JP2016066541A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2016066541A
JP2016066541A JP2014195497A JP2014195497A JP2016066541A JP 2016066541 A JP2016066541 A JP 2016066541A JP 2014195497 A JP2014195497 A JP 2014195497A JP 2014195497 A JP2014195497 A JP 2014195497A JP 2016066541 A JP2016066541 A JP 2016066541A
Authority
JP
Japan
Prior art keywords
case
array
battery cell
load
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195497A
Other languages
Japanese (ja)
Other versions
JP6350172B2 (en
Inventor
直人 守作
Naoto Morisaku
直人 守作
浩生 植田
Hiromi Ueda
浩生 植田
加藤 崇行
Takayuki Kato
崇行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014195497A priority Critical patent/JP6350172B2/en
Priority to PCT/JP2015/064502 priority patent/WO2016047198A1/en
Publication of JP2016066541A publication Critical patent/JP2016066541A/en
Application granted granted Critical
Publication of JP6350172B2 publication Critical patent/JP6350172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery module capable of operating a current cutoff device in appropriate timing even when adding a constraint load to an array body in which an elastic body is interposed.SOLUTION: A battery module 1 includes: an array body 2 formed by arraying a plurality of battery cells 11 with which an electrode assembly 13 is accommodated within a case 12; a constraint member 3 which adds the constraint load to the array body 2 in an array direction of the battery cells 11; and an elastic body 4 which is interposed between the array body 2 and the constraint body 3 or between the battery cells 11 and 11. The battery cell 11 includes a current cutoff device 26 which cuts off a charging current in the case where an inner pressure of the case 12 increases as high as or higher than a threshold. A lower limit value of the constraint load from the constraint member 3 to the array body 2 is set equal to or greater than a bottom load amount that does not exceed an expansion allowable value to which an expansion amount of the case 12 is preset in the battery cells 11 when the inner pressure of the case 12 becomes the threshold.SELECTED DRAWING: Figure 4

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

従来、例えばリチウムイオン二次電池等の電池セルを複数配列してなる電池モジュールが知られている。かかる電池モジュールでは、電池セルの配列体を金属プレート等の拘束具で挟み込んで一定の荷重で拘束することで、電池セルにおいて内部抵抗等の特性が変動することを抑制している。   Conventionally, a battery module in which a plurality of battery cells such as lithium ion secondary batteries are arranged is known. In such a battery module, the battery cell array is sandwiched by a restraining tool such as a metal plate and restrained by a constant load, thereby suppressing fluctuations in characteristics such as internal resistance in the battery cell.

例えば特許文献1に記載の組電池では、両端に屈曲部を有する金属バンドをエンドプレートに固定し、このエンドプレートによって電池ブロックを積層方向に拘束している。また、特許文献2に記載の蓄電装置では、初期状態での拘束荷重の値に応じて電池セルの内圧上昇時の荷重の増加量が異なることを考慮し、荷重の増加量を加味して拘束荷重が設定されている。   For example, in the assembled battery described in Patent Document 1, a metal band having bent portions at both ends is fixed to an end plate, and the battery block is constrained in the stacking direction by the end plate. In addition, in the power storage device described in Patent Document 2, in consideration of the fact that the amount of increase in the load when the internal pressure of the battery cell is increased differs depending on the value of the constraint load in the initial state, Load is set.

特開2013−055069号公報JP 2013-055069 A 特開2013−200977号公報JP 2013-200787 A

電池モジュールに組み込まれる電池セルには、過充電などの異常に起因して電池セルのケース内でガスが発生した場合に電池セルの電流経路を遮断する電流遮断装置(CID:Current Interrupt Device)が内蔵される。電流遮断装置は、ガスの発生によってケースの内圧が予め設定された閾値に到達した場合に電池セルの電流経路を物理的に遮断するように作動する。   The battery cell incorporated in the battery module has a current interrupt device (CID: Current Interrupt Device) that cuts off the current path of the battery cell when gas is generated in the battery cell case due to an abnormality such as overcharge. Built in. The current interrupt device operates to physically interrupt the current path of the battery cell when the internal pressure of the case reaches a preset threshold value due to generation of gas.

一方、電池モジュールでは、拘束荷重による電池セルの破損を防止する目的で、配列体と拘束部材との間或いは電池セル間にゴムなどの弾性体を介在させる場合がある。この場合、弾性体が容易に変形することで、ガス発生時に電池セルのケースも容易に膨張するため、ケースの内圧の上昇が設定値に対して緩やかとなり、電流遮断装置が適切なタイミングで作動しなくなるおそれがある。   On the other hand, in the battery module, there is a case where an elastic body such as rubber is interposed between the array body and the restraining member or between the battery cells in order to prevent the battery cell from being damaged by the restraining load. In this case, since the elastic body easily deforms, the case of the battery cell easily expands when gas is generated, so the increase in the internal pressure of the case becomes moderate with respect to the set value, and the current interrupting device operates at an appropriate timing. There is a risk that it will not.

本発明は、上記課題の解決のためになされたものであり、弾性体が介在する配列体に拘束荷重を付加する場合であっても電流遮断装置を適切なタイミングで作動させることができる電池モジュールを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a battery module capable of operating a current interrupting device at an appropriate timing even when a restraining load is applied to an arrayed body interposing elastic bodies. The purpose is to provide.

上記課題の解決のため、本発明の一側面に係る電池モジュールは、電極組立体がケース内に収容された電池セルを複数配列してなる配列体と、配列体に対して電池セルの配列方向に拘束荷重を付加する拘束部材と、配列体と拘束部材との間又は電池セル間に介在する弾性体と、を備え、電池セルは、ケースの内圧が閾値以上に上昇した場合に充電電流を遮断する電流遮断装置を有し、拘束部材による配列体への拘束荷重の下限値は、ケースの内圧が閾値となったときに電池セルにおけるケースの膨張量が予め設定された膨張許容量を超えない最低荷重量以上に設定されている。   In order to solve the above problems, a battery module according to an aspect of the present invention includes an array formed by arranging a plurality of battery cells in which an electrode assembly is housed in a case, and an array direction of the battery cells with respect to the array A restraining member for applying a restraining load to the battery, and an elastic body interposed between the array body and the restraining member or between the battery cells, and the battery cell generates a charging current when the internal pressure of the case rises above a threshold value. The lower limit value of the restraining load applied to the array by the restraining member has a current interrupting device that shuts off, and when the internal pressure of the case becomes a threshold value, the expansion amount of the case in the battery cell exceeds the preset allowable expansion amount There is no minimum load set.

この電池モジュールでは、拘束部材による配列体への拘束荷重の下限値が、ケースの内圧が閾値となったときに電池セルにおけるケースの膨張量が予め設定された膨張許容量を超えない最低荷重量以上に設定されている。これにより、電池セルのケース内でガスが発生した場合に、少なくとも電流遮断装置が作動する閾値にケースの内圧が到達するまでは、ケースの膨張量が予め設定された膨張許容量以下に保たれる。したがって、ガス発生時におけるケースの内圧を設定値通りに上昇させることが可能となり、電流遮断装置を適切なタイミングで作動させることができる。   In this battery module, the lower limit value of the restraining load applied to the array by the restraining member is the minimum load amount at which the expansion amount of the case in the battery cell does not exceed a preset expansion allowance when the internal pressure of the case becomes a threshold value It is set above. Thereby, when gas is generated in the case of the battery cell, the expansion amount of the case is kept below a preset allowable expansion amount until at least the internal pressure of the case reaches the threshold value at which the current interrupting device operates. It is. Therefore, the internal pressure of the case at the time of gas generation can be increased according to the set value, and the current interrupting device can be operated at an appropriate timing.

また、最低荷重量は、ケースの内圧の閾値をP、配列体における電池セルと隣接部材との接触面積をA、荷重量P×Aが付加されたときの弾性体の配列方向の厚さをB、電池セル当たりのケースの膨張許容量をB、配列体における電池セルの配列数以下の正の値をNとした場合に、弾性体の配列方向の厚さBがB+(B×N)となる荷重量であってもよい。このような荷重量を拘束部材による配列体への拘束荷重の下限値として設定することにより、ケースに膨張が生じた場合に弾性体の配列方向の厚さが減少して配列体への拘束荷重が上昇し、少なくとも電流遮断装置が作動する閾値にケースの内圧が到達するまで電流遮断装置の作動に必要な拘束荷重が維持される。したがって、ケースの膨張許容量を設定した場合において、電流遮断装置を適切なタイミングで作動させることができる。また、電池セルの許容膨張量を加味しない場合に比べて、最低荷重量を低くできる。このため、拘束部材に掛かる負荷を低く設定できる。 The minimum load amount is the threshold value of the internal pressure of the case P, the contact area between the battery cell and the adjacent member in the array body is A, and the thickness of the elastic body in the array direction when the load amount P × A is added. B 0 , where B 1 is the allowable expansion amount of the case per battery cell, and N is a positive value equal to or less than the number of battery cells in the array, the thickness B in the array direction of the elastic bodies is B 0 + ( B 1 × N) may be applied. By setting such a load amount as the lower limit value of the restraining load applied to the array by the restraining member, the thickness of the elastic body in the array direction decreases when the case expands, and the restraining load on the array The restraint load necessary for the operation of the current interrupting device is maintained until the internal pressure of the case reaches at least the threshold value at which the current interrupting device operates. Therefore, when the case expansion allowance is set, the current interrupt device can be operated at an appropriate timing. Further, the minimum load amount can be reduced as compared with the case where the allowable expansion amount of the battery cell is not taken into consideration. For this reason, the load concerning a restraint member can be set low.

また、本発明の一側面に係る電池モジュールは、電極組立体がケース内に収容された電池セルを複数配列してなる配列体と、配列体に対して電池セルの配列方向に拘束荷重を付加する拘束部材と、配列体と拘束部材との間又は電池セル間に介在する弾性体と、を備え、電池セルは、ケースの内圧が閾値以上に上昇した場合に充電電流を遮断する電流遮断装置を有し、拘束部材による配列体への拘束荷重の下限値は、ケースの内圧が閾値となったときに電池セルにおけるケースに膨張を生じさせない最低荷重量以上に設定されている。   According to another aspect of the present invention, there is provided a battery module including an array of a plurality of battery cells each having an electrode assembly housed in a case, and a binding load applied to the array in the battery cell array direction. A current interrupting device that interrupts a charging current when the internal pressure of the case rises above a threshold value. The lower limit value of the restraining load applied to the array by the restraining member is set to be equal to or more than the minimum load amount that does not cause the case in the battery cell to expand when the internal pressure of the case reaches the threshold value.

この電池モジュールでは、拘束部材による配列体への拘束荷重の下限値が、ケースの内圧が閾値となったときに電池セルにおけるケースに膨張を生じさせない最低荷重量以上に設定されている。したがって、ガス発生時におけるケースの内圧を設定値通りに上昇させることが可能となり、電流遮断装置を適切なタイミングで作動させることができる。   In this battery module, the lower limit value of the restraining load applied to the array by the restraining member is set to be equal to or more than the minimum load amount that does not cause the case in the battery cell to expand when the internal pressure of the case becomes the threshold value. Therefore, the internal pressure of the case at the time of gas generation can be increased according to the set value, and the current interrupting device can be operated at an appropriate timing.

また、最低荷重量は、ケースの内圧の閾値をP、配列体における電池セルと隣接部材との接触面積をAとした場合に、P×Aで表される荷重量であってもよい。このような荷重量を拘束部材による配列体への拘束荷重の下限値として設定することにより、少なくとも電流遮断装置が作動する閾値にケースの内圧が到達するまで電流遮断装置の作動に必要な拘束荷重が維持される。したがって、電流遮断装置を適切なタイミングで作動させることができる。   Further, the minimum load amount may be a load amount represented by P × A, where P is the threshold value of the internal pressure of the case, and A is the contact area between the battery cell and the adjacent member in the array. By setting such a load amount as the lower limit value of the restraining load on the array by the restraining member, the restraining load necessary for the operation of the current interrupting device until the internal pressure of the case reaches at least the threshold at which the current interrupting device operates. Is maintained. Therefore, the current interrupting device can be operated at an appropriate timing.

本発明によれば、弾性体が介在する配列体に拘束荷重を付加する場合であっても電流遮断装置を適切なタイミングで作動させることができる。   According to the present invention, the current interrupting device can be operated at an appropriate timing even when a restraining load is applied to the array body in which the elastic bodies are interposed.

本発明に係る電池モジュールの一実施形態を示す図である。It is a figure which shows one Embodiment of the battery module which concerns on this invention. 図1に示した電池モジュールを構成する電池セルの内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the battery cell which comprises the battery module shown in FIG. 図2におけるIII−III線断面図である。It is the III-III sectional view taken on the line in FIG. 弾性体の圧縮特性の一例を示す図である。It is a figure which shows an example of the compression characteristic of an elastic body.

以下、図面を参照しながら、本発明に係る電池モジュールの好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a battery module according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る電池モジュールの一実施形態を示す図である。同図に示すように、電池モジュール1は、複数の電池セル11を配列してなる配列体2と、配列体2に対して電池セル11の配列方向に拘束荷重を付加する拘束部材3と、配列体2と拘束部材3との間に介在する弾性体4とを備えている。   FIG. 1 is a diagram showing an embodiment of a battery module according to the present invention. As shown in the figure, the battery module 1 includes an array 2 in which a plurality of battery cells 11 are arrayed, a restraining member 3 that applies a restraining load to the array 2 in the array direction of the battery cells 11, An elastic body 4 interposed between the array body 2 and the restraining member 3 is provided.

配列体2では、例えば伝熱プレート5を介し、複数の電池セル11が配列されている。電池セル11は、例えばリチウムイオン二次電池等の非水電解質二次電池である。弾性体4は、図1に示すように、例えばウレタン製のゴムスポンジによって矩形の板状に形成されている。弾性体4の面積は、例えば電池セル11のケース12における配列方向の側面12aの面積よりも小さくなっており、配列体2における電池セル11の配列方向の一端に配置されている。   In the array body 2, for example, a plurality of battery cells 11 are arrayed via a heat transfer plate 5. The battery cell 11 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. As shown in FIG. 1, the elastic body 4 is formed in a rectangular plate shape by, for example, a urethane rubber sponge. The area of the elastic body 4 is smaller than, for example, the area of the side surface 12a in the arrangement direction of the case 12 of the battery cell 11, and is arranged at one end of the arrangement body 2 in the arrangement direction of the battery cell 11.

弾性体4の形成材料としては、例えばエチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム、シリコンゴムなどが挙げられる。また、弾性体4は、ゴムに限られず、バネ材などであってもよい。弾性体4は、拘束荷重による電池セル11の破損を防止する目的で用いられる部材であり、電池セル11の配列方向の両端に配置されていてもよく、電池セル11,11間に配置されていてもよい。   Examples of the material for forming the elastic body 4 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber. The elastic body 4 is not limited to rubber and may be a spring material or the like. The elastic body 4 is a member used for the purpose of preventing the battery cell 11 from being damaged by a restraining load, and may be disposed at both ends in the arrangement direction of the battery cell 11 or between the battery cells 11 and 11. May be.

拘束部材3は、例えば一対のエンドプレート31と、エンドプレート31同士を締結する締結部材32とを備えている。エンドプレート31は、例えば電池セル11を配列方向から見た場合の面積よりも大きい面積を有する略矩形の板状をなしており、エンドプレート31の外縁部分が電池セル11の外縁部分よりも外側に張り出した状態で、配列体2及び弾性体4の配列方向の両端にそれぞれ配置されている。   The restraining member 3 includes, for example, a pair of end plates 31 and a fastening member 32 that fastens the end plates 31 together. The end plate 31 has, for example, a substantially rectangular plate shape having an area larger than the area when the battery cell 11 is viewed from the arrangement direction, and the outer edge portion of the end plate 31 is outside the outer edge portion of the battery cell 11. Are arranged at both ends of the array body 2 and the elastic body 4 in the array direction.

締結部材32は、例えば長尺のボルト33と、ボルト33に螺合されるナット34とによって構成されている。ボルト33は、例えばエンドプレート31の外縁部分において、配列体2の四隅に対応する位置でエンドプレート31に挿通されている。各ボルト33の両端にエンドプレート31の外側からナット34が螺合されることで、電池セル11、弾性体4、及び伝熱プレート5が挟持されてユニット化されると共に拘束荷重が付加される。   The fastening member 32 includes, for example, a long bolt 33 and a nut 34 that is screwed into the bolt 33. The bolts 33 are inserted through the end plate 31 at positions corresponding to the four corners of the array 2 at the outer edge portion of the end plate 31, for example. The nut 34 is screwed into both ends of each bolt 33 from the outside of the end plate 31, so that the battery cell 11, the elastic body 4, and the heat transfer plate 5 are sandwiched and unitized and a restraining load is applied. .

電池セル11は、例えば図2及び図3に示すように、例えば略直方体形状をなす中空のケース12と、ケース12内に収容された電極組立体13とを備えている。ケース12は、例えばアルミニウム等の金属によって形成され、ケース12の内部には、例えば有機溶媒系又は非水系の電解液が注入されている。ケース12の頂面には、図2に示すように、正極端子15と負極端子16とが互いに離間して配置されている。正極端子15は、絶縁部材17を介してケース12の頂面における幅方向の一方側に固定され、負極端子16は、絶縁部材18を介してケース12の頂面における幅方向の他方側に固定されている。   For example, as shown in FIGS. 2 and 3, the battery cell 11 includes a hollow case 12 having a substantially rectangular parallelepiped shape and an electrode assembly 13 accommodated in the case 12. The case 12 is formed of a metal such as aluminum, for example, and an organic solvent-based or non-aqueous electrolyte is injected into the case 12, for example. As shown in FIG. 2, the positive terminal 15 and the negative terminal 16 are disposed on the top surface of the case 12 so as to be separated from each other. The positive electrode terminal 15 is fixed to one side in the width direction on the top surface of the case 12 via the insulating member 17, and the negative electrode terminal 16 is fixed to the other side in the width direction on the top surface of the case 12 via the insulating member 18. Has been.

電極組立体13は、図3に示すように、例えば正極21と、負極22と、正極21と負極22との間に配置された袋状のセパレータ23とによって構成されている。電極組立体13では、セパレータ23内に正極21が収容されており、この状態で正極21と負極22とがセパレータ23を介して交互に積層された状態となっている。   As shown in FIG. 3, the electrode assembly 13 includes, for example, a positive electrode 21, a negative electrode 22, and a bag-like separator 23 disposed between the positive electrode 21 and the negative electrode 22. In the electrode assembly 13, the positive electrode 21 is accommodated in the separator 23, and the positive electrode 21 and the negative electrode 22 are alternately stacked via the separator 23 in this state.

正極21は、例えばアルミニウム箔からなる金属箔21aと、金属箔21aの両面に形成された正極活物質層21bとを有している。正極活物質層21bは、正極活物質とバインダとを含んで形成されている。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。また、正極21の上縁部には、正極端子15の位置に対応してタブ21cが形成されている。タブ21cは、正極21の上縁部から上方に延び、導電部材24を介して正極端子15に接続されている。   The positive electrode 21 includes a metal foil 21a made of, for example, aluminum foil, and a positive electrode active material layer 21b formed on both surfaces of the metal foil 21a. The positive electrode active material layer 21b is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. A tab 21 c is formed on the upper edge portion of the positive electrode 21 corresponding to the position of the positive electrode terminal 15. The tab 21 c extends upward from the upper edge portion of the positive electrode 21 and is connected to the positive electrode terminal 15 via the conductive member 24.

一方、負極22は、例えば銅箔からなる金属箔22aと、金属箔22aの両面に形成された負極活物質層22bとを有している。負極活物質層22bは、負極活物質とバインダとを含んで形成されている。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。また、負極22の上縁部には、負極端子16の位置に対応してタブ22cが形成されている。タブ22cは、負極22の上縁部から上方に延び、導電部材25を介して負極端子16に接続されている。   On the other hand, the negative electrode 22 has, for example, a metal foil 22a made of copper foil and a negative electrode active material layer 22b formed on both surfaces of the metal foil 22a. The negative electrode active material layer 22b is formed including a negative electrode active material and a binder. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, and boron-added carbon. A tab 22 c is formed at the upper edge of the negative electrode 22 in correspondence with the position of the negative electrode terminal 16. The tab 22 c extends upward from the upper edge portion of the negative electrode 22, and is connected to the negative electrode terminal 16 through the conductive member 25.

セパレータ23は、例えば袋状に形成され、内部に正極21のみを収容している。セパレータ23の形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。なお、セパレータ23は、袋状に限られず、シート状のものを用いてもよい。   The separator 23 is formed in a bag shape, for example, and accommodates only the positive electrode 21 therein. Examples of the material for forming the separator 23 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like. The separator 23 is not limited to a bag shape, and a sheet shape may be used.

また、図2に示すように、電池セル11のケース12内には、過充電などの異常に起因して電池セル11のケース12内でガスが発生し、ケース12の内圧が閾値以上に上昇した場合に充電電流を遮断する電流遮断装置26が設けられている。電流遮断装置26は、負極端子16と導電部材25との間に設けられている。電流遮断装置26は、不図示の通電経路を有し、当該通電経路によって負極端子16と導電部材25とを直列に接続している。   Further, as shown in FIG. 2, gas is generated in the case 12 of the battery cell 11 due to an abnormality such as overcharge in the case 12 of the battery cell 11, and the internal pressure of the case 12 rises above a threshold value. In this case, a current interrupt device 26 is provided for interrupting the charging current. The current interrupt device 26 is provided between the negative electrode terminal 16 and the conductive member 25. The current interrupt device 26 has an energization path (not shown), and the negative electrode terminal 16 and the conductive member 25 are connected in series by the energization path.

電流遮断装置26は、ケース12の内圧が予め設定された閾値を超えて上昇した場合に、通電経路を遮断して電極組立体13と負極端子16との通電を遮断する。電流遮断装置26で設定されるケース12の内圧の閾値は、電池セル11が過充電状態となったときのケース12の内圧を意味する。この閾値は、例えば電池セル11の容量や出力電圧といった条件に基づいて適宜設定されている。   When the internal pressure of the case 12 rises above a preset threshold, the current interrupt device 26 interrupts the energization path and interrupts the energization between the electrode assembly 13 and the negative terminal 16. The threshold value of the internal pressure of the case 12 set by the current interrupt device 26 means the internal pressure of the case 12 when the battery cell 11 is overcharged. This threshold value is appropriately set based on conditions such as the capacity of the battery cell 11 and the output voltage.

通常、電池モジュールでは、配列体に対して拘束部材による拘束荷重が付加されているため、過充電などの異常に起因して電池セルのケース内でガスが発生した場合でもケースの膨張が抑えられる。したがって、ガスの発生に伴ってケースの内圧が上昇し、内圧が閾値以上となったときに電流遮断装置が作動する。   Usually, in a battery module, since a restraint load by a restraint member is applied to the array body, expansion of the case can be suppressed even when gas is generated in the battery cell case due to an abnormality such as overcharge. . Accordingly, the internal pressure of the case increases with the generation of gas, and the current interrupt device operates when the internal pressure becomes equal to or higher than the threshold value.

一方、電池モジュール1では、上述したように、配列体2と拘束部材3との間に弾性体4が介在している。このため、過充電などの異常に起因して電池セル11のケース12内でガスが発生した場合、弾性体4が容易に変形することで、ケース12が配列方向に膨張してしまうことが考えられる。このため、ケース12の内圧の上昇が設定値に対して緩やかとなり、電流遮断装置26が適切なタイミングで作動しなくなるおそれがある。   On the other hand, in the battery module 1, as described above, the elastic body 4 is interposed between the array body 2 and the restraining member 3. For this reason, when gas is generated in the case 12 of the battery cell 11 due to an abnormality such as overcharging, the case 12 may expand in the arrangement direction due to the elastic body 4 being easily deformed. It is done. For this reason, the increase in the internal pressure of the case 12 becomes moderate with respect to the set value, and there is a possibility that the current interrupt device 26 may not operate at an appropriate timing.

そこで、電池モジュール1では、弾性体4の変形によるケース12の膨張を考慮し、拘束部材3による配列体2への初期の拘束荷重が設定されている。以下、当該拘束荷重の設定について詳細に説明する。   Therefore, in the battery module 1, in consideration of expansion of the case 12 due to deformation of the elastic body 4, an initial restraining load on the array body 2 by the restraining member 3 is set. Hereinafter, the setting of the restraint load will be described in detail.

拘束部材3による配列体2への初期の拘束荷重を設定するにあたっては、配列体2に配置する弾性体4についての厚さと拘束荷重との関係(圧縮特性)を用いる。図4は、弾性体4がウレタン製のゴムスポンジである場合の圧縮特性の一例を示す図である。同図に示す例では、横軸が弾性体4の厚さ、縦軸が拘束部材3による拘束荷重となっており、弾性体4の圧縮特性曲線がプロットされている(グラフA)。弾性体4の厚さが大きい領域(圧縮量が小さい領域)では、厚さの減少と共に荷重量が増加する(グラフAのA1部分)。弾性体4の厚さの減少が進むと、厚さの減少に対する荷重量の増加が緩やかとなり(グラフAのA2部分)、更に弾性体4の厚さの減少が進むと、荷重量の増加に対して弾性体4の厚さが殆ど減少しなくなる(グラフAのA3部分)。   In setting an initial restraining load on the array body 2 by the restraining member 3, the relationship (compression characteristics) between the thickness and the restraining load of the elastic bodies 4 arranged in the array body 2 is used. FIG. 4 is a diagram illustrating an example of compression characteristics when the elastic body 4 is a urethane rubber sponge. In the example shown in the figure, the horizontal axis represents the thickness of the elastic body 4, the vertical axis represents the restraining load by the restraining member 3, and the compression characteristic curve of the elastic body 4 is plotted (graph A). In the region where the thickness of the elastic body 4 is large (region where the compression amount is small), the load amount increases as the thickness decreases (A1 portion of the graph A). As the thickness of the elastic body 4 decreases, the load increases with the decrease in thickness (A2 portion of the graph A). When the thickness of the elastic body 4 further decreases, the load increases. On the other hand, the thickness of the elastic body 4 hardly decreases (A3 portion of the graph A).

ここで、ケース12の内圧の閾値をP、配列体2における電池セル11と隣接部材との接触面積をAとした場合、まず、P×Aで表される荷重量Kを求め、荷重量Kと圧縮特性曲線との交点から、荷重量P×Aが付加されたときの弾性体4の配列方向の厚さBを求める。閾値Pは、電流遮断装置26において予め設定される。接触面積Aは、電池セル11における配列方向の側面12aに接している隣接部材との接触面積のうちの大きい方の面積である。 Here, when the threshold value of the internal pressure of the case 12 is P and the contact area between the battery cell 11 and the adjacent member in the array 2 is A, first, the load amount K 0 represented by P × A is obtained, and the load amount From the intersection of K 0 and the compression characteristic curve, the thickness B 0 in the arrangement direction of the elastic bodies 4 when the load P × A is added is obtained. The threshold value P is preset in the current interrupt device 26. The contact area A is the larger area of the contact areas with adjacent members that are in contact with the side surface 12 a in the arrangement direction of the battery cells 11.

図1に示した例では、配列体2の配列方向の中間に位置する電池セル11には、側面12aと同面積の伝熱プレート5が隣接部材として側面12a,12aにそれぞれ接している。また、配列体2の配列方向の一方の端部に位置する電池セル11には、側面12aよりも小さい面積の弾性体4が隣接部材として側面12aの一方に接し、側面12aと同面積の伝熱プレート5が隣接部材として側面12aの他方に接している。配列体2の配列方向の他方の端部に位置する電池セル11には、側面12aと同面積の伝熱プレート5が隣接部材として側面12a,12aにそれぞれ接している。したがって、いずれの電池セル11についても、接触面積Aは、側面12aの面積と一致することとなる。   In the example shown in FIG. 1, the heat transfer plate 5 having the same area as the side surface 12 a is in contact with the side surfaces 12 a and 12 a as adjacent members of the battery cell 11 positioned in the middle of the arrangement direction of the array 2. In addition, in the battery cell 11 located at one end in the arrangement direction of the array body 2, the elastic body 4 having an area smaller than that of the side surface 12a is in contact with one of the side surfaces 12a as an adjacent member, and has the same area as the side surface 12a. The heat plate 5 is in contact with the other side surface 12a as an adjacent member. In the battery cell 11 positioned at the other end in the arrangement direction of the array 2, the heat transfer plate 5 having the same area as the side surface 12 a is in contact with the side surfaces 12 a and 12 a as adjacent members. Therefore, for any battery cell 11, the contact area A coincides with the area of the side surface 12a.

荷重量P×Aが付加されたときの弾性体4の配列方向の厚さBを求めた後、電池セル11当たりのケース12の膨張許容量をB、配列体2における電池セル11の配列数以下の正の値をNとした場合に、弾性体4の配列方向の厚さBがB+(B×N)となる荷重量Kを、厚さB+(B×N)と圧縮特性曲線との交点から求める。この荷重量Kは、ケース12の内圧が閾値Pとなったときに電池セル11におけるケース12の膨張量が予め設定された膨張許容量B1を超えないようにするために必要な最低荷重量である。拘束部材3による配列体2への初期の拘束荷重の下限値は、荷重量K以上となるように設定される。 After obtaining the thickness B 0 of the elastic body 4 in the arrangement direction when the load P × A is added, the expansion allowance of the case 12 per battery cell 11 is B 1 , and the battery cell 11 in the array 2 is When a positive value equal to or less than the number of arrangements is N, the load K 1 at which the thickness B in the arrangement direction of the elastic bodies 4 is B 0 + (B 1 × N) is defined as the thickness B 0 + (B 1 XN) and the intersection of the compression characteristic curve. The load amount K 1 is the lowest load amount necessary to ensure that the expansion amount of the case 12 does not exceed the expansion allowance B1 which is set in advance in the battery cell 11 when the internal pressure of the case 12 becomes a threshold value P It is. The lower limit of the initial restraining load on the array 2 by restraining member 3 is set such that the load amount K 1 or more.

膨張許容量Bは、電池セル11の配列方向へのケース12の膨張許容量であり、電流遮断装置26の閾値Pを考慮して適宜設定される。正の値Nは、各電池セル11が均一に膨張する理想的なモデルでは電池セル11の配列数と一致させればよいが、配列体2に含まれる電池セル11のうちの一部のみが膨張し、電池セル11間の膨張量にばらつきが生じることも考えられる。このような電池セル11間の膨張量のばらつきを考慮する場合には、0より大きくN未満となる範囲から適宜設定される。正の値Nは、整数に限られず、小数(純小数及び帯小数)であってもよい。 The allowable expansion amount B 1 is an allowable expansion amount of the case 12 in the arrangement direction of the battery cells 11 and is appropriately set in consideration of the threshold value P of the current interrupt device 26. The positive value N may be equal to the number of battery cells 11 arranged in an ideal model in which each battery cell 11 expands uniformly, but only some of the battery cells 11 included in the array 2 It is also conceivable that the amount of expansion between the battery cells 11 varies due to expansion. When considering such a variation in the expansion amount between the battery cells 11, the battery cell 11 is appropriately set from a range of greater than 0 and less than N. The positive value N is not limited to an integer, and may be a decimal (pure decimal or band decimal).

以上説明したように、この電池モジュール1では、拘束部材3による配列体2への拘束荷重の下限値が、ケース12の内圧が閾値となったときに電池セル11におけるケース12の膨張量が予め設定された膨張許容量を超えない最低荷重量以上に設定されている。これにより、電池セル11のケース12内でガスが発生した場合に、少なくとも電流遮断装置26が作動する閾値にケース12の内圧が到達するまでは、ケース12の膨張量が予め設定された膨張許容量以下に保たれる。したがって、ガス発生時におけるケース12の内圧を設定値通りに上昇させることが可能となり、電流遮断装置26を適切なタイミングで作動させることができる。   As described above, in the battery module 1, when the lower limit value of the restraining load applied to the array 2 by the restraining member 3 is the threshold value of the internal pressure of the case 12, the expansion amount of the case 12 in the battery cell 11 is determined in advance. It is set above the minimum load that does not exceed the set expansion allowance. As a result, when gas is generated in the case 12 of the battery cell 11, the expansion amount of the case 12 is set to a predetermined expansion allowance until the internal pressure of the case 12 reaches at least the threshold value at which the current interrupt device 26 operates. Keep below capacity. Therefore, it becomes possible to raise the internal pressure of the case 12 at the time of gas generation according to the set value, and the current interrupting device 26 can be operated at an appropriate timing.

また、電池モジュール1では、最低荷重量は、ケース12の内圧の閾値をP、配列体2における電池セル11と隣接部材との接触面積をA、荷重量P×Aが付加されたときの弾性体4の配列方向の厚さをB、電池セル11当たりのケース12の膨張許容量をB、配列体2における電池セル11の配列数以下の正の値をNとした場合に、弾性体4の配列方向の厚さBがB+(B×N)となる荷重量となっている。 Moreover, in the battery module 1, the minimum load amount is the elasticity when the threshold value of the internal pressure of the case 12 is P, the contact area between the battery cell 11 and the adjacent member in the array 2 is A, and the load amount P × A is added. When the thickness in the arrangement direction of the body 4 is B 0 , the allowable expansion amount of the case 12 per battery cell 11 is B 1 , and the positive value not more than the number of the battery cells 11 in the array 2 is N, the elasticity The thickness B in the arrangement direction of the bodies 4 is a load amount such that B 0 + (B 1 × N).

このような荷重量を拘束部材3による配列体2への拘束荷重の下限値として設定することにより、ケース12に膨張が生じた場合に弾性体4の配列方向の厚さが減少して配列体2への拘束荷重が上昇し、少なくとも電流遮断装置26が作動する閾値にケース12の内圧が到達するまで電流遮断装置26の作動に必要な拘束荷重が維持される。したがって、ケース12の膨張許容量を設定した場合において、電流遮断装置26を適切なタイミングで作動させることができる。また、電池セル11の許容膨張量を加味しない場合に比べて、最低荷重量を低くできる。このため、拘束部材3に掛かる負荷を低く設定できる。   By setting such a load amount as the lower limit value of the restraining load applied to the array 2 by the restraining member 3, the thickness of the elastic bodies 4 in the array direction decreases when the case 12 expands, and the array The restraint load required for the operation of the current interrupting device 26 is maintained until the internal pressure of the case 12 reaches at least the threshold value at which the current interrupting device 26 operates. Accordingly, when the allowable expansion amount of the case 12 is set, the current interrupt device 26 can be operated at an appropriate timing. In addition, the minimum load amount can be reduced as compared with the case where the allowable expansion amount of the battery cell 11 is not taken into consideration. For this reason, the load applied to the restraining member 3 can be set low.

正の値Nを0より大きくN未満となる範囲から設定した場合、例えば電池セル11間の劣化状態の相違や温度の相違などに起因する電池セル11間の膨張量のばらつきに対応することが可能となる。正の値Nを電池セル11の配列数と一致させた場合には、弾性体4の厚さB+(B×N)に対応する荷重量Kが最も小さくなる。これに対し、正の値Nを0より大きくN未満となる範囲から設定することで、各電池セル11が均一に膨張する理想的なモデルの場合に比べて荷重量K(すなわち、拘束荷重の下限値)が大きくなる。したがって、電池セル11間の膨張量のばらつきがあったとしても、ケース12の膨張によって弾性体4の厚さが減少した場合に配列体2に付加される拘束荷重が電流遮断装置26の作動に必要な拘束荷重以上に維持される。 When the positive value N is set from a range greater than 0 and less than N, it is possible to cope with variations in the expansion amount between the battery cells 11 due to, for example, a difference in deterioration state between the battery cells 11 or a difference in temperature. It becomes possible. When the positive value N is matched with the number of battery cells 11 arranged, the load amount K 1 corresponding to the thickness B 0 + (B 1 × N) of the elastic body 4 is the smallest. On the other hand, by setting the positive value N from a range that is greater than 0 and less than N, the load amount K 1 (that is, the constraint load) is compared with the ideal model in which each battery cell 11 is uniformly expanded. (Lower limit value) increases. Therefore, even if there is a variation in the amount of expansion between the battery cells 11, the restraining load applied to the array 2 when the thickness of the elastic body 4 decreases due to the expansion of the case 12 causes the current interrupting device 26 to operate. Maintains more than necessary restraint load.

本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、電池セル11の膨張許容量を考慮して拘束部材3による配列体2への拘束荷重の下限値を設定しているが、電池セル11の膨張許容量を考慮せず、拘束部材3による配列体2への拘束荷重の下限値を、ケース12の内圧が閾値となったときに電池セル11におけるケース12に膨張を生じさせないようにするために必要な最低荷重量以上となるように設定してもよい。この場合、最低荷重量は、ケース12の内圧の閾値をP、配列体2における電池セル11と隣接部材との接触面積をAとした場合に、P×Aで表される荷重量となる。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the lower limit value of the restraining load applied to the array 2 by the restraining member 3 is set in consideration of the expansion allowance of the battery cell 11, but the expansion allowance of the battery cell 11 is not considered, The lower limit value of the restraining load applied to the array 2 by the restraining member 3 is not less than the minimum load amount necessary to prevent the case 12 in the battery cell 11 from expanding when the internal pressure of the case 12 becomes a threshold value. You may set so that. In this case, the minimum load amount is a load amount represented by P × A, where P is the threshold value of the internal pressure of the case 12 and A is the contact area between the battery cell 11 and the adjacent member in the array 2.

このような荷重量を拘束部材3による配列体2への拘束荷重の下限値として設定する場合においても、少なくとも電流遮断装置26が作動する閾値にケース12の内圧が到達するまで電流遮断装置26の作動に必要な拘束荷重が維持される。したがって、ガス発生時におけるケース12の内圧を設定値通りに上昇させることが可能となり、電流遮断装置26を適切なタイミングで作動させることができる。   Even when such a load amount is set as the lower limit value of the restraining load applied to the array body 2 by the restraining member 3, at least until the internal pressure of the case 12 reaches the threshold value at which the current interrupting device 26 operates, The restraint load necessary for operation is maintained. Therefore, it becomes possible to raise the internal pressure of the case 12 at the time of gas generation according to the set value, and the current interrupting device 26 can be operated at an appropriate timing.

また、上記実施形態では、配列体2の配列方向の一方の端部に位置する電池セル11には、側面12aよりも小さい面積の弾性体4が隣接部材として側面12aの一方に接しているが、弾性体4の面積を側面12aの面積と同等以上としてもよい。この場合も、電池セル11の接触面積Aは、いずれも側面12aの面積と一致する。なお、伝熱プレート5及び弾性体4の面積を変更し、接触面積Aが電池セル11間で異なる場合には、各電池セル11における電流遮断装置26の閾値Pを調整することで、P×Aで表される荷重量を各電池セル11間で一定にすることが好適である。   Moreover, in the said embodiment, although the elastic body 4 of an area smaller than the side surface 12a is contacting one side of the side surface 12a as the adjacent member in the battery cell 11 located in one edge part of the arrangement direction of the array body 2. FIG. The area of the elastic body 4 may be equal to or larger than the area of the side surface 12a. Also in this case, the contact area A of the battery cell 11 is the same as the area of the side surface 12a. In addition, when the area of the heat transfer plate 5 and the elastic body 4 is changed and the contact area A is different between the battery cells 11, the threshold P of the current interrupt device 26 in each battery cell 11 is adjusted, so that P × It is preferable to make the load amount represented by A constant between the battery cells 11.

また、上記実施形態では、電流遮断装置26が負極端子16と導電部材25との間に設けられているが、電流遮断装置26は、この位置に限定されるものではなく、電流遮断装置26を介して電極組立体13と負極端子16とを電気的に直列に接続できる構成であればよい。なお、上述したように、弾性体4は、電池セル11の配列方向の両端に配置されていてもよく、電池セル11,11間に配置されていてもよい。このように弾性体4が複数配置されている場合には、各弾性体4の厚さの合計が上記関係式を満たせばよい。   In the above embodiment, the current interrupt device 26 is provided between the negative electrode terminal 16 and the conductive member 25. However, the current interrupt device 26 is not limited to this position. The electrode assembly 13 and the negative electrode terminal 16 may be configured to be electrically connected in series. In addition, as above-mentioned, the elastic body 4 may be arrange | positioned at the both ends of the sequence direction of the battery cell 11, and may be arrange | positioned between the battery cells 11 and 11. FIG. When a plurality of elastic bodies 4 are arranged in this way, the total thickness of each elastic body 4 only needs to satisfy the above relational expression.

1…電池モジュール、2…配列体、3…拘束部材、4…弾性体、11…電池セル、12…ケース、26…電流遮断装置。   DESCRIPTION OF SYMBOLS 1 ... Battery module, 2 ... Array, 3 ... Restraining member, 4 ... Elastic body, 11 ... Battery cell, 12 ... Case, 26 ... Current interruption apparatus.

Claims (4)

電極組立体がケース内に収容された電池セルを複数配列してなる配列体と、
前記配列体に対して前記電池セルの配列方向に拘束荷重を付加する拘束部材と、
前記配列体と前記拘束部材との間又は前記電池セル間に介在する弾性体と、を備え、
前記電池セルは、前記ケースの内圧が閾値以上に上昇した場合に充電電流を遮断する電流遮断装置を有し、
前記拘束部材による前記配列体への拘束荷重の下限値は、
前記ケースの内圧が前記閾値となったときに前記電池セルにおける前記ケースの膨張量が予め設定された膨張許容量を超えない最低荷重量以上に設定されている電池モジュール。
An array formed by arranging a plurality of battery cells in which the electrode assembly is housed in a case;
A restraining member for applying a restraining load in the arrangement direction of the battery cells to the array;
An elastic body interposed between the array and the restraining member or between the battery cells,
The battery cell has a current interrupt device that interrupts a charging current when the internal pressure of the case rises above a threshold value,
The lower limit value of the restraining load on the array by the restraining member is:
A battery module in which an expansion amount of the case in the battery cell is set to be equal to or greater than a minimum load amount that does not exceed a preset allowable expansion amount when the internal pressure of the case becomes the threshold value.
前記最低荷重量は、前記ケースの内圧の閾値をP、前記配列体における前記電池セルと隣接部材との接触面積をA、荷重量P×Aが付加されたときの前記弾性体の前記配列方向の厚さをB、前記電池セル当たりの前記ケースの膨張許容量をB、前記配列体における前記電池セルの配列数以下の正の値をNとした場合に、前記弾性体の前記配列方向の厚さBがB+(B×N)となる荷重量である請求項1記載の電池モジュール。 The minimum load amount is a threshold value of the internal pressure of the case P, a contact area between the battery cell and the adjacent member in the array body, and an array direction of the elastic bodies when a load amount P × A is added. The array of the elastic bodies, where B 0 is the thickness of the case, B 1 is the allowable expansion amount of the case per battery cell, and N is a positive value less than the number of battery cells in the array. The battery module according to claim 1, wherein the thickness B in the direction is a load amount such that B 0 + (B 1 × N). 電極組立体がケース内に収容された電池セルを複数配列してなる配列体と、
前記配列体に対して前記電池セルの配列方向に拘束荷重を付加する拘束部材と、
前記配列体と前記拘束部材との間又は前記電池セル間に介在する弾性体と、を備え、
前記電池セルは、前記ケースの内圧が閾値以上に上昇した場合に充電電流を遮断する電流遮断装置を有し、
前記拘束部材による前記配列体への拘束荷重の下限値は、
前記ケースの内圧が前記閾値となったときに前記電池セルにおける前記ケースに膨張を生じさせない最低荷重量以上に設定されている電池モジュール。
An array formed by arranging a plurality of battery cells in which the electrode assembly is housed in a case;
A restraining member for applying a restraining load in the arrangement direction of the battery cells to the array;
An elastic body interposed between the array and the restraining member or between the battery cells,
The battery cell has a current interrupt device that interrupts a charging current when the internal pressure of the case rises above a threshold value,
The lower limit value of the restraining load on the array by the restraining member is:
The battery module which is set more than the minimum load amount which does not produce expansion | swelling to the said case in the said battery cell when the internal pressure of the said case becomes the said threshold value.
前記最低荷重量は、前記ケースの内圧の閾値をP、前記配列体における前記電池セルと隣接部材との接触面積をAとした場合に、P×Aで表される荷重量である請求項3記載の電池モジュール。   The minimum load amount is a load amount represented by P × A, where P is a threshold value of the internal pressure of the case and A is a contact area between the battery cell and the adjacent member in the array. The battery module as described.
JP2014195497A 2014-09-25 2014-09-25 Battery module Expired - Fee Related JP6350172B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014195497A JP6350172B2 (en) 2014-09-25 2014-09-25 Battery module
PCT/JP2015/064502 WO2016047198A1 (en) 2014-09-25 2015-05-20 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195497A JP6350172B2 (en) 2014-09-25 2014-09-25 Battery module

Publications (2)

Publication Number Publication Date
JP2016066541A true JP2016066541A (en) 2016-04-28
JP6350172B2 JP6350172B2 (en) 2018-07-04

Family

ID=55580739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195497A Expired - Fee Related JP6350172B2 (en) 2014-09-25 2014-09-25 Battery module

Country Status (2)

Country Link
JP (1) JP6350172B2 (en)
WO (1) WO2016047198A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053162B2 (en) * 2017-04-05 2022-04-12 トヨタ自動車株式会社 Stacked battery module
JP7022311B2 (en) * 2018-01-19 2022-02-18 トヨタ自動車株式会社 Battery module
JP7272376B2 (en) * 2021-01-27 2023-05-12 トヨタ自動車株式会社 Load applying device and power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246990A (en) * 2012-05-25 2013-12-09 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having this power supply device
JP2014157722A (en) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd Battery pack
JP2014175078A (en) * 2013-03-06 2014-09-22 Captex Co Ltd Battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246990A (en) * 2012-05-25 2013-12-09 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having this power supply device
JP2014157722A (en) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd Battery pack
JP2014175078A (en) * 2013-03-06 2014-09-22 Captex Co Ltd Battery pack

Also Published As

Publication number Publication date
JP6350172B2 (en) 2018-07-04
WO2016047198A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
US11121395B2 (en) Battery module with movable end plate responsive to cell swelling and battery pack including same
JP6442907B2 (en) Battery module
JP6016026B2 (en) Battery pack and battery module
US9324982B2 (en) Battery module
KR101447062B1 (en) Battery Module and Battery Pack Containing the Same
EP2381506B1 (en) Battery module
JP6268855B2 (en) Power storage device and power storage module
US10938004B2 (en) Battery module with stack restraining member
JP2006196230A (en) Battery pack
JP2010157451A (en) Power supply device for vehicle
US10950835B2 (en) Battery pack
US20080299452A1 (en) Battery pack
WO2011158313A1 (en) Storage battery device
JP2019096431A (en) Battery pack, and manufacturing method of unit cell used for battery pack
US20150125719A1 (en) Power storage device and method for radiating heat in power storage device
JP2019079737A (en) Battery pack
JP6277987B2 (en) Battery module
JP6350172B2 (en) Battery module
WO2016152189A1 (en) Battery module
JP6176369B2 (en) Power supply
JP2019128991A (en) Battery pack
JP2018092833A (en) Battery module
JP6507803B2 (en) Battery module
JP6464603B2 (en) Battery module
US20230216130A1 (en) Secondary battery module and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6350172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees