JP2016075327A - Manufacturing method of valve device, and valve device - Google Patents

Manufacturing method of valve device, and valve device Download PDF

Info

Publication number
JP2016075327A
JP2016075327A JP2014205139A JP2014205139A JP2016075327A JP 2016075327 A JP2016075327 A JP 2016075327A JP 2014205139 A JP2014205139 A JP 2014205139A JP 2014205139 A JP2014205139 A JP 2014205139A JP 2016075327 A JP2016075327 A JP 2016075327A
Authority
JP
Japan
Prior art keywords
valve
processed
valve device
electrode
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014205139A
Other languages
Japanese (ja)
Inventor
大輔 辻
Daisuke Tsuji
大輔 辻
進藤 蔵
Kura Shindo
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014205139A priority Critical patent/JP2016075327A/en
Publication of JP2016075327A publication Critical patent/JP2016075327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To finish a padding part in a short time, to improve production efficiency.SOLUTION: In a valve device including a movable member operating with valve opening/closing and a stationary member sliding with the movable member, the surface of at least one of the movable member and stationary member is machined into an uneven shape as a processed part 100, and a padding part 102 is formed on the uneven surface of the processed part 100 after machining. The padding part 102 is formed by generating pulse-like discharge between an electrode constituted with a compact mainly comprising metal and the uneven surface of the processed part 100, and depositing the material of the electrode on the uneven surface of the processed part 100 and accumulating it thereon.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、弁装置の製造方法およびその製造方法により製造される弁装置に関する。   Embodiments described herein relate generally to a method for manufacturing a valve device and a valve device manufactured by the method.

火力発電プラント等の蒸気タービンには、蒸気の流入を制御するために、主蒸気止め弁,蒸気加減弁,再熱蒸気止め弁,中間阻止弁,タービンバイパス弁等の種々の弁装置が付設されている。   Steam turbines such as thermal power plants are equipped with various valve devices such as a main steam stop valve, a steam control valve, a reheat steam stop valve, an intermediate stop valve, and a turbine bypass valve in order to control the inflow of steam. ing.

上記弁装置においては、可動部材とこれに摺接する静止部材、例えば弁棒やブッシュの摺接面に耐酸化性を有するコバルト基硬質合金等を放電にて肉盛りすることが知られている。   In the valve device described above, it is known that a movable member and a stationary member that is in sliding contact with the movable member, for example, a cobalt-based hard alloy having oxidation resistance on the sliding contact surface of a valve rod or a bush, is built up by electric discharge.

図7に、放電にて被処理部に均一な厚さの肉盛りを施す従来の放電加工法の一例を示す。   FIG. 7 shows an example of a conventional electric discharge machining method in which a portion having a uniform thickness is applied to the portion to be processed by electric discharge.

図7に示すように、電気絶縁性のある液体L(又は気中)の中に、被処理部100および電極101の一部を配置し、電極101を直流電源103の陰極と接続し、被処理部100を直流電源103の陽極に接続する。そして、電極101と被処理部100との間に微小間隙を保持した状態で、直流電源103の電圧を当該電極101と当該被処理部100との間で印加又は印加を停止することによりパルス状の放電を発生させて、その放電エネルギーにより、電極101の材料を被処理部100の表面に溶着させ、堆積させる。   As shown in FIG. 7, a part to be processed 100 and a part of the electrode 101 are arranged in an electrically insulating liquid L (or in the air), the electrode 101 is connected to the cathode of the DC power source 103, and The processing unit 100 is connected to the anode of the DC power source 103. Then, in a state where a minute gap is maintained between the electrode 101 and the processing target 100, the voltage of the DC power source 103 is applied between the electrode 101 and the processing target 100 or is stopped by applying a pulse. The material of the electrode 101 is welded and deposited on the surface of the processing target portion 100 by the discharge energy.

この放電加工法では、電極の粒子単位で母材を溶融して肉盛部を形成することから、被処理部の母材への入熱が少ないため、被処理部を変形させずに肉盛りを行うことができる。更に電極成分が被処理部と溶け合って接合しているので、肉盛部と被処理部の母材との密着性が高く肉盛部が剥離することがない。また、この放電加工法は入熱が少ないことから、被処理部の母材表層に熱影響部(HAZ: Heat-Affected Zone)を形成しないという特徴がある。   In this electrical discharge machining method, the base material is melted in units of electrode particles to form a built-up portion. Therefore, since the heat input to the base material of the processed portion is small, the build-up is performed without deforming the processed portion. It can be performed. Furthermore, since the electrode component is melted and bonded to the portion to be processed, the adhesion between the build-up portion and the base material of the portion to be processed is high, and the build-up portion does not peel off. In addition, this electric discharge machining method has a feature that a heat affected zone (HAZ: Heat-Affected Zone) is not formed on the surface layer of the base material of the portion to be processed because there is little heat input.

特開2013−119921号公報JP 2013-119921 A

しかしながら、一般的な放電加工法では、被処理部全体に均一な厚みの肉盛部が形成されるように、電極101を一定の制限された速度で水平移動させ、広範囲な被処理部100表面全体を走査するため、肉盛部の完成に至るまでにかなりの時間を要する。   However, in a general electric discharge machining method, the electrode 101 is horizontally moved at a constant limited speed so that a built-up portion having a uniform thickness is formed over the entire portion to be processed. Since the whole is scanned, it takes a considerable time to complete the overlay.

発明が解決しようとする課題は、肉盛部を短時間で完成させ、生産効率を向上させることができる弁装置の製造方法およびその製造方法により製造される弁装置を提供することにある。   Problem to be solved by the invention is providing the valve apparatus manufactured by the manufacturing method of the valve apparatus which can complete a build-up part in a short time, and can improve production efficiency, and its manufacturing method.

実施形態の弁装置は、弁開閉に伴って動作する可動部材とこの可動部材に摺接する静止部材とを含む弁装置であって、前記可動部材と前記静止部材の少なくとも一方の表面を被処理部として凹凸状に加工し、加工後の被処理部の凹凸状表面に肉盛部を形成してなり、前記肉盛部は、金属を主成分とする成形体により構成される電極と前記被処理部の凹凸状表面との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の凹凸状表面に溶着させ堆積させることによって形成されたものである。   The valve device according to the embodiment is a valve device including a movable member that operates in accordance with opening and closing of the valve and a stationary member that is in sliding contact with the movable member, and at least one surface of the movable member and the stationary member is subjected to a processing target. Processed into a concavo-convex shape, and formed a build-up portion on the concavo-convex surface of the processed portion after processing, and the build-up portion is composed of an electrode composed of a molded body containing metal as a main component and the treatment target The electrode material is formed by welding and depositing the electrode material on the uneven surface of the portion to be processed by generating a pulsed discharge between the uneven surface of the portion.

本発明によれば、肉盛部を短時間で完成させ、生産効率を向上させることができる。   According to the present invention, the built-up portion can be completed in a short time, and the production efficiency can be improved.

第1の実施形態の製造方法により製造した部材を用いた弁装置の構成例を示す断面図。Sectional drawing which shows the structural example of the valve apparatus using the member manufactured by the manufacturing method of 1st Embodiment. 各工程における被処理部の断面形状を示す断面図(第1の例)。Sectional drawing which shows the cross-sectional shape of the to-be-processed part in each process (1st example). 肉盛り処理に使用する駆動機構の一例を示す概念図。The conceptual diagram which shows an example of the drive mechanism used for a build-up process. 各工程における被処理部の断面形状を示す断面図(第2の例)。Sectional drawing which shows the cross-sectional shape of the to-be-processed part in each process (2nd example). 各工程における被処理部の断面形状を示す断面図(第3の例)。Sectional drawing which shows the cross-sectional shape of the to-be-processed part in each process (3rd example). 第2の実施形態の製造方法により製造した部材を用いた弁装置の構成例を示す断面図。Sectional drawing which shows the structural example of the valve apparatus using the member manufactured by the manufacturing method of 2nd Embodiment. 放電加工法により被処理部に肉盛部を形成する原理を示す概念図。The conceptual diagram which shows the principle which forms the build-up part in a to-be-processed part by an electrical discharge machining method.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

[第1の実施形態]
図1は、第1の実施形態における弁装置、ここでは図示しない高圧タービンの前段に設置され、流入する蒸気量を制御することで高圧タービンの回転数を制御するために使用される蒸気加減弁を例として示した断面図である。以下の説明では、必要に応じて前述の図7も参照する。
[First Embodiment]
FIG. 1 is a steam control valve that is installed in a preceding stage of a valve device according to a first embodiment, not shown here, and used to control the rotational speed of a high-pressure turbine by controlling the amount of steam that flows in. It is sectional drawing which showed as an example. In the following description, reference is also made to FIG. 7 as necessary.

蒸気加減弁は、蒸気弁本体200、ブッシュ201、上蓋202、蒸気の出口としての弁座203、弁体204、弁棒205、蒸気の入口である開口207、蒸気の出口である開口208、弁棒205及び弁体204の挿入口である開口209、を有する。蒸気弁本体200では、開口209を通じて蒸気室210内に挿入された弁棒205の軸方向の動きにより弁体204にて弁座203の開口208を開閉する。上蓋202は、蒸気弁本体200の開口209の上部に固定されており、蒸気弁本体200の上面を閉塞するものである。上蓋202の上方には油圧駆動機構206が設置されており、油圧駆動機構206には弁棒205が下方(鉛直方向)に向けて連結されている。この弁棒205は、油圧駆動機構206により上下に往復動作するようになっている。蒸気加減弁では、上蓋202の貫穴口が弁棒205との摺動面となることから、この部分に摩擦に強い金属を素材とする円筒状のブッシュ201が挿着されており、軸方向に動く弁棒205が横ぶれしないようにブッシュ201にてガイドするものである。弁体204は弁座203に当接して弁座203の開口を開閉するように設けられている。この弁体204は、弁棒205の先端部に設けられている。   The steam control valve includes a steam valve body 200, a bush 201, an upper lid 202, a valve seat 203 as a steam outlet, a valve body 204, a valve rod 205, an opening 207 as a steam inlet, an opening 208 as a steam outlet, a valve An opening 209 which is an insertion port for the rod 205 and the valve body 204 is provided. In the steam valve main body 200, the valve body 204 opens and closes the opening 208 of the valve seat 203 by the axial movement of the valve rod 205 inserted into the steam chamber 210 through the opening 209. The upper lid 202 is fixed to the upper part of the opening 209 of the steam valve main body 200 and closes the upper surface of the steam valve main body 200. A hydraulic drive mechanism 206 is installed above the upper lid 202, and a valve rod 205 is connected to the hydraulic drive mechanism 206 downward (vertical direction). The valve rod 205 is reciprocated up and down by a hydraulic drive mechanism 206. In the steam control valve, the through hole of the upper lid 202 becomes a sliding surface with the valve rod 205, and thus a cylindrical bush 201 made of a metal resistant to friction is inserted into this portion, and the axial direction is The moving valve rod 205 is guided by the bush 201 so that it does not shake sideways. The valve body 204 is provided so as to contact the valve seat 203 and open and close the opening of the valve seat 203. The valve body 204 is provided at the tip of the valve rod 205.

ここでは、蒸気加減弁における各摺動部のうち、可動部材である弁棒205と静止部材であるブッシュ201との摺接面、具体的には弁棒205の外周面およびブッシュ201の内周面の少なくともいずれか一方を被処理部とする。   Here, of the sliding parts in the steam control valve, the sliding contact surface between the valve rod 205 as the movable member and the bush 201 as the stationary member, specifically, the outer peripheral surface of the valve rod 205 and the inner periphery of the bush 201 At least one of the surfaces is a processing target.

本実施形態では、被処理部の表面を、まず前処理として凹凸状に加工した上で、加工後の被処理部の凹凸状表面に、肉盛部を形成する。この肉盛部を形成する際には、前述の図7で説明した原理を利用する。すなわち、金属を主成分とする成形体により構成される電極101と被処理部100に形成された凹凸状表面との間にパルス状の放電を発生させて、電極101の材料を被処理部100の凹凸状表面に溶着させ堆積させることによって肉盛部を形成する。以下、具体例を挙げて詳細に説明する。   In this embodiment, after processing the surface of a to-be-processed part first as an uneven | corrugated shape as pre-processing, the build-up part is formed in the uneven | corrugated surface of the to-be-processed part after a process. When forming the build-up portion, the principle described with reference to FIG. 7 is used. That is, a pulsed discharge is generated between the electrode 101 formed of a molded body containing metal as a main component and the uneven surface formed on the processing target 100, and the material of the electrode 101 is changed to the processing target 100. The build-up part is formed by welding and depositing on the uneven surface of the film. Hereinafter, a specific example will be described in detail.

(加工処理の手順)
図2は、被処理部100に対する(a)前処理、(b)肉盛り処理、(c)仕上げ処理の各工程を含む加工方法の一例を示す部分拡大図である。
(Processing procedure)
FIG. 2 is a partially enlarged view showing an example of a processing method including steps (a) pre-processing, (b) build-up processing, and (c) finishing processing for the processing target 100.

(a)前処理
肉盛りを行う前の前処理を施した様子を図2(a)に示す。
(A) Pretreatment FIG. 2A shows a state in which pretreatment is performed before overlaying.

前処理においては、肉盛りを行う前に、被処理部100の表面(少なくとも肉盛りを行う領域)を機械的に加工する処理、例えば梨地処理を施すことにより、被処理部100の表面を凹凸状に仕上げる。   In the pretreatment, the surface of the portion to be processed 100 is roughened by performing a process for mechanically processing the surface of the portion to be processed 100 (at least the region where the portion is to be built), for example, a satin finish, before performing the overlaying. Finish the shape.

梨地処理とは、被処理部100の表面を機械的に荒らして文字通り梨の肌のようにする処理方法であり、被処理部100の表面はいわゆる「梨地」という半光沢の凸凹地肌に仕上げられる。その凹と凸との高低差(深さ)は凸凹地肌の表面に良好な放電による肉盛厚さを得るために10μm〜50μmであることが好ましい。   The satin treatment is a treatment method that mechanically roughens the surface of the treated portion 100 to literally make the surface of the treated portion 100 like pear skin, and the surface of the treated portion 100 is finished to a semi-glossy uneven surface called “pear texture”. . The height difference (depth) between the concave and convex is preferably 10 μm to 50 μm in order to obtain a build-up thickness by good discharge on the surface of the concave and convex surface.

梨地処理後の表面はマクロ的には不規則な凸凹を呈するが、ミクロ的には図2(a)に示すように梨地処理前の外表面に対して凹部(湾曲したへこみ)11が一様に生じた状態となる一方で、梨地処理前の外表面の一部は凸部(出っ張り面)12として残存している。この凸部12の面(出っ張り面)は肉盛処理の基準面となる。   Although the surface after the matte treatment exhibits irregular irregularities on a macro scale, the microscopically, the concave portion (curved dent) 11 is uniform with respect to the outer surface before the matte finish as shown in FIG. On the other hand, a part of the outer surface before the satin treatment remains as a convex portion (protruding surface) 12. The surface (protruding surface) of the convex portion 12 serves as a reference surface for the overlaying process.

なお、凸凹地肌を得るための梨地処理は、被処理部100の全面に施すようにしてもよいが、例えば摩耗の激しい部位にのみ、従来と同じ肉盛厚さの肉盛りを行うために、その部位にのみ施すようにしてもよい。また、例えば弁棒のような長尺の丸棒では軸方向に所定の間隔を置いて螺旋状に施してもよいし、あるいは軸方向に並べた複数の環状のものに施工してもよし、軸方向に平行に並べた複数の線状のものに施工してもよい。このようにすることで、処理時間やコストの低減を図ることが可能となる。   In addition, the satin treatment for obtaining uneven textured skin may be performed on the entire surface of the processing target 100. You may make it apply only to the site | part. In addition, for example, in a long round bar such as a valve rod, it may be applied spirally with a predetermined interval in the axial direction, or it may be applied to a plurality of annular things arranged in the axial direction, It may be applied to a plurality of linear objects arranged in parallel in the axial direction. By doing so, it is possible to reduce the processing time and cost.

凸凹地肌を得る機械的な手段としては、例えばサンドブラストがある。これは、コンプレッサーにより作られた圧縮エアーを使い、エアーノズルから細かい研磨材を被処理部100の表面に吹き付けて凸凹状にするものである。研磨材の粒子形状は球状が好ましく、その粒径は前述の電極材料の粒子の粒径より大きい例えば10ミクロン以上が好ましい。また研磨材の材料は、SUS304等のステンレス鋼材の場合、延性材の為に被処理部100に衝突しても自ら変形するため被処理部100を摩耗することがない利点があるが、ステンレス鋼材に限定されずその他の鋼種や珪砂、アルミナ等のセラミック系研磨材でもよい。また、凸凹地肌を得るその他の手法として、鋼種のショット玉を使用したショットブラスト等を採用してもよい。   As a mechanical means for obtaining uneven texture, for example, there is sand blasting. In this method, compressed air produced by a compressor is used, and a fine abrasive material is sprayed from the air nozzle onto the surface of the processing object 100 to make it uneven. The particle shape of the abrasive is preferably spherical, and the particle size is preferably larger than the particle size of the electrode material, for example, 10 microns or more. In addition, in the case of a stainless steel material such as SUS304, the material of the abrasive has the advantage that it does not wear the treated part 100 because it deforms itself even if it collides with the treated part 100 because of the ductile material. However, the present invention is not limited to this, and other steel types, silica sand, alumina and other ceramic-based abrasives may be used. In addition, as another method for obtaining uneven texture, shot blasting using steel-type shot balls may be employed.

また、凸凹地肌を得るためには、前述のサンドブラストやショットブラスト等によるブラスト処理を行う代わりに、ショットピーニングやWPC(Wide Peening and Cleaning)等によるピーニング処理を行ってもよい。   Further, in order to obtain uneven textured skin, instead of performing the above-described blasting by sand blasting or shot blasting, peening processing by shot peening or WPC (Wide Peening and Cleaning) may be performed.

ショットピーニングとは、本来、溶接部分にショット材をたたきつけることにより分子的な圧縮応力を表面に作り引っ張り応力を押さえるものであるが、本実施形態で使用する場合、被処理部100の表面に向けて粒子状にした粉末のショット材を噴射することによって被処理部100の表面を荒らす処理を行う。ショットピーニングは、前述のサンドブラストよりも作業力が強い。   Shot peening is originally intended to suppress the tensile stress by creating a molecular compressive stress on the surface by striking a shot material on the welded portion, but when used in this embodiment, it is directed toward the surface of the processing target 100. Then, a process of roughening the surface of the portion to be processed 100 is performed by spraying a powdered shot material. Shot peening has a stronger working force than the aforementioned sandblasting.

WPCとは、微粒子を圧縮性の気体に混合して高速衝突させる表面改質技術である。WPCは、本実施形態で使用する場合、ショットピーニングと同様に、被処理部100の表面に向けて粒子状にした粉末を噴射して表面を荒らすが、ショットピーニングよりも作業力が強く、更に被処理部100の金属表面の分子に短時間高熱を持たせ、表面分子の結晶同士の結びつきを強くするので、金属の疲労強度を向上させるような表面改質が可能である。   WPC is a surface modification technique in which fine particles are mixed with a compressible gas and collided at high speed. When WPC is used in the present embodiment, as in shot peening, the surface of the processing target 100 is sprayed with powder particles to roughen the surface, but the working force is stronger than shot peening, and Since high temperature heat is applied to the molecules on the metal surface of the portion to be processed 100 for a short time and the bonds between the crystal molecules of the surface molecules are strengthened, surface modification that improves the fatigue strength of the metal is possible.

この表面改質の効果を有効に得られるようにするためには、噴射する粒子を、例えばクロム(Cr)やクロム(Cr)の化合物の粒子にしてピーニング処理を行う。これにより、常温拡散現象によって被処理部100の表層部を合金化させ、クロム(Cr)やクロム(Cr)の化合物を豊富に存在させることができる。特にクロム(Cr)やクロム(Cr)の化合物が豊富に存在するのは、ピーニング処理により粒子状になった粉末が衝突して浸透する凹部11及びその谷底の部分である。   In order to effectively obtain the effect of this surface modification, the particles to be ejected are made of, for example, chromium (Cr) or chromium (Cr) compound particles, and peened. Thereby, the surface layer part of the to-be-processed part 100 can be alloyed by a normal temperature diffusion phenomenon, and the compound of chromium (Cr) and chromium (Cr) can be made to exist abundantly. In particular, the abundance of chromium (Cr) and chromium (Cr) compounds exist in the concave portion 11 and the bottom of the valley where the powder formed into particles by the peening treatment collides and penetrates.

クロム(Cr)やクロム(Cr)の化合物が豊富な凹部11の部分は、後述する肉盛り処理の工程においてパルス状の放電が発生するため、クロム(Cr)やクロム(Cr)の化合物に加熱酸化処理を施したことになり、より優れた耐酸化性や保護性を有するクロムカーバイト(CrC)や酸化クロム(Cr)を含む酸化膜を形成することが可能になる。 The portion of the concave portion 11 rich in chromium (Cr) or chromium (Cr) compound is heated to the chromium (Cr) or chromium (Cr) compound because a pulsed discharge is generated in the build-up process described later. Since the oxidation treatment is performed, an oxide film containing chromium carbide (CrC) or chromium oxide (Cr 2 O 3 ) having superior oxidation resistance and protection can be formed.

(b)肉盛り処理
肉盛り処理を施した様子を図2(b)に示す。
(B) Build-up process The state where the build-up process was performed is shown in FIG.

肉盛り処理においては、前述の電極101と被処理部100(前述の基準面)との間に一定の微小間隙を保持した状態で、電極101と被処理部100との間にパルス状の放電を発生させ、電極101を消耗させて電極101の材料を被処理部100の表面に溶着させ堆積させながら、電極101または被処理部材のいずれかを一定の微小間隙を保持した状態で一定の送り速度で移動させることにより、被処理部100の表面全体を走査し、肉盛部102を形成する。形成される肉盛部102の詳細については後で述べる。   In the build-up process, a pulsed discharge is generated between the electrode 101 and the target portion 100 in a state where a certain minute gap is maintained between the above-described electrode 101 and the target portion 100 (the aforementioned reference surface). The electrode 101 is consumed and the material of the electrode 101 is deposited and deposited on the surface of the processing target 100, while the electrode 101 or the member to be processed is kept in a constant state while maintaining a certain minute gap. By moving at a speed, the entire surface of the processing target portion 100 is scanned to form the build-up portion 102. The details of the built-up portion 102 to be formed will be described later.

肉盛り処理に使用する駆動機構の一例を図3に示す。ここでは、被処理部100は弁棒205の表面にあり、前処理がすでに施されているものとする。   An example of the drive mechanism used for the overlaying process is shown in FIG. Here, it is assumed that the portion to be processed 100 is on the surface of the valve stem 205 and the pretreatment has already been performed.

図3に示す駆動機構300は、弁棒205を回転させる電動機301と、電極101を支持しつつ該電極101を弁棒205の軸方向に沿って移動させる送り機構302と、この送り機構302を駆動する電動機303とを含む。   A drive mechanism 300 shown in FIG. 3 includes an electric motor 301 that rotates the valve rod 205, a feed mechanism 302 that supports the electrode 101 and moves the electrode 101 along the axial direction of the valve rod 205, and the feed mechanism 302. And an electric motor 303 to be driven.

送り機構302は、送りネジが施された回転軸304と、この回転軸304の送りネジと噛合するように同方向の送りネジが施されたブロック305と、このブロック305に取り付けられた電極保持部306とを有する。   The feed mechanism 302 includes a rotary shaft 304 provided with a feed screw, a block 305 provided with a feed screw in the same direction so as to mesh with the feed screw of the rotary shaft 304, and an electrode holding member attached to the block 305. Part 306.

なお、電極101は、金属を主成分とする粉末をプレスにより圧縮もしくは加熱処理して成形した成形体により構成される成形電極であるが、これに限らず、その他公知の方法で成形しても差し支えない。   The electrode 101 is a molded electrode formed of a molded body formed by compressing or heat-treating a powder containing metal as a main component with a press. However, the electrode 101 is not limited thereto, and may be molded by other known methods. There is no problem.

このような構成において、電動機301により弁棒205を一定の速度で回転させながら、電動機303により送り機構302の回転軸304を一定の速度で回転させる。回転軸304およびブロック305にはそれぞれ送りネジが施されているため、回転軸304が回転すると、ブロック305が回転軸304の軸方向に沿って一定の速度で移動する。これにより、電極保持部306に保持された電極101は、弁棒205の軸方向に沿って一定の速度で移動する。   In such a configuration, the rotating shaft 304 of the feed mechanism 302 is rotated at a constant speed by the electric motor 303 while the valve rod 205 is rotated at a constant speed by the electric motor 301. Since the rotation shaft 304 and the block 305 are each provided with a feed screw, when the rotation shaft 304 rotates, the block 305 moves at a constant speed along the axial direction of the rotation shaft 304. Thereby, the electrode 101 held by the electrode holding part 306 moves at a constant speed along the axial direction of the valve stem 205.

このように駆動機構300を動作させると、弁棒205の表面には、螺旋状の肉盛部102が形成される。   When the drive mechanism 300 is operated in this manner, the spiral built-up portion 102 is formed on the surface of the valve rod 205.

なお、図3に示した駆動機構300は一例であり、これに限定されるものではない。例えば、電極101を弁棒205の軸方向に移動させる代わりに、弁棒205の周方向に移動させるようにしてもよい。また、電極101を移動させる代わりに、弁棒205をその軸方向または周方向に移動させるようにしてもよい。   Note that the drive mechanism 300 shown in FIG. 3 is an example, and the present invention is not limited to this. For example, instead of moving the electrode 101 in the axial direction of the valve stem 205, the electrode 101 may be moved in the circumferential direction of the valve stem 205. Further, instead of moving the electrode 101, the valve rod 205 may be moved in its axial direction or circumferential direction.

ところで、肉盛り処理を行う前の被処理部100の表面は、図2(a)で説明したように、円弧状の凹部11が生じており、一方で梨地処理前の外表面の一部が凸部12として残存している。凸部12の頂点(面)の表面積は、凹部11の表面積に対して相対的に少ない。また、被処理部100の表面に沿って走査される電極101により近いのは、凹部11よりも凸部12の方である。そのため、電極101からの放電エネルギー(パルス状の放電の発生数)は、凹部11よりも凸部12の方に強く作用する。ここで、もし送り速度を従来と同じにすると、肉盛りの厚さは凹部11の方が薄くなるのに対して凸部12の方は必要以上に厚くなる。   By the way, as described in FIG. 2A, the surface of the processing target 100 before the build-up process has the arc-shaped concave portion 11, and on the other hand, a part of the outer surface before the satin processing is formed. The protrusion 12 remains. The surface area of the apex (surface) of the convex portion 12 is relatively small with respect to the surface area of the concave portion 11. Further, the convex portion 12 is closer to the convex portion 12 than the concave portion 11 is closer to the electrode 101 scanned along the surface of the processing target portion 100. Therefore, the discharge energy from the electrode 101 (the number of occurrences of pulsed discharge) acts more strongly on the convex portion 12 than on the concave portion 11. Here, if the feed rate is the same as the conventional one, the thickness of the build-up becomes thinner in the concave portion 11, whereas the convex portion 12 becomes thicker than necessary.

そこで、本実施形態では、従来の送り速度よりも早い所定の送り速度で電極101を被処理部100の基準面に沿って移動させることにより、凸部12に作用する放電エネルギーを適度に抑え、凸部12に形成される肉盛厚さが従来の肉盛厚さと同程度となるようにする。   Therefore, in the present embodiment, by moving the electrode 101 along the reference surface of the processing target 100 at a predetermined feed rate that is faster than the conventional feed rate, the discharge energy acting on the convex portion 12 is moderately suppressed, The build-up thickness formed in the convex part 12 is made to be comparable to the conventional build-up thickness.

このようにした結果、本実施形態では、肉盛りの処理時間を従来よりも短くすることができる。また、前処理にかかる時間は、肉盛り処理にかかる時間に比べるとかなり短いため、前処理と肉盛り処理とを合わせた時間は、従来の肉盛り処理にかかる時間よりも短くなる。   As a result of this, in the present embodiment, the processing time for build-up can be made shorter than before. In addition, since the time required for the preprocessing is considerably shorter than the time required for the build-up process, the combined time of the pretreatment and the build-up process is shorter than the time required for the conventional build-up process.

なお、本実施形態では、従来よりも送り速度を速くしたこと、また、電極101と被処理部100との間隙が凹部11の陥没の分だけ長いことから、凹部11に作用する放電エネルギーは減少し、凹部11での肉盛厚さ(肉盛堆積量)は薄く(少なく)なるが、肉盛部102としての機能や効果は問題なく発揮される。例えば、コバルト基硬質合金もしくはニッケル基硬質合金を電極101の材料として用いた場合、それら合金の特徴である耐酸化性を有効に発揮させることができる。   In the present embodiment, since the feeding speed is increased as compared with the prior art, and the gap between the electrode 101 and the processing target 100 is longer by the depression of the concave portion 11, the discharge energy acting on the concave portion 11 is reduced. However, although the thickness of the built-up in the concave portion 11 (the amount of build-up) is thin (less), the function and effect as the built-up portion 102 are exhibited without problems. For example, when a cobalt-based hard alloy or a nickel-based hard alloy is used as the material of the electrode 101, the oxidation resistance that is a characteristic of these alloys can be effectively exhibited.

図2(b)に示されるように、肉盛り処理により形成された肉盛部102は、電極101の材料の粒子が被処理部100の凹凸状表面から拡散浸透した拡散浸透層102aと、この拡散層には電極101の材料の粒子が溶着して堆積した堆積層102bを含む。   As shown in FIG. 2 (b), the build-up portion 102 formed by the build-up process includes a diffusion / penetration layer 102 a in which particles of the material of the electrode 101 diffuse and penetrate from the uneven surface of the processed portion 100, The diffusion layer includes a deposition layer 102b in which particles of the material of the electrode 101 are deposited by deposition.

堆積層102bの肉厚は、凹部11と凸部12に作用する放電エネルギーの強弱の違いから、凸部12では厚くなるのに対し、凹部11では薄くなる。また、拡散浸透層102aも放電エネルギーに影響を受けるため、拡散浸透層102aの肉厚は、堆積層102bと同様に、凸部12では厚く(深く)なるのに対し、凹部11では薄く(浅く)なる。   The thickness of the deposited layer 102 b is thicker at the convex portion 12 and thinner at the concave portion 11 due to the difference in strength of the discharge energy acting on the concave portion 11 and the convex portion 12. Further, since the diffusion / permeation layer 102a is also affected by the discharge energy, the thickness of the diffusion / permeation layer 102a is thicker (deeper) in the convex portion 12 than in the deposited layer 102b, whereas it is thinner (shallow) in the concave portion 11. )Become.

拡散浸透層102aは、被処理部100に電極101の材料を放電加工により肉盛りしたものであるため、組成比が厚さ方向へ傾斜的に変化する傾斜組成の溶融部が生成されている。ここでは、適正な放電条件を選択することにより、母材への入熱量を制限すべく溶融部となる拡散浸透層102aの厚さは、20μm以下であって、1μm以上、望ましくは5μm以上とすることが好ましい。溶融部を有する傾斜組成は、傾斜機能材料となり被処理部100の母材と接する境界近傍の線膨張係数は略等しくなり、線膨張係数の差がほとんど生じないため、肉盛部102の残留応力を解消することができる。この結果、被処理部100の表面に施した肉盛部102の亀裂の発生を防止することができる。堆積層102bは、放電加工を採用したことに起因する堆積層102bの厚さに制限はないが、コバルト基硬質合金の持つ耐摩耗性や耐酸化性を有効に発揮させるためにもその厚みは50μm〜300μm程度とすることが望ましい。   Since the diffusion / penetration layer 102a is formed by depositing the material of the electrode 101 on the processing target 100 by electric discharge machining, a melted portion having a gradient composition in which the composition ratio changes in the thickness direction is generated. Here, by selecting an appropriate discharge condition, the thickness of the diffusion / penetration layer 102a serving as a melting portion is 20 μm or less to limit the amount of heat input to the base material, and is 1 μm or more, preferably 5 μm or more. It is preferable to do. Since the gradient composition having the melted portion becomes a functionally gradient material, the linear expansion coefficients in the vicinity of the boundary in contact with the base material of the processed portion 100 are substantially equal, and there is almost no difference in the linear expansion coefficients. Can be eliminated. As a result, it is possible to prevent the occurrence of cracks in the built-up portion 102 applied to the surface of the processing target portion 100. The thickness of the deposited layer 102b is not limited to the thickness of the deposited layer 102b resulting from the adoption of electric discharge machining, but the thickness is not limited in order to effectively exhibit the wear resistance and oxidation resistance of the cobalt-based hard alloy. It is desirable to be about 50 μm to 300 μm.

(c)仕上げ処理
仕上げ処理を施した様子を図2(c)に示す。
(C) Finishing process The finishing process is shown in FIG.

個々の凸部12に堆積された堆積層102bの上部は、弁棒等の製品の摺接面を構成する部分であるため、研削や研磨などの機械加工により、摺接面として適した形状・寸法・面粗さを有するように平面に仕上げる。   Since the upper part of the deposited layer 102b deposited on each convex part 12 is a part constituting a sliding contact surface of a product such as a valve stem, a shape suitable as a sliding contact surface by machining such as grinding or polishing. Finish flat to have dimensions and surface roughness.

このように仕上げた結果、堆積層102bの表面のすべてが摺接面となるのではなく、堆積層102bの一部、すなわち、個々の凸部12に堆積された堆積層102bの上部のみが摺接面となる。摺接面の面積は従来よりも小さくなるため、急速に動く弁棒等おいて発生する摩擦(熱)を低減させることができ、製品の長寿化を図ることができる。   As a result of finishing in this way, not all of the surface of the deposited layer 102b becomes a slidable contact surface, but only a part of the deposited layer 102b, that is, only the upper part of the deposited layer 102b deposited on each convex portion 12 is slid. It becomes the tangent surface. Since the area of the slidable contact surface is smaller than before, friction (heat) generated in a rapidly moving valve stem or the like can be reduced, and the product life can be extended.

なお、図2の例では、(a)の前処理において被処理部100の表面に略同じ大きさの凹部11を一様に形成する場合を示したが、これに限定されるものではない。凹凸状表面が形成されるのであれば、凹部や凸部の大きさがある程度不均一となっても構わない。例えば、図4の(a)に示されるように、凹部11と大きさが違う凹部11aが混在するなど、凹部の大きさがある程度不均一となっても構わない。この場合の肉盛り処理や仕上げ処理の方法は図2の(b),(c)にて説明した方法と同様であり、図4の(b)に示されるように肉盛りがなされ、図4の(c)に示されるように仕上げられる。   In the example of FIG. 2, the case where the recesses 11 having substantially the same size are uniformly formed on the surface of the processing target 100 in the preprocessing of (a) is shown, but the present invention is not limited to this. As long as the uneven surface is formed, the size of the concave portion or the convex portion may be uneven to some extent. For example, as shown in FIG. 4 (a), the size of the recesses may be somewhat non-uniform, such as the presence of recesses 11a having different sizes from the recesses 11. In this case, the build-up process and the finishing process are the same as those described in FIGS. 2B and 2C, and the build-up process is performed as shown in FIG. Finished as shown in (c).

また、図2の例では、(a)の前処理において被処理部100の表面に円弧状の凹部11を形成する場合を示したが、これに限定されるものではない。凹凸状表面が形成されるのであれば、凹部が円弧状以外の形状となっても構わない。例えば、図5の(a)に示されるように、加工手段によっては、三角状の(鋭角のある)凹部11bなどが形成されても構わない。この場合の肉盛り処理や仕上げ処理の方法は図2の(b),(c)にて説明した方法と同様であり、図5の(b)に示されるように肉盛りがなされ、図5の(c)に示されるように仕上げられる。   In the example of FIG. 2, the case where the arc-shaped recess 11 is formed on the surface of the processing target 100 in the pre-processing of (a) is shown, but the present invention is not limited to this. As long as the uneven surface is formed, the concave portion may have a shape other than the arc shape. For example, as shown in FIG. 5A, depending on the processing means, a triangular (acute angle) recess 11b or the like may be formed. In this case, the build-up process and the finishing process are the same as those described in FIGS. 2B and 2C, and the build-up process is performed as shown in FIG. Finished as shown in (c).

なお、上述の説明では、前処理の工程において外観的に梨地の凸凹地肌を得る手段として、サンドブラスト、ショットブラスト、ショットピーニング、WPCを採用する場合を例示したが、これに限定されるものではない。肉盛り処理の工程において電極からの放電エネルギーが凹部よりも凸部の方に強く作用する凸凹形状を形成できるのであれば、別の手段を用いてもよい。例えば、機械加工により目の細かなローレット加工溝を形成してもよいし、また化学的な腐食により凸凹溝や幾何学模様を形成してもよい。   In the above description, sand blasting, shot blasting, shot peening, and WPC are exemplified as means for obtaining a textured textured surface in the pretreatment step. However, the present invention is not limited to this. . Other means may be used as long as the discharge energy from the electrode can form a concave / convex shape that acts more strongly on the convex portion than on the concave portion in the build-up process. For example, fine knurled grooves may be formed by machining, or uneven grooves and geometric patterns may be formed by chemical corrosion.

このように、第1の実施形態によれば、従来のように被処理部全体に均一な厚みの肉盛りを施すのではなく、肉盛りの前処理として被処理部を凹凸状に加工した上で、加工後の凹凸状表面に肉盛部を形成し、また、肉盛部の形成に際しては、従来の送り速度よりも早い所定の送り速度で電極101を被処理部100の基準面に沿って移動させることにより、凸部12に作用する放電エネルギーを適度に抑え、凸部12の肉盛厚さが従来と同程度となるようにしているため、肉盛りの処理時間を従来よりも短くすることができる。また、前処理にかかる時間は、肉盛り処理にかかる時間に比べるとかなり短いため、前処理と肉盛り処理とを合わせた時間は、従来の肉盛り処理にかかる時間よりも短くなる。   As described above, according to the first embodiment, the processed portion is processed into a concavo-convex shape as a pretreatment for the build-up, instead of applying a uniform thickness to the entire processed portion as in the prior art. Then, a built-up portion is formed on the uneven surface after processing, and when forming the built-up portion, the electrode 101 is moved along the reference surface of the processing target portion 100 at a predetermined feed rate higher than the conventional feed rate. Therefore, the discharge energy acting on the convex portion 12 is moderately suppressed, and the build-up thickness of the convex portion 12 is approximately the same as the conventional one. can do. In addition, since the time required for the preprocessing is considerably shorter than the time required for the build-up process, the combined time of the pretreatment and the build-up process is shorter than the time required for the conventional build-up process.

なお、第1の実施形態では、摺動部の一例として弁棒205がブッシュ201に対して直線運動(軸方向に運動)する場合の例を示したが、これには限定されず、例えばバタフライ弁のように弁棒が回転運動(周方向に運動)する場合においても、弁棒等とブッシュ等との相対関係および構造は同様であるため、その場合においても本実施形態で説明した手法を適用することができる。   In the first embodiment, an example in which the valve rod 205 linearly moves (moves in the axial direction) with respect to the bush 201 as an example of the sliding portion has been described. However, the present invention is not limited to this. Even when the valve stem rotates (moves in the circumferential direction) like a valve, the relative relationship and structure between the valve stem and the bush are the same, and in this case, the method described in this embodiment is used. Can be applied.

[第2の実施形態]
次に、第2の実施形態について説明する。ここでは、第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
[Second Embodiment]
Next, a second embodiment will be described. Here, the description of parts common to the first embodiment is omitted, and different parts are mainly described.

図6は、図1に示す第1の実施形態である蒸気加減弁のその他の構造を示し、特に弁体周辺部の部分断面図である。なお、第2の実施形態に係る弁装置の基本部分は、図1に示す第1の実施形態と同様であるため、同じ機能を有する部品には同じ符号を用いており、その説明を省略する。従って以下では、第1の実施形態と異なる部分を中心に説明する。   FIG. 6 shows another structure of the steam control valve according to the first embodiment shown in FIG. 1, and is a partial cross-sectional view around the valve body in particular. In addition, since the basic part of the valve apparatus which concerns on 2nd Embodiment is the same as that of 1st Embodiment shown in FIG. 1, the same code | symbol is used for the component which has the same function, The description is abbreviate | omitted. . Therefore, the following description will focus on the parts that are different from the first embodiment.

図6の蒸気加減弁は、弁棒205と弁棒205に連動する弁体412を軸方向に作動させ、弁の開度を変化させることで蒸気流量の調整機能を有する。一連の動作の中で、弁棒205は上蓋410内部に設置されたブッシュ201を、弁体412はスリーブ411をそれぞれガイドとして作動する。   The steam control valve in FIG. 6 has a function of adjusting the steam flow rate by operating the valve rod 205 and the valve body 412 linked to the valve rod 205 in the axial direction to change the opening of the valve. In a series of operations, the valve rod 205 operates with the bush 201 installed inside the upper lid 410, and the valve body 412 operates with the sleeve 411 as a guide.

スリーブ411は、図示しない蒸気弁本体200の内部にて上蓋410に固定されている。弁体412は図示しない弁座203に当接するように設けられ、弁棒205の先端部に組み立てられている。   The sleeve 411 is fixed to the upper lid 410 inside the steam valve main body 200 (not shown). The valve body 412 is provided so as to abut on a valve seat 203 (not shown), and is assembled at the tip of the valve rod 205.

図1に示す第1の実施形態では、弁開閉に伴って動作する可動部材としての弁棒205とこの弁棒205に摺接する静止部材としてのブッシュ201とを含む弁装置であったが、第2の実施形態では、可動部材として弁体412、静止部材としてスリーブ411を適用したものである。すなわち、弁体412の外面とスリーブ411の内面によって摺接面を構成している。   In the first embodiment shown in FIG. 1, the valve device includes a valve rod 205 as a movable member that operates as the valve is opened and closed and a bush 201 as a stationary member that is in sliding contact with the valve rod 205. In the second embodiment, a valve body 412 is applied as a movable member, and a sleeve 411 is applied as a stationary member. That is, the outer surface of the valve body 412 and the inner surface of the sleeve 411 constitute a sliding surface.

弁体412とスリーブ411から構成される摺動部の少なくとも一方の摺接面の表面には、第1の実施形態で説明したものと同様の肉盛部102を一体に備えている。   A built-up portion 102 similar to that described in the first embodiment is integrally provided on the surface of at least one sliding contact surface of the sliding portion constituted by the valve body 412 and the sleeve 411.

このように、第2の実施形態によれば、弁体412がスリーブ411に対して摺接する摺動部においても、第1の実施形態と同様の効果を得ることができる。   As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained even in the sliding portion in which the valve body 412 is in sliding contact with the sleeve 411.

以上詳述したように、各実施形態によれば、肉盛部を短時間で完成させ、生産効率を向上させることができる。   As described above in detail, according to each embodiment, the built-up portion can be completed in a short time, and the production efficiency can be improved.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…凹部、12…凸部、100…被処理部、101…電極、102…肉盛部、102a…拡散浸透層、102b…堆積層、103…直流電源、200…蒸気弁本体、201…ブッシュ、202…上蓋、203…弁座、204…弁体、205…弁棒、206…油圧駆動機構、207〜209…開口、210…蒸気室、300…駆動機構、301,303…電動機、302…送り機構、410…上蓋、411…スリーブ、412…弁体。   DESCRIPTION OF SYMBOLS 11 ... Concave part, 12 ... Convex part, 100 ... Processed part, 101 ... Electrode, 102 ... Overlay part, 102a ... Diffusion penetration layer, 102b ... Deposited layer, 103 ... DC power supply, 200 ... Steam valve main body, 201 ... Bush , 202 ... Upper lid, 203 ... Valve seat, 204 ... Valve body, 205 ... Valve rod, 206 ... Hydraulic drive mechanism, 207 to 209 ... Opening, 210 ... Steam chamber, 300 ... Drive mechanism, 301, 303 ... Electric motor, 302 ... Feed mechanism, 410 ... upper lid, 411 ... sleeve, 412 ... valve body.

Claims (10)

弁開閉に伴って動作する可動部材とこの可動部材に摺接する静止部材とを含む弁装置であって、
前記可動部材と前記静止部材の少なくとも一方の表面を被処理部として凹凸状に加工し、加工後の被処理部の凹凸状表面に肉盛部を形成してなり、
前記肉盛部は、金属を主成分とする成形体により構成される電極と前記被処理部の凹凸状表面との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の凹凸状表面に溶着させ堆積させることによって形成されたものであることを特徴とする弁装置。
A valve device including a movable member that operates in association with opening and closing of the valve and a stationary member that is in sliding contact with the movable member,
Processing at least one surface of the movable member and the stationary member into a concavo-convex shape as a processed portion, and forming a built-up portion on the concavo-convex surface of the processed portion after processing,
The build-up portion generates a pulsed discharge between an electrode formed of a molded body containing a metal as a main component and the concavo-convex surface of the processing target portion, thereby transferring the material of the electrode to the processing target portion. A valve device formed by welding and depositing on an uneven surface.
前記被処理部の凹凸状表面は、前記被処理部の表面を機械的に加工して仕上げたものであることを特徴とする請求項1に記載の弁装置。   2. The valve device according to claim 1, wherein the uneven surface of the portion to be processed is a finish obtained by mechanically processing the surface of the portion to be processed. 前記被処理部の凹凸状表面は、前記被処理部の表面を機械的に荒らして梨地状に仕上げたものであることを特徴とする請求項1又は2に記載の弁装置。   3. The valve device according to claim 1, wherein the uneven surface of the processing portion is a finish made by mechanically roughening the surface of the processing portion. 前記被処理部の凹凸状表面は、前記被処理部の表面に対してブラスト処理もしくはピーニング処理を施すことによって形成されたものであることを特徴とする請求項1乃至3のいずれか1項に記載の弁装置。   The uneven surface of the to-be-processed part is formed by performing a blasting process or a peening process on the surface of the to-be-processed part. The valve device described. 前記被処理部の凹凸状表面に形成された肉盛部のうち、凹状表面に形成された肉盛部の肉厚は、凸状表面に形成された肉盛部の肉厚よりも薄いことを特徴とする請求項1乃至4のいずれか1項に記載の弁装置。   Among the built-up parts formed on the uneven surface of the treated part, the thickness of the built-up part formed on the concave surface is thinner than the thickness of the built-up part formed on the convex surface The valve device according to any one of claims 1 to 4, characterized in that: 前記肉盛部は、前記電極の材料の粒子が前記被処理部の凹凸状表面から拡散浸透した拡散浸透層と、前記拡散浸透層に前記電極の材料の粒子が溶着して堆積した堆積層とを含むことを特徴とする請求項1乃至5のいずれか1項に記載の弁装置。   The build-up portion includes a diffusion / penetration layer in which particles of the electrode material are diffused and permeated from the concavo-convex surface of the processed portion, and a deposition layer in which particles of the electrode material are deposited on the diffusion / penetration layer. The valve device according to any one of claims 1 to 5, characterized by comprising: 前記被処理部の凹状表面にクロムカーバイト(CrC)もしくは酸化クロム(Cr)を含む酸化膜が形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の弁装置。 The oxide film containing chromium carbide (CrC) or chromium oxide (Cr 2 O 3 ) is formed on the concave surface of the processing target part. Valve device. 前記可動部材は弁棒を含み、前記静止部材は前記弁棒に摺接するブッシュを含むことを特徴とする請求項1乃至7のいずれか1項に記載の弁装置。   8. The valve device according to claim 1, wherein the movable member includes a valve stem, and the stationary member includes a bush slidably contacting the valve rod. 前記可動部材は弁体を含み、前記静止部材は前記弁体に摺接するスリーブを含むことを特徴とする請求項1乃至8のいずれか1項に記載の弁装置。   The valve device according to any one of claims 1 to 8, wherein the movable member includes a valve body, and the stationary member includes a sleeve that is slidably contacted with the valve body. 弁開閉に伴って動作する可動部材とこの可動部材に摺接する静止部材とを含む弁装置の製造方法であって、
前記可動部材と前記静止部材の少なくとも一方の表面を被処理部として凹凸状に加工する工程と、
前記加工した被処理部の凹凸状表面に肉盛部を形成する工程と、
を含み、
前記肉盛部を形成する工程では、金属を主成分とする成形体により構成される電極と前記被処理部の凹凸状表面との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の凹凸状表面に溶着させ堆積させることによって肉盛部を形成することを特徴とする弁装置の製造方法。
A method of manufacturing a valve device including a movable member that operates in accordance with opening and closing of the valve and a stationary member that is in sliding contact with the movable member,
Processing at least one surface of the movable member and the stationary member into a concavo-convex shape as a treated portion;
Forming a build-up part on the uneven surface of the processed part processed;
Including
In the step of forming the build-up portion, a pulsed discharge is generated between an electrode constituted by a molded body containing metal as a main component and the concavo-convex surface of the treated portion, and the material of the electrode is A method for manufacturing a valve device, comprising forming a build-up portion by welding and depositing on an uneven surface of a portion to be processed.
JP2014205139A 2014-10-03 2014-10-03 Manufacturing method of valve device, and valve device Pending JP2016075327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205139A JP2016075327A (en) 2014-10-03 2014-10-03 Manufacturing method of valve device, and valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205139A JP2016075327A (en) 2014-10-03 2014-10-03 Manufacturing method of valve device, and valve device

Publications (1)

Publication Number Publication Date
JP2016075327A true JP2016075327A (en) 2016-05-12

Family

ID=55949677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205139A Pending JP2016075327A (en) 2014-10-03 2014-10-03 Manufacturing method of valve device, and valve device

Country Status (1)

Country Link
JP (1) JP2016075327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145277A1 (en) * 2020-01-15 2021-07-22
JP2023026950A (en) * 2021-08-16 2023-03-01 三菱重工業株式会社 steam valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202651A (en) * 2007-02-19 2008-09-04 Shimadzu Corp Flow channel switching valve
WO2008117802A1 (en) * 2007-03-26 2008-10-02 Ihi Corporation Heat resistant component
JP2013119921A (en) * 2011-12-08 2013-06-17 Toshiba Corp Valve device, method of manufacturing valve device, and method of repairing valve device
JP2013249824A (en) * 2012-06-04 2013-12-12 Toshiba Corp Method for manufacturing member for steam turbine plant, member for steam turbine plant, governing valve and steam turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202651A (en) * 2007-02-19 2008-09-04 Shimadzu Corp Flow channel switching valve
WO2008117802A1 (en) * 2007-03-26 2008-10-02 Ihi Corporation Heat resistant component
JP2013119921A (en) * 2011-12-08 2013-06-17 Toshiba Corp Valve device, method of manufacturing valve device, and method of repairing valve device
JP2013249824A (en) * 2012-06-04 2013-12-12 Toshiba Corp Method for manufacturing member for steam turbine plant, member for steam turbine plant, governing valve and steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145277A1 (en) * 2020-01-15 2021-07-22
WO2021145277A1 (en) * 2020-01-15 2021-07-22 日立Astemo株式会社 Height adjustment device
JP7241208B2 (en) 2020-01-15 2023-03-16 日立Astemo株式会社 Height adjuster
JP2023026950A (en) * 2021-08-16 2023-03-01 三菱重工業株式会社 steam valve

Similar Documents

Publication Publication Date Title
Yin et al. Cold spray additive manufacturing and repair: Fundamentals and applications
EP3438462B1 (en) Impeller production method by fused deposition modeling and mechanical polishing
JP6157937B2 (en) Valve device and manufacturing method thereof
US7703312B2 (en) Component with compressive residual stresses, process for producing and apparatus for generating compressive residual stresses
US7824159B2 (en) Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
JP2010151148A (en) Surface treatment method, turbine moving blade, gas turbine engine, and steam turbine engine
WO2004033755A1 (en) Rotor and coating method therefor
JP2010000540A5 (en)
JP6291693B2 (en) Mold correction and regeneration method using high-speed flame spray coating method and plasma ion nitriding method, and system thereof
WO2006095799A1 (en) Surface treatment method and repair method
JPWO2008117802A1 (en) Heat resistant parts
US8597491B2 (en) Procedure for the production and application of a protective layer
US20140284509A1 (en) Valve apparatus, method of manufacturing valve apparatus, and method of repairing valve apparatus
JP2016075327A (en) Manufacturing method of valve device, and valve device
JP5202024B2 (en) Hard film formation method
US5759641A (en) Method of applying strengthening coatings to metallic or metal-containing surfaces
JP2014088875A (en) Components with micro cooled patterned coating layer and manufacturing methods
WO2017170729A1 (en) Impeller production method by fused deposition modeling using dissimilar materials, and impeller
WO2005068670A1 (en) Engine part, high-temperature part, surface treatment method, gas-turbine engine, galling preventive structure, and method for producing galling preventive structure
CN110923696A (en) Laser cladding nickel-based material for surface of ball valve and additive manufacturing process thereof
JP2013249824A (en) Method for manufacturing member for steam turbine plant, member for steam turbine plant, governing valve and steam turbine
Bagherifard et al. Post-processing
JP2015158260A (en) Valve device and manufacturing method of the same
CN212286309U (en) Micro-texture self-lubricating ball joint with ceramic coating
JP4639317B2 (en) Roll manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20180308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831