JP2016069348A - Therapeutic compositions for chronic myelogenous leukemia - Google Patents

Therapeutic compositions for chronic myelogenous leukemia Download PDF

Info

Publication number
JP2016069348A
JP2016069348A JP2014202529A JP2014202529A JP2016069348A JP 2016069348 A JP2016069348 A JP 2016069348A JP 2014202529 A JP2014202529 A JP 2014202529A JP 2014202529 A JP2014202529 A JP 2014202529A JP 2016069348 A JP2016069348 A JP 2016069348A
Authority
JP
Japan
Prior art keywords
imatinib
cells
pharmaceutical composition
met
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202529A
Other languages
Japanese (ja)
Other versions
JP6267619B2 (en
Inventor
升三 西田
Shozo Nishida
升三 西田
正寛 椿
Masanobu Tsubaki
正寛 椿
朋也 武田
Tomoya Takeda
朋也 武田
和人 西尾
Kazuto Nishio
和人 西尾
隆志 中山
Takashi Nakayama
隆志 中山
和子 坂井
Kazuko Sakai
和子 坂井
真紀子 駒居
Makiko Komai
真紀子 駒居
優里 小野
Yuri Ono
優里 小野
真衣 深松
Mai Fukamatsu
真衣 深松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2014202529A priority Critical patent/JP6267619B2/en
Publication of JP2016069348A publication Critical patent/JP2016069348A/en
Application granted granted Critical
Publication of JP6267619B2 publication Critical patent/JP6267619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide therapeutic compositions that are effective against chronic myelogenous leukemia in a more fundamental way, although therapeutic compositions of the second and third generations more effective than imatinib are now under development to overcome the problem that imatinib is effective for chronic myelogenous leukemia, but continuous administration of imatinib results in acquired drug resistance.SOLUTION: A therapeutic composition of the invention for chronic myelogenous leukemia comprises a first pharmaceutical composition comprising at least one selected from imatinib, nilotinib, dasatinib, ponatinib and bafetinib to inhibit Bcr-Abl tyrosine kinase; a second pharmaceutical composition to inhibit Met tyrosine kinase or a third pharmaceutical composition to inhibit MEK kinase, where the combination use of these compositions can overcome the drug resistance.SELECTED DRAWING: Figure 7

Description

本発明は、慢性骨髄性白血病の治療用組成物に関するもので、特に従来の治療薬に対して耐性を有する患者に対しても有効な治療用組成物を提供するものである。   The present invention relates to a therapeutic composition for chronic myelogenous leukemia, and particularly provides a therapeutic composition that is effective even for patients who are resistant to conventional therapeutic agents.

慢性骨髄性白血病(Chronic Myelogenous Leukemia:CML)は、造血幹細胞を発症起源とする骨髄増殖性疾患である。フィラデルフィア染色体として知られる染色体転座による造血幹細胞の遺伝子の後天的異常が原因とされる。造血幹細胞が分化・成熟能を保ったまま自律的な増殖をし、白血球や血小板が増加する血液腫瘍である。この疾患は成人白血病の約15%を占めるといわれている。   Chronic myelogenous leukemia (CML) is a myeloproliferative disease that originates from hematopoietic stem cells. It is caused by an acquired abnormality of hematopoietic stem cell genes due to a chromosomal translocation known as the Philadelphia chromosome. Hematopoietic stem cells proliferate autonomously while maintaining differentiation and maturation ability, and are blood tumors in which white blood cells and platelets increase. This disease is said to account for about 15% of adult leukemia.

慢性骨髄性白血病の治療薬としては、フィラデルフィア染色体の遺伝子産物であるBcr−Ablに対するチロシンキナーゼ阻害薬(Tyrosine Kinase Inhibitor:TKI)であるメシル酸イマチニブ(以後単に「イマチニブ」ともいう。)が開発され、骨髄増殖性疾患患者の治療成績は著しく改善した。この薬は、Bcr−Ablを標的とするため、分子標的薬と呼ばれている。   As a therapeutic agent for chronic myelogenous leukemia, imatinib mesylate (hereinafter also simply referred to as “imatinib”), a tyrosine kinase inhibitor (TKI) for Bcr-Abl, which is a gene product of the Philadelphia chromosome, was developed. As a result, treatment outcomes for patients with myeloproliferative disorders have improved significantly. This drug is called a molecular target drug because it targets Bcr-Abl.

しかし、イマチニブを用いた治療を行うと、その患者がイマチニブに対する耐性獲得することが臨床上の重大な問題となっている。このため、耐性を獲得した患者に対しても、効果を発揮するダサチニブ、ニロチニブ、ボスチニブといった第二世代のAblチロシンキナーゼ阻害剤が開発されている。   However, when treated with imatinib, it has become a serious clinical problem for the patient to acquire resistance to imatinib. For this reason, second generation Abl tyrosine kinase inhibitors such as dasatinib, nilotinib, and bosutinib have been developed that are effective even for patients who have acquired tolerance.

一方、癌治療薬において分子標的薬耐性が生じることは他の疾患でも知られている。例えば、上皮成長因子受容体(EGFR)遺伝子変異を有した肺がんに対するEGFRチロシンキナーゼ阻害剤(EGFR−TKI)やEML4−ALK融合遺伝子を有する肺がんに対するALKチロシンキナーゼ阻害剤(ALK−TKI)は、きわめて高い著効性を示す。しかし、ほとんど例外なく1年から数年で耐性が獲得され再発するとされる(非特許文献1)。   On the other hand, the occurrence of molecular target drug resistance in cancer therapeutics is also known in other diseases. For example, an EGFR tyrosine kinase inhibitor (EGFR-TKI) for lung cancer having an epidermal growth factor receptor (EGFR) gene mutation and an ALK tyrosine kinase inhibitor (ALK-TKI) for lung cancer having an EML4-ALK fusion gene are extremely Highly effective. However, with almost no exception, resistance is acquired and recurs in 1 to several years (Non-Patent Document 1).

非特許文献1では、分子標的薬耐性獲得の原因として、標的自身の二次的変異、側副経路の活性化といった原因が開示されている。特に側副経路として肝細胞増殖因子(HGF)がリガンドとなるMetタンパク質が活性化することで耐性を誘導することが紹介されている。   Non-Patent Document 1 discloses causes such as secondary mutation of the target itself and activation of the collateral pathway as the cause of acquiring molecular target drug resistance. In particular, as a collateral pathway, it has been introduced that resistance is induced by the activation of a Met protein whose ligand is hepatocyte growth factor (HGF).

また、特許文献1では、癌治療のための新規なc−Met阻害剤が開示されている。特許文献1は、このc−Met阻害剤にさらに第2の化学療法剤を組み合わせた医薬組成物が記載されている。その一群の第2の化学療法剤の一つとしてイマチニブが挙げられている。   Patent Document 1 discloses a novel c-Met inhibitor for cancer treatment. Patent Document 1 describes a pharmaceutical composition in which a second chemotherapeutic agent is further combined with this c-Met inhibitor. Imatinib is mentioned as one of the group of second chemotherapeutic agents.

特開2013−241458号公報JP 2013-241458 A

「特集:次世代シグナル伝達研究−先駆的基礎解析と臨床・創薬への展開− がんの分子標的治療と耐性シグナル」矢野聖二、生化学、第85巻、第6号、pp.475−485、2013"Special Feature: Next-Generation Signal Transduction Research-Pioneering Basic Analysis and Development for Clinical and Drug Discovery-Molecular Targeted Treatment and Resistance Signals for Cancer" Seiji Yano, Biochemistry, Vol. 85, No. 6, pp. 475-485, 2013

特許文献1は、イマチニブとc−Met阻害剤を組み合わせた医薬組成物が記載されているものの、どのような症例に対して用いることができたのか、またその効果についての記載は何もない。   Although Patent Document 1 describes a pharmaceutical composition in which imatinib and a c-Met inhibitor are combined, there is no description about what kind of case it can be used and its effect.

また、非特許文献1も分子標的薬の耐性獲得について一般的な知見の開示はあるものの、慢性骨髄性白血病に対するイマチニブの耐性獲得について言及されたものではない。つまり、現在なお、慢性骨髄性白血病に対するイマチニブの耐性獲得という問題に対して、第二世代Ablチロシンキナーゼ阻害剤以外の薬剤は存在していない。   In addition, Non-Patent Document 1 does not mention imatinib resistance acquisition against chronic myelogenous leukemia, although there is disclosure of general knowledge about acquisition of resistance of molecular target drugs. In other words, there are currently no drugs other than second-generation Abl tyrosine kinase inhibitors for the problem of acquiring resistance to imatinib against chronic myelogenous leukemia.

本発明の発明者らは、上記の課題を解決すべく鋭意検討した結果、HGF−Met受容体系阻害物質を有する医薬組成物、またはMEK/ERK経路阻害物を含有する医薬組成物は、分子標的薬に耐性を示す慢性骨髄性白血病の治療薬であるイマチニブに対する感受性を増強させ、耐性を克服することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have found that a pharmaceutical composition having an HGF-Met receptor system inhibitor or a pharmaceutical composition containing a MEK / ERK pathway inhibitor is a molecular target. The inventors have found that the sensitivity to imatinib, a therapeutic agent for chronic myeloid leukemia that is resistant to the drug, is enhanced to overcome the resistance, and the present invention has been completed.

より具体的に本発明に係る慢性骨髄性白血病の治療用組成物は、
Bcr−Ablチロシンキナーゼを阻害する第1医薬組成物と、
Metチロシンキナーゼを阻害する第2医薬組成物で構成されることを特徴とする。
More specifically, the composition for treatment of chronic myeloid leukemia according to the present invention comprises:
A first pharmaceutical composition that inhibits Bcr-Abl tyrosine kinase;
It comprises a second pharmaceutical composition that inhibits Met tyrosine kinase.

本発明によれば、イマチニブやダサチニブ、バフェチニブ、ポナチニブなどの分子標的薬に耐性を示す骨髄性慢性白血病の当該分子標的薬に対する感受性を増強若しくは、耐性の克服が可能な医薬組成物を提供することができる。   According to the present invention, there is provided a pharmaceutical composition capable of enhancing the sensitivity of a myelogenous chronic leukemia showing resistance to molecular target drugs such as imatinib, dasatinib, bafetinib, ponatinib, etc., or overcoming the resistance. Can do.

また、イマチニブやダサチニブ、バフェチニブ、ポナチニブなどの分子標的薬に耐性を示す慢性骨髄性白血病に対して有効な癌治療薬を提供することができる。本発明は、致命的なTKI耐性の治療方法を提案し、社会的意義は極めて大きなものである。   In addition, an effective cancer therapeutic agent can be provided for chronic myelogenous leukemia that is resistant to molecular target drugs such as imatinib, dasatinib, bafetinib, and ponatinib. The present invention proposes a method for treating fatal TKI resistance, and its social significance is extremely great.

通常細胞(K562)とイマチニブ耐性細胞で、イマチニブの添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of imatinib and a cell viability in normal cells (K562) and imatinib resistant cells. 通常細胞(K562)とイマチニブ耐性細胞で、ニロチニブの添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of nilotinib, and a cell survival rate in a normal cell (K562) and an imatinib resistant cell. 通常細胞(K562)とイマチニブ耐性細胞で、ダサチニブの添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of dasatinib and a cell viability in normal cells (K562) and imatinib resistant cells. 通常細胞(K562)とイマチニブ耐性細胞で、ポナチニブの添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of ponatinib and a cell viability in a normal cell (K562) and imatinib resistant cell. 通常細胞(K562)とイマチニブ耐性細胞で、バフェチニブの添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of a bafetinib, and a cell survival rate with a normal cell (K562) and an imatinib resistant cell. 通常細胞(K562)とイマチニブ耐性細胞で、抗リン酸化Met抗体、抗Met抗体、抗β−actin抗体に対するイムノブロッティングの結果を示す写真である。It is a photograph showing the results of immunoblotting for anti-phosphorylated Met antibody, anti-Met antibody and anti-β-actin antibody in normal cells (K562) and imatinib resistant cells. 通常細胞(K562)とイマチニブ耐性細胞で、イマチニブとPHA−665752(metチロシンキナーゼ阻害剤)を併用した時の添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount at the time of using together imatinib and PHA-665752 (met tyrosine kinase inhibitor) and a cell viability in a normal cell (K562) and an imatinib resistant cell. 通常細胞(K562)とイマチニブ耐性細胞で、抗リン酸化ERK1/2抗体、抗ERK1/2抗体、抗リン酸化Akt抗体、抗Akt抗体、リン酸化STAT3抗体、STAT3抗体に対するイムノブロッティングの結果を示す写真である。Photograph showing immunoblotting results for anti-phosphorylated ERK1 / 2 antibody, anti-ERK1 / 2 antibody, anti-phosphorylated Akt antibody, anti-Akt antibody, phosphorylated STAT3 antibody, and STAT3 antibody in normal cells (K562) and imatinib resistant cells It is. 通常細胞(K562)とイマチニブ耐性細胞で、イマチニブとU0126(MEK阻害剤)を併用した時の添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount and cell viability when imatinib and U0126 (MEK inhibitor) are used in combination in normal cells (K562) and imatinib resistant cells. 通常細胞(K562)とイマチニブ耐性細胞で、イマチニブとLY294002(PI3K阻害剤)を併用した時の添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount and cell viability when imatinib and LY294002 (PI3K inhibitor) are used in combination in normal cells (K562) and imatinib resistant cells. 通常細胞(K562)とイマチニブ耐性細胞で、イマチニブとAG490(JAK2阻害剤)を併用した時の添加量と細胞生存率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount at the time of using together imatinib and AG490 (JAK2 inhibitor) and a cell viability in a normal cell (K562) and an imatinib resistant cell. 通常細胞(K562)とイマチニブ耐性細胞で、抗リン酸化Met(Tyr1234/1235)抗体、抗リン酸化Met(Tyr1349)抗体、抗Met抗体、抗リン酸化ERK1/2抗体、抗ERK1/2抗体、抗β−actin抗体に対するイムノブロッティングの結果を示す写真である。In normal cells (K562) and imatinib resistant cells, anti-phosphorylated Met (Tyr1234 / 1235) antibody, anti-phosphorylated Met (Tyr1349) antibody, anti-Met antibody, anti-phosphorylated ERK1 / 2 antibody, anti-ERK1 / 2 antibody, anti-ERK1 / 2 antibody It is a photograph which shows the result of the immunoblotting with respect to (beta) -actin antibody.

以下に本発明に係る慢性骨髄性白血病の治療薬について説明を行う。なお、以下の説明は本発明の一実施の形態および一実施例についての例示であって、本発明は以下の説明に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施の形態は変更することができる。   The therapeutic agent for chronic myeloid leukemia according to the present invention will be described below. In addition, the following description is the illustration about one embodiment and one Example of this invention, Comprising: This invention is not limited to the following description. The following embodiments can be modified without departing from the spirit of the present invention.

本発明に係る慢性骨髄性白血病の治療薬は、慢性骨髄性白血病の原因と言われるBcr−Ablチロシンキナーゼ活性を選択的に阻害する第1医薬組成物と、肝細胞増殖因子(HGF)をリガンドとする受容体チロシンキナーゼのMetを阻害する第2医薬組成物を混合したものである。   The therapeutic agent for chronic myelogenous leukemia according to the present invention comprises a first pharmaceutical composition that selectively inhibits Bcr-Abl tyrosine kinase activity, which is said to be a cause of chronic myelogenous leukemia, and hepatocyte growth factor (HGF) as a ligand. And a second pharmaceutical composition that inhibits Met of the receptor tyrosine kinase.

また、第2医薬組成物としては、Met/MEK/ERKのシグナル経路を阻害するものでもよい。   Moreover, as a 2nd pharmaceutical composition, you may inhibit the signal pathway of Met / MEK / ERK.

慢性骨髄性白血病の治療薬としては、イマチニブが知られている。ところが、イマチニブを服用していると、やがて薬剤耐性が生じる。これは、イマチニブが結合していたチロシンキナーゼドメインが変位することで、イマチニブが結合しにくくなるためと考えられた。そのため、第2世代の慢性骨髄性白血病の治療薬として開発されたニロチニブは、Bcr−Ablチロシンキナーゼにより強く選択的に結合し、活性を阻害する。   Imatinib is known as a therapeutic agent for chronic myelogenous leukemia. However, taking imatinib eventually leads to drug resistance. This is thought to be because imatinib becomes difficult to bind due to displacement of the tyrosine kinase domain to which imatinib was bound. Therefore, nilotinib developed as a therapeutic agent for second-generation chronic myelogenous leukemia binds strongly and selectively through Bcr-Abl tyrosine kinase and inhibits its activity.

しかし、イマチニブ耐性細胞についてより詳しく調べてみると、イマチニブ耐性を持たない細胞(以下「通常細胞」という)では、活性化していないMetチロシンキナーゼが活性状態にあることがわかった。つまり、イマチニブ耐性細胞では、Bcr−Ablによるシグナル経路以外に、Metによるシグナル経路によって、細胞が存続している結果を得た。   However, when examining imatinib-resistant cells in more detail, it was found that non-activated Met tyrosine kinase is in an active state in cells not having imatinib resistance (hereinafter referred to as “normal cells”). That is, in imatinib-resistant cells, the result that the cells survived by the signal pathway by Met in addition to the signal pathway by Bcr-Abl was obtained.

そこで、本発明は、慢性骨髄性白血病の治療薬として、Bcr−Ablチロシンキナーゼの阻害剤と、Met阻害剤を併用することで、Bcr−Ablチロシンキナーゼ阻害剤の耐性を克服しようとするものである。   Therefore, the present invention is intended to overcome the resistance of a Bcr-Abl tyrosine kinase inhibitor by using a Bcr-Abl tyrosine kinase inhibitor in combination with a Met inhibitor as a therapeutic agent for chronic myeloid leukemia. is there.

より具体的に、Bcr−Ablチロシンキナーゼ阻害剤(第1医薬組成物)としては、イマチニブ、ニロチニブ、ダサチニブ、ポナチニブ、バフェチニブ等が好適に利用される。   More specifically, as a Bcr-Abl tyrosine kinase inhibitor (first pharmaceutical composition), imatinib, nilotinib, dasatinib, ponatinib, bafetinib and the like are preferably used.

また、Metチロシンキナーゼ阻害剤(第2医薬組成物)としては、カボザンチニブ(:Cabozantinib)(1)、クリゾチニブ(:Crizotinib)(2)、フォアチニブ(:Foretinib)(3)、BMS777607(4)、ゴルバチニブ(:Golvatinib)(5)、MK−2461(6)、MGCD−265(7)、MK−8033(8)、アムバチニブ(:Amuvatinib)(9)、TAS−115(10)、S49076(11)、BMS−754807(12)、BMS−794833(13)、LY2801653(14)、CKI27/RG7304/RO5126766/CH5126766(15)等のマルチ・キナーゼ阻害剤が利用できる。以下のそれぞれの分子構造を示す。また、BI847325と呼ばれるマルチ・キナーゼ阻害剤も用いることができる。   In addition, as a Met tyrosine kinase inhibitor (second pharmaceutical composition), cabozantinib (1), crizotinib (2), foretinib (3), BMS777607 (4), golbatinib (: Golvatinib) (5), MK-2461 (6), MGCD-265 (7), MK-8033 (8), Ambatinib (9), TAS-115 (10), S49076 (11), A multi-kinase inhibitor such as BMS-754807 (12), BMS-794833 (13), LY2801653 (14), CKI27 / RG7304 / RO5126766 / CH5126766 (15) can be used. Each molecular structure is shown below. A multi-kinase inhibitor called BI847325 can also be used.

また、PHA−665752(16)、EMD1214063(17)、JNJ−38877605(18)、PF−4217903(19)、SGX523(20)、INCB−028060(21)、チバンチニブ(:Tivantinib)(22)、SAR125844(23)、ボリチニブ(:Volitinib)(24)、AMG−458(25)、NVP−BVU972(26)、SU11274(27)、AMG208(28)等のMet選択阻害剤が利用できる。以下のそれぞれの分子構造を示す。また、AMG337と呼ばれるMet選択阻害剤も用いることができる。   In addition, PHA-666552 (16), EMD1214063 (17), JNJ-38877605 (18), PF-4219793 (19), SGX523 (20), INCB-028060 (21), Tivantinib (22), SAR125844 Met selective inhibitors such as (23), voritinib (24), AMG-458 (25), NVP-BVU972 (26), SU11274 (27), AMG208 (28) can be used. Each molecular structure is shown below. A Met selection inhibitor called AMG337 can also be used.

また、第2医薬組成物は、Met/MEK/ERKのシグナル経路を阻害するものであればよく、MEK阻害剤であってもよい。より具体的には、セルメチニブ(:selumetinib)(29)、レファメチニブ(:refametinib)(30)、ピマセルチブ(:pimasertib)(31)、MEK162/ARRY−162(32)、AZD8330/ARRY−424704(33)、コビメチニブ(:cobimetinib)(34)、GDC−0623/RG7421/XL518(35)、CIF/RG7167/RO4987655(36)、E6201(37)、TAK−733(38)、PD−0325901(39)、CI−1040/PD184352(40)、AS703026(41)、MEK inhibitor(42)、PD318088(43)、PD98059(44)、SL327(45)、トラメチニブ(:Trametinib)(46)、U0126(47)等のMEK選択阻害剤を用いることができる。以下それぞれの分子構造を示す。また、AS703988/MSC2015103B、WX−554、RRY−300と呼ばれるMEK選択阻害剤を用いることもできる。   Moreover, the 2nd pharmaceutical composition should just inhibit the signal pathway of Met / MEK / ERK, and may be a MEK inhibitor. More specifically, selumetinib (: selumetinib) (29), refametinib (: refametinib) (30), pimasertiv (31), MEK162 / ARRY-162 (32), AZD8330 / ARRY-424704 (33) , Cobimetinib (34), GDC-0623 / RG7421 / XL518 (35), CIF / RG7167 / RO497655 (36), E6201 (37), TAK-733 (38), PD-0325901 (39), CI -1040 / PD184352 (40), AS703026 (41), MEK inhibitor (42), PD318088 (43), PD98059 (44), SL327 (45), trametinib : Trametinib) (46), can be used MEK selection inhibitors such as U0126 (47). Each molecular structure is shown below. In addition, a MEK selective inhibitor called AS703888 / MSC2015103B, WX-554, RRY-300 may be used.

また、より下流シグナル経路を阻害するものであってもよい。具体的には、BVD−523(48)、SCH772984(49)、VTX11e(50)、AEZS−131/AEZS−134(51)、FR180204(52)といったERK1/2選択阻害剤を用いることができる。以下それぞれの分子構造を示す。また、MK−8353/SCH9000353と呼ばれるERK1/2選択阻害剤を用いることもできる。   Moreover, you may inhibit a more downstream signal pathway. Specifically, ERK1 / 2 selective inhibitors such as BVD-523 (48), SCH772984 (49), VTX11e (50), AEZS-131 / AEZS-134 (51), and FR180204 (52) can be used. Each molecular structure is shown below. An ERK1 / 2 selective inhibitor called MK-8353 / SCH9000353 can also be used.

これらの医薬組成物(第1医薬組成物および第2医薬組成物)は、いずれも、薬学的に許容される塩を含んでもよい。より具体的には、塩酸塩、臭化水素酸塩、リン酸、硫酸塩、硫酸水素塩、アルキルスルホン酸塩、アリールスルホン酸塩、酢酸塩、安息香酸塩、クエン酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、乳酸塩および酒石酸塩を含む酸付加塩;Na、K、Liなどのアルカリ金属カチオン、MgもしくはCaなどのアルカリ土類金属塩または有機アミン塩を含むことができる。 Any of these pharmaceutical compositions (first pharmaceutical composition and second pharmaceutical composition) may contain a pharmaceutically acceptable salt. More specifically, hydrochloride, hydrobromide, phosphoric acid, sulfate, hydrogen sulfate, alkyl sulfonate, aryl sulfonate, acetate, benzoate, citrate, maleate, Acid addition salts including fumarate, succinate, lactate and tartrate; alkali metal cations such as Na + , K + , Li + , alkaline earth metal salts such as Mg or Ca, or organic amine salts Can do.

以下に実施例を示しながら本発明に係る慢性骨髄性白血病用の治療用組成物について説明する。   The therapeutic composition for chronic myeloid leukemia according to the present invention will be described below with reference to examples.

(実施例1)<イマチニブ耐性獲得因子の検討>
K562細胞(白血病細胞株、JCRB細胞バンクでの細胞番号:JCRB0019)とイマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、イマチニブを最終濃度が0、0.05、0.1、0.5、1、5、10、20μMになるように添加した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrol(0μM イマチニブ)に対する細胞生存率として評価した。
(Example 1) <Examination of imatinib resistance acquisition factor>
K562 cells (leukemia cell line, cell number in JCRB cell bank: JCRB0019) and imatinib-resistant cells (Imatinib-resistant K562) were seeded on 96-well plates and pre-cultured for 24 hours. Thereafter, imatinib was added to a final concentration of 0, 0.05, 0.1, 0.5, 1, 5, 10, 20 μM. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability against control (0 μM imatinib).

イマチニブ添加による細胞生存率の結果を図1に示す。横軸はイマチニブ(Imatinib)の添加量(μM)を示し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はK562細胞を表し、黒棒はイマチニブ耐性細胞を表す。   The results of cell viability with imatinib addition are shown in FIG. The horizontal axis indicates the amount of imatinib added (μM), and the vertical axis indicates the cell viability (Cell viability:%). The white bar represents K562 cells, and the black bar represents imatinib resistant cells.

イマチニブの添加量が多くなるに従い、K562細胞の生存率は低下した。また、イマチニブが10μM以上添加された場合は、K562細胞の細胞生存率はゼロであった。しかし、イマチニブ耐性細胞では、イマチニブの添加量が増加しても、細胞生存率はほぼ100%であった。なお、以後のグラフを含め、グラフ中「P」は有意確率を示す。   As the amount of imatinib added increased, the survival rate of K562 cells decreased. When imatinib was added at 10 μM or more, the cell survival rate of K562 cells was zero. However, in imatinib resistant cells, the cell viability was almost 100% even when the amount of imatinib added increased. In addition, including the subsequent graphs, “P” in the graph indicates a significance probability.

以上のことから、K562細胞においてイマチニブによって細胞死を誘導する濃度において、イマチニブ耐性細胞に細胞死が誘導されないことを認めた。この結果から、作製したイマチニブ耐性細胞はイマチニブ耐性を示すことが明らかとなった。   From the above, it was confirmed that cell death was not induced in imatinib-resistant cells at a concentration that induced cell death by imatinib in K562 cells. From this result, it was revealed that the prepared imatinib resistant cells showed imatinib resistance.

(実施例2)<イマチニブ耐性細胞におけるニロチニブ耐性の確認>
K562細胞とイマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、ニロチニブを最終濃度が0、0.01、0.05、0.1、0.2、0.5、1、2 μMになるように添加した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrol(0μM ニロチニブ)に対する細胞生存率として評価した。
(Example 2) <Confirmation of nilotinib resistance in imatinib resistant cells>
K562 cells and imatinib-resistant cells (Imatinib-resistant K562) were seeded on 96-well plates and pre-cultured for 24 hours. Nilotinib was then added to a final concentration of 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2 μM. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability with respect to control (0 μM nilotinib).

ニロチニブ添加による細胞生存率の結果を図2に示す。横軸はニロチニブ(Nilotinib)の添加量(μM)を示し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はK562細胞を表し、黒棒はイマチニブ耐性細胞を表す。   The results of cell viability by adding nilotinib are shown in FIG. The abscissa indicates the amount of nilotinib added (μM), and the ordinate indicates the cell viability (Cell viability:%). The white bar represents K562 cells, and the black bar represents imatinib resistant cells.

ニロチニブの添加量が多くなるに従い、K562細胞の生存率は低下した。また、ニロチニブが0.2μM以上添加された場合は、K562細胞の細胞生存率はゼロであった。しかし、イマチニブ耐性細胞では、ニロチニブの添加量が増加しても、細胞生存率はほぼ100%であった。なお、イマチニブ耐性細胞は、ニロチニブの添加量が2μMまで増加した時に細胞生存率が約60%まで低下した。   As the amount of nilotinib added increased, the survival rate of K562 cells decreased. When nilotinib was added in an amount of 0.2 μM or more, the cell survival rate of K562 cells was zero. However, in imatinib-resistant cells, the cell viability was almost 100% even when the amount of nilotinib added increased. The cell viability of imatinib resistant cells decreased to about 60% when the amount of nilotinib added was increased to 2 μM.

以上のことから、K562細胞においてニロチニブによって細胞死を誘導する濃度においても、イマチニブ耐性細胞に細胞死が誘導されないことを認めた。この結果から、作製したイマチニブ耐性細胞はニロチニブ耐性をも示すことが明らかとなった。   From the above, it was confirmed that cell death was not induced in imatinib-resistant cells even at a concentration at which cell death was induced by nilotinib in K562 cells. From this result, it was clarified that the prepared imatinib resistant cells also showed nilotinib resistance.

(実施例3)<イマチニブ耐性細胞におけるダサチニブ耐性の確認>
K562細胞とイマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、ダサチニブを最終濃度が0、0.01、0.05、0.1、0.2、0.5、1、2μMになるように添加した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrol(0μM ダサチニブ)に対する細胞生存率として評価した。
(Example 3) <Confirmation of dasatinib resistance in imatinib resistant cells>
K562 cells and imatinib-resistant cells (Imatinib-resistant K562) were seeded on 96-well plates and pre-cultured for 24 hours. Thereafter, dasatinib was added to a final concentration of 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2 μM. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability against control (0 μM dasatinib).

ダサチニブ添加による細胞生存率の結果を図3に示す。横軸はダサチニブ(Dasatinib)の添加量(μM)を示し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はK562細胞を表し、黒棒はイマチニブ耐性細胞を表す。   The result of cell viability by adding dasatinib is shown in FIG. The horizontal axis represents the amount of dasatinib (Dasatinib) added (μM), and the vertical axis represents the cell viability (Cell viability:%). The white bar represents K562 cells, and the black bar represents imatinib resistant cells.

ダサチニブの添加量が多くなるに従い、K562細胞の生存率は低下した。また、ダサチニブが0.2μM以上添加された場合は、K562細胞の細胞生存率はゼロであった。しかし、イマチニブ耐性細胞では、ダサチニブの添加量が増加しても、細胞生存率はほぼ100%であった。なお、イマチニブ耐性細胞は、ダサチニブの添加量が2μMまで増加した時に細胞生存率が約80%まで低下した。   As the amount of dasatinib added increased, the survival rate of K562 cells decreased. When dasatinib was added in an amount of 0.2 μM or more, the cell viability of K562 cells was zero. However, in imatinib resistant cells, the cell viability was almost 100% even when the amount of dasatinib added increased. The cell viability of imatinib resistant cells decreased to about 80% when the amount of dasatinib added was increased to 2 μM.

以上のことから、K562細胞においてダサチニブによって細胞死を誘導する濃度において、イマチニブ耐性細胞に細胞死が誘導されないことを認めた。この結果から、作製したイマチニブ耐性細胞はダサチニブ耐性をも示すことが明らかとなった。   From the above, it was confirmed that cell death was not induced in imatinib-resistant cells at a concentration that induced cell death by dasatinib in K562 cells. From this result, it was revealed that the prepared imatinib resistant cells also show dasatinib resistance.

(実施例4)<イマチニブ耐性細胞におけるポナチニブ耐性の確認>
K562細胞とイマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、ポナチニブを最終濃度が0、5、10、20、100、250、500、1000nMになるように添加した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrol(0μM ポナチニブ)に対する細胞生存率として評価した。
(Example 4) <Confirmation of ponatinib resistance in imatinib resistant cells>
K562 cells and imatinib-resistant cells (Imatinib-resistant K562) were seeded on 96-well plates and pre-cultured for 24 hours. Thereafter, ponatinib was added to a final concentration of 0, 5, 10, 20, 100, 250, 500, 1000 nM. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability with respect to control (0 μM ponatinib).

ポナチニブ添加による細胞生存率の結果を図4に示す。横軸はポナチニブ(Ponatinib)の添加量(μM)を示し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はK562細胞を表し、黒棒はイマチニブ耐性細胞を表す。   The results of cell viability by adding ponatinib are shown in FIG. The horizontal axis represents the amount of ponatinib (Ponatinib) added (μM), and the vertical axis represents the cell viability (Cell viability:%). The white bar represents K562 cells, and the black bar represents imatinib resistant cells.

ポナチニブの添加量が多くなるに従い、K562細胞の生存率は低下した。また、ポナチニブが500nM以上添加された場合は、K562細胞の細胞生存率はゼロであった。しかし、イマチニブ耐性細胞では、ポナチニブの添加量が増加しても、細胞生存率はほぼ100%であった。   As the amount of ponatinib added increased, the survival rate of K562 cells decreased. When ponatinib was added at 500 nM or more, the cell viability of K562 cells was zero. However, in imatinib-resistant cells, the cell viability was almost 100% even when the amount of ponatinib added was increased.

以上のことから、K562細胞においてポナチニブによって細胞死を誘導する濃度において、イマチニブ耐性細胞に細胞死が誘導されないことを認めた。この結果から、作製したイマチニブ耐性細胞はポナチニブ耐性をも示すことが明らかとなった。   From the above, it was confirmed that cell death was not induced in imatinib-resistant cells at a concentration that induced cell death by ponatinib in K562 cells. From this result, it was clarified that the prepared imatinib resistant cells also exhibited ponatinib resistance.

(実施例5)<イマチニブ耐性細胞におけるバフェチニブ耐性の確認>
K562細胞とイマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、バフェチニブを最終濃度が0、5、10、50、100、500、1000、2500nMになるように添加した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrol(0μM バフェチニブ)に対する細胞生存率として評価した。
(Example 5) <Confirmation of resistance to buffetinib in imatinib resistant cells>
K562 cells and imatinib-resistant cells (Imatinib-resistant K562) were seeded on 96-well plates and pre-cultured for 24 hours. Thereafter, buffetinib was added to a final concentration of 0, 5, 10, 50, 100, 500, 1000, 2500 nM. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and the measured value was evaluated as the cell viability against control (0 μM buffetinib).

バフェチニブ添加による細胞生存率の結果を図5に示す。横軸はバフェチニブ(Bafetinib)の添加量(μM)を示し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はK562細胞を表し、黒棒はイマチニブ耐性細胞を表す。   FIG. 5 shows the results of cell viability by adding bafetinib. The horizontal axis indicates the amount of addition of bafetinib (Bafetinib) (μM), and the vertical axis indicates the cell viability (Cell viability:%). The white bar represents K562 cells, and the black bar represents imatinib resistant cells.

バフェチニブの添加量が多くなるに従い、K562細胞の生存率は低下した。また、バフェチニブが2500nM以上添加された場合は、K562細胞の細胞生存率はゼロであった。しかし、イマチニブ耐性細胞では、バフェチニブの添加量が増加しても、細胞生存率はほぼ100%であった。なお、バフェチニブの添加量が2500nMになると、イマチニブ耐性細胞の細胞生存率は、約80%まで低下した。   As the amount of bafetinib added increased, the survival rate of K562 cells decreased. Further, when vifetinib was added to 2500 nM or more, the cell viability of K562 cells was zero. However, in imatinib-resistant cells, the cell viability was almost 100% even when the amount of buffetinib added increased. In addition, when the addition amount of bafetinib reached 2500 nM, the cell viability of imatinib resistant cells decreased to about 80%.

以上のことから、K562細胞においてバフェチニブによって細胞死を誘導する濃度において、イマチニブ耐性細胞に細胞死が誘導されないことを認めた。この結果から、作製したイマチニブ耐性細胞はバフェチニブ耐性をも示すことが明らかとなった。   From the above, it was confirmed that cell death was not induced in imatinib-resistant cells at a concentration that induced cell death by buffetinib in K562 cells. From this result, it was clarified that the prepared imatinib-resistant cells also showed resistance to buffetinib.

(実施例6)<イマチニブ耐性獲得因子の検討>
作製したイマチニブ耐性細胞を用いて、耐性に関与する因子をイムノブロッティング解析にて検討した。
(Example 6) <Examination of imatinib resistance acquisition factor>
Using the prepared imatinib-resistant cells, factors involved in resistance were examined by immunoblotting analysis.

K562細胞、イマチニブ耐性細胞(Imatinib−resistantK562)を150cmフラスコに播種した後、72時間培養したものから細胞溶解液にてタンパク質を抽出し、サンプルとした。また、タンパク定量はBCA Protein Assay (Thermo Fisher Scientific; Waltham, MA, USA)を用いて行った。 After seeding K562 cells and imatinib-resistant cells (Imatinib-resistant K562) in a 150 cm 2 flask, protein was extracted from the cells cultured for 72 hours with a cell lysate. Protein quantification was performed using BCA Protein Assay (Thermo Fisher Scientific; Waltham, MA, USA).

各サンプルをSDS−PAGE後、PVDF膜に転写し、抗phospho−Met (Tyr1234/1235)抗体、抗phospho−Met (Tyr1349)抗体、抗Met抗体 (Cell Signaling Technology; Beverly, MA, USA)、及び抗β−actin抗体 (Sigma)を用いてMetのリン酸化を検討した。   Each sample was transferred to PVDF membrane after SDS-PAGE, anti-phospho-Met (Tyr1234 / 1235) antibody, anti-phospho-Met (Tyr1349) antibody, anti-Met antibody (Cell Signaling Technology; Beverly, MA, USA), and Phosphorylation of Met was examined using an anti-β-actin antibody (Sigma).

イムノブロッティングの結果を図6に示す。図6では、各抗体毎に、K562細胞とイマチニブ耐性細胞のイムノブロッティング結果の写真を示す。発光は写真上黒い影として映っている。抗phospho−Met(Tyr1234/1235)抗体において、K562細胞の影よりも、イマチニブ耐性細胞の影の方が濃い影であった。   The result of immunoblotting is shown in FIG. FIG. 6 shows photographs of immunoblotting results of K562 cells and imatinib resistant cells for each antibody. Luminescence appears as a black shadow on the photo. In the anti-phospho-Met (Tyr1234 / 1235) antibody, the shadow of imatinib resistant cells was darker than the shadow of K562 cells.

また抗phospho−Met(Tyr1349)抗体においては、K562細胞は、薄く確認できる程度であったが、イマチニブ耐性細胞は、明らかにK562細胞の場合より濃い影であった。つまり、チロシンキナーゼドメイン内にあるTyr1234/1235もC末端にあるTyr1349でもイマチニブ耐性細胞のイムノブロッティングの結果はK562細胞の場合より、濃い影であった。   In the anti-phospho-Met (Tyr1349) antibody, K562 cells were thin enough to be confirmed, but imatinib resistant cells were clearly darker than the K562 cells. In other words, the results of immunoblotting of imatinib-resistant cells were darker than those of K562 cells in both Tyr1234 / 1235 in the tyrosine kinase domain and Tyr1349 in the C-terminal.

抗met抗体では、K562細胞、イマチニブ耐性細胞共に明確に黒い影であった。ただし、イマチニブ耐性細胞の方が黒い影が小さかった。抗β−actin抗体は、K562細胞およびイマチニブ耐性細胞共に明確な黒い影が観察された。   With anti-met antibody, both K562 cells and imatinib resistant cells were clearly black shadows. However, imatinib-resistant cells had a smaller black shadow. With the anti-β-actin antibody, a clear black shadow was observed in both K562 cells and imatinib resistant cells.

以上のことより、K562細胞におけるリン酸化Metの発現と比較し、イマチニブ耐性細胞ではリン酸化Metが著しく増加していることが明らかになった。これは、イマチニブ耐性細胞では、metによるシグナル伝達が活性化していることを示唆するものである。なお、β−actinはK562細胞もイマチニブ耐性細胞も同程度有していると観察されたので、このイムノブロッティングの結果は正しいと判断できる。   From the above, it was revealed that phosphorylated Met was significantly increased in imatinib-resistant cells compared to the expression of phosphorylated Met in K562 cells. This suggests that signal transduction by met is activated in imatinib resistant cells. Since β-actin was observed to have the same degree in both K562 cells and imatinib resistant cells, it can be judged that the result of this immunoblotting is correct.

(実施例7)<Met阻害剤によるイマチニブ耐性克服効果の検討>
イマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、イマチニブを最終濃度が5μMになるように添加した。また、それとは別にイマチニブと併用してPHA−665752(Met阻害剤)を最終濃度が1、2、2.5、3μMになるように添加した。
Example 7 <Examination of Imatinib Resistance Overcoming Effect by Met Inhibitor>
Imatinib-resistant cells (Imatinib-resistant K562) were seeded in 96-well plates and pre-cultured for 24 hours. Thereafter, imatinib was added to a final concentration of 5 μM. Separately, PHA-6655752 (Met inhibitor) was added in combination with imatinib so that the final concentration was 1, 2, 2.5, or 3 μM.

Controlとして薬剤を溶解した溶媒を添加したものを同様に培養した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrolに対する細胞生存率として評価した。   What added the solvent which melt | dissolved the chemical | medical agent as Control was cultured similarly. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability against control.

Met阻害剤併用による結果を図7に示す。横軸はイマチニブおよびPHA−665752の量の違いを表し、縦軸は細胞生存率(Cell viability:%)を示す。また白棒はcontrol(K562細胞)を表し、黒棒はイマチニブ耐性細胞を表す。イマチニブ、PHA−665752が単独で添加された場合は、PHA−665752を3μM添加したときも、細胞生存率は約70%あった。   The results of the Met inhibitor combination are shown in FIG. The horizontal axis represents the difference in the amount of imatinib and PHA-666552, and the vertical axis represents the cell viability (Cell viability:%). The white bar represents control (K562 cells), and the black bar represents imatinib resistant cells. When imatinib and PHA-666552 were added alone, the cell viability was about 70% even when 3 μM PHA-665752 was added.

一方、イマチニブ5μMとPHA−665752を組み合わせて使用すると、PHA−665752の添加量にしたがって、細胞生存率は減少し、PHA−665752 3μMの添加で細胞生存率は0%になった。   On the other hand, when imatinib 5 μM and PHA-665752 were used in combination, the cell viability decreased according to the amount of PHA-665752 added, and the cell viability became 0% with the addition of PHA-665752 3 μM.

このことより、イマチニブ耐性細胞においてMet阻害剤の濃度依存的にイマチニブ耐性が克服されることが認められた。これらの結果から、Metがイマチニブ耐性に関与することが明らかとなった。   From this, it was recognized that imatinib resistance was overcome in imatinib-resistant cells depending on the concentration of the Met inhibitor. From these results, it was revealed that Met is involved in imatinib resistance.

(実施例8)<Met下流シグナル伝達因子におけるイマチニブ耐性因子の検討>
イマチニブ耐性株において活性化が確認されたMetの下流シグナルのERK1/2、Akt、STAT3の活性動態について、イムノブロッティングで検討を行った。
(Example 8) <Examination of imatinib resistance factor in Met downstream signaling factor>
The activity kinetics of ERK1 / 2, Akt, and STAT3 of downstream signals of Met whose activation was confirmed in imatinib resistant strains were examined by immunoblotting.

K562細胞、イマチニブ耐性細胞(Imatinib−resistant K562)を150cmフラスコに播種した後、72時間培養したものから細胞溶解液にてをタンパク質を抽出し、サンプルとした。また、タンパク定量はBCA Protein Assay (Thermo Fisher Scientific; Waltham, MA, USA)を用いて行った。 After seeding K562 cells and imatinib-resistant cells (Imatinib-resistant K562) in a 150 cm 2 flask, the protein was extracted from the cells cultured for 72 hours, and used as a sample. Protein quantification was performed using BCA Protein Assay (Thermo Fisher Scientific; Waltham, MA, USA).

各サンプルをSDS−PAGE後、PVDF膜に転写し、抗phospho−ERK1/2抗体、抗ERK1/2抗体、抗phospho−Akt抗体、抗Akt抗体、抗phospho− STAT3抗体、及び抗STAT3抗体(Cell Signaling Technology; Beverly, MA, USA)を用いてERK1/2、Akt、STAT3のリン酸化を検討した。   Each sample was transferred to a PVDF membrane after SDS-PAGE, and anti-phospho-ERK1 / 2 antibody, anti-ERK1 / 2 antibody, anti-phospho-Akt antibody, anti-Akt antibody, anti-phospho-STAT3 antibody, and anti-STAT3 antibody (Cell The phosphorylation of ERK1 / 2, Akt, and STAT3 was examined using Signaling Technology (Beverly, MA, USA).

イムノブロッティングの結果を図8に示す。図8では、K562細胞とイマチニブ耐性細胞のイムノブロッティングの結果をそれぞれの抗体毎に並べて示した。図8によれば、抗ERK1/2抗体、抗Akt抗体、および抗STAT3抗体では、K562細胞とイマチニブ耐性細胞は、同程度の黒い影が映っている。一方、抗リン酸化ERK1/2抗体、抗リン酸化Akt抗体、および抗リン酸化STAT3抗体ではK562細胞よりもイマチニブ耐性細胞の黒い影の方が明らかに濃い。   The result of immunoblotting is shown in FIG. In FIG. 8, the results of immunoblotting of K562 cells and imatinib resistant cells are shown side by side for each antibody. According to FIG. 8, with the anti-ERK1 / 2 antibody, the anti-Akt antibody, and the anti-STAT3 antibody, K562 cells and imatinib resistant cells have the same level of black shadow. On the other hand, in the anti-phosphorylated ERK1 / 2 antibody, the anti-phosphorylated Akt antibody, and the anti-phosphorylated STAT3 antibody, the dark shadow of imatinib-resistant cells is clearly darker than K562 cells.

さらに詳説すると、抗ERK1/2抗体においては、上下に2つの影があるのが確認できる。上側の影がERK1で、下側の影はERK2に相当する。K562細胞もイマチニブ耐性細胞もERK1/2の両方を有していることを示している。   More specifically, it can be confirmed that the anti-ERK1 / 2 antibody has two shadows at the top and bottom. The upper shadow corresponds to ERK1, and the lower shadow corresponds to ERK2. It shows that both K562 and imatinib resistant cells have both ERK1 / 2.

一方、抗リン酸化ERK1/2抗体の場合は、K562細胞では、リン酸化ERK2の影は薄く、リン酸化ERK1は殆ど影がない。これに比較し、イマチニブ耐性細胞ではリン酸化ERK1は薄いながら影を確認でき、リン酸化ERK2は明らかに濃い影がある。   On the other hand, in the case of the anti-phosphorylated ERK1 / 2 antibody, phosphorylated ERK2 has a light shadow and phosphorylated ERK1 has almost no shadow in K562 cells. Compared to this, in imatinib-resistant cells, the phosphorylated ERK1 has a thin shadow, but phosphorylated ERK2 has a clearly dark shadow.

以上のことから、K562細胞におけるリン酸化ERK1/2、リン酸化Akt、リン酸化STAT3の発現と比較し、イマチニブ耐性細胞ではリン酸化ERK1/2、リン酸化Akt、リン酸化STAT3が著しく増加していることが明らかになった。   Based on the above, phosphorylated ERK1 / 2, phosphorylated Akt, and phosphorylated STAT3 are significantly increased in imatinib-resistant cells compared to the expression of phosphorylated ERK1 / 2, phosphorylated Akt, and phosphorylated STAT3 in K562 cells. It became clear.

このことは、イマチニブ耐性細胞では、イマチニブが主として阻害するBcr−Abl活性によるシグナル経路だけでなく、ERK−MARK経路、PI3K−Akt経路といったシグナル経路も活性化していることを示唆する。   This suggests that imatinib-resistant cells activate not only signal pathways due to Bcr-Abl activity that is mainly inhibited by imatinib but also signal pathways such as ERK-MARK pathway and PI3K-Akt pathway.

(実施例9)<MEK阻害剤、PI3K阻害剤、JAK2阻害剤によるイマチニブ耐性克服効果の検討>
イマチニブ耐性細胞(Imatinib−resistant K562)を96wellプレートに播種し、24時間前培養した。その後、イマチニブを最終濃度が5μMになるように添加した。また、それとは別にイマチニブと併用してU0126(MEK阻害剤)を最終濃度が0.1、1、10μM、LY294002(PI3K阻害剤)を最終濃度が0.1、1、10μM、AG490(JAK2阻害剤)を最終濃度が1、5、10μMになるように添加した。
(Example 9) <Examination of effect of overcoming imatinib resistance by MEK inhibitor, PI3K inhibitor, and JAK2 inhibitor>
Imatinib-resistant cells (Imatinib-resistant K562) were seeded in 96-well plates and pre-cultured for 24 hours. Thereafter, imatinib was added to a final concentration of 5 μM. Separately, in combination with imatinib, U0126 (MEK inhibitor) has a final concentration of 0.1, 1, 10 μM, and LY294002 (PI3K inhibitor) has a final concentration of 0.1, 1, 10 μM, AG490 (JAK2 inhibition). Agent) was added to a final concentration of 1, 5, 10 μM.

Controlとして薬剤を溶解した溶媒を添加したものを同様に培養した。72時間培養した後の細胞数の変化をトリパンブルー色素排除染色試験法により算定し、この測定値をcontrolに対する細胞生存率として評価した。   What added the solvent which melt | dissolved the chemical | medical agent as Control was cultured similarly. The change in the number of cells after culturing for 72 hours was calculated by the trypan blue dye exclusion staining test method, and this measured value was evaluated as the cell viability against control.

各種阻害剤併用による結果を図9〜図11に示す。図9〜図11のグラフにおいて、横軸はイマチニブおよびU0126(図9)、イマチニブとLY294002(図10)、イマチニブとAG490(図11)の量の違いを表し、縦軸はいずれのグラフにおいても細胞生存率(Cell viability:%)を示す。また白棒はcontrol(K562細胞)を表し、黒棒はイマチニブ耐性細胞を表す。   The results of the combined use of various inhibitors are shown in FIGS. 9 to 11, the horizontal axis represents imatinib and U0126 (FIG. 9), imatinib and LY294002 (FIG. 10), imatinib and AG490 (FIG. 11), and the vertical axis represents any graph. The cell viability (Cell viability:%) is shown. The white bar represents control (K562 cells), and the black bar represents imatinib resistant cells.

図9を参照して、イマチニブとU0126(MEK阻害剤)が単独で添加された場合は、U0126を10μM添加したときも、細胞生存率は約70%あった。一方、イマチニブ5μMとU0126を組み合わせて使用すると、U0126の添加量にしたがって、細胞生存率は明らかに減少した。なお、イマチニブ5μMとU0126を10μM併用したときは、細胞生存率は約35%まで低下した。   Referring to FIG. 9, when imatinib and U0126 (MEK inhibitor) were added alone, the cell viability was about 70% even when 10 μM of U0126 was added. On the other hand, when imatinib 5 μM and U0126 were used in combination, the cell viability was clearly reduced according to the amount of U0126 added. When imatinib 5 μM and U0126 were combined 10 μM, the cell viability decreased to about 35%.

図10を参照して、イマチニブとLY294002(PI3K阻害剤)の組み合わせの場合は、それぞれを単独で用いた時も、これらを併用したときも、細胞生存率に大きな変化はなかった。なお、イマチニブ5μMとLY294002を10μM併用したときも細胞生存率は約75%程度あった。   Referring to FIG. 10, in the case of a combination of imatinib and LY294002 (PI3K inhibitor), there was no significant change in cell viability when used alone or in combination. The cell viability was about 75% when imatinib 5 μM and LY294002 were combined 10 μM.

図11を参照して、イマチニブとAG490(JAK2阻害剤)の組み合わせの場合は、それぞれを単独で用いた時も、これらを併用したときも、細胞生存率に大きな変化はなかった。なお、イマチニブ5μMとLY294002を10μM併用したときも細胞生存率は約90%程度あった。   Referring to FIG. 11, in the case of a combination of imatinib and AG490 (JAK2 inhibitor), there was no significant change in cell viability when used alone or in combination. The cell viability was about 90% when imatinib 5 μM and LY294002 were combined 10 μM.

以上のことから、イマチニブ耐性細胞において5μMのイマチニブと、10μMのU0126(MEK阻害剤)併用時にイマチニブ耐性が克服されることが認められた。これらの結果から、MEK/ERK経路がイマチニブ耐性に関与することが明らかとなった。   From the above, it was recognized that imatinib resistance was overcome when imatinib-resistant cells were combined with 5 μM imatinib and 10 μM U0126 (MEK inhibitor). From these results, it became clear that the MEK / ERK pathway is involved in imatinib resistance.

(実施例10)<Met阻害剤によるERK抑制効果の検討>
イマチニブ耐性細胞においてリン酸化Metの増加が耐性獲得に関与していることが示唆された(実施例6、図6参照)ため、Met阻害剤添加時におけるMetおよび下流シグナルの発現変化についてイムノブロッティングにて検討した。
(Example 10) <Examination of ERK inhibitory effect by Met inhibitor>
It was suggested that the increase in phosphorylated Met in imatinib-resistant cells is involved in the acquisition of resistance (see Example 6 and FIG. 6). Therefore, the expression changes of Met and downstream signals when Met inhibitor was added were immunoblotted. And examined.

K562細胞、イマチニブ耐性細胞(Imatinib−resistant K562)を150cmフラスコに播種し、37℃、5% COの条件下で48時間培養したものおよびイマチニブ耐性細胞を150cmフラスコに播種し、24時間前培養後、イマチニブ耐性細胞にPHA−665752を最終濃度が1、2、2.5μMになるように添加し37℃、5% COの条件下で24時間培養した。この培養液から細胞溶解液にてタンパク質を抽出し、サンプルとした。 K562 cells, imatinib-resistant cells (Imatinib-resistant K562) were seeded in 150 cm 2 flasks, cultured at 37 ° C. under 5% CO 2 for 48 hours, and imatinib resistant cells were seeded in 150 cm 2 flasks for 24 hours. After pre-culture, PHA-665752 was added to imatinib-resistant cells to a final concentration of 1, 2 , and 2.5 μM, and cultured for 24 hours under conditions of 37 ° C. and 5% CO 2 . Protein was extracted from this culture solution with a cell lysate to prepare a sample.

また、タンパク定量はBCA Protein Assayを用いて行った。各サンプルをSDS−PAGE後、PVDF膜に転写し、抗phospho−Met (Tyr1234/1235)抗体、抗phospho−Met (Tyr1349)抗体、抗Met抗体、抗phospho−ERK1/2抗体、及び抗ERK1/2抗体を用いてMet、ERK1/2のリン酸化を検討した。なお、各細胞サンプルに対して抗β−actin抗体を作用させ、イムノブロッティングの妥当性を確認した。   Protein quantification was performed using BCA Protein Assay. Each sample was transferred to a PVDF membrane after SDS-PAGE, anti-phospho-Met (Tyr1234 / 1235) antibody, anti-phospho-Met (Tyr1349) antibody, anti-Met antibody, anti-phospho-ERK1 / 2 antibody, and anti-ERK1 / Two antibodies were used to examine phosphorylation of Met and ERK1 / 2. In addition, anti-β-actin antibody was allowed to act on each cell sample, and the validity of immunoblotting was confirmed.

イムノブロッティングの結果を図10に示す。写真横方向には、K562細胞の場合と、イマチニブ耐性細胞の場合を並べて示し、イマチニブ耐性細胞では、PHA−665752の添加量(μM)を数字で示した。写真縦方向には、各抗体毎の結果(写真)を示した。   The result of immunoblotting is shown in FIG. In the horizontal direction of the photograph, the case of K562 cells and the case of imatinib resistant cells are shown side by side. In the case of imatinib resistant cells, the addition amount (μM) of PHA-665752 is indicated by a number. In the photo vertical direction, the results (photos) for each antibody are shown.

抗リン酸化Met(Tyr1234/1235)抗体の写真では、イマチニブ耐性細胞におけるPHA−665752が0μMの時に最も黒い影が濃かった。イマチニブ耐性細胞では、PHA−665752の増加にしたがって、黒い影は薄くなった。K562細胞の黒い影は、イマチニブ耐性細胞にPHA−665752を2μM添加した場合と同じ程度の濃さであった。   In the photo of anti-phosphorylated Met (Tyr1234 / 1235) antibody, the darkest shadow was darkest when PHA-665752 in imatinib resistant cells was 0 μM. In imatinib resistant cells, the black shadow faded with increasing PHA-666552. The black shadow of K562 cells was as thick as when 2 μM of PHA-666552 was added to imatinib resistant cells.

抗リン酸化Met(Tyr1349)抗体の写真でもほぼ同様の結果であった。ただし、抗リン酸化Met(Tyr1349)抗体は、抗リン酸化Met(Tyr1234/1235)抗体と比べて全体的に影の濃さは薄かった。   The result of the anti-phosphorylated Met (Tyr1349) antibody was almost the same. However, the anti-phosphorylated Met (Tyr1349) antibody was generally less shaded than the anti-phosphorylated Met (Tyr1234 / 1235) antibody.

抗Met抗体では、イマチニブ耐性細胞はPHA−665752の添加量に係らず、ほぼ同じ濃さの影であった。K562細胞の写真は、イマチニブ耐性細胞の影より一回り大きな影であった。   With anti-Met antibody, imatinib resistant cells were shaded with almost the same density regardless of the amount of PHA-665752 added. The photo of K562 cells was a shadow that was slightly larger than the shadow of imatinib resistant cells.

抗リン酸化ERK1/2抗体では、K562細胞の写真では、ERK2にわずかな影が映っただけであった。濃さも薄かった。イマチニブ耐性細胞では、K562よりも明確に黒い大きな影がERK1、ERK2のいずれにもあった。また、PHA−665752の添加にしたがい、黒い影は薄くなった。   With anti-phosphorylated ERK1 / 2 antibody, only a slight shadow was seen in ERK2 in the photo of K562 cells. The thickness was also thin. In imatinib resistant cells, both ERK1 and ERK2 had a clearly darker shadow than K562. In addition, the black shadow became lighter with the addition of PHA-665752.

抗ERK1/2抗体では、K562細胞の影がイマチニブ耐性細胞の影より一回り小さな影であったが、濃さは充分黒かった。イマチニブ耐性細胞では、PHA−665752の添加量に係らず、大きく濃い陰影が観察された。   With the anti-ERK1 / 2 antibody, the shadow of the K562 cell was slightly smaller than the shadow of imatinib resistant cells, but the darkness was sufficiently black. In imatinib resistant cells, a large and dark shadow was observed regardless of the amount of PHA-665752 added.

β−actinでは、K562細胞もイマチニブ耐性細胞もほぼ変化がなく、いずれも黒い大きな影が観察された。   In β-actin, both K562 cells and imatinib resistant cells were almost unchanged, and a large black shadow was observed in both.

K562細胞ではリン酸化ERK1のバンドが観察されなかった。一方、イマニチブ耐性細胞ではリン酸化ERK1のバンドが確認され、リン酸化ERK2のバンドもK562細胞と比較し強くなっていた。つまり、K562細胞では、MEK/ERK経路は活性ではないのに対し、イマチニブ耐性細胞は、MEK/ERK経路が活性になっていたことを示した。   No phosphorylated ERK1 band was observed in K562 cells. On the other hand, the phosphorylated ERK1 band was confirmed in imatinib resistant cells, and the phosphorylated ERK2 band was also stronger compared to K562 cells. That is, the MEK / ERK pathway was not active in K562 cells, whereas the imatinib resistant cells showed that the MEK / ERK pathway was active.

このイマチニブ耐性細胞に、Met阻害剤(PHA−665752)を添加していくと、リン酸化ERK1のバンドが無くなり、リン酸化ERK2のバンドも薄くなり、K562細胞の状態に近づいていた。   When a Met inhibitor (PHA-665752) was added to this imatinib-resistant cell, the phosphorylated ERK1 band disappeared and the phosphorylated ERK2 band became thinner, approaching the state of K562 cells.

以上のことから、Met阻害剤PHA−665752により、リン酸化Metが阻害されていることを確認した。実施例9で、MEK/ERK経路がイマチニブ耐性に関与することが明らかであった。したがって、MEK/ERK経路の阻害よりイマチニブ耐性が克服されることが明らかとなった。   From the above, it was confirmed that phosphorylated Met was inhibited by the Met inhibitor PHA-665752. In Example 9, it was clear that the MEK / ERK pathway is involved in imatinib resistance. Thus, it was revealed that imatinib resistance was overcome by inhibition of the MEK / ERK pathway.

本発明に係る慢性骨髄性白血病の治療用組成物は、慢性骨髄性白血病に劇的に効果があるとされたBcr−Ablチロシンキナーゼ阻害剤に対して、耐性を有する原因はMet/MEK/ERK経路が原因であることを明らかにし、この経路の阻害剤とBcr−Ablチロシンキナーゼ阻害剤と併用することで、耐性を克服するものである。したがって、イマチニブよりよりBcr−Ablとの結合性が高いとされるダサチニブやニロチニブに対が耐性を獲得した患者に対しても、耐性克服することができる。   The composition for the treatment of chronic myelogenous leukemia according to the present invention is resistant to Bcr-Abl tyrosine kinase inhibitor, which is considered to be dramatically effective for chronic myelogenous leukemia. It is clarified that the pathway is the cause, and the resistance is overcome by using an inhibitor of this pathway in combination with a Bcr-Abl tyrosine kinase inhibitor. Therefore, resistance can be overcome even for patients who have acquired resistance to dasatinib or nilotinib, which has higher binding to Bcr-Abl than imatinib.

Claims (4)

Bcr−Ablチロシンキナーゼを阻害する第1医薬組成物と、
Metチロシンキナーゼを阻害する第2医薬組成物で構成されることを特徴とする慢性骨髄性白血病の治療用組成物。
A first pharmaceutical composition that inhibits Bcr-Abl tyrosine kinase;
A composition for treating chronic myeloid leukemia, comprising a second pharmaceutical composition that inhibits Met tyrosine kinase.
前記第1医薬組成物が、イマチニブ、ニロチニブ、ダサチニブ、ポナチニブ、バフェチニブから選ばれる少なくとも1つの医薬組成物であり、
前記第2医薬組成物が、カボザンチニブ、クリゾチニブ、フォアチニブ、BMS777607、ゴルバチニブ、MK−2461、MGCD−265、MK−8033、アムバチニブ、TAS−115、S49076、BMS−754807、BMS−794833、LY2801653、CKI27/RG7304/RO5126766/CH5126766、BI847325、PHA−665752、EMD1214063、JNJ−38877605、PF−4217903、SGX523、INCB−028060、チバンチニブ、SAR125844、ボリチニブ、AMG−458、NVP−BVU972、SU11274、AMG208、AMG337から選ばれる少なくとも1つの医薬組成物であることを特徴とする請求項1に記載された慢性骨髄性白血病の治療用組成物。
The first pharmaceutical composition is at least one pharmaceutical composition selected from imatinib, nilotinib, dasatinib, ponatinib, bafetinib;
Said second pharmaceutical composition is cabozantinib, crizotinib, foatinib, BMS777607, golvatinib, MK-2461, MGCD-265, MK-8033, ambatinib, TAS-115, S49076, BMS-7504807, BMS-779453, LY2801653, LY2801653 RG7304 / RO5126766 / CH5126766, BI847325, PHA-666552, EMD1214063, JNJ-38877605, PF-4217903, SGX523, INCB-028060, Tivantinib, SAR125844, Boritinib, AMG-458A, NVP-BVU972G, S 2. At least one pharmaceutical composition The therapeutic composition of the listed chronic myelogenous leukemia.
Bcr−Ablチロシンキナーゼを阻害する第1医薬組成物と、
Met/MEK/ERKのシグナル経路のいずれかのキナーゼを阻害する第3医薬組成物で構成されることを特徴とする慢性骨髄性白血病の治療用組成物。
A first pharmaceutical composition that inhibits Bcr-Abl tyrosine kinase;
A composition for treating chronic myelogenous leukemia, characterized by comprising a third pharmaceutical composition that inhibits any kinase in the signal pathway of Met / MEK / ERK.
前記第1医薬組成物が、イマチニブ、ニロチニブ、ダサチニブ、ポナチニブ、バフェチニブから選ばれる少なくとも1つの医薬組成物であり、
前記第3医薬組成物は、セルメチニブ、レファメチニブ、ピマセルチブ、MEK162/ARRY−162、AZD8330/ARRY−424704、コビメチニブ、GDC−0623/RG7421/XL518、CIF/RG7167/RO4987655、E6201、TAK−733、PD−0325901、CI−1040/PD184352、AS703026、MEK inhibitor、PD318088、PD98059、SL327、トラメチニブ、U0126、AS703988/MSC2015103B、WX−554、RRY−300、BVD−523、SCH772984、VTX11e、AEZS−131/AEZS−134、FR180204、MK−8353/SCH9000353から選ばれる少なくとも1つの医薬組成物であることを特徴とする請求項3に記載された慢性骨髄性白血病の治療用組成物。
The first pharmaceutical composition is at least one pharmaceutical composition selected from imatinib, nilotinib, dasatinib, ponatinib, bafetinib;
The third pharmaceutical composition is selmetinib, refametinib, pimaceltib, MEK162 / ARRY-162, AZD8330 / ARRY-424704, kobimetinib, GDC-0623 / RG7421, CIF / RG7167 / RO497655, E6201, TAK-7. 0325901, CI-1040 / PD184352, AS703026, MEK inhibitor, PD318088, PD98059, SL327, Trametinib, U0126, AS70388 / MSC2015103B, WX-554, RRY-300, BVD-523, SCH772984, SCH772984, SCH772944 , FR180204, MK-8353 / SCH9000353 The composition for treating chronic myeloid leukemia according to claim 3, wherein the composition is at least one pharmaceutical composition.
JP2014202529A 2014-09-30 2014-09-30 Composition for the treatment of chronic myeloid leukemia Active JP6267619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202529A JP6267619B2 (en) 2014-09-30 2014-09-30 Composition for the treatment of chronic myeloid leukemia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202529A JP6267619B2 (en) 2014-09-30 2014-09-30 Composition for the treatment of chronic myeloid leukemia

Publications (2)

Publication Number Publication Date
JP2016069348A true JP2016069348A (en) 2016-05-09
JP6267619B2 JP6267619B2 (en) 2018-01-24

Family

ID=55866043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202529A Active JP6267619B2 (en) 2014-09-30 2014-09-30 Composition for the treatment of chronic myeloid leukemia

Country Status (1)

Country Link
JP (1) JP6267619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199678A1 (en) * 2016-05-18 2017-11-23 富士フイルム株式会社 Imaging device and method
EP3808350A4 (en) * 2018-06-18 2022-03-23 Industry-Academic Cooperation Foundation, Yonsei University Composition comprising flt3 inhibitor as effective ingredient for inhibiting drug resistance in chronic myelogenous leukemia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513967A (en) * 2003-12-11 2007-05-31 セラヴァンス, インコーポレーテッド Compositions for use in the treatment of cell proliferative diseases driven by mutant receptor tyrosine kinases
JP2011520908A (en) * 2008-05-14 2011-07-21 アムジエン・インコーポレーテツド Combinations of VEGF (R) inhibitors and hepatocyte growth factor (C-MET) inhibitors for the treatment of cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513967A (en) * 2003-12-11 2007-05-31 セラヴァンス, インコーポレーテッド Compositions for use in the treatment of cell proliferative diseases driven by mutant receptor tyrosine kinases
JP2011520908A (en) * 2008-05-14 2011-07-21 アムジエン・インコーポレーテツド Combinations of VEGF (R) inhibitors and hepatocyte growth factor (C-MET) inhibitors for the treatment of cancer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"PS-4-29 R115777/Imatinib併用によるImatinib耐性細胞増殖抑制効果", 臨床血液, vol. 44, no. 8, JPN6016032951, 2003, pages p.869(369) *
BIOTHERAPY, vol. 25, no. 1, JPN6016032955, 2011, pages 589 - 596 *
CANCER CELL, vol. Vol.20, JPN6016032958, 2011, pages 715 - 727 *
NEOPLASIA, vol. 14, no. 7, JPN6016048745, 2012, pages 572 - 584 *
PHARMA MEDICA, vol. 31, no. 11, JPN6016032954, 2013, pages 43 - 48 *
日本臨床, vol. 29, no. 11, JPN6017026103, 1971, pages p.304(2686)-309(2691) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199678A1 (en) * 2016-05-18 2017-11-23 富士フイルム株式会社 Imaging device and method
JP2017205053A (en) * 2016-05-18 2017-11-24 富士フイルム株式会社 Imaging apparatus and method
US10878571B2 (en) 2016-05-18 2020-12-29 Fujifilm Corporation Imaging apparatus and imaging method for imaging biological samples in a time-series order
EP3808350A4 (en) * 2018-06-18 2022-03-23 Industry-Academic Cooperation Foundation, Yonsei University Composition comprising flt3 inhibitor as effective ingredient for inhibiting drug resistance in chronic myelogenous leukemia

Also Published As

Publication number Publication date
JP6267619B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
Zhao et al. The clinical development of MEK inhibitors
RU2704811C2 (en) Treating cancer with combination of radiation therapy, cerium oxide nanoparticles and chemotherapeutic agent
JP2022520079A (en) Pharmaceutical combination containing TNO155 and KRASG12C inhibitor
CN105392499B (en) The combination treatment for including TOR kinase inhibitors and cytidine analog for treating cancer
JP2018528206A (en) MDM2 inhibitors and combinations thereof
CN104703623A (en) Compounds and methods for kinase modulation, and indications therefor
CN110072528B (en) Pharmaceutical composition for treating tumor
JPWO2017200016A1 (en) Lung cancer therapeutic agent that has acquired EGFR-TKI resistance
CN104519885A (en) Treatment of cancer with TOR kinase inhibitors
US20190134034A1 (en) Method of Treating Liver Cancer
TW201526894A (en) Treatment of cancer with dihydropyrazino-pyrazines
US20140155372A1 (en) Combinations of akt and mek inhibitor compounds, and methods of use
WO2022111714A1 (en) Combination therapy for treating pik3ca-mutated cancer
SG188207A1 (en) Combination anti - cancer therapy
CN109152758A (en) The composition and method of the cancer including glioma are treated using Eflornithine and the like and derivative
CN107206090A (en) Ah &#39;s not purposes of the moral in colorectal cancer
CN105611928A (en) Pim kinase inhibitor combinations
CN109069511A (en) BRAF inhibitor is used to treat the purposes of dermoreaction
TW201244716A (en) Combination of a phosphatidylinositol-3-kinase (PI3K) inhibitor and a mTOR inhibitor
WO2022271964A1 (en) Erk1/2 and shp2 inhibitors combination therapy
JP6267619B2 (en) Composition for the treatment of chronic myeloid leukemia
Gainor et al. A phase II study of the multikinase inhibitor ponatinib in patients with advanced, RET-rearranged NSCLC
TW201711679A (en) Use of ureidomustine in cancer treatment
US20180015075A1 (en) Methods and compositions for treatment of venous malformation
JP2022501390A (en) Compounds and their uses

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6267619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250