler with the condensing heat exchanger
KR101841851B1 (en) Apparatus for Heating a Hot Water and Electric Boiler Using the Same
JP2020024814A5 (en)
JP2009170112A (en) Fuel cell
JP2013254581A5 (en)
KR101189953B1 (en) Rapid heating apparatus
KR101500064B1 (en) Heat exchanging unit and plate type heat exchanger having thereof
KR20190075679A (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
JP2014240732A (en) Heat exchanger
JP2005291672A (en) Stacked heat exchanger
JP2017172903A (en) Gas water heater
JP2018044711A (en) Heat exchanger
JP2015190723A (en) heat exchanger
JP2016133292A (en) Hot water storage tank