JP2016074019A - Hot three-dimensional bending device - Google Patents

Hot three-dimensional bending device Download PDF

Info

Publication number
JP2016074019A
JP2016074019A JP2014207592A JP2014207592A JP2016074019A JP 2016074019 A JP2016074019 A JP 2016074019A JP 2014207592 A JP2014207592 A JP 2014207592A JP 2014207592 A JP2014207592 A JP 2014207592A JP 2016074019 A JP2016074019 A JP 2016074019A
Authority
JP
Japan
Prior art keywords
coil
cooling device
workpiece
water cooling
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207592A
Other languages
Japanese (ja)
Other versions
JP6424555B2 (en
Inventor
直明 嶋田
Naoaki Shimada
直明 嶋田
信宏 岡田
Nobuhiro Okada
信宏 岡田
富澤 淳
Atsushi Tomizawa
淳 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014207592A priority Critical patent/JP6424555B2/en
Publication of JP2016074019A publication Critical patent/JP2016074019A/en
Application granted granted Critical
Publication of JP6424555B2 publication Critical patent/JP6424555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a 3DQ device which can manufacture a bent component which satisfies an extremely high dimensional accuracy, for example, within a range of ±0.5 mm, even if a cross-sectional shape of the component is a flat shape and a strength thereof in a height direction is small.SOLUTION: A 3DQ device 10 is equipped with: a feeding mechanism 4 for a square tube 2; a support mechanism 3 for positioning the square tube 2; a coil 5 for heating the square tube 2 to Acpoint or higher; a busbar 6 which so supports the coil 5 as to be suspended and supplies a high-frequency power to the coil 5; a water-cooling apparatus 7 which injects cooling water onto an outer periphery of the heated square tube 2; and a holding mechanism or a gripping mechanism 8. The holding mechanism or the gripping mechanism 8 and the support mechanism 3 give a bending moment to a high temperature part 2a of the square tube 2, and are further equipped with a control mechanism 11 which so controls a position of the water-cooling apparatus 7 as to cancel displacement of the water-cooling apparatus 7 due to expansion of the busbar 6 by supply of electric power to the coil 5.SELECTED DRAWING: Figure 4

Description

本発明は、熱間三次元曲げ加工装置に関する。   The present invention relates to a hot three-dimensional bending apparatus.

特許文献1には、図1に概要を示す熱間三次元曲げ加工装置1(以下、「3DQ装置」という)が開示されている。以下、この3DQ装置1を説明する。   Patent Document 1 discloses a hot three-dimensional bending apparatus 1 (hereinafter referred to as “3DQ apparatus”) whose outline is shown in FIG. Hereinafter, the 3DQ device 1 will be described.

図1に示すように、閉じた断面を有する中空の被加工材2(以降の説明では鋼管を例にとる)を、所定の位置に固定配置された支持ロール3により位置決めしながら、送り装置4により鋼管2の軸方向(図1中の矢印が示す方向)へ送る。支持ロール3より鋼管2の送り方向の下流側(以下、単に「下流側」とも称し、反対の位置関係を単に「上流側」とも称する。)には、鋼管2を周囲から加熱する環状の高周波誘導加熱コイル5(以下、単に「コイル」ともいう。)が配置される。コイル5を懸垂支持するブスバー(フィーダ)6からコイル5へ高周波電力を供給して、送られる鋼管2をAc点以上に加熱する。コイル5の送り方向の下流側に配置された環状の水冷装置7から、加熱された鋼管2の外周に冷却水を噴射して、鋼管2を焼入れる。 As shown in FIG. 1, while feeding a hollow workpiece 2 having a closed cross section (in the following description, a steel pipe is taken as an example) by a support roll 3 fixedly arranged at a predetermined position, a feeding device 4 Is sent in the axial direction of the steel pipe 2 (the direction indicated by the arrow in FIG. 1). On the downstream side in the feed direction of the steel pipe 2 from the support roll 3 (hereinafter, also simply referred to as “downstream side”, and the opposite positional relationship is also simply referred to as “upstream side”), an annular high frequency heating the steel pipe 2 from the surroundings. An induction heating coil 5 (hereinafter also simply referred to as “coil”) is disposed. High-frequency power is supplied to the coil 5 from a bus bar (feeder) 6 that suspends and supports the coil 5, and the steel pipe 2 to be fed is heated to Ac 3 points or more. Cooling water is sprayed to the outer periphery of the heated steel pipe 2 from the annular water cooling device 7 disposed on the downstream side in the feed direction of the coil 5 to quench the steel pipe 2.

そして、コイル5で加熱されてから水冷装置7で冷却されるまでの領域に形成されている鋼管2の高温部2aに、水冷装置7よりも下流側に配置された挟持手段または把持手段8と支持ロール3とにより連続的または断続的に曲げモーメントを付与することにより、鋼管2に熱間曲げ加工を行って曲げ部材9を製造する。   And, in the high temperature part 2a of the steel pipe 2 formed in the region from being heated by the coil 5 until being cooled by the water cooling device 7, sandwiching means or gripping means 8 disposed downstream of the water cooling device 7 The bending member 9 is manufactured by performing a hot bending process on the steel pipe 2 by applying a bending moment continuously or intermittently with the support roll 3.

なお、高温部2aの軸方向の長さは曲げ加工可能な範囲で短いことが、曲げ部材9の寸法精度を高めるために望ましい。このため、水冷装置7は、コイル5のすぐ近くに配置される。水冷装置7とコイル5とが接続されて一体物とされることも多く、その方が省スペースの面では有利である。   In addition, in order to raise the dimensional accuracy of the bending member 9, it is desirable for the length of the high temperature part 2a to be short in the range which can be bent. For this reason, the water cooling device 7 is disposed in the immediate vicinity of the coil 5. In many cases, the water-cooling device 7 and the coil 5 are connected to be integrated, which is advantageous in terms of space saving.

ところで、3DQ装置1により熱間三次元曲げ加工を行われて製造される製品は、主として自動車用部材(例えばサスペンションアーム)であり、製品には、一例として±0.5mmという厳しい寸法精度が求められる。   By the way, products manufactured by performing hot three-dimensional bending with the 3DQ apparatus 1 are mainly automobile members (for example, suspension arms), and the product requires a strict dimensional accuracy of ± 0.5 mm as an example. It is done.

特許文献2の段落0004には、送り出される鋼管2に僅かな曲がり(反り)が存在することが避けられないため、支持ロール3から出た鋼管2がコイル5の内部を通過する時に、鋼管2の外周とコイル5の内周との隙間が周方向で不均一になり、コイル5の内周との距離が近い部分とこの距離が遠い部分とにおいて鋼管1に温度差が発生して曲げ加工の加工精度が低下する可能性があると記載されている。   In paragraph 0004 of Patent Document 2, since it is inevitable that the steel pipe 2 to be sent out has a slight bend (warp), when the steel pipe 2 coming out of the support roll 3 passes through the inside of the coil 5, the steel pipe 2. The gap between the outer circumference of the coil 5 and the inner circumference of the coil 5 becomes uneven in the circumferential direction, and a bending process occurs due to a temperature difference in the steel pipe 1 between a portion where the distance from the inner circumference of the coil 5 is near and a portion where this distance is far. It is described that there is a possibility that the processing accuracy of the material may be lowered.

その対策として、特許文献2においては、コイルを固定した可動架台を、フローティング支持手段を介して固定架台にフローティング支持し、可動架台に鋼管の外周面に当接する複数のガイド部材を設けることが記載されている。これにより、鋼管の曲がり(反り)に応じて可動架台とともにコイルをセンタリングし、鋼管の外周とコイルの内周との隙間を均一化することができるので、鋼管を周方向に均一に加熱できるとしている。   As a countermeasure, Patent Document 2 describes that a movable frame having a coil fixed thereon is float-supported on the fixed frame via a floating support means, and a plurality of guide members that contact the outer peripheral surface of the steel pipe are provided on the movable frame. Has been. As a result, the coil can be centered together with the movable frame in accordance with the bending (warping) of the steel pipe, and the gap between the outer circumference of the steel pipe and the inner circumference of the coil can be made uniform, so that the steel pipe can be heated uniformly in the circumferential direction. Yes.

特開2008−23573号公報JP 2008-23573 A 特開2012−55963号公報JP 2012-55963 A

本発明者らが、鋭意検討を重ねた結果、3DQ装置により製造される曲げ部材が、断面形状が高さ方向への強度が小さい偏平な断面形状を有するとともに、例えば±0.5mmといった極めて高い寸法精度を要求される部品である場合には、特許文献2により開示された曲げ装置を用いても、所望の寸法精度を有する曲げ部材を製造できないことを知見した。   As a result of extensive studies by the inventors, the bending member manufactured by the 3DQ apparatus has a flat cross-sectional shape with a small strength in the height direction and an extremely high value of, for example, ± 0.5 mm. In the case of a component that requires dimensional accuracy, it has been found that a bending member having a desired dimensional accuracy cannot be manufactured even if the bending apparatus disclosed in Patent Document 2 is used.

本発明の目的は、部材の断面形状が高さ方向への強度が小さい偏平形状であって、例えば±0.5mmといった極めて高い寸法精度を満足する曲げ部材を製造することができる3DQ装置を提供することである。   An object of the present invention is to provide a 3DQ apparatus capable of manufacturing a bending member that has a flat cross-sectional shape with a small strength in the height direction and that satisfies extremely high dimensional accuracy, for example, ± 0.5 mm. It is to be.

本発明者らは、3DQ装置1について詳細に検討した。この検討では、3DQ装置1による被加工材2が、偏平な閉じた断面を有する中空の角管であることを前提とした。この検討の結果、以下に列記の新規な知見A,Bを得て、本発明を完成した。   The inventors examined the 3DQ device 1 in detail. In this examination, it is assumed that the workpiece 2 by the 3DQ apparatus 1 is a hollow square tube having a flat closed cross section. As a result of this examination, the following new findings A and B were obtained, and the present invention was completed.

(A)3DQ装置1の稼働時に、コイル5による発熱により、コイル5に高周波電力を供給するとともにコイル5を懸垂支持するブスバー6が膨張する。ブスバー6の膨張により、ブスバー6の下部に固定されるコイル5と、コイル5と一体化された水冷装置7とが、当初の設置位置から主に下方へ変位し、コイル5および水冷装置7が角管2に対して偏芯する。   (A) When the 3DQ device 1 is in operation, heat generated by the coil 5 expands the bus bar 6 that supplies high-frequency power to the coil 5 and supports the coil 5 in a suspended manner. The expansion of the bus bar 6 causes the coil 5 fixed to the lower part of the bus bar 6 and the water cooling device 7 integrated with the coil 5 to be displaced downward from the original installation position, so that the coil 5 and the water cooling device 7 are It is eccentric with respect to the square tube 2.

図2(a)は、上下方向長さが600mmのブスバー6によりコイル5を懸垂支持してコイル5の加熱をON,OFFした場合におけるコイル5の変位量を示すグラフであり、図2(b)は、コイル5およびブスバー6付近を抜き出して示す説明図である。   FIG. 2A is a graph showing the amount of displacement of the coil 5 when the coil 5 is suspended and supported by the bus bar 6 having a vertical length of 600 mm and the heating of the coil 5 is turned on and off. ) Is an explanatory view showing the vicinity of the coil 5 and the bus bar 6.

図2(a)および図2(b)に示すように、コイル5の加熱をONするとブスバー6が熱膨張し、これにより、コイル5が加熱前の位置から下方へおよそ0.5mm変位する。このため、コイル5および水冷装置7が角管2に対して偏芯する。   As shown in FIGS. 2A and 2B, when the heating of the coil 5 is turned ON, the bus bar 6 is thermally expanded, and thereby the coil 5 is displaced downward by about 0.5 mm from the position before the heating. For this reason, the coil 5 and the water cooling device 7 are eccentric with respect to the square tube 2.

この偏芯が発生すると、製品(曲げ部材)9の寸法精度が大幅に低下する。
(B)コイル5の偏芯と水冷装置7の偏芯とのどちらが曲げ部材9の寸法精度の低下により影響するのかを調査するために、水冷装置7とコイル5とを一体化せずに別部品とし、角管2に対して、コイル5を偏芯させずに水冷装置7だけを偏芯させた。
When this eccentricity occurs, the dimensional accuracy of the product (bending member) 9 is significantly reduced.
(B) In order to investigate which of the eccentricity of the coil 5 and the eccentricity of the water cooling device 7 is affected by the decrease in the dimensional accuracy of the bending member 9, the water cooling device 7 and the coil 5 are not integrated. As a component, only the water cooling device 7 was eccentric with respect to the square tube 2 without decentering the coil 5.

図3(a)は、偏平断面を有する角管7において、コイル5および水冷装置7をいずれも偏芯させた場合の高さ方向の寸法精度の低下の程度を▲印で示すとともに水冷装置7のみ偏芯させた場合の高さ方向の寸法精度の低下の程度を○印で示すグラフであり、図3(b)は、角管2の断面寸法を示す説明図である。   FIG. 3A shows the degree of reduction in dimensional accuracy in the height direction when the coil 5 and the water cooling device 7 are both eccentric in the square tube 7 having a flat cross section, as well as the water cooling device 7. FIG. 3B is an explanatory diagram showing the cross-sectional dimensions of the square tube 2. FIG. 3B is a graph showing the degree of decrease in dimensional accuracy in the height direction when only the eccentricity is made.

図3(a)および図3(b)に示すように、水冷装置7のみ偏芯させた場合の曲げ部材9の寸法精度の低下の程度は、意外にも、コイル5および水冷装置7をいずれも偏芯させた場合の曲げ部材9の寸法精度の低下の程度と、同程度であった。   As shown in FIGS. 3 (a) and 3 (b), the degree of decrease in the dimensional accuracy of the bending member 9 when only the water cooling device 7 is eccentric is surprisingly different between the coil 5 and the water cooling device 7. Also, the degree of dimensional accuracy of the bending member 9 when the eccentric member was eccentric was almost the same as that of the bending member 9.

このことから、曲げ部材9の寸法精度の低下に主に影響するのは、特許文献1に開示されるように角管2に対するコイルの偏芯ではなく、角管2に対する水冷装置7の偏芯であることが判明した。   From this, it is not the eccentricity of the coil with respect to the square tube 2 but the eccentricity of the water cooling device 7 with respect to the rectangular tube 2 that mainly affects the decrease in the dimensional accuracy of the bending member 9. It turned out to be.

本発明は、以下に列記の通りである。
(1)扁平な閉じた断面を有する中空の被加工材を長手方向へ送る送り機構と、
前記送り機構よりも前記被加工材の送り方向の下流側の所定の位置に固定配置されて前記被加工材を位置決めする支持機構と、
前記支持機構の下流側の所定の位置に配置され、前記被加工材を加熱する高周波誘導加熱コイルと、
前記高周波誘導加熱コイルを、その延設方向が前記被加工材における強度が低い方向と略一致するように支持するとともに、該高周波誘導加熱コイルに電力を供給するブスバーと、
前記被加工材の送り方向について前記高周波誘導加熱コイルの下流側に前記高周波誘導加熱コイルと一体化されて、加熱された前記被加工材の外周に冷却水を噴射する水冷装置と、
前記水冷装置よりも下流側に三次元に移動自在に配置され、前記被加工材を移動自在に挟持する挟持機構または前記被加工材を固定して把持する把持機構とを備え、
前記挟持機構または前記把持機構と前記支持機構とは、前記高周波誘導加熱コイルにより加熱されてから前記水冷装置により冷却されるまでの領域に形成される前記被加工材の高温部に曲げモーメントを付与し、さらに、
前記高周波誘導加熱コイルへの電力の供給による前記ブスバーの膨張に起因する前記水冷装置の変位を相殺するように前記水冷装置の位置を制御する制御機構を備えること
を特徴とする3DQ装置。
The present invention is listed below.
(1) a feed mechanism for feeding a hollow workpiece having a flat closed cross section in the longitudinal direction;
A support mechanism that positions the workpiece by being fixedly arranged at a predetermined position downstream of the feed mechanism in the feed direction of the workpiece;
A high-frequency induction heating coil that is disposed at a predetermined position downstream of the support mechanism and heats the workpiece;
A bus bar for supporting the high-frequency induction heating coil such that its extending direction substantially coincides with a direction in which the strength of the workpiece is low, and supplying power to the high-frequency induction heating coil;
A water-cooling device that is integrated with the high-frequency induction heating coil on the downstream side of the high-frequency induction heating coil in the feed direction of the workpiece, and that injects cooling water to the outer periphery of the heated workpiece;
A three-dimensionally arranged downstream of the water-cooling device, and a holding mechanism for holding the workpiece movably or a holding mechanism for holding and holding the workpiece.
The clamping mechanism or the gripping mechanism and the support mechanism give a bending moment to a high temperature part of the workpiece formed in a region from being heated by the high frequency induction heating coil to being cooled by the water cooling device. And then
A 3DQ device comprising a control mechanism for controlling the position of the water cooling device so as to cancel out the displacement of the water cooling device caused by expansion of the bus bar due to the supply of electric power to the high frequency induction heating coil.

(2)前記ブスバーは、前記高周波誘導加熱コイルを懸垂して支持する(1)項に記載された3DQ装置。
(3)前記制御機構は、前記ブスバーの上部に接続された高周波電源装置を懸垂支持するマニピュレータを有するロボットを備える(1)項または(2)項に記載された3DQ装置。
(2) The 3DQ device according to (1), wherein the bus bar suspends and supports the high-frequency induction heating coil.
(3) The 3DQ device according to (1) or (2), wherein the control mechanism includes a robot having a manipulator that suspends and supports a high-frequency power supply device connected to an upper portion of the bus bar.

(4)前記制御機構は、前記水冷装置の配置位置の変化パターンを予め求め、求めた該変化パターンに応じて前記マニピュレータの動作を制御する(3)項に記載された3DQ装置。   (4) The 3DQ device according to (3), wherein the control mechanism obtains a change pattern of an arrangement position of the water cooling device in advance and controls the operation of the manipulator according to the obtained change pattern.

(5)前記制御機構は、稼働時における前記水冷装置の配置位置の変化を測定し、該測定の結果に基づいて前記マニピュレータの動作をフィードバック制御する(3)項に記載された3DQ装置。   (5) The 3DQ device according to (3), wherein the control mechanism measures a change in an arrangement position of the water cooling device during operation, and feedback-controls the operation of the manipulator based on a result of the measurement.

(6)前記ブスバーは、略上下方向へ延設される第1の部分と、該第1の部分につながるとともに略水平方向へ延設される第2の部分とからなる略L字状の外形を有する(1)項から(5)項までのいずれか1項に記載された熱間三次元曲げ加工装置。   (6) The bus bar has a substantially L-shaped outer shape including a first portion extending substantially in the vertical direction and a second portion connected to the first portion and extending in the substantially horizontal direction. A hot three-dimensional bending apparatus described in any one of items (1) to (5) having:

本発明により、例えば±0.5mmといった極めて高い寸法精度を満足する偏平な閉じた断面を有する中空の曲げ部材、特に自動車用部材(例えばサスペンションアーム)を製造することができるようになる。   According to the present invention, it becomes possible to manufacture a hollow bending member having a flat closed cross section that satisfies extremely high dimensional accuracy of, for example, ± 0.5 mm, particularly an automobile member (for example, a suspension arm).

図1は、3DQ装置の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a 3DQ device. 図2(a)は、上下方向長さが600mmのブスバーによりコイルを懸垂支持してコイルをON,OFFした場合におけるコイルの変位量を示すグラフであり、図2(b)は、コイルおよびブスバー付近を抜き出して示す説明図である。2A is a graph showing the amount of displacement of the coil when the coil is suspended and supported by a bus bar having a vertical length of 600 mm, and the coil is turned on and off. FIG. 2B is a graph showing the coil and bus bar. It is explanatory drawing which extracts and shows the vicinity. 図3(a)は、偏平断面を有する角管において、コイルおよび水冷装置をいずれも偏芯させた場合の高さ方向の寸法精度の低下の程度を▲印で示すとともに水冷装置のみ偏芯させた場合の高さ方向の寸法精度の低下の程度を○印で示すグラフであり、図3(b)は、角管の断面寸法を示す説明図である。FIG. 3 (a) shows the degree of reduction in dimensional accuracy in the height direction when both the coil and the water cooling device are eccentric in a square tube having a flat cross section, and only the water cooling device is eccentric. FIG. 3B is an explanatory diagram showing the cross-sectional dimensions of the square tube. 図4は、本発明に係る3DQ装置におけるコイル、ブスバー、水冷装置および制御機構を抜き出して示す説明図である。FIG. 4 is an explanatory view showing extracted coils, bus bars, a water cooling device, and a control mechanism in the 3DQ device according to the present invention. 図5は、変形例のブスバーを示す説明図である。FIG. 5 is an explanatory view showing a bus bar of a modified example.

本発明を、添付図面を参照しながら、説明する。なお、略述すると、図1に示す3DQ装置1に対する本発明に係る3DQ装置10の相違点はブスバー6の支持態様であるので、以降の説明は図1も参照しながら行うことにする。   The present invention will be described with reference to the accompanying drawings. In brief, since the difference between the 3DQ device 10 according to the present invention and the 3DQ device 1 shown in FIG. 1 is the support mode of the bus bar 6, the following description will be made with reference to FIG.

図1に示すように、本発明に係る3DQ装置10は、送り機構4と、支持機構3と、高周波誘導加熱コイル5と、ブスバー6と、水冷装置7と、挟持機構または把持機構8とを有する。   As shown in FIG. 1, a 3DQ device 10 according to the present invention includes a feed mechanism 4, a support mechanism 3, a high frequency induction heating coil 5, a bus bar 6, a water cooling device 7, and a clamping mechanism or a gripping mechanism 8. Have.

図4は、本発明に係る3DQ装置10におけるコイル5、ブスバー6、水冷装置7および制御機構11を抜き出して示す説明図である。   FIG. 4 is an explanatory view showing the coil 5, the bus bar 6, the water cooling device 7 and the control mechanism 11 in the 3DQ device 10 according to the present invention.

3DQ装置10は、偏平な閉じた断面を有する中空の被加工材2に熱間三次元曲げ加工を行って、偏平な閉じた断面を有する中空の曲げ部材9を製造する。被加工材2の断面形状としては、矩形、楕円形、長円形等が例示される。以降の説明では、被加工材2が、矩形の断面形状を有する中空かつ鋼製の角管2である場合を例にとる。   The 3DQ apparatus 10 performs a hot three-dimensional bending process on the hollow workpiece 2 having a flat closed cross section to produce a hollow bending member 9 having a flat closed cross section. Examples of the cross-sectional shape of the workpiece 2 include a rectangle, an ellipse, and an oval. In the following description, a case where the workpiece 2 is a hollow and square steel tube 2 having a rectangular cross-sectional shape is taken as an example.

[送り機構4]
送り機構4は、角管2をその長手方向へ送ることが可能なものであればよく、特定の送り機構には制限されない。送り機構としては、この種の送り機構として周知慣用のものを用いることができ、具体的には、ボールネジを用いるものや搬送ローラを用いるもの等が例示される。さらに、送り機構4として産業用ロボットを用いてもよい。
[Feeding mechanism 4]
The feed mechanism 4 only needs to be able to feed the square tube 2 in its longitudinal direction, and is not limited to a specific feed mechanism. As the feed mechanism, a well-known and conventional one can be used as this type of feed mechanism, and specifically, one using a ball screw, one using a transport roller, and the like are exemplified. Further, an industrial robot may be used as the feed mechanism 4.

[支持機構3]
支持機構3は、送り機構4よりも角管2の送り方向の下流側の所定の位置に固定して配置される。支持機構3は、角管2を、位置決めしながらその長手方向へ送る。支持機構3としては、この種の支持機構として周知慣用のものを用いることができ、具体的には、角管4の外面に当接する一対の駆動ロールが例示される。図1に示す例では、一対の駆動ロール3を2組タンデムに配置している。
[Support mechanism 3]
The support mechanism 3 is fixedly disposed at a predetermined position downstream of the feed mechanism 4 in the feed direction of the square tube 2. The support mechanism 3 sends the square tube 2 in its longitudinal direction while positioning. As the support mechanism 3, a well-known and conventional one can be used as this type of support mechanism. Specifically, a pair of drive rolls that come into contact with the outer surface of the square tube 4 is exemplified. In the example shown in FIG. 1, a pair of drive rolls 3 are arranged in two sets of tandem.

[コイル5]
高周波誘導加熱コイル5は、支持機構3よりも下流側の所定の位置に配置される。コイル5は、角管2の周囲から所定の距離離れて角管2を取り囲んで配置される。コイル5は、高周波磁界を発生して高周波エネルギーを角管2に供給することにより、角管2をAc点以上に加熱する。コイル5としては、この種のコイルとして周知慣用のものを用いることができる。
[Coil 5]
The high frequency induction heating coil 5 is disposed at a predetermined position downstream of the support mechanism 3. The coil 5 is disposed surrounding the square tube 2 at a predetermined distance from the periphery of the square tube 2. The coil 5 generates a high-frequency magnetic field and supplies high-frequency energy to the square tube 2 to heat the square tube 2 to Ac 3 points or more. As the coil 5, a well-known and commonly used coil of this type can be used.

[ブスバー6]
ブスバー6は、コイル5が上述の所定の位置に配置されるように、コイル5を懸垂支持する。また、ブスバー6は、高電圧・高電流にも耐え得る導体(例えば銅製)からなり、コイル5および水冷装置7を確実に保持するため板状に構成されている。ブスバー6は、電流密度が規定値を超えないように所定の表面積を有している。
[Bus bar 6]
The bus bar 6 suspends and supports the coil 5 so that the coil 5 is disposed at the predetermined position. The bus bar 6 is made of a conductor (for example, made of copper) that can withstand high voltage and high current, and is configured in a plate shape to securely hold the coil 5 and the water cooling device 7. The bus bar 6 has a predetermined surface area so that the current density does not exceed a specified value.

ブスバー6の上部は、ブスバー6の上部に配置された高周波電源装置6−1に固定されている。このため、ブスバー6は、熱膨張すると、主に下方へ向けて変位する。   The upper portion of the bus bar 6 is fixed to a high frequency power supply device 6-1 disposed on the upper portion of the bus bar 6. For this reason, the bus bar 6 is mainly displaced downward when thermally expanded.

[水冷装置7]
水冷装置7は、角管2の送り方向についてコイル5よりも下流側の所定の位置に配置される。上述のように、角管2に形成される高温部2aの軸方向の長さが曲げ加工可能な範囲で短いことが曲げ加工精度を高めるために有利である。このため、水冷装置7は、コイル5に近接して設置される。したがって、水冷装置7はコイル5と一体に設けられている。水冷装置7は、角管2の全周に冷却水を噴射することにより、コイル5によりAc点以上に加熱された角管2を急速に冷却して焼入れる。
[Water cooling device 7]
The water cooling device 7 is disposed at a predetermined position downstream of the coil 5 in the feeding direction of the square tube 2. As described above, it is advantageous for increasing the bending accuracy that the length in the axial direction of the high temperature portion 2a formed in the square tube 2 is as short as possible. For this reason, the water cooling device 7 is installed close to the coil 5. Therefore, the water cooling device 7 is provided integrally with the coil 5. The water cooling device 7 rapidly cools and quenches the square tube 2 heated to the Ac 3 point or more by the coil 5 by injecting cooling water to the entire circumference of the square tube 2.

[挟持機構または把持機構8]
挟持機構または把持機構8は、水冷装置7よりも下流側に、三次元に移動自在に配置される。挟持機構8は、角管2を移動自在に挟持するものであり、例えば、角管2の外面に当接する一対の駆動ロールにより構成されることが例示される。一方、把持機構8は、角管2の内面または外面に固定して装着されることにより角管2を把持するものであり、例えば角管2の内部に固定して配置されるチャック機構が例示される。
[Holding mechanism or gripping mechanism 8]
The clamping mechanism or gripping mechanism 8 is arranged on the downstream side of the water cooling device 7 so as to be movable in three dimensions. The sandwiching mechanism 8 is a mechanism that sandwiches the square tube 2 movably, and is exemplified by a pair of drive rolls that come into contact with the outer surface of the square tube 2. On the other hand, the gripping mechanism 8 grips the square tube 2 by being fixedly attached to the inner surface or the outer surface of the square tube 2. For example, a chuck mechanism fixedly disposed inside the square tube 2 is exemplified. Is done.

3DQ装置10では、挟持機構または把持機構8のいずれも用いることができ、状況に応じて適宜選択すればよい。挟持機構または把持機構8を三次元で移動自在に配置するには、挟持機構または把持機構8を産業用ロボットにより保持することが簡便である。   In the 3DQ device 10, either the clamping mechanism or the gripping mechanism 8 can be used, and may be selected as appropriate according to the situation. In order to dispose the holding mechanism or gripping mechanism 8 in a three-dimensional manner, it is easy to hold the holding mechanism or the gripping mechanism 8 with an industrial robot.

挟持機構または把持機構8と支持機構3とが、コイル5により加熱されてから水冷装置7により冷却されるまでの領域に形成される角管2の高温部2aに曲げモーメントを付与する。これにより、矩形の閉じた断面を有する中空の曲げ部材9が製造される。   The pinching mechanism or gripping mechanism 8 and the support mechanism 3 impart a bending moment to the high temperature portion 2a of the square tube 2 formed in the region from being heated by the coil 5 until being cooled by the water cooling device 7. Thereby, the hollow bending member 9 which has a rectangular closed cross section is manufactured.

[制御機構11]
上述したように、3DQ装置10の稼働時に、コイル5による発熱により、コイル5を懸垂支持するブスバー6が膨張する。ブスバー6の膨張により、水冷装置7がコイル5と一体に構成されているため、ブスバー6の下部に固定されるコイル5と、コイル5と一体化された水冷装置7とが当初の位置から主に下方へ変位する。このため、コイル5および水冷装置7が角管2に対して偏芯する。そして、角管2に対する水冷装置7の偏芯により、3DQ装置10により製造される曲げ部材9の寸法精度が低下する。
[Control mechanism 11]
As described above, when the 3DQ device 10 is in operation, the bus bar 6 that suspends and supports the coil 5 expands due to heat generated by the coil 5. Since the water cooling device 7 is configured integrally with the coil 5 due to the expansion of the bus bar 6, the coil 5 fixed to the lower portion of the bus bar 6 and the water cooling device 7 integrated with the coil 5 are mainly arranged from the initial position. Is displaced downward. For this reason, the coil 5 and the water cooling device 7 are eccentric with respect to the square tube 2. And the dimensional accuracy of the bending member 9 manufactured with the 3DQ apparatus 10 falls by eccentricity of the water cooling apparatus 7 with respect to the square tube 2. FIG.

そこで、3DQ装置10は、制御機構11を有する。制御機構11は、コイル5への電力の供給によるブスバー6の膨張に起因する水冷装置7の変位を相殺するように、水冷装置7の位置を制御することにより、角管2に対する水冷装置7の偏芯を防ぐ機能を有するものである。   Therefore, the 3DQ device 10 includes a control mechanism 11. The control mechanism 11 controls the position of the water cooling device 7 so as to cancel the displacement of the water cooling device 7 caused by the expansion of the bus bar 6 due to the supply of electric power to the coil 5. It has a function to prevent eccentricity.

制御機構11は、このような機能を有するものであれば、如何なる機構であってもよく特定の機構には制限されない。しかし、図4に示すように、制御機構11は、産業用ロボット11のマニピュレータ11aによってブスバー6の上部に接続された高周波電源装置6−1を懸垂支持するように構成することが、最も簡便であり望ましい。   The control mechanism 11 may be any mechanism as long as it has such a function, and is not limited to a specific mechanism. However, as shown in FIG. 4, it is most simple that the control mechanism 11 is configured to suspend and support the high-frequency power supply device 6-1 connected to the upper portion of the bus bar 6 by the manipulator 11a of the industrial robot 11. There is desirable.

産業用ロボット11は、コイル5への電力の供給によるブスバー6の膨張に起因する水冷装置7の変位を相殺するように、高周波電源装置6−1、ブスバー6、コイル5および水冷装置7を、水冷装置7の変位量と同じ量だけ水冷装置7の変位方向とは反対方向へ変位させる。このようにして、産業用ロボット11は、水冷装置7の位置を制御することにより、角管2に対する水冷装置7の偏芯を防ぐ。   The industrial robot 11 uses the high frequency power supply device 6-1, the bus bar 6, the coil 5 and the water cooling device 7 so as to cancel the displacement of the water cooling device 7 caused by the expansion of the bus bar 6 due to the power supply to the coil 5. The displacement amount of the water cooling device 7 is displaced in the direction opposite to the displacement direction of the water cooling device 7 by the same amount. In this way, the industrial robot 11 prevents the eccentricity of the water cooling device 7 with respect to the square tube 2 by controlling the position of the water cooling device 7.

産業用ロボット11を動作させるために、
(I)水冷装置7の変位のパターンを予め求めておき、求めたこの変化パターンに応じるように産業用ロボット11をティーチングすることにより、産業用ロボット11のマニピュレータ11aを動作させることや、
(II)稼働時における水冷装置7の配置位置の変化を、慣用される適当な位置測定装置により測定し、この測定の結果に基づいて、産業用ロボット11のティーチングプログラムを修正して産業用ロボット11のマニピュレータ11aを動作させること
が例示される。
In order to operate the industrial robot 11,
(I) The displacement pattern of the water cooling device 7 is obtained in advance, and the industrial robot 11 is operated so as to respond to the obtained change pattern, thereby operating the manipulator 11a of the industrial robot 11;
(II) A change in the arrangement position of the water cooling device 7 during operation is measured by a suitable conventional position measuring device, and the teaching program of the industrial robot 11 is corrected based on the result of this measurement, and the industrial robot It is illustrated that 11 manipulators 11a are operated.

図5は、変形例のブスバー6−1を示す説明図である。
図5に示すように、ブスバー6−1が、略上下方向へ延設される第1の部分12と、第1の部分12につながるとともに略水平方向へ延設される第2の部分13とからなる略L字状の外形を有することが望ましい。ブスバー6−1は、略L字状の外形を有するために、上下方向への熱膨張を上方へ逃がすことができる。
FIG. 5 is an explanatory view showing a bus bar 6-1 of a modification.
As shown in FIG. 5, the bus bar 6-1 includes a first portion 12 extending in a substantially vertical direction, and a second portion 13 connected to the first portion 12 and extending in a substantially horizontal direction. It is desirable to have a substantially L-shaped outer shape. Since the bus bar 6-1 has a substantially L-shaped outer shape, the thermal expansion in the vertical direction can be released upward.

2 角管
2a 高温部
3 支持機構
4 送り機構
5 高周波誘導加熱コイル
6 ブスバー
6−1 高周波電源装置
7 水冷装置
8 挟持機構または把持機構
9 曲げ部材
10 本発明の3DQ装置
11 産業用ロボット
11a マニピュレータ
2 Square tube 2a High temperature part 3 Support mechanism 4 Feed mechanism 5 High frequency induction heating coil 6 Bus bar 6-1 High frequency power supply device 7 Water cooling device 8 Nipping mechanism or gripping mechanism 9 Bending member 10 3DQ device 11 of the present invention Industrial robot 11a Manipulator

Claims (6)

扁平な閉じた断面を有する中空の被加工材を長手方向へ送る送り機構と、
前記送り機構よりも前記被加工材の送り方向の下流側の所定の位置に固定配置されて前記被加工材を位置決めする支持機構と、
前記支持機構の下流側の所定の位置に配置され、前記被加工材を加熱する高周波誘導加熱コイルと、
前記高周波誘導加熱コイルを、その延設方向が前記被加工材における強度が低い方向と略一致するように支持するとともに、該高周波誘導加熱コイルに電力を供給するブスバーと、
前記被加工材の送り方向について前記高周波誘導加熱コイルの下流側に前記高周波誘導加熱コイルと一体化されて、加熱された前記被加工材の外周に冷却水を噴射する水冷装置と、
前記水冷装置よりも下流側に三次元に移動自在に配置され、前記被加工材を移動自在に挟持する挟持機構または前記被加工材を固定して把持する把持機構とを備え、
前記挟持機構または前記把持機構と前記支持機構とは、前記高周波誘導加熱コイルにより加熱されてから前記水冷装置により冷却されるまでの領域に形成される前記被加工材の高温部に曲げモーメントを付与し、さらに、
前記高周波誘導加熱コイルへの電力の供給による前記ブスバーの膨張に起因する前記水冷装置の変位を相殺するように前記水冷装置の位置を制御する制御機構を備えること
を特徴とする熱間三次元曲げ加工装置。
A feed mechanism for feeding a hollow workpiece having a flat closed cross section in the longitudinal direction;
A support mechanism that positions the workpiece by being fixedly arranged at a predetermined position downstream of the feed mechanism in the feed direction of the workpiece;
A high-frequency induction heating coil that is disposed at a predetermined position downstream of the support mechanism and heats the workpiece;
A bus bar for supporting the high-frequency induction heating coil such that its extending direction substantially coincides with a direction in which the strength of the workpiece is low, and supplying power to the high-frequency induction heating coil;
A water-cooling device that is integrated with the high-frequency induction heating coil on the downstream side of the high-frequency induction heating coil in the feed direction of the workpiece, and that injects cooling water to the outer periphery of the heated workpiece;
A three-dimensionally arranged downstream of the water-cooling device, and a holding mechanism for holding the workpiece movably or a holding mechanism for holding and holding the workpiece.
The clamping mechanism or the gripping mechanism and the support mechanism give a bending moment to a high temperature part of the workpiece formed in a region from being heated by the high frequency induction heating coil to being cooled by the water cooling device. And then
A hot three-dimensional bending comprising a control mechanism for controlling the position of the water cooling device so as to cancel out the displacement of the water cooling device caused by expansion of the bus bar due to the supply of electric power to the high frequency induction heating coil Processing equipment.
前記ブスバーは、前記高周波誘導加熱コイルを懸垂して支持する請求項1に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 1, wherein the bus bar suspends and supports the high-frequency induction heating coil. 前記制御機構は、前記ブスバーの上部に接続された高周波電源装置を懸垂支持するマニピュレータを有するロボットを備える請求項1または請求項2に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 1, wherein the control mechanism includes a robot having a manipulator that suspends and supports a high-frequency power supply device connected to an upper portion of the bus bar. 前記制御機構は、前記水冷装置の配置位置の変化パターンを予め求め、求めた該変化パターンに応じて前記マニピュレータの動作を制御する請求項3に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 3, wherein the control mechanism obtains in advance a change pattern of an arrangement position of the water cooling device and controls the operation of the manipulator according to the obtained change pattern. 前記制御機構は、稼働時における前記水冷装置の配置位置の変化を測定し、該測定の結果に基づいて前記マニピュレータの動作をフィードバック制御する請求項3に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 3, wherein the control mechanism measures a change in an arrangement position of the water cooling device during operation, and feedback-controls the operation of the manipulator based on a result of the measurement. 前記ブスバーは、略上下方向へ延設される第1の部分と、該第1の部分につながるとともに略水平方向へ延設される第2の部分とからなる略L字状の外形を有する請求項1から請求項5までのいずれか1項に記載された熱間三次元曲げ加工装置。   The bus bar has a substantially L-shaped outer shape composed of a first portion extending in a substantially vertical direction and a second portion connected to the first portion and extending in a substantially horizontal direction. The hot three-dimensional bending apparatus according to any one of claims 1 to 5.
JP2014207592A 2014-10-08 2014-10-08 Hot three-dimensional bending machine Active JP6424555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207592A JP6424555B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207592A JP6424555B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Publications (2)

Publication Number Publication Date
JP2016074019A true JP2016074019A (en) 2016-05-12
JP6424555B2 JP6424555B2 (en) 2018-11-21

Family

ID=55950502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207592A Active JP6424555B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Country Status (1)

Country Link
JP (1) JP6424555B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197146A (en) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd Position controller for high-frequency heating coil
JP2000094043A (en) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd Metal tube bending device
JP2007083304A (en) * 2005-03-03 2007-04-05 Sumitomo Metal Ind Ltd Method for bending metallic material, bending apparatus, bending equipment train and bent product using the same
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2013222591A (en) * 2012-04-16 2013-10-28 Ihi Corp Induction heating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197146A (en) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd Position controller for high-frequency heating coil
JP2000094043A (en) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd Metal tube bending device
JP2007083304A (en) * 2005-03-03 2007-04-05 Sumitomo Metal Ind Ltd Method for bending metallic material, bending apparatus, bending equipment train and bent product using the same
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2013222591A (en) * 2012-04-16 2013-10-28 Ihi Corp Induction heating apparatus

Also Published As

Publication number Publication date
JP6424555B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
CN102791395B (en) Flexure member manufacturing method and flexture member manufacturing device
JP4673656B2 (en) Hot press forming equipment
US8952297B2 (en) Reaction apparatus for processing wafer, electrostatic chuck and wafer temperature control method
KR101570296B1 (en) Heating device for forming curved plate
KR20120099515A (en) Induction heating coil, device for manufacturing of workpiece, and manufacturing method
US9290403B2 (en) Repositionable heater assemblies for glass production lines and methods of managing temperature of glass in production lines
US20150208466A1 (en) Direct resistance heating method
US10271384B2 (en) Direct resistance heating method
KR20150017001A (en) Spinning molding device and molding method
JP2008118731A (en) Heating device and heating method for stator coil and core
JP6419520B2 (en) Hot three-dimensional bending machine
JP6393419B2 (en) Long member quenching apparatus and long member quenching method
JP2016074019A (en) Hot three-dimensional bending device
JP5021367B2 (en) Induction heating coil and induction heating device
JP2016074020A (en) Hot three-dimensional bending device
JP6668181B2 (en) Apparatus and method for manufacturing quenched member
JP5623840B2 (en) Hot processing equipment for metal tubes
JP6365206B2 (en) Hot bending member manufacturing apparatus and manufacturing method
US10462854B2 (en) Apparatus and method for heating annular workpiece, and heating coil
JP2005281801A (en) Apparatus and method for electrically heating sheet metal
CN101307377B (en) Steel rapid-heating device and steel rapid-heating method
CN201254589Y (en) Steel rapid heating apparatus
CN111385932A (en) Electromagnetic induction heating coil and heating device for isothermal biaxial tension test
JP2002018524A (en) Deformation straightening apparatus of annular member
JP2001004508A (en) Working heat treatment reproducing test apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R151 Written notification of patent or utility model registration

Ref document number: 6424555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350