JP2016074995A - Method for producing pitch for carbon fiber and pitch for carbon fiber obtained thereby - Google Patents

Method for producing pitch for carbon fiber and pitch for carbon fiber obtained thereby Download PDF

Info

Publication number
JP2016074995A
JP2016074995A JP2014205624A JP2014205624A JP2016074995A JP 2016074995 A JP2016074995 A JP 2016074995A JP 2014205624 A JP2014205624 A JP 2014205624A JP 2014205624 A JP2014205624 A JP 2014205624A JP 2016074995 A JP2016074995 A JP 2016074995A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
producing
peroxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014205624A
Other languages
Japanese (ja)
Other versions
JP5859623B1 (en
Inventor
パク・サンウック
Sang Wook Park
オ・ヨンセ
Young Se Oh
チェ・ジス
Ji-Su Choi
キム・キウン
Ki-Ung Kim
パク・サンヘ
Sang-Hee Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Caltex Corp
Original Assignee
GS Caltex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Caltex Corp filed Critical GS Caltex Corp
Priority to JP2014205624A priority Critical patent/JP5859623B1/en
Application granted granted Critical
Publication of JP5859623B1 publication Critical patent/JP5859623B1/en
Publication of JP2016074995A publication Critical patent/JP2016074995A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing pitch for carbon fiber, which can improve oxidation stability and tensile strength through radical crosslinking of each molecule in a petroleum-process residual oil by using a prescribed radical source, and which lowers a content of quinoline insoluble (QI) matter, and to provide pitch for carbon fiber produced by the method.SOLUTION: The method for producing pitch for carbon fiber, comprising: charging a peroxide-based compound and ozone into a petroleum-process residual oil; and reacting these by heat-treating the same.SELECTED DRAWING: Figure 2

Description

本発明は、炭素繊維用ピッチに関し、より詳細には、ラジカル架橋(Crosslinking)を通じて高軟化点を有する炭素繊維用ピッチを製造する方法及びそれによって製造された炭素繊維用ピッチに関する。   The present invention relates to a pitch for carbon fiber, and more particularly to a method for producing a pitch for carbon fiber having a high softening point through radical crosslinking and a pitch for carbon fiber produced thereby.

炭素繊維は、原料物質によってPAN(Polyacrylonitrile)系、セルロース系、ピッチ系、フェノール樹脂系に区分され、このうち、ピッチ系炭素繊維は、前駆体であるピッチの種類によって、液晶(Mesophase)ピッチ系炭素繊維と、等方性(Isotropic)ピッチ系炭素繊維とに大きく分けられる。   Carbon fibers are classified into PAN (Polyacrylonitrile), cellulose, pitch, and phenol resin types depending on the raw material. Among these, pitch-based carbon fibers are liquid crystal (Mesophase) pitch systems depending on the type of pitch that is a precursor. It can be roughly divided into carbon fibers and isotropic pitch-based carbon fibers.

前記液晶ピッチ系炭素繊維は、前駆体として光学的に異方性である液晶ピッチを使用して製造し、等方性ピッチ系炭素繊維は、前駆体として光学的に等方性である等方性ピッチを使用して製造する。炭素繊維の機械的物性は、液晶ピッチ系炭素繊維が一般に高強度及び高弾性を示す一方、等方性ピッチ系炭素繊維は低強度及び低弾性の汎用的な物性を示す。   The liquid crystal pitch-based carbon fiber is manufactured using a liquid crystal pitch that is optically anisotropic as a precursor, and the isotropic pitch-based carbon fiber is optically isotropic as a precursor. Manufactured using a characteristic pitch. Regarding the mechanical properties of carbon fibers, liquid crystal pitch-based carbon fibers generally exhibit high strength and high elasticity, while isotropic pitch-based carbon fibers exhibit general-purpose physical properties of low strength and low elasticity.

しかし、液晶ピッチ系炭素繊維は、超高温材料などの制限された範囲に応用されているので、汎用炭素繊維の製造のための等方性前駆体ピッチの製造がさらに要求されている。このような汎用炭素繊維は、価格が低い一方、高強度及び高弾性を必要とするので、物性を向上させるためには初期原料と製造工程の研究がさらに必要な実情にある。   However, since the liquid crystal pitch-based carbon fiber is applied to a limited range such as an ultra-high temperature material, it is further required to produce an isotropic precursor pitch for producing a general-purpose carbon fiber. Such a general-purpose carbon fiber is low in price, but requires high strength and high elasticity. Therefore, in order to improve physical properties, research on initial raw materials and manufacturing processes is necessary.

ピッチ系炭素繊維は、前駆体であるピッチを放射器を使用して溶融・放射して繊維化した後、繊維化されたピッチを150℃〜350℃の温度範囲の酸化性雰囲気で一定時間酸化安定化処理した後、700℃〜3000℃の温度範囲の不活性雰囲気で用途に応じて一定時間処理して製造することが一般的である。   Pitch-based carbon fibers are melted and radiated into fiber by using a radiator to pitch the precursor pitch, and then the fiberized pitch is oxidized for a certain period of time in an oxidizing atmosphere in the temperature range of 150 ° C to 350 ° C. In general, after the stabilization treatment, it is produced by treatment in an inert atmosphere in a temperature range of 700 ° C. to 3000 ° C. for a predetermined time according to the use.

炭素繊維の製造時、繊維の製造原価は、原料である前駆体ピッチの価格、前駆体ピッチの放射性、酸化安定化の速度、炭化処理後の炭化収率などによって影響を受け、製造工程別所要時間においては長時間の反応が必須な酸化安定化工程が最も長い時間を要すると知られており、酸化安定化性能に優れた前駆体ピッチの開発が重要な技術として知られている。   At the time of carbon fiber production, the production cost of the fiber is affected by the price of the precursor pitch, the radiation of the precursor pitch, the rate of oxidation stabilization, the carbonization yield after carbonization, etc. In terms of time, it is known that an oxidation stabilization process that requires a long reaction time requires the longest time, and development of a precursor pitch excellent in oxidation stabilization performance is known as an important technique.

等方性ピッチ系炭素繊維の原料として使用される、軟化点が200℃以上である等方性ピッチの製造方法としては、石炭系ピッチから真空蒸留及び溶剤抽出によって低分子量成分を除去する方法、単純熱縮合によって原料中の低分子量成分を縮合して高分子成分に変える方法、及び前記二つの方法を並行して製造する方法を挙げることができる。しかし、このような方法では、広い分子量分布を有する原料から比較的狭い範囲の分子量分布を有する等方性ピッチを製造することはできるが、収率が低いだけでなく、加熱時に容易に液晶化される成分が残るなど、製造したピッチの均質性及び放射性などの面で短所がある。   As a method for producing an isotropic pitch having a softening point of 200 ° C. or higher, which is used as a raw material for the isotropic pitch-based carbon fiber, a method for removing low molecular weight components from coal-based pitch by vacuum distillation and solvent extraction, Examples thereof include a method of condensing a low molecular weight component in a raw material by simple thermal condensation to convert it into a polymer component, and a method of producing the two methods in parallel. However, such a method can produce an isotropic pitch having a relatively narrow molecular weight distribution from a raw material having a wide molecular weight distribution. There are disadvantages in terms of the homogeneity and radioactivity of the produced pitch, such as remaining components.

最近は、価格が低いと共に、弾性率と熱及び電気伝導性に優れた石油精製残留物を等方性ピッチ系炭素繊維の原料として用いる研究が活発に進められている。このうち、特に石油系対象原料として、 FCC―DO(fluidized catalytic cracking decant oil)、PFO(pyrolized fuel oil)は、芳香族化度が高く、硫黄と不溶分の含量が少ないことから、高強度炭素繊維やニードルコークス(needle coke)、人造黒鉛などの高付加炭素材料に適した原料として注目されている。   Recently, research has been actively conducted on the use of petroleum refining residue, which is low in price and excellent in elastic modulus, heat and electrical conductivity, as a raw material for isotropic pitch-based carbon fibers. Of these, FCC-DO (fluidized catalytic cracking oil) and PFO (pyrolyzed fuel oil) are high aromatization and low sulfur and insoluble content, especially as petroleum target raw materials. It attracts attention as a raw material suitable for high added carbon materials such as fibers, needle coke and artificial graphite.

特許文献1(1999.02.25.公開)には、石油系物質を炭素源として用いて、ハロゲン化合物とラジカル開始剤を石油系物質と反応させることによって炭素繊維の前駆体として使用可能なピッチを製造する高軟化点光学的等方性ピッチの製造方法が開示されている。   Patent Document 1 (1999.02.25. Published) discloses a pitch that can be used as a precursor of carbon fiber by using a petroleum-based material as a carbon source and reacting a halogen compound and a radical initiator with the petroleum-based material. A method for producing a high softening point optically isotropic pitch is disclosed.

大韓民国登録特許公報0244912号Republic of Korea Registered Patent Publication No. 0244912

本発明の目的は、特定のラジカルソースを用いた石油工程残渣油内の各分子のラジカル架橋を通じて酸化安定性及び引張強度を向上させることができ、キノリン不溶性(QI)含量が低い、高軟化点炭素繊維用ピッチの製造方法及びそれによって製造された炭素繊維用ピッチを提供することにある。   The object of the present invention is to improve oxidation stability and tensile strength through radical cross-linking of each molecule in petroleum process residue oil using a specific radical source, having a low quinoline insoluble (QI) content, and a high softening point. It is providing the pitch for carbon fibers manufactured by the manufacturing method of the pitch for carbon fibers, and it.

前記目的を達成するための本発明の実施例に係る炭素繊維用ピッチの製造方法は、石油工程残渣油にペルオキシド系化合物とオゾンを装入し、これを熱処理して反応させることを特徴とする。   In order to achieve the above object, a method for producing a pitch for carbon fiber according to an embodiment of the present invention is characterized in that a peroxide-based compound and ozone are charged into petroleum process residue oil, and are reacted by heat treatment. .

また、前記目的を達成するための本発明の一実施例に係る炭素繊維用ピッチは、250℃〜320℃の高軟化点、1,000〜10,000の重量平均分子量及び106%以下の酸素飽和度を有することを特徴とする。   Moreover, the pitch for carbon fiber which concerns on one Example of this invention for achieving the said objective has the high softening point of 250 to 320 degreeC, the weight average molecular weight of 1,000-10,000, and oxygen of 106% or less. It is characterized by having a degree of saturation.

また、前記目的を達成するための本発明の他の実施例に係る炭素繊維用ピッチは、キノリン不溶性(QI)含量が5重量%以下であることを特徴とする。   The pitch for carbon fiber according to another embodiment of the present invention for achieving the above object is characterized in that the quinoline insoluble (QI) content is 5% by weight or less.

本発明に係る炭素繊維用ピッチの製造方法は、次のような効果を有する。   The carbon fiber pitch manufacturing method according to the present invention has the following effects.

一つ目、ペルオキシド系化合物とオゾンをラジカルソースとして用いて、ヒドロキシルラジカル(・OH)の生成による新規のピッチ製造方法を提供する。   First, the present invention provides a novel pitch production method by generating hydroxyl radicals (.OH) using peroxide compounds and ozone as radical sources.

二つ目、ラジカル架橋を通じて分子量を増加させることによって、各ピッチ分子の酸素飽和度の減少によって酸化安定化時間を短縮させることができる。   Second, by increasing the molecular weight through radical crosslinking, the oxidation stabilization time can be shortened by reducing the oxygen saturation of each pitch molecule.

三つ目、ラジカル架橋を通じてσ―結合からなる各縮合芳香族が繊維方向に配向されることによって、炭素繊維の引張物性を向上させることができる。   Third, each condensed aromatic composed of σ-bonds is oriented in the fiber direction through radical crosslinking, whereby the tensile properties of the carbon fiber can be improved.

四つ目、高温重合によるアスファルテンの凝集を防止し、原料の酸化による不融化成分の形成を抑制することができ、繊維適用性が高い。   Fourth, asphaltene aggregation due to high-temperature polymerization can be prevented, formation of infusible components due to oxidation of raw materials can be suppressed, and the applicability of fibers is high.

五つ目、ペルオキシド系化合物とオゾンを用いたラジカル重合反応の副産物として水(H2O)とアルコールが発生するので、環境にやさしい工程構築が可能である。 Fifth, water (H 2 O) and alcohol are generated as by-products of radical polymerization reaction using a peroxide compound and ozone, so that an environmentally friendly process can be constructed.

六つ目、別途の触媒が必要でなく、100℃〜200℃の低温で比較的高い収率を得ることができる。   Sixth, a separate catalyst is not required, and a relatively high yield can be obtained at a low temperature of 100 ° C to 200 ° C.

本発明によると、高軟化点及び高強度を有しながらも酸化安定性及び酸化不融化性に優れ、キノリン不溶性(QI)含量が低い炭素繊維用ピッチを提供することができる。   According to the present invention, it is possible to provide a pitch for carbon fiber that has a high softening point and high strength but is excellent in oxidative stability and oxidative infusibilities and has a low quinoline insoluble (QI) content.

実施例3及び比較例1によって収得されたピッチに対する空気中でのTG(Thermogravimetric)曲線を示したグラフである。3 is a graph showing a TG (Thermogravimetric) curve in the air with respect to the pitches obtained in Example 3 and Comparative Example 1. FIG. 実施例3及び比較例1によって製造されたピッチを用いて製造された炭素繊維の走査電子顕微鏡(Scanning Electron Microscope;SEM)写真である。3 is a scanning electron microscope (SEM) photograph of carbon fibers manufactured using pitches manufactured according to Example 3 and Comparative Example 1. FIG.

本発明の利点及び特徴、そして、それらを達成する方法は、添付の図面と共に詳細に説明している各実施例を参照すれば明確になるだろう。しかし、本発明は、以下で開示する各実施例に限定されるものではなく、互いに異なる多様な形態に具現可能である。ただし、本実施例は、本発明の開示を完全にし、本発明が属する技術分野で通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものであって、本発明は、請求項の範疇によって定義されるものに過ぎない。明細書全体にわたって同一の参照符号は、同一の構成要素を称する。   Advantages and features of the present invention and methods of achieving them will be apparent with reference to the embodiments described in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and can be embodied in various different forms. However, this embodiment is provided in order to complete the disclosure of the present invention and to fully inform the person of ordinary skill in the technical field to which the present invention belongs the scope of the invention. They are only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

以下、本発明に係る炭素繊維用ピッチの製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the pitch for carbon fibers which concerns on this invention is demonstrated in detail.

本発明の実施例に係る炭素繊維用ピッチの製造方法は、石油工程残渣油にペルオキシド系化合物とオゾンを装入し、これを熱処理してラジカル重合反応させることを特徴とする。   The carbon fiber pitch manufacturing method according to the embodiment of the present invention is characterized in that a petroleum compound residue oil is charged with a peroxide-based compound and ozone, and heat-treated to cause a radical polymerization reaction.

ここで、前記石油工程残渣油は、炭素繊維用ピッチの炭素源であって、ナフサ分解工程の副産物として得られる残渣油、すなわち、ナフサ分解残渣油(Naphtha Cracking Bottom Oil;NCB Oil)であることが好ましい。   Here, the petroleum process residue oil is a carbon source of carbon fiber pitch, and is a residue oil obtained as a by-product of the naphtha decomposition process, that is, a naphtha cracking bottom oil (NCB Oil). Is preferred.

前記ナフサ分解残渣油は、熱分解燃料油(Pyrolized Fuel Oil;PFO)を含むことが好ましい。前記熱分解燃料油(PFO)は、ナフサクラッキング工程(naphtha cracking center;NCC)の塔底で生成されるものであって、芳香族化度が高く、樹脂の含量が豊富であり、本発明の炭素繊維用ピッチの製造方法に適している。   It is preferable that the naphtha cracking residue oil contains pyrolyzed fuel oil (PFO). The pyrolysis fuel oil (PFO) is produced at the bottom of a naphtha cracking center (NCC) and has a high degree of aromatization and a high resin content. It is suitable for the manufacturing method of carbon fiber pitch.

前記熱分解燃料油(PFO)は、多様な芳香族炭化水素類を含んでおり、ナフタレンとメチルナフタレン誘導体が約25%〜35%を占める。前記ナフタレンとメチルナフタレン誘導体の具体例としては、エチルベンゼン、1―エテニル―3―メチルベンゼン、インデン、1―エチル―3―メチルベンゼン、1―メチルエチルベンゼン、2―エチル―1,3―ジメチルベンゼン、プロピルベンゼン、1―メチル―4―(2―プロペニル)―ベンゼン、1,1a,6,6a―テトラヒドロ―シクルロプロパ[a]インデン)、2―エチル―1H―インデン、1―メチル―1H―インデン、4,7―ジ―メチル―1H―インデン、1―メチル―9H―フルオレン、1,7―ジメチルナフタレン、2―メチルインデン、4,4'―ジメチルビフェニル、ナフタレン、4―メチル―1,1'―ビフェニル、アントラセン、2―メチルナフタレン、1―メチルナフタレンなどを挙げることができる。   The pyrolysis fuel oil (PFO) contains various aromatic hydrocarbons, and naphthalene and methylnaphthalene derivatives account for about 25% to 35%. Specific examples of the naphthalene and methylnaphthalene derivatives include ethylbenzene, 1-ethenyl-3-methylbenzene, indene, 1-ethyl-3-methylbenzene, 1-methylethylbenzene, 2-ethyl-1,3-dimethylbenzene, Propylbenzene, 1-methyl-4- (2-propenyl) -benzene, 1,1a, 6,6a-tetrahydro-cycllopropa [a] indene), 2-ethyl-1H-indene, 1-methyl-1H-indene, 4,7-di-methyl-1H-indene, 1-methyl-9H-fluorene, 1,7-dimethylnaphthalene, 2-methylindene, 4,4'-dimethylbiphenyl, naphthalene, 4-methyl-1,1 ' -Biphenyl, anthracene, 2-methylnaphthalene, 1-methylnaphthalene, etc.

本発明において、前記石油工程残渣油、すなわち、炭素源は、低沸点物が除去されたものであってもよい。低沸点物は、ほとんどが揮発されて反応に参加しないので、ピッチ収率が極めて低いものであって、C4〜C20の炭化水素がこれに属する。本発明では、このような低沸点物を除去した炭素源を使用する場合、炭素源をより高い収率で高軟化点ピッチに製造することができる。   In the present invention, the petroleum process residue oil, that is, the carbon source may be one from which low boilers have been removed. Most of the low-boiling substances are volatilized and do not participate in the reaction. Therefore, the pitch yield is extremely low, and C4-C20 hydrocarbons belong to this. In the present invention, when using a carbon source from which such low-boiling substances are removed, the carbon source can be produced at a higher yield and a higher softening point pitch.

本発明において、ペルオキシド系化合物とオゾン(ozone、O3)は、ラジカルソースであって、熱分解(thermal cracking)によってヒドロキシルラジカル(Hydroxyl Radical、・OH)を生成する。 In the present invention, a peroxide compound and ozone (Ozone, O 3 ) are radical sources, and generate hydroxyl radicals (Hydroxyl Radical, .OH) by thermal cracking.

一例として、前記ペルオキシド系化合物は、ジクミルペルオキシド(dicumylperoxide;DCP)、過酸化水素、ベンゾイルペルオキシド、クメンヒドロペルオキシド、tert―ブチルヒドロペルオキシド及びメチルエチルケトンペルオキシドのうち1種以上を含んでもよい。   For example, the peroxide compound may include one or more of dicumyl peroxide (DCP), hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, and methyl ethyl ketone peroxide.

前記ペルオキシド系化合物は、前記石油工程残渣油100重量部に対して5重量部〜50重量部の比率で装入されることが好ましい。また、前記オゾンは、ガス状態で供給されてもよく、20g/m2〜100g/m2、好ましくは、25.8g/m2の部分圧の条件で装入されてもよい。 The peroxide compound is preferably charged at a ratio of 5 to 50 parts by weight with respect to 100 parts by weight of the petroleum process residue oil. The ozone may be supplied in a gas state, and may be charged under a partial pressure of 20 g / m 2 to 100 g / m 2 , preferably 25.8 g / m 2 .

前記ペルオキシド系化合物が5重量部未満で装入されるか、前記オゾンが20g/m2未満の部分圧で装入される場合、反応に参加するラジカルの生成量が少ないので、要求するピッチの製造が難しくなる。 When the peroxide compound is charged at less than 5 parts by weight, or when the ozone is charged at a partial pressure of less than 20 g / m 2, since the amount of radicals participating in the reaction is small, the required pitch Manufacturing becomes difficult.

その一方、前記ペルオキシド系化合物が50重量部を超えて装入されるか、前記オゾンが100g/m2を超える部分圧で装入される場合、ラジカルは多量発生するが、原料の酸化による不融化成分が形成される。 On the other hand, when the peroxide compound is charged in an amount exceeding 50 parts by weight, or when the ozone is charged at a partial pressure exceeding 100 g / m 2 , radicals are generated in large quantities, but there is no oxidation due to oxidation of the raw material. A fusing component is formed.

下記の[ターゲット反応式1]を通じて本発明に係るラジカル重合反応を具体的に説明する。   The radical polymerization reaction according to the present invention will be specifically described through the following [Target reaction formula 1].

[ターゲット反応式1]

Figure 2016074995
[Target reaction formula 1]
Figure 2016074995

まず、本発明は、炭素源として石油工程残渣油などの原料物質に、ラジカルソースであるペルオキシド系化合物とオゾンを装入する。   First, in the present invention, a peroxide compound as a radical source and ozone are charged into a raw material such as petroleum process residue oil as a carbon source.

この過程で、石油工程残渣油とペルオキシド系化合物を反応器に装入して混合した後、ガス状態のオゾンを一定の部分圧に維持しながら反応器に装入することがより好ましい。石油工程残渣油とペルオキシド系化合物とを混合したり、オゾンが装入された状態で撹拌をさらに実施することもできる。   In this process, it is more preferable that the petroleum process residue oil and the peroxide compound are charged into the reactor and mixed, and then charged into the reactor while maintaining the gaseous ozone at a constant partial pressure. Stirring can also be carried out in a state where petroleum process residue oil and a peroxide compound are mixed or ozone is charged.

その後、オゾンが装入された状態で熱処理を実施し、ラジカル重合反応を誘導する。   Thereafter, heat treatment is performed in a state where ozone is charged to induce a radical polymerization reaction.

熱処理が実施されると、まず、石油工程残渣油内で熱分解反応が起こり、ガス、硬質油分が系外に放出されると同時に、ペルオキシド系化合物とオゾンからヒドロキシルラジカル(・OH)が生成される。   When heat treatment is performed, first, a pyrolysis reaction occurs in petroleum process residue oil, and gas and hard oil are released out of the system. At the same time, hydroxyl radicals (.OH) are generated from peroxide compounds and ozone. The

その後、芳香族構造を有する石油工程残渣油内の各分子が生成されたヒドロキシルラジカル(・OH)によってラジカル架橋結合を形成するようになり、各石油工程残渣油内の各分子の鎖延長反応が起こりながら、重縮合高分子化(polycondensation)が生じる。これによって、最終的に250℃以上、好ましくは250℃〜320℃の高温の軟化点を有する等方性ピッチが合成され、これは、表1及び図1〜図2を通じて確認した。   Thereafter, each molecule in the petroleum process residue oil having an aromatic structure forms a radical crosslink by the generated hydroxyl radical (.OH), and the chain extension reaction of each molecule in each petroleum process residue oil is performed. While occurring, polycondensation polymerisation occurs. As a result, an isotropic pitch having a high-temperature softening point of 250 ° C. or higher, preferably 250 ° C. to 320 ° C. was finally synthesized, which was confirmed through Table 1 and FIGS.

本発明では、ラジカル架橋を通じた重縮合反応が進められながら、長い鎖の下側に多数の芳香族構造を有する縮合多環芳香族群を形成するようになる。   In the present invention, a condensed polycyclic aromatic group having a large number of aromatic structures is formed on the lower side of a long chain while a polycondensation reaction through radical crosslinking proceeds.

ラジカル加硫(Radical Vulcanization)は、主に高分子の架橋に用いられるが、これは、分岐型芳香族(Branched Aromatic)の場合、高分子より共鳴安定性(Resonance Stabilization)が強いことから、ラジカルが鎖内の水素原子と結合及び除去される反応がより容易であるためである。   Radical vulcanization is mainly used for cross-linking of polymers, but in the case of branched aromatics, the radical stability is higher than that of polymers, so that radical stability is higher. This is because the reaction in which is bonded to and removed from the hydrogen atom in the chain is easier.

本発明は、上述したラジカル加硫の原理を適用して、ヒドロキシルラジカル(・OH)を通じて石油工程残渣油内の芳香族炭化水素の結合を誘導し、線形分子シリーズ(linear molecule series)形成ピッチの重量平均分子量を約1,000〜10,000程度に増加させることができる。   The present invention applies the principle of radical vulcanization described above to induce the bonding of aromatic hydrocarbons in petroleum process residue oil through hydroxyl radicals (.OH) to form linear molecular series formation pitch. The weight average molecular weight can be increased to about 1,000 to 10,000.

一方、本発明で製造されたピッチは、重量平均分子量が1,000〜10,000程度と既存に比べて高いと共に、キノリン不溶性(QI)含量が5重量%以下と低いので(好ましくは0%)、放射性に優れると共に、これから製造される炭素繊維の引張強度及びモジュラスに優れるという特徴を有する。   On the other hand, the pitch produced in the present invention has a weight average molecular weight of about 1,000 to 10,000, which is higher than the existing ones, and a quinoline insoluble (QI) content is as low as 5% by weight or less (preferably 0%). ), And is excellent in radioactivity, and is excellent in tensile strength and modulus of carbon fiber produced therefrom.

ピッチ分子量の増加は、各ピッチ分子の酸素飽和を少なくし、酸化安定化時間を短縮できるという効果を提供するので、結果的に、酸化安定性に優れた前駆体ピッチの製造を可能にする。ピッチの分子量増加による酸化飽和度の減少は、表1を通じて確認した。   The increase in the pitch molecular weight provides the effect that the oxygen saturation of each pitch molecule can be reduced and the oxidation stabilization time can be shortened. As a result, it is possible to produce a precursor pitch having excellent oxidation stability. The decrease in the oxidation saturation due to the increase in the molecular weight of the pitch was confirmed through Table 1.

また、ラジカル架橋を通じた重縮合反応が進められながら生成された芳香族化合物間のσ―結合からなる各縮合多環芳香族の線形分子は、繊維方向に配向されるようになる。したがって、このピッチを用いると、炭素繊維の引張強度などの物性を向上させることができ、これは、表2を通じて確認した。   In addition, each condensed polycyclic aromatic linear molecule composed of σ-bonds between aromatic compounds produced while the polycondensation reaction through radical crosslinking proceeds is oriented in the fiber direction. Therefore, when this pitch is used, physical properties such as the tensile strength of the carbon fiber can be improved. This was confirmed through Table 2.

ここで、ヒドロキシルラジカル(・OH)の生成及びラジカル架橋を通じたラジカル重合反応の誘導のために、熱処理は100℃〜200℃の温度で実施されることが好ましい。   Here, the heat treatment is preferably performed at a temperature of 100 ° C. to 200 ° C. in order to induce a radical polymerization reaction through generation of hydroxyl radical (.OH) and radical crosslinking.

加熱温度が100℃未満である場合は、ペルオキシド系化合物とオゾンからのヒドロキシルラジカル(・OH)の形成が不可能になる一方、加熱温度が200℃を超える場合は、鎖延長反応が終結され、要求する分子量を有するピッチの製造が難しくなり得る。   When the heating temperature is less than 100 ° C., formation of hydroxyl radical (.OH) from the peroxide compound and ozone becomes impossible, whereas when the heating temperature exceeds 200 ° C., the chain extension reaction is terminated, Manufacturing pitches with the required molecular weight can be difficult.

また、反応時間は1時間〜10時間であることが好ましい。反応時間が1時間未満である場合は、十分な反応が不可能になる一方、反応時間が10時間を超える場合は、反応中に固化が起こり得るという問題がある。   The reaction time is preferably 1 hour to 10 hours. When the reaction time is less than 1 hour, sufficient reaction is impossible, while when the reaction time exceeds 10 hours, there is a problem that solidification may occur during the reaction.

以上では、オゾンを装入した状態で熱処理を実施することを説明したが、オゾンを装入・熱処理して反応させるという意味には、オゾンを装入(供給)しながら熱処理を同時に実施することも含まれることは当然である。   In the above, it has been explained that the heat treatment is performed in a state where ozone is charged. However, in the sense that ozone is charged and heat treated, the heat treatment is simultaneously performed while charging (supplying) ozone. Of course, it is also included.

このように、本発明は、別途の触媒が必要でなく、100℃〜200℃の低温でヒドロキシルラジカル(・OH)を用いたラジカル重合反応を通じたピッチの分子量増加を通じて、表1に記載したように20%以上の比較的高い重合収率を得ることができた。   As described above, the present invention does not require a separate catalyst, and is described in Table 1 through increasing the molecular weight of the pitch through radical polymerization using hydroxyl radical (.OH) at a low temperature of 100 ° C. to 200 ° C. In addition, a relatively high polymerization yield of 20% or more could be obtained.

また、図2のように、高温重合によるアスファルテンの凝集を防止し、原料の酸化による不融化成分の形成を抑制することができ、酸化不融化性に優れるので、繊維適用性が高いという長所を有する。   In addition, as shown in FIG. 2, it is possible to prevent agglomeration of asphaltenes due to high temperature polymerization, suppress formation of infusible components due to oxidation of raw materials, and have excellent oxidative infusibilities, so that the applicability of fibers is high. Have.

さらに、図面には示していないが、本発明のピッチ製造方法によると、ペルオキシド系化合物とオゾンをラジカルソースとして用いることによって、ラジカル重合反応の副産物として水(H2O)とアルコールが発生するが、このような反応副産物は人体に無害な成分であるので、環境にやさしい工程構築が可能である。 Furthermore, although not shown in the drawings, according to the pitch production method of the present invention, water (H 2 O) and alcohol are generated as by-products of the radical polymerization reaction by using a peroxide compound and ozone as a radical source. Since such reaction by-products are harmless to the human body, environmentally friendly process construction is possible.

一方、本発明において、石油工程残渣油が、低沸点物が除去されていない状態で使用される場合、反応が完了した結果物を昇温することによって低沸点物を除去する2次熱処理をさらに実施してもよい。   On the other hand, in the present invention, when the petroleum process residue oil is used in a state where the low-boiling substances are not removed, a secondary heat treatment for removing the low-boiling substances by further raising the temperature of the resultant product after the reaction is further performed. You may implement.

この場合、反応が完了した結果物を昇温することによって到逹する2次熱処理温度は、300℃〜400℃であることが好ましい。2次熱処理温度が300℃未満である場合は、低沸点物の十分な除去が難しくなる一方、2次熱処理温度が400℃を超える場合は、分解反応及び急速なコーキング反応による反応物遺失及びコーキングの問題がある。   In this case, the secondary heat treatment temperature reached by raising the temperature of the resulting reaction-completed product is preferably 300 ° C to 400 ° C. When the secondary heat treatment temperature is less than 300 ° C., it is difficult to sufficiently remove low-boiling substances. On the other hand, when the secondary heat treatment temperature exceeds 400 ° C., lost reactants and coking due to decomposition reaction and rapid coking reaction are caused. There is a problem.

また、低沸点物を除去するための2次熱処理は、1/2時間〜10時間実施されることが好ましい。2次熱処理時間が1/2時間未満である場合は、低沸点物の十分な除去が不可能である一方、2次熱処理時間が10時間を超える場合は、コーキング及び分解反応の問題がある。   Moreover, it is preferable that the secondary heat treatment for removing low-boiling substances is performed for 1/2 hour to 10 hours. When the secondary heat treatment time is less than ½ hour, it is impossible to sufficiently remove low-boiling substances, while when the secondary heat treatment time exceeds 10 hours, there are problems of coking and decomposition reaction.

上述したように、本発明のピッチ製造方法によると、高軟化点及び高強度などを有すると共に、酸化安定性及び酸化不融化性に優れた炭素繊維用ピッチを提供することができる。   As described above, according to the pitch manufacturing method of the present invention, it is possible to provide a pitch for carbon fiber that has a high softening point, high strength, and the like, and is excellent in oxidation stability and oxidation infusibilities.

したがって、本発明に係るピッチは、炭素繊維、活性炭素繊維、炭素―炭素複合体のバインダー物質、リチウムイオン2次電池負極用炭素材などの高機能性炭素材の原料及び前駆体として使用されてもよい。   Therefore, the pitch according to the present invention is used as a raw material and a precursor of high-functional carbon materials such as carbon fibers, activated carbon fibers, carbon-carbon composite binder materials, and carbon materials for lithium ion secondary battery negative electrodes. Also good.

実施例
以下、本発明の好ましい実施例を通じて本発明の構成及び作用をより詳細に説明する。ただし、これは、本発明の好ましい例示として提示されたものであって、如何なる意味でもこれによって本発明が制限されると解釈してはならない。ここに記載していない内容は、この技術分野で熟練した者であれば十分に技術的に類推可能であるので、それについての説明は省略する。
EXAMPLES Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred examples of the present invention. However, this is presented as a preferred illustration of the present invention and should not be construed as limiting the invention in any way. The contents not described here can be sufficiently technically analogized by those skilled in this technical field, and the description thereof will be omitted.

(1)ピッチの製造
実施例1〜10
熱分解燃料油(PFO)とジクミルペルオキシド(dicumylperoxide;DCP)あるいは過酸化水素を反応器に装入して混合した後、オゾン(O3)ガスを装入しながら熱処理し、ラジカル重合反応を進めた。
(1) Production of pitch Examples 1 to 10
Pyrolysis fuel oil (PFO) and dicumyl peroxide (DCP) or hydrogen peroxide are charged into a reactor and mixed, and then heat-treated while charging ozone (O 3 ) gas to carry out radical polymerization reaction. Proceeded.

ラジカル重合反応の終了後、一定時間にわたって流量2L/minの窒素ガスを結果物に通過させることによって未反応または低反応分子を除去し、実施例1〜10によって製造されたピッチを収得した。
各実施例の反応条件は、下記の表1に示した通りである。
After completion of the radical polymerization reaction, unreacted or low-reacted molecules were removed by passing nitrogen gas at a flow rate of 2 L / min through the resulting product over a certain period of time to obtain the pitches produced in Examples 1-10.
The reaction conditions for each example are as shown in Table 1 below.

比較例1
熱分解燃料油(PFO)を反応器に装入した後、窒素雰囲気で熱処理することによって熱重合反応を進めた。
Comparative Example 1
After the pyrolysis fuel oil (PFO) was charged into the reactor, the thermal polymerization reaction was advanced by heat treatment in a nitrogen atmosphere.

熱重合反応の終了後、5時間にわたって流量2L/minの窒素ガスを結果物に通過させることによって未反応または低反応分子を除去し、ピッチを収得した。   After the thermal polymerization reaction was completed, unreacted or low-reacted molecules were removed by passing nitrogen gas at a flow rate of 2 L / min through the resulting product for 5 hours, thereby obtaining a pitch.

比較例の反応条件は、下記の表1に示した通りである。   The reaction conditions of the comparative example are as shown in Table 1 below.

(2)ピッチの物性評価
前記実施例1〜10及び比較例1によって収得されたピッチの軟化点、分子量、酸素飽和度、トルエン不溶性(TI)含量、キノリン不溶性(QI)含量、ベータレジン(TI―QI)含量及び収率を測定し、下記の表1に示した。
(2) Evaluation of Physical Properties of Pitch Softening point, molecular weight, oxygen saturation, toluene insoluble (TI) content, quinoline insoluble (QI) content, beta resin (TI) obtained in Examples 1 to 10 and Comparative Example 1 -QI) The content and yield were measured and are shown in Table 1 below.

前記実施例3及び比較例1によって収得されたピッチに対する空気中でのTG(Thermogravimetric)を分析し、これを図1に示した。   TG (Thermogravimetric) in the air with respect to the pitches obtained in Example 3 and Comparative Example 1 was analyzed and is shown in FIG.

ここで、収率は、反応の重合度を意味する。   Here, the yield means the degree of polymerization of the reaction.

図1は、実施例3及び比較例1によって収得されたピッチに対する空気中でのTG曲線を示したグラフである。   FIG. 1 is a graph showing a TG curve in the air with respect to the pitch obtained in Example 3 and Comparative Example 1.

Figure 2016074995
Figure 2016074995

表1及び図1を参照すると、DCP及び過酸化水素のうちいずれか一つとO3をラジカルソースとして用いた実施例1〜10は、いずれも軟化点と収率の面で目標とした物性を満足しており、熱重合反応を用いた比較例1より著しく増加した分子量によって酸素飽和度が著しく低下し、収率も向上したことが分かる。 Referring to Table 1 and FIG. 1, Examples 1 to 10 using any one of DCP and hydrogen peroxide and O 3 as a radical source have physical properties targeted in terms of softening point and yield. Satisfactory, it can be seen that the oxygen saturation was significantly reduced and the yield was improved by the molecular weight significantly increased from Comparative Example 1 using the thermal polymerization reaction.

また、実施例1〜3を比較した結果、PFO改質において反応時間が5時間である場合に収率が最適化され、分子量は反応時間に比例して増加することが分かる。   Moreover, as a result of comparing Examples 1 to 3, it can be seen that the yield is optimized when the reaction time is 5 hours in the PFO reforming, and the molecular weight increases in proportion to the reaction time.

また、実施例3、5、7を比較した結果、オゾン濃度が増加しても収率及び分子量の変化が大きくないので、反応に必要なオゾン濃度以上になる必要はないことが分かる。   As a result of comparing Examples 3, 5, and 7, it can be seen that even if the ozone concentration increases, the yield and molecular weight do not change greatly, so that it is not necessary to exceed the ozone concentration necessary for the reaction.

また、実施例3と実施例9を比較した結果、DCPを用いる場合、分子量と収率は、熱処理温度が増加すると減少することが分かる。これは、DCPの温度に応じた分解速度による差のため、170℃では分解速度が非常に速いので、DCPが反応に十分に参加できないためである。   Further, as a result of comparing Example 3 and Example 9, it is understood that when DCP is used, the molecular weight and the yield decrease as the heat treatment temperature increases. This is because DCP cannot sufficiently participate in the reaction because the decomposition rate is very fast at 170 ° C. because of the difference due to the decomposition rate depending on the temperature of DCP.

また、実施例3と実施例4を比較した結果、過酸化水素とオゾンが同時に存在するとき、DCPとオゾンが同時に存在する場合より収率が大きく増加することが分かる。   Moreover, as a result of comparing Example 3 and Example 4, it can be seen that when hydrogen peroxide and ozone are present at the same time, the yield is greatly increased as compared with the case where DCP and ozone are simultaneously present.

また、実施例4、6、8を比較した結果、過酸化水素も、オゾン濃度が増加しても収率及び分子量変化が大きくないので、反応に必要なオゾン濃度以上は必要でないことが分かる。   Moreover, as a result of comparing Examples 4, 6, and 8, hydrogen peroxide is not required to exceed the ozone concentration necessary for the reaction because the yield and molecular weight change are not large even when the ozone concentration is increased.

また、実施例4と実施例10を比較した結果、熱処理温度が増加するほど過酸化水素分解を促進し、収率が増加することが分かる。   Moreover, as a result of comparing Example 4 and Example 10, it can be seen that as the heat treatment temperature increases, decomposition of hydrogen peroxide is promoted and the yield increases.

また、実施例1〜10を通じて、ピッチの収率が増加するほど分子量が増加することが分かる。   Moreover, it turns out that molecular weight increases through Examples 1-10 as the yield of a pitch increases.

また、表1を参照すると、DCP及び過酸化水素のうちいずれか一つとO3をラジカルソースとして用いた実施例1〜10は、いずれもキノリン不溶性(QI)含量が低い物性を示すので、放射性に優れることが分かる。 In addition, referring to Table 1, Examples 1 to 10 using any one of DCP and hydrogen peroxide and O 3 as a radical source exhibit physical properties with low quinoline insoluble (QI) content. It is understood that it is excellent.

(3)炭素繊維の製造
前記実施例3及び比較例1によって製造されたピッチを用いて、通常の方法である放射、酸化、炭化過程を経て炭素繊維を製造した。
(3) Manufacture of carbon fiber Using the pitch manufactured by the said Example 3 and the comparative example 1, the carbon fiber was manufactured through the radiation, oxidation, and carbonization processes which are a normal method.

その後、製造された炭素繊維のそれぞれの正面と断面を走査電子顕微鏡(Scanning Electron Microscope;SEM)で観察した。   Then, the front and cross section of each produced carbon fiber were observed with a scanning electron microscope (SEM).

図2は、実施例3及び比較例1によって製造されたピッチを用いて製造された炭素繊維のSEM写真である。   FIG. 2 is an SEM photograph of carbon fibers manufactured using the pitches manufactured in Example 3 and Comparative Example 1.

図2に示したように、本発明で提示した合成条件を満足する実施例3によって製造されたピッチを用いた場合、球状の不融化成分がほとんど形成されなく、最終的に製造された炭素繊維が等方性を有することを確認することができた。   As shown in FIG. 2, when the pitch produced according to Example 3 that satisfies the synthesis conditions presented in the present invention is used, the spherical infusible component is hardly formed, and the finally produced carbon fiber. Was confirmed to be isotropic.

その一方、熱重合反応を用いた比較例1によって製造されたピッチを用いた場合、最終的に製造された炭素繊維も等方性を有するが、球状の不融化成分が多量形成されることを確認することができた。   On the other hand, when the pitch produced by Comparative Example 1 using a thermal polymerization reaction is used, the finally produced carbon fiber is also isotropic, but a large amount of spherical infusible components are formed. I was able to confirm.

(4)炭素繊維の引張強度及びモジュラス評価
前記実施例3によって製造されたピッチを用いた炭素繊維A1〜A10及び比較例1によって製造されたピッチを用いた炭素繊維B1〜B10のそれぞれの引張強度及びモジュラスを評価し、その結果を表2に示した。
(4) Tensile strength and modulus evaluation of carbon fiber Tensile strength of carbon fibers A1 to A10 using the pitch manufactured according to Example 3 and carbon fibers B1 to B10 using the pitch manufactured according to Comparative Example 1. The modulus was evaluated and the results are shown in Table 2.

このとき、モジュラスは、引張強度に対する弾性係数(ヤング率)を意味する。   At this time, the modulus means an elastic coefficient (Young's modulus) with respect to tensile strength.

Figure 2016074995
Figure 2016074995

表2を参照すると、本発明の実施例3によって製造されたピッチを用いた炭素繊維の場合、比較例1によって製造されたピッチを用いた炭素繊維に比べて平均引張強度及び平均モジュラスがいずれも高く、平均引張強度0.7416GPaの高強度と平均モジュラス44.0803GPaの高弾性を有することを確認することができた。   Referring to Table 2, in the case of the carbon fiber using the pitch manufactured according to Example 3 of the present invention, both the average tensile strength and the average modulus are compared with the carbon fiber using the pitch manufactured according to Comparative Example 1. It was high, and it was confirmed that it had a high average tensile strength of 0.7416 GPa and a high modulus of average modulus of 44.0803 GPa.

以上では、本発明の実施例を中心に説明したが、これは例示的なものに過ぎなく、本発明が属する技術分野で通常の知識を有する技術者であれば、これから多様な変形及び均等な他の実施例が可能であることを理解するだろう。したがって、本発明の真の技術的保護範囲は、以下で記載する特許請求の範囲によって判断すべきであろう。   In the above, the embodiments of the present invention have been described mainly. However, this is merely an example, and various modifications and equivalents will be made by engineers having ordinary knowledge in the technical field to which the present invention belongs. It will be appreciated that other embodiments are possible. Accordingly, the true technical protection scope of the present invention should be determined by the claims set forth below.

Claims (18)

石油工程残渣油にペルオキシド系化合物とオゾンを装入し、これを熱処理して反応させることを特徴とする炭素繊維用ピッチの製造方法。   A method for producing a pitch for carbon fiber, comprising charging a petroleum-based process residue oil with a peroxide-based compound and ozone and reacting them by heat treatment. 前記ペルオキシド系化合物は、ジクミルペルオキシド(dicumylperoxide;DCP)、過酸化水素、ベンゾイルペルオキシド、クメンヒドロペルオキシド、tert―ブチルヒドロペルオキシド及びメチルエチルケトンペルオキシドのうち1種以上を含むことを特徴とする、請求項1に記載の炭素繊維用ピッチの製造方法。   The peroxide compound includes at least one of dicumyl peroxide (DCP), hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, and methyl ethyl ketone peroxide. The manufacturing method of the pitch for carbon fibers described in 2. 前記熱処理は、100℃〜200℃の温度で実施されることを特徴とする、請求項1に記載の炭素繊維用ピッチの製造方法。   The said heat processing is implemented at the temperature of 100 to 200 degreeC, The manufacturing method of the pitch for carbon fibers of Claim 1 characterized by the above-mentioned. 前記オゾンは、20g/m2〜100g/m2の部分圧で装入されることを特徴とする、請求項1に記載の炭素繊維用ピッチの製造方法。 The ozone, characterized in that it is charged by the partial pressure of 20g / m 2 ~100g / m 2 , the production method of carbon fiber for the pitch of claim 1. 前記反応は、1時間〜10時間実施されることを特徴とする、請求項1に記載の炭素繊維用ピッチの製造方法。   The said reaction is implemented for 1 hour-10 hours, The manufacturing method of the pitch for carbon fibers of Claim 1 characterized by the above-mentioned. 前記炭素繊維用ピッチの製造方法は、
熱分解反応によって前記ペルオキシド系化合物と前記オゾンからラジカル(Hydroxyl Radical、・OH)が生成される熱分解ステップと、
前記石油工程残渣油内の各分子が前記ヒドロキシルラジカル(・OH)を通じてラジカル架橋結合を形成し、鎖延長反応を起こす架橋及び重縮合反応ステップと、を含むことを特徴とする、請求項1〜5のいずれか1項に記載の炭素繊維用ピッチの製造方法。
The carbon fiber pitch manufacturing method includes:
A thermal decomposition step in which a radical (OH) is generated from the peroxide compound and ozone by a thermal decomposition reaction;
Crosslinking and polycondensation reaction steps in which each molecule in the petroleum process residue oil forms a radical crosslinking bond through the hydroxyl radical (.OH) and causes a chain extension reaction. 6. A method for producing a pitch for carbon fiber according to any one of 5 above.
前記石油工程残渣油は、ナフサ分解残渣油を含むことを特徴とする、請求項1に記載の炭素繊維用ピッチの製造方法。   The method for producing a pitch for carbon fiber according to claim 1, wherein the petroleum process residual oil includes naphtha decomposition residual oil. 前記ナフサ分解残渣油は、熱分解燃料油(pyrolized fuel oil;PFO)を含むことを特徴とする、請求項7に記載の炭素繊維用ピッチの製造方法。   The method for producing a pitch for carbon fiber according to claim 7, wherein the naphtha cracking residue oil includes pyrolyzed fuel oil (PFO). 前記ペルオキシド系化合物は、前記石油工程残渣油100重量部に対比して5重量部〜50重量部の比率で装入されることを特徴とする、請求項1、2または6に記載の炭素繊維用ピッチの製造方法。   The carbon fiber according to claim 1, 2 or 6, wherein the peroxide compound is charged in a ratio of 5 to 50 parts by weight with respect to 100 parts by weight of the petroleum process residue oil. Pitch manufacturing method. 前記石油工程残渣油は、低沸点物が除去されたものを含むことを特徴とする、請求項1、6または7に記載の炭素繊維用ピッチの製造方法。   The method for producing a pitch for carbon fiber according to claim 1, 6 or 7, wherein the petroleum process residue oil includes a product obtained by removing low boiling point substances. 前記反応が完了した結果物を昇温することによって低沸点物を除去する熱処理をさらに含むことを特徴とする、請求項1または6に記載の炭素繊維用ピッチの製造方法。   The method for producing a pitch for carbon fiber according to claim 1 or 6, further comprising a heat treatment for removing low-boiling substances by raising the temperature of the resultant product after the completion of the reaction. 前記低沸点物を除去する熱処理は、300℃〜400℃の温度で実施されることを特徴とする、請求項11に記載の炭素繊維用ピッチの製造方法。   The method for producing a pitch for carbon fibers according to claim 11, wherein the heat treatment for removing the low-boiling substances is performed at a temperature of 300C to 400C. 前記低沸点物を除去する加熱処理は、
1/2時間〜10時間にわたって実施されることを特徴とする、請求項11に記載の炭素繊維用ピッチの製造方法。
The heat treatment for removing the low-boiling substances is:
It implements over 1/2 hour-10 hours, The manufacturing method of the pitch for carbon fibers of Claim 11 characterized by the above-mentioned.
請求項1〜請求項13のうち少なくともいずれか一つの項によって製造され、250℃〜320℃の高軟化点を有することを特徴とする炭素繊維用ピッチ。   A carbon fiber pitch produced according to at least one of claims 1 to 13 and having a high softening point of 250 ° C to 320 ° C. 請求項1〜請求項13のうち少なくともいずれか一つの項によって製造され、重量平均分子量が1,000〜10,000であることを特徴とする炭素繊維用ピッチ。   A carbon fiber pitch produced according to at least one of claims 1 to 13 and having a weight average molecular weight of 1,000 to 10,000. 請求項1〜請求項13のうち少なくともいずれか一つの項によって製造され、酸素飽和度が106%以下であることを特徴とする炭素繊維用ピッチ。   A carbon fiber pitch produced according to at least one of claims 1 to 13 and having an oxygen saturation of 106% or less. 請求項1〜請求項13のうち少なくともいずれか一つの項によって製造され、キノリン不溶性(QI)含量が5重量%以下であることを特徴とする炭素繊維用ピッチ。   A carbon fiber pitch produced according to at least one of claims 1 to 13 and having a quinoline insoluble (QI) content of 5 wt% or less. 重量平均分子量が1,000〜10,000で、キノリン不溶性(QI)含量が5重量%以下であることを特徴とする炭素繊維用ピッチ。   A pitch for carbon fiber having a weight average molecular weight of 1,000 to 10,000 and a quinoline insoluble (QI) content of 5% by weight or less.
JP2014205624A 2014-10-06 2014-10-06 Method for producing carbon fiber pitch and carbon fiber pitch produced thereby Active JP5859623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205624A JP5859623B1 (en) 2014-10-06 2014-10-06 Method for producing carbon fiber pitch and carbon fiber pitch produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205624A JP5859623B1 (en) 2014-10-06 2014-10-06 Method for producing carbon fiber pitch and carbon fiber pitch produced thereby

Publications (2)

Publication Number Publication Date
JP5859623B1 JP5859623B1 (en) 2016-02-10
JP2016074995A true JP2016074995A (en) 2016-05-12

Family

ID=55301054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205624A Active JP5859623B1 (en) 2014-10-06 2014-10-06 Method for producing carbon fiber pitch and carbon fiber pitch produced thereby

Country Status (1)

Country Link
JP (1) JP5859623B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609167A (en) * 2018-11-30 2019-04-12 中国科学院山西煤炭化学研究所 A method of promoting the pitch quickly oxidative stabilization of homogeneous
WO2019209009A1 (en) * 2018-04-27 2019-10-31 주식회사 엘지화학 Method for stabilizing precursor fibers for manufacturing carbon fibers, and method for manufacturing carbon fibers by using same
CN111801451A (en) * 2018-04-27 2020-10-20 株式会社Lg化学 Method for stabilizing precursor fiber for producing carbon fiber and method for producing carbon fiber using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610047A (en) * 2018-12-18 2019-04-12 武汉科技大学 A method of accelerating Mesophase Pitch Fiberss oxidative stabilization
CN109881848B (en) * 2019-03-01 2021-06-22 包头市草原驼峰防水材料有限公司 Novel modified asphalt waterproof coiled material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718058B2 (en) * 1984-07-17 1995-03-01 大阪瓦斯株式会社 Carbon fiber manufacturing method
US4892642A (en) * 1987-11-27 1990-01-09 Conoco Inc. Process for the production of mesophase
JPH04202287A (en) * 1990-11-30 1992-07-23 Conoco Inc Improved method for preparing mesophase pitch
JPH05132676A (en) * 1991-11-12 1993-05-28 Osaka Gas Co Ltd Production of pitch
US5198101A (en) * 1991-12-13 1993-03-30 Conoco Inc. Process for the production of mesophase pitch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019209009A1 (en) * 2018-04-27 2019-10-31 주식회사 엘지화학 Method for stabilizing precursor fibers for manufacturing carbon fibers, and method for manufacturing carbon fibers by using same
CN111801451A (en) * 2018-04-27 2020-10-20 株式会社Lg化学 Method for stabilizing precursor fiber for producing carbon fiber and method for producing carbon fiber using the same
CN111801451B (en) * 2018-04-27 2023-03-03 株式会社Lg化学 Method for stabilizing precursor fiber for producing carbon fiber and method for producing carbon fiber using the same
CN109609167A (en) * 2018-11-30 2019-04-12 中国科学院山西煤炭化学研究所 A method of promoting the pitch quickly oxidative stabilization of homogeneous

Also Published As

Publication number Publication date
JP5859623B1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5859623B1 (en) Method for producing carbon fiber pitch and carbon fiber pitch produced thereby
Zhang et al. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure
CN105567274B (en) The preparation method and carbon fiber Wesy pitch of carbon fiber Wesy pitch
KR102045042B1 (en) Preparation method of pitch for carbon fiber and pitch for carbon fiber prepared by the same
KR101858943B1 (en) Method for preparing pitch having high softening point and pitch prepared by the method
Shen et al. Lignin‐based activated carbon fibers and controllable pore size and properties
CN106811822B (en) Modified phenolic resin fiber and preparation method and application thereof
KR101315979B1 (en) Preparation method of pitch for carbon fiber
JP5870066B2 (en) Carbon fiber pitch manufacturing method
KR20150058011A (en) Manufacturing method of carbon filament using isotropic petroleum pitch and carbon filament therefrom
CN106811823B (en) Modified phenolic resin fiber and preparation method and application thereof
CN105219414A (en) The preparation method of carbon fiber pitch
US9403936B2 (en) Method for preparing a pitch for carbon fibers and a pitch for carbon fibers prepared by the same
Mishra et al. A comparative study on the development of pitch precursor for general-purpose carbon fibres
JP7284681B2 (en) Friction material, friction member, and manufacturing method thereof
JP3015949B2 (en) Method for producing optically isotropic pitch having high softening point
CN106811824B (en) Modified phenolic resin fiber and preparation method and application thereof
CN104178194A (en) Preparation method for carbon fiber asphalt
Li et al. Preparation and Characterization of Polyethylene Copolymers with PAH Side Groups as Carbon Fiber Precursors
KR20160057712A (en) Carbon filament made from the hybrid precursor fiber and manufacturing method thereof
JP2016216559A (en) Production method of pitch
Ghislandi et al. Functionalization of carbon nanofibers (CNFs) through atom transfer radical polymerization for the preparation of poly (tert‐butyl acrylate)/CNF materials: Spectroscopic, thermal, morphological, and physical characterizations
JP2000319664A (en) Mesophase pitch for carbon material and production of carbon fiber
KR101470261B1 (en) Pitch based carbon fiber and method of producing the same
Jiao et al. Effect of boron content of high-ortho phenolic fibers on thermal property

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151216

R150 Certificate of patent or registration of utility model

Ref document number: 5859623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250