JP2016067166A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2016067166A
JP2016067166A JP2014195763A JP2014195763A JP2016067166A JP 2016067166 A JP2016067166 A JP 2016067166A JP 2014195763 A JP2014195763 A JP 2014195763A JP 2014195763 A JP2014195763 A JP 2014195763A JP 2016067166 A JP2016067166 A JP 2016067166A
Authority
JP
Japan
Prior art keywords
output
voltage
current
control
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195763A
Other languages
Japanese (ja)
Other versions
JP6410350B2 (en
Inventor
山下 隆之
Takayuki Yamashita
隆之 山下
杉田 直記
Naoki Sugita
直記 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP2014195763A priority Critical patent/JP6410350B2/en
Priority to PCT/JP2015/076794 priority patent/WO2016047635A1/en
Priority to CN201580052051.1A priority patent/CN107078641B/en
Publication of JP2016067166A publication Critical patent/JP2016067166A/en
Application granted granted Critical
Publication of JP6410350B2 publication Critical patent/JP6410350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device that can obtain easily arbitrary two-dimensional output characteristics of output voltages and currents by function control and can be preferably applied to an electric dust collector.SOLUTION: Output voltages V and output currents I applied to loads I and II are detected; duty control for PWM control of a line commutation type converter is performed by a main controller 5; a two-dimensional relation between the output voltages V and the output currents I is represented; a native characteristic curve is used which crosses a target two-dimensional output characteristic and represents a two-dimensional relation between the output voltages V and the output currents I when the duty is retained constantly; the detected output voltages V and the detected output currents I are substituted into attractor function R uniquely determined from a shape of the two-dimensional characteristic; and on the basis of positive and negative codes obtained when determining a difference between the output voltages V and predetermined reference voltages Vin the attractor function R and a difference between the detected currents I and predetermined reference currents I, the duty for the PWM control is increased/decreased for every fixed time in a direction converging to the attractor function R.SELECTED DRAWING: Figure 1

Description

本発明は電源装置に関し、特に高電圧を必要とする電気集塵機等に適用して有用なものである。   The present invention relates to a power supply device, and is particularly useful when applied to an electrostatic precipitator that requires a high voltage.

電気集塵機用の高圧電源装置においては、特有の出力特性が要求される。すなわち、電気集塵機はコロナ放電によって粒子を荷電する荷電部(アイオナイザ)と粒子を捕集する集塵部(コレクタ)で構成される結果、アイオナイザ通過時の粒子電荷量を確保するには、一定のコロナ放電電流が必要である。また、コレクタは集塵効率確保のため、一定のコレクタ電圧が必要である。   A high-voltage power supply device for an electric dust collector requires a specific output characteristic. In other words, the electrostatic precipitator is composed of a charging unit (ionizer) that charges particles by corona discharge and a dust collecting unit (collector) that collects particles. As a result, a certain amount of particle charge when passing through the ionizer is secured. A corona discharge current is required. In addition, the collector requires a certain collector voltage to ensure dust collection efficiency.

しかしながら、電気集塵装置の電極を高圧電源の負荷として見た場合、通常の負荷の場合に比べ、経時変動幅が大きいのが特徴で、定格電圧・定格電流の1点で動作する状態は電極をほとんど使用していない初期のみである。実際に使用していくと、集塵対象としてのダスト、ミスト等が集塵部に堆積するのみならず、アイオナイザの放電電極、電極支持部などにも汚れが付着していく。これによってアイオナイザではコロナ放電が起きづらくなり、放電電流を維持するための電圧は高くなる。一方、コレクタではリーク電流が増加し、端子電圧は低下ぎみになる。   However, when the electrode of the electrostatic precipitator is viewed as a load of a high-voltage power supply, it is characterized by a large fluctuation width with time compared to a normal load, and the state of operation at one point of rated voltage and rated current is the electrode It is only the initial stage that hardly uses. In actual use, not only dust, mist and the like as dust collection objects accumulate on the dust collection part, but also dirt adheres to the discharge electrode and electrode support part of the ionizer. This makes it difficult for the ionizer to cause corona discharge and increases the voltage for maintaining the discharge current. On the other hand, the leakage current increases at the collector, and the terminal voltage becomes a drop.

かかる集塵条件の変化の中で集塵効率を維持していくには、アイオナイザは定電流特性、コレクタは定電圧特性の電源が要求される。しかも電極汚れ使用期間中に連続的に進行していき、どの時点でも性能維持が必要なため、出力は1点ではなく電圧・電流の変化に応じた関数の特性(2次元的特性)が電気集塵機用の高圧電源の出力特性に要求される。   In order to maintain dust collection efficiency under such changes in dust collection conditions, the ionizer requires a constant current characteristic and the collector requires a constant voltage characteristic. In addition, since the electrode progresses continuously during the period of use of the electrode and it is necessary to maintain performance at any point in time, the output is not a single point but a function characteristic (two-dimensional characteristic) according to changes in voltage and current. Required for output characteristics of high-voltage power supply for dust collectors.

さらに、一定電流維持のために無制限に電圧を上げていくと、支持部その他で絶縁が維持できなくなるので、ある程度の制限も必要となる。また一定電圧維持のために無制限に電流を流すと、ジュール熱などの発生によって発煙発火が生じる恐れがあり、同様にコレクタ電流の制限も必要である。こうした特性を加味して電気集塵装置が最も性能を発揮しやすい高圧電源の出力特性は、電圧・電流の2次元平面で箱型形状を示す、定電圧・定電流特性である。ここで、箱型形状とは、X軸方向の出力電流Iが零から最大値まで増加する間は、電圧は所定の定電圧を維持し、電流が最大値に達した時点で、Y軸方向の出力電圧Vが増減しても電流は所定の一定電流を維持する特性であって電圧電流の両方の最大値を示す点を含む。かかる箱型形状の出力特性に関しては、実施の形態とともに、後に詳述する(図9参照)。   Furthermore, if the voltage is increased without limitation in order to maintain a constant current, insulation cannot be maintained at the support portion or the like, so a certain degree of limitation is also required. In addition, if an unlimited current is applied to maintain a constant voltage, there is a risk that smoke will ignite due to the generation of Joule heat or the like, and it is also necessary to limit the collector current. In consideration of these characteristics, the output characteristics of the high-voltage power supply that the electrostatic precipitator is most likely to perform are constant voltage / constant current characteristics that show a box shape in a two-dimensional plane of voltage / current. Here, the box shape means that while the output current I in the X-axis direction increases from zero to the maximum value, the voltage maintains a predetermined constant voltage, and when the current reaches the maximum value, the Y-axis direction Even when the output voltage V increases or decreases, the current has a characteristic of maintaining a predetermined constant current and includes a point indicating the maximum value of both of the voltage and current. The box-shaped output characteristics will be described in detail later together with the embodiment (see FIG. 9).

一方、この種の従来技術に係る高圧電源装置としては、例えば特許文献1に開示するものが存在する。これは、リンギングチョークコンバータを代表例とする、自励発振式の高圧電源で、電気集塵機や空気清浄機に使用されており、3次巻き線からフィードバックされた信号を利用して発振回路が形成されるというアナログ回路である。   On the other hand, as a high-voltage power supply device according to this type of prior art, there is one disclosed in Patent Document 1, for example. This is a self-excited oscillation type high-voltage power supply with a ringing choke converter as a representative example. It is used in electrostatic precipitators and air purifiers, and an oscillation circuit is formed using the signal fed back from the tertiary winding. It is an analog circuit.

しかしながら、特許文献1では、発振周波数が温度によって変化し、条件によって可聴域に入る異常発振が起きたり、周囲温度が低すぎると発振せず高圧出力しない等の問題があった。出力の電流・電圧はいわゆるフの字特性を示すが、定電圧・定電流特性を得るためには、制御用部品がそれぞれ必要で、回路部品点数も増え、コストアップの要因になる。また、出力電圧・出力電流のわずかな仕様変更に対しても各部品定数をトライアンドエラー的に決めていかねばならず、開発に時間がかかるばかりでなく、仕様変更に即座に対処できない等の問題もある。   However, Patent Document 1 has a problem that the oscillation frequency varies depending on the temperature, and abnormal oscillations that enter the audible range occur depending on conditions, or that the oscillation does not oscillate and does not output high voltage if the ambient temperature is too low. The output current / voltage exhibits a so-called “U” characteristic, but in order to obtain constant voltage / constant current characteristics, control components are required, the number of circuit components increases, and this increases the cost. Also, even for slight changes in the output voltage and output current, each component constant must be determined in a trial-and-error manner. Not only does development take time, but the specification change cannot be handled immediately. There is also a problem.

一方、専用ICを使用した他励式高圧電源及びマイコンを使用した、例えば特許文献2に示す高圧電源では、PWM制御(パルス幅制御)で、定電圧制御もしくは定電流制御を行っているが、2次元特性を得る関数制御に至っていない。その為、特許文献1と同様に、制御用部品がそれぞれ必要で、回路部品点数も増え、コストアップ要因となり、出力電圧・電流のわずかな仕様変更に対しても各部品定数決めに時間がかかるばかりでなく、仕様変更に即座に対処できない等の問題もある。   On the other hand, in a high voltage power supply using a separately-excited high voltage power supply using a dedicated IC and a microcomputer, for example, disclosed in Patent Document 2, constant voltage control or constant current control is performed by PWM control (pulse width control). Function control to obtain dimensional characteristics has not been achieved. Therefore, as in Patent Document 1, each of the control parts is required, the number of circuit parts is increased, which increases the cost, and it takes time to determine the constants of each part even if the output voltage / current changes slightly. Not only are there problems such as being unable to deal with specification changes immediately.

他にも関連する公知文献として、特許文献3(特開2003−143845号公報)、特許文献4(特開2003−199338号公報)、特許文献5(特開2008−109820号公報)等が存在する。これらの文献は、いずれも出力目標値の制御は行っているが、関数制御の概念(2次元出力特性)は開示ないし示唆されていない。また、電気集塵機では出力特性の形状が重要であるが、出力特性の形状を問題にしたものがなく、さらには出力特性を運転中に、高速に、連続的に変化させているものは存在しない。   Other related documents include Patent Document 3 (Japanese Patent Laid-Open No. 2003-143845), Patent Document 4 (Japanese Patent Laid-Open No. 2003-199338), Patent Document 5 (Japanese Patent Laid-Open No. 2008-109820), and the like. To do. These documents all control the output target value, but do not disclose or suggest the concept of function control (two-dimensional output characteristics). In addition, the shape of the output characteristics is important in the electrostatic precipitator, but there is nothing that has a problem with the shape of the output characteristics, and there is no one that continuously changes the output characteristics at high speed during operation. .

特開2002―273267号公報JP 2002-273267 A 特開2000−156373号公報JP 2000-156373 A 特開2003−143845号公報JP 2003-143845 A 特開2003−199338号公報JP 2003-199338 A 特開2008−109820号公報JP 2008-109820 A

本発明は、上記従来技術に鑑み、出力電圧・電流の任意の2次元出力特性を関数制御により容易に実現することができ、電気集塵機に良好に適用し得る電源装置を提供することを目的とする。   An object of the present invention is to provide a power supply device that can easily realize any two-dimensional output characteristics of output voltage and current by function control and can be applied well to an electric dust collector. To do.

上記目的を達成する本発明の第1の態様は、
負荷に対する出力電圧Vおよび出力電流Iを同時に検出するとともに、検出した出力電圧Vおよび出力電流Iを制御手段に供給することにより前記制御手段で、前記負荷が接続された他励式変換装置によるPWM制御のためのデューティ制御を行うように構成した電源装置であって、
前記制御手段は、前記出力電圧Vと前記出力電流Iとの対としての2次元的な関係を表すとともに、目的とする2次元出力特性と交差し、かつデューティを一定に固定し、負荷抵抗を零から無限大まで変化させた場合に得られる前記出力電圧Vおよび出力電流Iの2次元的な関係を表すネイティブ特性曲線を使用し、前記2次元出力特性の形状から一意に定まるアトラクタ関数Rに、検出した前記出力電圧Vおよび出力電流Iを同時に代入し、このときの前記アトラクタ関数における前記出力電圧Vと所定の基準電圧Vとの差、および前記出力電流Iと所定の基準電流Iとの差を採った場合の正負の符号から、前記アトラクタ関数に集まる方向に前記PWM制御のためのデューティを一定時間ごとに増減させ、所定の電圧・電流曲線をまたぐように動的制御を行ったことを特徴とする電源装置にある。
The first aspect of the present invention for achieving the above object is as follows:
Simultaneously detecting the output voltage V and the output current I with respect to the load, and supplying the detected output voltage V and output current I to the control means, the control means performs PWM control by the separately-excited converter to which the load is connected. A power supply device configured to perform duty control for:
The control means represents a two-dimensional relationship as a pair of the output voltage V and the output current I, intersects a target two-dimensional output characteristic, fixes the duty constant, and sets the load resistance. A native characteristic curve representing a two-dimensional relationship between the output voltage V and the output current I obtained when changing from zero to infinity is used to obtain an attractor function R uniquely determined from the shape of the two-dimensional output characteristic. The detected output voltage V and output current I are simultaneously substituted, and the difference between the output voltage V and the predetermined reference voltage V 0 in the attractor function at this time, and the output current I and the predetermined reference current I 0 From the positive and negative signs when the difference is taken, the duty for the PWM control is increased / decreased at regular intervals in the direction to gather in the attractor function, and a predetermined voltage / current curve is obtained. In power supply apparatus characterized by performing the dynamic control as tags.

本態様によれば、アトラクタ関数を単独または複数を適宜組み合わせることで、任意の2次元出力特性を容易に作成することができる。   According to this aspect, an arbitrary two-dimensional output characteristic can be easily created by combining attractor functions alone or in combination as appropriate.

なお、本発明におけるアトラクタ関数とは、次のように定義される。すなわち、アトラクタ関数Rの共通の属性として、目標値としての出力電圧Vの値および出力電流Iの値を内包しており、実測値としての出力電圧Vの値および出力電流Iの値をAD変換器を介してセットとして同時にCPUに取り込み、次にアップまたはダウンのいずれの処理をしたら良いかを指示するプログラム上の評価関数であり、1次式や2次式で表す場合もあるが、NOR/NAND等の論理式で表現される場合もある。その制御結果は、どの負荷抵抗であっても、目標値としての出力曲線に集まるように処理が進む。しかし、同時に動的平衡を指向するものであるから、常に目標出力を跨ぎながら微小変動を繰り返し、目標値に集まりつつも厳密な意味で一定値に落ち着くことはない。これらのことは負荷の変動に対し速やかに応答しやすくなるという効果をもたらし、2次元制御にとって不可欠な特性となる。 The attractor function in the present invention is defined as follows. That is, as a common attribute of the attractor function R, the value of the output voltage V 0 and the value of the output current I 0 as target values are included, and the value of the output voltage V and the value of the output current I as measured values are included. This is an evaluation function on the program that instructs the CPU to perform either up or down processing simultaneously as a set via the AD converter, and may be expressed by a primary expression or a secondary expression. , And may be expressed by a logical expression such as NOR / NAND. The process proceeds so that the control result gathers in the output curve as the target value regardless of the load resistance. However, since it is directed to dynamic equilibrium at the same time, the minute fluctuation is always repeated while straddling the target output, and it does not settle down to a constant value in a strict sense even if it gathers at the target value. These have the effect of facilitating quick response to load fluctuations, and are indispensable characteristics for two-dimensional control.

本発明の第2の態様は、
第1の態様に記載する電源装置において、
前記基準電圧Vに対する前記出力電圧Vの差および前記基準電流Iに対する前記出力電流Iの差の両方が負であるときのみ、前記デューティを1デジットアップさせ、それ以外はすべて1デジットダウンさせる制御を前記一定時間ごとに実施することで、前記2次元出力特性が箱型2次元定電圧・定電流出力特性となるようにしたことを特徴とする電源装置にある。
The second aspect of the present invention is:
In the power supply device described in the first aspect,
The duty is increased by 1 digit only when both of the difference of the output voltage V with respect to the reference voltage V 0 and the difference of the output current I with respect to the reference current I 0 are negative, and all other cases are decreased by 1 digit. The power supply device is characterized in that the control is performed at the predetermined time intervals so that the two-dimensional output characteristic becomes a box-type two-dimensional constant voltage / constant current output characteristic.

本態様によれば、箱型2次元定電圧・定電流出力特性を容易に作成することができる。   According to this aspect, it is possible to easily create a box-type two-dimensional constant voltage / constant current output characteristic.

本発明の第3の態様は、
第1の態様に記載する電源装置において、
1次式で表されるアトラクタ関数R=VI+IV−Vが、R>0の場合には、デューティ制御において1デジットダウンさせ、R<0の場合には、デューティ制御において1デジットアップさせ、さらにR=0の場合には、直前の状態を維持するという制御を、前記一定時間ごとに実施することで得られた前記2次元出力特性が、直線的傾斜電圧特性であることを特徴とする電源装置にある。
The third aspect of the present invention is:
In the power supply device described in the first aspect,
When the attractor function R = V 0 I + I 0 V−V 0 I 0 represented by the linear expression is R> 0, the digit control is performed by 1 digit down in the duty control, and when R <0, the duty control is performed in the duty control. The two-dimensional output characteristic obtained by performing the control of increasing the digit by 1 and maintaining the previous state when R = 0 is the linear ramp voltage characteristic. It is in the power supply device characterized by this.

本態様によれば、2次元出力特性の直線的傾斜電圧特性を容易に作成することができる。   According to this aspect, the linear gradient voltage characteristic of the two-dimensional output characteristic can be easily created.

本発明の第4の態様は、
第1の態様に記載する電源装置において、
前記制御手段による制御により生成された前記2次元出力特性が、所定の電流以下では定電圧特性を示し、前記電流を超える範囲では、電流増加とともに電圧が低下する定電圧・傾斜電圧特性であることを特徴とする電源装置にある。
The fourth aspect of the present invention is:
In the power supply device described in the first aspect,
The two-dimensional output characteristic generated by the control by the control means exhibits a constant voltage characteristic below a predetermined current, and a constant voltage / gradient voltage characteristic in which the voltage decreases as the current increases in a range exceeding the current. The power supply device is characterized by the following.

本態様によれば、定電圧・傾斜電圧特性の2次元出力特性を容易に作成することができる。   According to this aspect, it is possible to easily create a two-dimensional output characteristic of a constant voltage / gradient voltage characteristic.

本発明によれば、他励式変換装置のデューティ制御を制御手段によって行い、電気集塵機等の負荷に必要な高圧電源の電圧・電流の任意の2次元出力特性が、瞬時出力電圧および出力電流の値の情報が入ったアトラクタ関数によって実現される。この際、必要最小限の部品にして大幅なコスト削減を達成することができ、出力特性が自由に変えられるという特性によって、負荷としての電気集塵機に搭載した場合、特にその特徴が生かされる。すなわち、火花放電自体の抑制、着火性放電の消滅、集塵運転の継続性確保、長期運転を実現し得る。   According to the present invention, the duty control of the separately excited converter is performed by the control means, and the arbitrary two-dimensional output characteristics of the voltage and current of the high-voltage power source necessary for the load such as the electrostatic precipitator are the values of the instantaneous output voltage and output current. It is realized by the attractor function that contains the information. At this time, a significant cost reduction can be achieved by using the minimum necessary parts, and the characteristics of the output characteristics can be freely changed, and the characteristics are particularly utilized when mounted on an electrostatic precipitator as a load. That is, suppression of spark discharge itself, extinction of ignitable discharge, ensuring continuity of dust collection operation, and long-term operation can be realized.

本発明の実施の形態に係る電源装置を示すブロック図である。It is a block diagram which shows the power supply device which concerns on embodiment of this invention. 2次元出力特性を生成する所定の基準電圧Vおよび基準電流Iで分割される領域を示す説明図である。Is an explanatory view showing an area divided by a predetermined reference voltage V 0 and the reference current I 0 which generates a two-dimensional output characteristics. ネイティブ特性曲線の一例を示す特性図である。It is a characteristic view which shows an example of a native characteristic curve. 各種アトラクタを示す図で、(a)は定電圧ラインアトラクタを示す説明図、(b)は定電流ラインアトラクタを示す説明図、(c)は箱型アトラクタを示す説明図、(d)はL型アトラクタを示す説明図である。It is a figure which shows various attractors, (a) is explanatory drawing which shows a constant voltage line attractor, (b) is explanatory drawing which shows a constant current line attractor, (c) is explanatory drawing which shows a box type attractor, (d) is L It is explanatory drawing which shows a type | mold attractor. 傾斜型の2次元出力特性を形成するアトラクタ関数を示す説明図である。It is explanatory drawing which shows the attractor function which forms an inclination type two-dimensional output characteristic. 放物線型の2次元出力特性を形成するアトラクタ関数を示す特性図である。It is a characteristic view which shows the attractor function which forms a parabolic two-dimensional output characteristic. 双曲線型の2次元出力特性を形成するアトラクタ関数を示す特性図である。It is a characteristic view which shows the attractor function which forms a hyperbolic two-dimensional output characteristic. 傾斜型の2次元出力特性を示す特性図である。It is a characteristic view which shows an inclined type two-dimensional output characteristic. 箱型の2次元出力特性を示す特性図である。It is a characteristic view which shows a box-shaped two-dimensional output characteristic. 定電力の2次元出力特性を示す特性図である。It is a characteristic view which shows the two-dimensional output characteristic of constant power.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態に係る電源装置を示すブロック図である。本形態に係る電源装置は電気集塵機のアイオナイザおよびコレクタを負荷I,IIとして有している。ただ、負荷をアイオナイザおよびコレクタに限定する必要はない。チョッパの出力をトランスで昇圧して高電圧を得る用途であれば、同様の作用・効果を発揮させることができる。   FIG. 1 is a block diagram showing a power supply apparatus according to an embodiment of the present invention. The power supply apparatus according to the present embodiment has an ionizer ionizer and collector as loads I and II. However, the load need not be limited to the ionizer and collector. The same operation and effect can be exhibited if the output of the chopper is boosted with a transformer to obtain a high voltage.

また、本形態に係る電源装置は、他励式変換装置を有している。さらに詳言すると、商用電源50/60Hzの交流から一旦直流に変換する整流平滑回路または直流電源(図1に図示せず)から印加される直流電圧を、周波数20kHz〜100kHzでスイッチング動作するスイッチング素子である電界効果トランジスタTrでチョッピングして昇圧トランス1に印加する。昇圧トランス1は、所定の高電圧を得るための1次および2次巻線を有しており、その1次巻線1Aには、並列に共振コンデンサCが接続されている。また、2次巻線1Bには、2次電圧を直流に変換する整流倍圧回路2が接続してある。かくして、昇圧トランス1で昇圧され、整流倍圧回路2で整流されることにより生成される所定の直流高電圧が負荷I(アイオナイザー)および負荷II(コレクタ)に印加される。ここで、負荷IIには、電圧分割用の抵抗R1,R2を介して負荷Iの印加電圧よりも降圧した電圧が印加される。両者の定格電圧に合わせるためである。 Moreover, the power supply device according to the present embodiment includes a separately excited conversion device. More specifically, a switching element that switches a DC voltage applied from a rectifying / smoothing circuit or a DC power source (not shown in FIG. 1) once from AC of commercial power 50/60 Hz to DC at a frequency of 20 kHz to 100 kHz. Are chopped by the field effect transistor Tr and applied to the step-up transformer 1. Step-up transformer 1 has a primary and secondary winding for obtaining a predetermined high voltage, in its primary winding 1A, the resonant capacitor C 0 is connected in parallel. The secondary winding 1B is connected to a rectifying voltage doubler circuit 2 that converts the secondary voltage into a direct current. Thus, a predetermined DC high voltage generated by being boosted by the step-up transformer 1 and rectified by the rectifier voltage doubler circuit 2 is applied to the load I (ionizer) and the load II (collector). Here, a voltage lower than the applied voltage of the load I is applied to the load II via the resistors R1 and R2 for voltage division. This is to match the rated voltage of both.

電圧検出回路3は、負荷Iに印加される電圧を検出し、このときの電圧値を表す電圧信号S1をオペアンプ4を介して主制御装置5に送出する。一方、電流検出回路6は、負荷Iおよび負荷IIに供給される電流を検出し、このときの電流値を表す電流信号S2をオペアンプ7を介して主制御装置5に送出する。   The voltage detection circuit 3 detects a voltage applied to the load I, and sends a voltage signal S1 representing the voltage value at this time to the main controller 5 via the operational amplifier 4. On the other hand, the current detection circuit 6 detects the current supplied to the load I and the load II, and sends a current signal S2 representing the current value at this time to the main controller 5 via the operational amplifier 7.

主制御装置5は、A/D変換器8,CPU9,PWM信号生成部10を有している。ここで、A/D変換器8は、アナログ信号である電圧信号S1および電流信号S2をデジタル信号に変換してCPU9に供給する。CPU9は、電圧信号S1および電流信号S2に基づくデジタル信号を所定通りに処理してPWMのデューティを決定し、PWM信号生成部10を介して所定のデューティを有するPWM信号S3を発生させる(CPU9における信号処理に関しては後に詳述する)。スイッチング回路11は、PWM信号S3に基づき電界効果トランジスタTrを所定の間隔でON/OFF制御する。   The main controller 5 includes an A / D converter 8, a CPU 9, and a PWM signal generation unit 10. Here, the A / D converter 8 converts the voltage signal S1 and the current signal S2, which are analog signals, into digital signals and supplies them to the CPU 9. The CPU 9 processes a digital signal based on the voltage signal S1 and the current signal S2 in a predetermined manner to determine a PWM duty, and generates a PWM signal S3 having a predetermined duty via the PWM signal generation unit 10 (in the CPU 9). The signal processing will be described in detail later). The switching circuit 11 performs ON / OFF control of the field effect transistor Tr at a predetermined interval based on the PWM signal S3.

かくして、当該電源装置の電源の投入と同時に主制御装置5のCPU9が立ち上がることで初期立ち上げルーチンに入る。このとき電界効果トランジスタTrはカットオフになっており昇圧トランス1には電流は流れていない。   Thus, the CPU 9 of the main control device 5 starts up at the same time when the power supply of the power supply device is turned on to enter the initial startup routine. At this time, the field effect transistor Tr is cut off, and no current flows through the step-up transformer 1.

一方、CPU9では、モニター回路を通じて得られるモニター用の電圧信号(VDD信号)S1および電流信号(IDD信号)S2に基づく電圧値および電流値を一定時間T1ごとに検出しながら、目標電圧に達していなければデューティを1デジットづつ上げていく。本形態では、T1=10msecとしているが、必要に応じさらに短くすることもできる。また、1デジット上がるごとに1/400(=0.25%)づつデューティが増加する。   On the other hand, the CPU 9 reaches the target voltage while detecting the voltage value and the current value based on the monitoring voltage signal (VDD signal) S1 and the current signal (IDD signal) S2 obtained through the monitoring circuit at every predetermined time T1. If not, the duty is increased by one digit. In this embodiment, T1 = 10 msec, but it can be further shortened as necessary. Further, the duty increases by 1/400 (= 0.25%) every time one digit increases.

かかる本形態において、初期立ち上げルーチンに入れば昇圧トランス1の1次電流が常にカットオフから始まることは電気集塵機用の高圧電源装置の場合、特に相性がよい。何らかの負荷異常があった場合、多くは過電流、負荷短絡などが想定され、異常検出後に初期立ち上げルーチンに入ることができ、次の処理に移行しやすくなるからである。   In this embodiment, when the initial start-up routine is entered, the primary current of the step-up transformer 1 always starts from the cutoff, particularly in the case of a high-voltage power supply device for an electric dust collector. This is because when there is some load abnormality, an overcurrent, a load short circuit, etc. are assumed, and it is possible to enter the initial startup routine after the abnormality is detected, and to easily proceed to the next processing.

刻々と変化する当該電源装置の出力電圧Vおよび出力電流Iは、電圧検出回路3および電流検出回路6を介してCPU9に取込まれる。ここで、横軸を電流I、縦軸を電圧Vとする2次元平面を考える。図2に示すように、当該電気集塵機の定格等に基づき予め決定する所定の基準電圧V、基準電流Iに基づき前記2次元平面を4つの領域に分けると、右上の領域(1)の出力電圧Vは、常に基準電圧Vより高く、出力電流Iは基準電流Iより常に大きい。そこで出力電圧Vと基準電圧Vの差、出力電流Iと基準電流Iの差を採ると、領域(1)では(V−V)および(I−I)がともに正となる。同様の手法で領域(2)、(3)、(4)において、(V−V)および(I−I)の正負を調べた結果を表1に示す。 The output voltage V and the output current I of the power supply apparatus that change every moment are taken into the CPU 9 via the voltage detection circuit 3 and the current detection circuit 6. Here, a two-dimensional plane in which the horizontal axis is current I and the vertical axis is voltage V is considered. As shown in FIG. 2, when the two-dimensional plane is divided into four regions based on a predetermined reference voltage V 0 and a reference current I 0 determined in advance based on the rating of the electric dust collector, the upper right region (1) The output voltage V is always higher than the reference voltage V 0 and the output current I is always larger than the reference current I 0 . Therefore, when the difference between the output voltage V and the reference voltage V 0 and the difference between the output current I and the reference current I 0 are taken, both (V−V 0 ) and (I−I 0 ) are positive in the region (1). Table 1 shows the results of examining the positive and negative of (V−V 0 ) and (I−I 0 ) in the regions (2), (3), and (4) by the same method.

Figure 2016067166
Figure 2016067166

領域(1)〜(4)の各々に対してデューティの1デジット分のアップ(前記差が負の場合)またはダウン(前記差が正の場合)の2通りのCPU9での処理があり、本例の場合、全体で16通り(2)のモードが考えられる。 For each of the areas (1) to (4), there are two types of processing by the CPU 9 for increasing the duty by one digit (when the difference is negative) or down (when the difference is positive). In the case of the example, there are 16 modes (2 4 ) in total.

ここで、デューティを一定に固定した場合の出力電圧Vおよび出力電流Iの2次元的な関係を表すネイティブ特性曲線を考える。このネイティブ特性曲線は、デューティを固定し、負荷抵抗を0から∞まで連続的に変化させたとき得られる出力電圧と出力電流の対応関係を表すグラフで、図3に示すような双曲線的形状となり、デューティが1デジット(0.25%)増加するごとに変化する。したがって、本形態では、全体で400本ある。図3には、その内の2例を示している。   Here, a native characteristic curve representing a two-dimensional relationship between the output voltage V and the output current I when the duty is fixed is considered. This native characteristic curve is a graph showing the correspondence between output voltage and output current obtained when the duty is fixed and the load resistance is continuously changed from 0 to ∞, and has a hyperbolic shape as shown in FIG. , And changes every time the duty increases by 1 digit (0.25%). Therefore, in this embodiment, there are 400 in total. FIG. 3 shows two examples.

かくして、CPU9はPWM制御により一定時間T1ごとにパルス幅を増加または減少させ、その都度ネイティブ特性曲線を次々に乗り代える。仮に、領域(1)で1デジットアップの処理をすると、1本上のネイティブ特性曲線に移り、出力電圧Vおよび出力電流Iがともに増加するが、(V−V)および(I−I)がともに正の為、アップする度に差は止めどもなく大きくなり発散する。したがって、領域(1)におけるアップの処理は使用できない。 Thus, the CPU 9 increases or decreases the pulse width every fixed time T1 by PWM control, and changes the native characteristic curve one after another. If processing of 1 digit up is performed in the region (1), the process shifts to the native characteristic curve on one line and both the output voltage V and the output current I increase, but (V−V 0 ) and (I−I 0). ) are both positive for, the difference in time to up to without any increase divergence endlessly. Therefore, the up process in the area (1) cannot be used.

次に、領域(4)においてダウンの処理を行うと、(V−V)および(I−I)がともに負にしかなりえず、出力電圧Vおよび出力電流Iが、ともに0に向かうので、この領域(4)に入ると出力停止になる。また通常、初期立ち上げ時は0から始まるので、この領域(4)から立ち上ることができなくなる。したがって、領域(4)におけるダウン処理の実用性は薄い。 Next, when the down process is performed in the region (4), both (V−V 0 ) and (I−I 0 ) can hardly be made negative, and both the output voltage V and the output current I go to 0. When this area (4) is entered, output stops. In general, since the initial start-up starts from 0, it is impossible to start from this area (4). Therefore, the practicality of the down process in the region (4) is low.

以上により、領域(1)ではダウン処理、領域(4)ではアップ処理に限られるので、実用性のある組み合わせは次の4通りに絞られる。これを纏めて表2に示す。   As described above, the area (1) is limited to the down process and the area (4) is limited to the up process, so the practical combinations are narrowed down to the following four. This is summarized in Table 2.

Figure 2016067166
Figure 2016067166

表2中のNOT・A列において、基準電圧Vを超えた領域では出力を下げ、基準電圧Vに満たない領域では上げる処理をする。その結果、どの領域にあっても出力電圧V=基準電圧Vの直線に集まっていく。つまり直線で表されるV=Vは、図4(a)に示すように、定電圧ラインのアトラクタになっている。同様に、出力電流I=基準電流Iは、図4(b)に示すように、定電流ラインのアトラクタになる。 In NOT · A column in Table 2, in exceeds the reference voltage V 0 region lowers the output, a process to increase in the region less than the reference voltage V 0. As a result, the output voltage V = the reference voltage V 0 gathers in any region. That is, V = V 0 represented by a straight line is an attractor of a constant voltage line as shown in FIG. Similarly, the output current I = reference current I 0, as shown in FIG. 4 (b), becomes attractor of the constant current line.

次に、領域(4)に入った場合のみアップ処理を行い、それ以外はダウン処理を行うと、箱型定電圧定電流特性が得られ、これが、図4(c)に示すような箱型アトラクタとなる。   Next, when the up process is performed only when entering the region (4) and the down process is performed otherwise, a box-type constant voltage / constant current characteristic is obtained. This is a box type as shown in FIG. Become an attractor.

正を1、負を0、アップを1、ダウンを0に対応させると箱型定電圧定電流特性はA・NOR・Bに対応する。一方、A・NAND・Bは、図4(d)に示すようなL型出力特性となる。   When positive is 1, negative is 0, up is 1 and down is 0, the box-type constant voltage and constant current characteristics correspond to A, NOR, and B. On the other hand, A · NAND · B has an L-type output characteristic as shown in FIG.

上述の4通りは、0からの立ち上げが可能で、発散・消滅がない出力特性を与えるが、箱型定電圧定電流特性が最も実用性が高い。但し、ネイティブ特性曲線は2次元出力特性曲線と交差していることが必要である。この場合、アトラクタ関数Rは、I<IでR=V-V、V<VでR=I−Iである。 The above-mentioned four ways can start from 0 and give output characteristics without divergence / disappearance, but the box type constant voltage constant current characteristics are the most practical. However, the native characteristic curve needs to intersect the two-dimensional output characteristic curve. In this case, the attractor function R is R = I-I 0 in I <R = V-V 0 in I 0, V <V 0.

この種のアトラクタ関数の一例は、次のように纏めることができる。   An example of this type of attractor function can be summarized as follows.

<傾斜型出力アトラクタ(図5参照)>
必要な出力特性の式を変形し、左辺−右辺=0として整理し、アトラクタ関数R=IV+VI−Vを作る。そして、R>0の場合には、PWM制御のデューティを1デジット(0.25%)ダウンし、R<0の場合には、1デジット(0.25%)アップし、R=0の場合には、何もしない、という処理を一定時間T1ごとCPU9に行わせると、どこからスタートしても、どんな負荷抵抗であっても、出力動作点はラインアトラクタに向かい、その後負荷が変動しても±1デジットの誤差で、出力電圧V=−V/I(I−I)の線上を跨ぎアップ・ダウンを繰り返す。出力電圧Vは負荷電流の増加とともに直線的に減少し、出力電流Iは短絡時に基準電流Iでリミットされる特性が必要なとき用いられる。この場合、従来行われていた負荷直列抵抗は不要になる。
<Inclined output attractor (see Fig. 5)>
The necessary output characteristic equation is modified and arranged as left side-right side = 0, and the attractor function R = I 0 V + V 0 I−V 0 I 0 is created. When R> 0, the PWM control duty is reduced by 1 digit (0.25%), when R <0, it is increased by 1 digit (0.25%), and when R = 0 If the CPU 9 performs the process of doing nothing for every fixed time T1, the output operating point goes to the line attractor regardless of the load resistance regardless of the load resistance, and then the load fluctuates. With an error of ± 1 digit, the output voltage V = −V 0 / I 0 (I−I 0 ) is crossed up and down repeatedly. The output voltage V is decreased linearly with increasing load current, the output current I is used when characteristics to be limit is required on the reference current I 0 during a short circuit. In this case, the conventional load series resistance is not required.

<放物線型出力アトラクタ(図6参照)>
アトラクタ関数RをR=V/V+(I/I)−2I/Iとし、R>0の場合、ダウン、R<の場合アップ、R=0の場合には何もしない、という処理をすることで、動作点は放物線形状のカーブドアトラクタに集まって、放物線型出力特性を得ることが出来る。
<Parabolic output attractor (see Fig. 6)>
The attractor function R and R = V / V 0 + ( I / I 0) 2 -2I / I 0, the case of R> 0, nothing is down, if R <up, in the case of R = 0, As a result, the operating points are gathered in a parabolic curved door tractor, and a parabolic output characteristic can be obtained.

<双曲線型出力アトラクタ(図7参照)>
アトラクタ関数RをR=VI−P(ただし、Pは基準電力)とし、R>0の場合、ダウン、R<0の場合、アップの処理をすることで双曲線型出力特性が得られる。これは、出力電力を一定に保ちたい場合に用いられる。
<Hyperbolic output attractor (see FIG. 7)>
The attractor function R is R = VI−P 0 (where P 0 is the reference power). When R> 0, the hyperbolic output characteristic is obtained by down processing and when R <0, up processing. This is used when it is desired to keep the output power constant.

ここで、上述の如きアトラクタ関数を適宜組み合わせることによりCPU9で生成される2次元出力特性の一例に関して説明する。   Here, an example of a two-dimensional output characteristic generated by the CPU 9 by appropriately combining the above attractor functions will be described.

<傾斜型2次元出力特性>
これは、図8に示すような2次元出力特性であるが、図5に示す傾斜型出力アトラクタを単独に用いることで生成し得る。
<Inclined two-dimensional output characteristics>
Although this is a two-dimensional output characteristic as shown in FIG. 8, it can be generated by using the inclined output attractor shown in FIG.

かかる傾斜型特性を得るため、従来は高圧抵抗を出力端子に直列に挿入することで、負荷ショート時にも出力電圧Vと前記高抵抗の値で決まる電流値を超えないようにしていたが、高圧抵抗の絶縁のため大きさが大きくなるばかりでなく、発熱のため周囲の部品から離さなければならない等の問題が生起していた。これに対し、同様の特性は、本形態の傾斜型の2次元出力特性で簡単に得ることができる。すなわち、リアルタイムの出力電圧Vおよび出力電流Iの値と、無負荷電圧である基準電圧Vと負荷短絡電流である基準電流Iから決まる上述の如き、所定の1次式を計算することで、所定の操作を一定時間T1ごとに実施することで、出力は傾斜直線を跨ぎ上下動を繰り返す。この結果、いつまで経っても一定値になることはないが、負荷も時間変動があることと、1デジットの変化幅を小さく抑えることで、平均として実質的な動的制御を十分行うことができる。 In order to obtain such an inclined characteristic, a high voltage resistor is conventionally inserted in series with the output terminal so that the current value determined by the output voltage V and the high resistance value is not exceeded even when the load is short-circuited. Not only has the size increased due to the insulation of the resistor, but also problems such as having to be separated from surrounding components due to heat generation have occurred. On the other hand, similar characteristics can be easily obtained with the tilted two-dimensional output characteristics of this embodiment. That is, by calculating a predetermined linear expression as described above, which is determined from the values of the real-time output voltage V and output current I, the reference voltage V 0 which is a no-load voltage, and the reference current I 0 which is a load short-circuit current. By performing a predetermined operation at regular time intervals T1, the output repeats vertical movement across the inclined straight line. As a result, although it does not become a constant value indefinitely, substantial dynamic control can be sufficiently performed as an average by suppressing the time variation of the load and keeping the change width of 1 digit small. .

<箱型定電圧定電流出力特性>
これは、図9に示すような2次元出力特性であるが、図4(c)に示す箱型出力アトラクタを単独に用いることで生成し得る。すなわち、表2の「A・NOR・B」に従う処置を、一定時間T1ごとにCPU9でデューティを1デジット上下することで実現される。
<Box type constant voltage and constant current output characteristics>
This is a two-dimensional output characteristic as shown in FIG. 9, but can be generated by using the box-type output attractor shown in FIG. 4 (c) alone. That is, the treatment according to “A · NOR · B” in Table 2 is realized by increasing / decreasing the duty by 1 digit by the CPU 9 at every predetermined time T1.

当該箱型定電圧定電流出力特性は、定常状態だけでなく電源投入時の立ち上がり時期からでもそのまま使用できる。この場合でも出力電圧Vおよび出力電流Iは静的に一定ではなく、目標値をまたぎ常に変化しながら平均値としての制御を実現する。あえて一定値にこだわらないのは、電気集塵機の荷電特性と関係があり、変化している方が却って荷電性能が良いという特性のためである。かかる動的制御は電気集塵機に向いた電源の制御方式として有用である。   The box type constant voltage constant current output characteristic can be used as it is not only in the steady state but also from the rising time when the power is turned on. Even in this case, the output voltage V and the output current I are not statically constant, and control as an average value is realized while constantly changing across the target value. The reason why the value is not fixed is because it is related to the charging characteristics of the electrostatic precipitator, and the charging performance is better when it is changed. Such dynamic control is useful as a power supply control method suitable for an electric dust collector.

コレクタ(負荷II)の場合は変動している方が有利であるという特性はないが、その代わり、一般にコレクタの集塵面積は大きく静電容量が極めて大きいため十分に平滑されておのずと一定になる為、電源としてことさらリップルを皆無にする必要はなく、負荷変動に速やかに応答する動的平衡制御を指向する本方式においては、出力電圧の微小なリップルを常に含むことになるが、あえてそれを除去せず、むしろその特性を有効に利用している。その意味でも、電気集塵機用として、アイオナイザ用のみならず、コレクタ用電源としても適している。   In the case of the collector (load II), there is no characteristic that it is more advantageous to fluctuate, but instead, the collector generally has a large dust collection area and an extremely large capacitance, so it is naturally smooth and constant. Therefore, it is not necessary to eliminate any ripples as a power supply. In this method, which is aimed at dynamic balance control that responds quickly to load fluctuations, it always includes a small ripple in the output voltage. It does not eliminate, but rather uses its properties effectively. In that sense, it is suitable not only for an ionizer but also as a power source for a collector as an electric dust collector.

<定電力出力特性>
これは、図10に示すような2次元出力特性であるが、図4(c)に示す箱型出力アトラクタと図7の双曲線型出力アトラクタとを組み合わせることにより生成し得る。すなわち、箱型出力アトラクタの図4(c)中の右上の角部(定電圧特性と定電流特性曲線とが交差する領域)を図7の双曲線型出力アトラクタを使用して置き換えたものである。
<Constant power output characteristics>
This is a two-dimensional output characteristic as shown in FIG. 10, but can be generated by combining the box type output attractor shown in FIG. 4C and the hyperbolic output attractor of FIG. That is, the upper right corner (region where the constant voltage characteristic and the constant current characteristic curve intersect) in FIG. 4C of the box type output attractor is replaced by using the hyperbolic output attractor of FIG. .

放電特性と電源出力の交点(動作点)は、通常は、定電流領域からスタートし、時間の経過とともに放電特性が変化し、定電圧領域に移る。この間に箱型出力特性の場合、電圧・電流がともに最大値を示す出力電力が最大となる角点を通る。この角点を基準に全体熱設計が決められていくため、時間的には短時間であるこの点を少し削るだけで余裕ある設計にすることができる。   The intersection (operating point) between the discharge characteristic and the power supply output normally starts from a constant current region, and the discharge characteristic changes with time and moves to the constant voltage region. In the case of box-type output characteristics, the voltage and current both pass through corner points at which the output power showing the maximum value is maximized. Since the overall thermal design is determined on the basis of this corner point, a design with a margin can be achieved by slightly cutting this point, which is a short time.

本例の定電力出力特性によれば、デューティ=X%以下とする条件を加えるだけで簡単にこの出力特性が実現する。途中でXの値を変更したい場合でも直ちに対応可能である。デューティ一定の出力特性は左肩上がりの双曲線に近い特性で、出力電力一定の曲線とも近いからである。   According to the constant power output characteristic of this example, this output characteristic can be realized simply by adding the condition of duty = X% or less. Even if it is desired to change the value of X on the way, it can be dealt with immediately. This is because the output characteristic with a constant duty is a characteristic close to a hyperbola that rises to the left and is also close to a curve with a constant output power.

上述の如く本形態によれば、電気集塵機の集塵運転が進行するに伴い、放電特性自体が負荷の変化により変化するので、動作点は2次元出力特性曲線上のみを変化するように、出力電圧Vおよび出力電流Iの瞬時値を電圧検出回路3および電流検出回路6から速やかに取り込み、PWM制御のデューティに即、反映させ、前記2次元出力特性曲線上を逸脱しないように、負荷変化のスピードによってデューティ更新のタイミングを決定しなければならない。1デジットの変化に対しても最終出力電圧・電流の変化分は動作点によっても違ってくるので、どのような負荷であっても準定常的に、動的バランスをとって、動作点が、見かけ上、定電圧・定電流特性曲線上の値しか取っていないかのように運転している。すなわち、常に2次元出力特性曲線を跨いで運転している。このようにすることで、負荷の変化に瞬時に対応できるばかりでなく、目標値変化に対しても素早く対応でき、2次元出力特性曲線自体を瞬時に変更できる。定電流特性の電流値を変更する場合は、目標数値を変更するだけで実施され、電圧傾斜特性の場合は式の変更だけで実施されるので、プログラムの動作中でも可能である。このことは電気集塵用の高圧電源に適用する場合、使用中に負荷状態が変化していき、この変化に応じて負荷特性が変えられ、制御できるので好適である。すなわち、動的2次元出力特性で運転することができる。   As described above, according to the present embodiment, as the dust collection operation of the electric dust collector proceeds, the discharge characteristics themselves change due to the change in the load, so that the operating point changes so that only the two-dimensional output characteristic curve changes. Instantaneous values of the voltage V and the output current I are quickly taken in from the voltage detection circuit 3 and the current detection circuit 6 and immediately reflected in the duty of the PWM control so that the load change is not deviated from the two-dimensional output characteristic curve. The duty update timing must be determined by the speed. Since the change in the final output voltage and current varies depending on the operating point even with a change of 1 digit, the operating point is quasi-steady and dynamically balanced at any load. Apparently, it is operating as if it had taken only the values on the constant voltage / constant current characteristic curve. In other words, the vehicle is always operated across the two-dimensional output characteristic curve. By doing so, not only can the load change be handled instantaneously, but also the target value change can be handled quickly, and the two-dimensional output characteristic curve itself can be changed instantaneously. When the current value of the constant current characteristic is changed, it is performed only by changing the target numerical value. When the voltage gradient characteristic is changed, only the expression is changed. This is preferable when applied to a high-voltage power supply for electrostatic dust collection, because the load state changes during use, and the load characteristics can be changed and controlled according to this change. That is, it is possible to operate with dynamic two-dimensional output characteristics.

ちなみに、従来のアナログ型の場合には、電源自体を交換するか、別の部品を用意しておき、リレーで切り替える等、切り替えは容易ではなかった。   Incidentally, in the case of the conventional analog type, switching is not easy, such as replacing the power supply itself or preparing another part and switching with a relay.

上記実施の形態に記載する電源装置において、万一の制御系の暴走に備え、主制御系とは別に、装置全体を制御する別の制御系を搭載しても良い。これにより他方が制御不能になった場合でも、もう一方からのリセットにより回復が確保され信頼性の向上に資することができる。   In the power supply device described in the above embodiment, in preparation for a runaway control system, another control system for controlling the entire apparatus may be mounted separately from the main control system. Thus, even when the other side becomes uncontrollable, recovery is ensured by resetting from the other side, which can contribute to improvement of reliability.

本発明は電気集塵機等、高電圧の電源を使用する機器の製造販売等を行う産業分野において有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where manufacture and sale of equipment using a high voltage power source such as an electric dust collector is performed.

V 出力電圧
I 出力電流
基準電圧
基準電流
I,II 負荷
Tr 電界効果トランジスタ
1 昇圧トランス
2 整流倍圧回路
3 電圧検出回路
5 主制御装置
6 電流検出回路
9 CPU
10 PWM信号生成部
V output voltage I output current V 0 reference voltage I 0 reference current I, II load Tr field effect transistor 1 step-up transformer 2 rectifier voltage doubler circuit 3 voltage detection circuit 5 main controller 6 current detection circuit 9 CPU
10 PWM signal generator

Claims (4)

負荷に対する出力電圧Vおよび出力電流Iを同時に検出するとともに、検出した出力電圧Vおよび出力電流Iを制御手段に供給することにより前記制御手段で、前記負荷が接続された他励式変換装置によるPWM制御のためのデューティ制御を行うように構成した電源装置であって、
前記制御手段は、前記出力電圧Vと前記出力電流Iとの対としての2次元的な関係を表すとともに、目的とする2次元出力特性と交差し、かつデューティを一定に固定し、負荷抵抗を零から無限大まで変化させた場合に得られる前記出力電圧Vおよび出力電流Iの2次元的な関係を表すネイティブ特性曲線を使用し、前記2次元出力特性の形状から一意に定まるアトラクタ関数Rに、検出した前記出力電圧Vおよび出力電流Iを同時に代入し、このときの前記アトラクタ関数における前記出力電圧Vと所定の基準電圧Vとの差、および前記出力電流Iと所定の基準電流Iとの差を採った場合の正負の符号から、前記アトラクタ関数に集まる方向に前記PWM制御のためのデューティを一定時間ごとに増減させ、所定の電圧・電流曲線をまたぐように動的制御を行ったことを特徴とする電源装置。
Simultaneously detecting the output voltage V and the output current I with respect to the load, and supplying the detected output voltage V and output current I to the control means, the control means performs PWM control by the separately-excited converter to which the load is connected. A power supply device configured to perform duty control for:
The control means represents a two-dimensional relationship as a pair of the output voltage V and the output current I, intersects a target two-dimensional output characteristic, fixes the duty constant, and sets the load resistance. A native characteristic curve representing a two-dimensional relationship between the output voltage V and the output current I obtained when changing from zero to infinity is used to obtain an attractor function R uniquely determined from the shape of the two-dimensional output characteristic. The detected output voltage V and output current I are simultaneously substituted, and the difference between the output voltage V and the predetermined reference voltage V 0 in the attractor function at this time, and the output current I and the predetermined reference current I 0 From the positive and negative signs when the difference is taken, the duty for the PWM control is increased / decreased at regular intervals in the direction to gather in the attractor function, and a predetermined voltage / current curve is obtained. Power supply, characterized in that performing the dynamic control as tags.
請求項1に記載する電源装置において、
前記基準電圧Vに対する前記出力電圧Vの差および前記基準電流Iに対する前記出力電流Iの差の両方が負であるときのみ、前記デューティを1デジットアップさせ、それ以外はすべて1デジットダウンさせる制御を前記一定時間ごとに実施することで、前記2次元出力特性が箱型2次元定電圧・定電流出力特性となるようにしたことを特徴とする電源装置。
The power supply device according to claim 1,
The duty is increased by 1 digit only when both of the difference of the output voltage V with respect to the reference voltage V 0 and the difference of the output current I with respect to the reference current I 0 are negative, and all other cases are decreased by 1 digit. A power supply apparatus, wherein the two-dimensional output characteristics become box-shaped two-dimensional constant voltage / constant current output characteristics by performing the control at the predetermined time intervals.
請求項1に記載する電源装置において、
1次式で表されるアトラクタ関数R=VI+IV−Vが、R>0の場合には、デューティ制御において1デジットダウンさせ、R<0の場合には、デューティ制御において1デジットアップさせ、さらにR=0の場合には、直前の状態を継続するという制御を、前記一定時間ごとに実施することで得られた前記2次元出力特性が、直線的傾斜電圧特性であることを特徴とする電源装置。
The power supply device according to claim 1,
When the attractor function R = V 0 I + I 0 V−V 0 I 0 represented by the linear expression is R> 0, the digit control is performed by 1 digit down in the duty control, and when R <0, the duty control is performed in the duty control. The two-dimensional output characteristic obtained by performing the control of increasing the digit by 1 and continuing the previous state when R = 0 is the linear ramp voltage characteristic. A power supply device characterized by that.
請求項1に記載する電源装置において、
前記制御手段による制御により生成された前記2次元出力特性が、所定の電流以下では定電圧特性を示し、前記電流を超える範囲では、電流増加とともに電圧が低下する定電圧・傾斜電圧特性であることを特徴とする電源装置。
The power supply device according to claim 1,
The two-dimensional output characteristic generated by the control by the control means exhibits a constant voltage characteristic below a predetermined current, and a constant voltage / gradient voltage characteristic in which the voltage decreases as the current increases in a range exceeding the current. A power supply characterized by.
JP2014195763A 2014-09-25 2014-09-25 Power supply Active JP6410350B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014195763A JP6410350B2 (en) 2014-09-25 2014-09-25 Power supply
PCT/JP2015/076794 WO2016047635A1 (en) 2014-09-25 2015-09-18 Power supply device
CN201580052051.1A CN107078641B (en) 2014-09-25 2015-09-18 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195763A JP6410350B2 (en) 2014-09-25 2014-09-25 Power supply

Publications (2)

Publication Number Publication Date
JP2016067166A true JP2016067166A (en) 2016-04-28
JP6410350B2 JP6410350B2 (en) 2018-10-24

Family

ID=55581160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195763A Active JP6410350B2 (en) 2014-09-25 2014-09-25 Power supply

Country Status (3)

Country Link
JP (1) JP6410350B2 (en)
CN (1) CN107078641B (en)
WO (1) WO2016047635A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122308A (en) * 2017-01-30 2018-08-09 パナソニックIpマネジメント株式会社 Flux recovery device and reflow device
US10695713B2 (en) 2017-01-30 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Flux recovery device, and reflow apparatus and gas exchange method using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680059B2 (en) * 2016-04-15 2020-04-15 Tdk株式会社 Switching power supply device and switching control circuit
CN112594882B (en) * 2020-12-11 2022-01-28 珠海格力电器股份有限公司 Method and device for controlling air purifier, processor and electronic device
CN112594881B (en) * 2020-12-11 2022-02-08 珠海格力电器股份有限公司 Method and device for controlling air purifier, processor and electronic device
CN112827655B (en) * 2021-01-06 2022-03-01 珠海格力电器股份有限公司 Dust removal module calibration method, device and equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824923A (en) * 1981-08-05 1983-02-15 Japan Storage Battery Co Ltd Switching regulator
JPH01252166A (en) * 1988-03-31 1989-10-06 Toshiba Lighting & Technol Corp Power device
JP2008061283A (en) * 2006-08-29 2008-03-13 Power System:Kk Capacitor charging apparatus
WO2013149196A1 (en) * 2012-03-29 2013-10-03 Texas Instruments Incorporated Power supply control method for constant current constant power control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824923B2 (en) * 1976-03-29 1983-05-24 日東電工株式会社 Manufacturing method of variable resistor
DE10085473B4 (en) * 2000-05-26 2007-02-01 Mitsubishi Denki K.K. eroding
JP5346255B2 (en) * 2009-09-02 2013-11-20 パナソニック株式会社 Power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824923A (en) * 1981-08-05 1983-02-15 Japan Storage Battery Co Ltd Switching regulator
JPH01252166A (en) * 1988-03-31 1989-10-06 Toshiba Lighting & Technol Corp Power device
JP2008061283A (en) * 2006-08-29 2008-03-13 Power System:Kk Capacitor charging apparatus
WO2013149196A1 (en) * 2012-03-29 2013-10-03 Texas Instruments Incorporated Power supply control method for constant current constant power control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122308A (en) * 2017-01-30 2018-08-09 パナソニックIpマネジメント株式会社 Flux recovery device and reflow device
US10695713B2 (en) 2017-01-30 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Flux recovery device, and reflow apparatus and gas exchange method using the same

Also Published As

Publication number Publication date
CN107078641B (en) 2019-07-16
CN107078641A (en) 2017-08-18
WO2016047635A1 (en) 2016-03-31
JP6410350B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6410350B2 (en) Power supply
TWI393337B (en) Two stage switching power conversion circuit
JP6447095B2 (en) Switching power supply circuit
JP2808190B2 (en) Power supply with improved power factor
CN103477559A (en) Gate drive device
CN103354972B (en) Power factor correction circuit
JP2019054573A (en) Power-factor improvement circuit, and switching power-supply device using the same
JPWO2017018327A1 (en) Power supply circuit and AC adapter
JP4975697B2 (en) Piezoelectric transformer control circuit and piezoelectric transformer control method
WO2018207880A1 (en) Ripple injection circuit, switching control circuit, oscillation circuit, and electronic device equipped with these circuits
JP6834366B2 (en) Power supply
CN105450117B (en) A kind of generator and its starting control system
JP5350097B2 (en) Pulse control power supply for static eliminator
JP6395151B2 (en) High voltage power supply for electric dust collector
JP4543718B2 (en) Power converter
JP2016167914A (en) Charging device
KR101628450B1 (en) High Voltage Pulse System and Method for Controlling The Same
JP5064346B2 (en) High voltage power supply circuit using piezoelectric transformer
KR101226104B1 (en) Power system of dc grid-connected photovoltaic pcs
JP6298994B1 (en) Power supply circuit and motor drive device
JPH08115134A (en) Power source circuit
JPH0898518A (en) Transformerless dc power supply
JP2015173534A (en) energy conversion device
JP6318424B2 (en) Power supply device, television device, and electronic device
JP6590595B2 (en) Electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180921

R150 Certificate of patent or registration of utility model

Ref document number: 6410350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250