JP2016065841A - Color measurement device - Google Patents

Color measurement device Download PDF

Info

Publication number
JP2016065841A
JP2016065841A JP2014196108A JP2014196108A JP2016065841A JP 2016065841 A JP2016065841 A JP 2016065841A JP 2014196108 A JP2014196108 A JP 2014196108A JP 2014196108 A JP2014196108 A JP 2014196108A JP 2016065841 A JP2016065841 A JP 2016065841A
Authority
JP
Japan
Prior art keywords
light
measurement
target surface
spacer
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014196108A
Other languages
Japanese (ja)
Other versions
JP2016065841A5 (en
JP6487167B2 (en
Inventor
尾 和 彦 松
Kazuhiro Matsuo
尾 和 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Car Conveni Club Kk
SONDECX CO Ltd
Strawb Inc
Original Assignee
Car Conveni Club Kk
SONDECX CO Ltd
Strawb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Car Conveni Club Kk, SONDECX CO Ltd, Strawb Inc filed Critical Car Conveni Club Kk
Priority to JP2014196108A priority Critical patent/JP6487167B2/en
Publication of JP2016065841A publication Critical patent/JP2016065841A/en
Publication of JP2016065841A5 publication Critical patent/JP2016065841A5/ja
Application granted granted Critical
Publication of JP6487167B2 publication Critical patent/JP6487167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an extremely small color measurement device which incorporates optical systems such as a light emission element and a light reception element, while maintaining a certain degree of accuracy.SOLUTION: A probe 3 to which light is incident from a tip end translucent part 2, comprises a light source 13 for radiating white measurement light to a measurement object plane S along an optic axis X, and light reception elements 14R, 14G, 14B for detecting light intensity of RGB included in reflectance from the measurement object plane S, in inside of the probe. On the tip end translucent part 2 of the probe 3, a spacer 7 for maintaining length of the optic axis X from the tip end translucent part 2 to the measurement object plane S constant, and maintaining the optic axis X in an inclined state to a predetermined angle is formed. In addition, light separation means for eliminating affection of disturbance light being incident to the light reception elements 14R, 14G, 14B when detecting light intensity of the RGB of the reflectance, is also provided.SELECTED DRAWING: Figure 1

Description

本発明は、自動車ボディに塗装された塗料の色、印刷物に使用されているインクの色など、物体表面の色を測定する測色装置に関する。   The present invention relates to a color measurement device that measures the color of an object surface such as the color of paint applied to an automobile body and the color of ink used in printed matter.

自動車修理工場などでは、板金修理した部分をその周囲の色と同色に塗装する仕上げが行われるが、ボディに当初より塗装されている塗料の情報があったとしても、退色などにより変色してしまっているため、一般には、当初の塗料をそのまま使用することができない場合が多い。
また、退色がほとんどなく当初の塗料がそのまま使用できる状態であったとしても、多数の自動車メーカーで使用している塗料をすべて取り揃えるわけにはいかないので、元の塗料のストックの用意がないこともある。
In car repair shops, etc., the finished parts are repaired to the same color as the surrounding color, but even if there is information on the paint that has been painted on the body from the beginning, it will change color due to fading, etc. Therefore, in general, there are many cases where the original paint cannot be used as it is.
Also, even if the original paint can be used as it is with almost no fading, it is not possible to prepare all the paints used by many automobile manufacturers, so there is no preparation of the original paint stock is there.

このような場合、ストックされている塗料から、現在のボディ色に近い色の塗料を選び出してこれをベース塗料とし、その色差に応じて、単色塗料を混色し、試し塗りをしながら、目視により、実際の色に極めて近い色の塗料を調合するという作業を行っている。   In such a case, a paint with a color close to the current body color is selected from the paints in stock, and this is used as the base paint. The work is to prepare a paint with a color very close to the actual color.

塗料の色は、基本的には赤青黄の3原色と白を混合することにより調整されるので、調合に際しては、ベース塗料に単色塗料を少しずつ混ぜ合わせることにより行われるが、例えば、ベース塗料の赤味がボディ色より濃い場合に、ベース塗料から赤成分のみを減らすことはできないので、ベース塗料はボディの色より薄めの色を選択する必要がある。   The color of the paint is basically adjusted by mixing the three primary colors of red, blue, yellow, and white. Therefore, the blending is performed by mixing the base paint little by little with the base paint. When the redness of the paint is darker than the body color, it is not possible to reduce only the red component from the base paint, so it is necessary to select a lighter color for the base paint than the body color.

また、色を調整するためにどの色をどの程度混合するかなど経験により会得する部分もあり、このため、従来は、塗料の色調整作業は、ベース塗料の選択から塗料の調合に至るまで作業者の経験に頼らざるを得ない部分があった。
そこで近年では、ボディ色に近い色の塗料を選び出すために、その部分の色を正確に測定することのできる測色計を利用し、その測定結果を利用して塗料を選ぶことが行われている。
In addition, there is a part that can be learned from experience such as how much color is mixed to adjust the color, so conventionally, the color adjustment work of the paint is from the selection of the base paint to the preparation of the paint. There was a part that had to rely on the experience of the person.
Therefore, in recent years, in order to select a paint with a color close to the body color, a colorimeter that can accurately measure the color of that part is used, and the paint is selected using the measurement result. Yes.

ところで、一般的な測色計で用いられるLab表色系において、L、a、bの値は、
L=0〜100
a=−60〜+60
b=−60〜+60
の範囲で変化し、それぞれ小数点以下第2位まで表されるので、色数は、
10000×12000×12000=1兆4400億色
に達し、少数点以下第一位で四捨五入した整数を用いたとしても、
100×120×120=144万色
に達する。
By the way, in the Lab color system used in a general colorimeter, the values of L, a, and b are:
L = 0-100
a = −60 to +60
b = -60 to +60
The number of colors is represented by 2 digits after the decimal point.
10000 × 12000 × 12000 = 1 trillion 440 billion colors, even if you use an integer rounded to the first decimal place,
100 × 120 × 120 = 14.4 million colors.

しかしながら、自動車修理工場に限らず、どのような塗料メーカーにもそのような無限に近い色数の塗料は存在せず、普通は数百色、多くてもせいぜい数千色であるので、どんなに厳密に色を測定することができたとしても、結局は、作業者が、ベース塗料とボディ色との色差に応じて任意の色の塗料を少しずつ混色して試し塗りをして視認しながら、実際の色に極めて近い色の塗料を調合するという作業を欠かすことはできない。   However, not only in auto repair shops, but there is no such infinite number of paints in any paint manufacturer, usually hundreds of colors, at most thousands of colors, no matter how precise Even if the color could be measured, the operator eventually mixed the paint of any color little by little according to the color difference between the base paint and the body color, It is indispensable to prepare a paint having a color very close to the actual color.

また、調合した塗料がボディ色と一致しているかを確認するために測色計が用いられることもあるが、測色計で測定される二つの塗料の色データを完全に一致させることは事実上不可能であるので、結局は、作業者の目視によりある程度の似た色になるまで調合し、塗装作業の際に周囲にボカシを入れるという作業も欠かすことができない。   In addition, a colorimeter may be used to check whether the blended paint matches the body color, but it is true that the color data of the two paints measured by the colorimeter are completely the same. In the end, it is indispensable to mix until a similar color is obtained by visual observation by the operator and to put a blur around the periphery during the painting operation.

したがって、測色計をこのような用途に使用する際に、ベース塗料を選定する際の参考データを得る目的や、調合塗料の色とボディ色との同一性を確認するために使用するのであれば、1兆色以上を識別できるような精度までは不要である。   Therefore, when the colorimeter is used for such applications, it should be used for the purpose of obtaining reference data when selecting a base paint and for confirming the identity between the color of the blend paint and the body color. For example, it is not necessary to have an accuracy that can identify 1 trillion colors or more.

このような用途に用いられる従来の測色計としては、以下のようなタイプが知られている。   The following types are known as conventional colorimeters used for such purposes.

図4(a)に示す散乱光照射タイプの測色計41は、発光素子42から積分球43内に照射された光を積分球43で散乱させ、その下端に開口した光照射部44から測定面45に照射し、予め設定された光軸46に沿って反射された光を積分球43の外部に導いて受光素子47で検出するようになっている(特許文献1参照)。
このタイプの測色計41は、散乱光を得るために最低でも直径40mm程度の積分球43が必要となり、その周囲に発光素子42及び受光素子47を配さなければならないので、その積分球43と発光素子42及び受光素子47の設置スペースを確保する必要があり、光学系が大型化する。
The scattered light irradiation type colorimeter 41 shown in FIG. 4A scatters the light irradiated from the light emitting element 42 into the integrating sphere 43 by the integrating sphere 43 and measures it from the light irradiation unit 44 opened at the lower end thereof. The light irradiated onto the surface 45 and reflected along the preset optical axis 46 is guided to the outside of the integrating sphere 43 and detected by the light receiving element 47 (see Patent Document 1).
This type of colorimeter 41 requires an integrating sphere 43 with a diameter of at least about 40 mm in order to obtain scattered light, and the light emitting element 42 and the light receiving element 47 must be disposed around the integrating sphere 43. It is necessary to secure a space for installing the light emitting element 42 and the light receiving element 47, and the optical system becomes large.

図4(b)に示す環状照明タイプの測色計51は、測定点52を中心に等しい仰角で斜め上方に環状に配された複数の発光素子53から測定点52に対して光を照射させ、その反射光を測定点の法線方向に配された受光素子54で検出するようにしている(特許文献2参照)。
この測色計51は、発光素子53を環状に配するスペースが必要となるため、やはり光学系が大型化せざるを得ない。
The annular illumination type colorimeter 51 shown in FIG. 4B irradiates the measurement point 52 with light from a plurality of light emitting elements 53 arranged in an obliquely upward manner at an equal elevation angle with the measurement point 52 as the center. The reflected light is detected by the light receiving element 54 arranged in the normal direction of the measurement point (see Patent Document 2).
Since the colorimeter 51 requires a space for arranging the light emitting elements 53 in an annular shape, the optical system must be enlarged.

図4(c)に示すマルチアングルタイプの測色計61は、異なる入射角度で測定点62に光を照射し得るように、測定点62に立てた法線を通る平面上の放射方向に光を照射する複数の発光素子63…と、それぞれの光を測定点に向けて反射させる円弧状ミラー64と、各発光素子63…から照射された光の正反射方向と一致しない角度に配された一つの測定光軸65上に配された受光素子66で検出する(特許文献3参照)ようにしている。
この測色計61は、測定点62から各発光素子63…及び受光素子66に至る光軸が扇形に広がらざるを得ないので、やはり光学系が大型化するという問題があった。
The multi-angle type colorimeter 61 shown in FIG. 4 (c) emits light in a radiation direction on a plane passing through a normal line set up at the measurement point 62 so that the measurement point 62 can be irradiated with light at different incident angles. Are arranged at an angle that does not coincide with the regular reflection direction of the light emitted from each light emitting element 63..., A plurality of light emitting elements 63. Detection is performed by a light receiving element 66 arranged on one measurement optical axis 65 (see Patent Document 3).
The colorimeter 61 has a problem that the optical system is enlarged because the optical axis from the measurement point 62 to each of the light emitting elements 63... And the light receiving element 66 must be fan-shaped.

特開平6−207857号公報JP-A-6-207857 特開平10−253457号公報JP-A-10-253457 特開2006−145374号公報JP 2006-145374 A

そこで本発明は、ある程度の精度を維持しつつ、発光素子及び受光素子などの光学系を内蔵したプローブを極めて小型化できるようにすることを技術的課題としている。   In view of this, the present invention has a technical problem to enable miniaturization of a probe incorporating an optical system such as a light emitting element and a light receiving element while maintaining a certain degree of accuracy.

この課題を解決するために、本発明は、測定対象面に測定光を照射し、その反射光に含まれるRGBの光強度に基づいて測定対象面の色を測定する測色装置において、
発光素子から発せられた白色の測定光を測定対象面に対して照射する光源と、測定対象面からの反射光に含まれるRGBの光強度を検出する受光素子が、先端透光部から光が入出射されるプローブ内にその光軸に沿って配されると共に、当該プローブの先端透光部にはスペーサが形成され、
当該スペーサは、その端面を測定対象面に接触させた状態で、前記先端透光部から測定対象面までの光軸の長さを予め設定された一定の距離に維持すると共に、測定対象面で正反射された測定光が前記受光素子に入射されない角度に前記光軸を維持する形状に形成され、
前記受光素子でRGBの光強度を検出する際に、受光素子に入射される外乱光の影響を排除する光分離手段を備えたことを特徴とする。
In order to solve this problem, the present invention provides a colorimetric apparatus that irradiates a measurement target surface with measurement light and measures the color of the measurement target surface based on the RGB light intensity included in the reflected light.
A light source that irradiates the measurement target surface with white measurement light emitted from the light emitting element, and a light receiving element that detects the RGB light intensity included in the reflected light from the measurement target surface, Along the optical axis in the probe that enters and exits, and a spacer is formed at the tip transparent portion of the probe,
The spacer maintains the length of the optical axis from the tip light transmitting portion to the measurement target surface at a predetermined constant distance in a state where the end surface is in contact with the measurement target surface, It is formed in a shape that maintains the optical axis at an angle at which specularly reflected measurement light is not incident on the light receiving element,
When the light intensity of RGB is detected by the light receiving element, a light separating unit is provided for eliminating the influence of disturbance light incident on the light receiving element.

本発明に係る測色装置によれば、スペーサとして所定長さの遮光性筒状体の先端を、例えば75°に斜めにカットしたものを用い、これをプローブの先端に固定すれば、スペーサ先端を測定面に当接させるだけで、先端透光部から測定対象面までの光軸の長さを一定の距離に維持することができるたけでなく、光軸が測定対象面に対して75°に傾いた状態に維持される。   According to the colorimetric apparatus according to the present invention, if the tip of a light-shielding cylindrical body having a predetermined length is used as a spacer, which is cut at an angle of 75 °, for example, and fixed to the tip of the probe, the tip of the spacer In addition to being able to maintain the length of the optical axis from the tip translucent part to the measurement target surface at a constant distance, the optical axis is 75 ° with respect to the measurement target surface. Maintained in a tilted state.

このとき、発光素子から照射された測定光は、測定面に対して75°(入射角15°)で照射され、正反射光は、法線を挟んで反射角15°で反射される。
受光素子は、プローブの光軸に沿って配されているので、正反射光を直接検出することがなく、測定面で乱反射された光成分のうち正反射光に対して30°傾斜した方向に進行する反射光のみが検出されるため、ある程度の測定精度が保障される。
At this time, the measurement light emitted from the light emitting element is emitted at 75 ° (incident angle of 15 °) with respect to the measurement surface, and the regular reflection light is reflected at a reflection angle of 15 ° across the normal.
Since the light receiving element is arranged along the optical axis of the probe, it does not directly detect the specular reflection light, but in a direction inclined by 30 ° with respect to the specular reflection light among the light components irregularly reflected on the measurement surface. Since only the reflected reflected light is detected, a certain degree of measurement accuracy is guaranteed.

また、発光素子及び受光素子は同一光軸に沿って配されているので、測定点から見たときに発光素子から測定点に至る光軸及び測定点から受光素子に至る光軸が、扇形に広がることがなく互いに並行に配されるので、プローブ自体を極めて小型に形成することができる。   In addition, since the light emitting element and the light receiving element are arranged along the same optical axis, the optical axis from the light emitting element to the measurement point and the optical axis from the measurement point to the light receiving element when viewed from the measurement point are fan-shaped. Since they are arranged in parallel with each other without spreading, the probe itself can be formed extremely small.

本発明に係る測色装置の一例を示す断面図。1 is a cross-sectional view showing an example of a color measuring device according to the present invention. その全体構成図。The whole block diagram. 他の実施例を示す斜視図。The perspective view which shows another Example. 従来の測色装置の原理を示す説明図。Explanatory drawing which shows the principle of the conventional colorimetry apparatus.

本例では、ある程度の精度を維持しつつ、発光素子及び受光素子などの光学系を内蔵したプローブを極めて小型化するという目的を達成するため、測定対象面に測定光を照射し、その反射光に含まれるRGBの光強度に基づいて測定対象面の色を測定する測色装置において、発光素子から発せられた白色の測定光を測定対象面に対して照射する光源と、測定対象面からの反射光に含まれるRGBの光強度を検出する受光素子が、先端透光部から光が入出射されるプローブ内にその光軸に沿って配されると共に、当該プローブの先端透光部にはスペーサが形成され、当該スペーサは、その端面を測定対象面に接触させた状態で、前記先端透光部から測定対象面までの光軸の長さを予め設定された一定の距離に維持すると共に、測定対象面で正反射された測定光が前記受光素子に入射されない角度に前記光軸を維持する形状に形成され、前記受光素子でRGBの光強度を検出する際に、受光素子に入射される外乱光の影響を排除する光分離手段を備えた。   In this example, in order to achieve the purpose of extremely miniaturizing a probe incorporating an optical system such as a light emitting element and a light receiving element while maintaining a certain degree of accuracy, the measurement target surface is irradiated with measurement light and the reflected light In the color measurement device that measures the color of the measurement target surface based on the RGB light intensity included in the light source, a light source that irradiates the measurement target surface with white measurement light emitted from the light emitting element, and a A light receiving element for detecting the RGB light intensity included in the reflected light is arranged along the optical axis in the probe in which light enters and exits from the tip light transmitting portion, and the tip light transmitting portion of the probe includes A spacer is formed, and the spacer maintains the length of the optical axis from the tip light transmitting portion to the measurement target surface at a predetermined constant distance in a state where the end surface is in contact with the measurement target surface. , Positive and negative on the measurement target surface Is formed in a shape that maintains the optical axis at an angle at which the measured light is not incident on the light receiving element, and eliminates the influence of disturbance light incident on the light receiving element when the light intensity of RGB is detected by the light receiving element The light separation means is provided.

図1及び図2に示す測色装置1は、測定光を照射して測定対象面Sで反射させ、その反射光に含まれるRGBの光強度に基づいて測定対象面Sの色を測定するためのものである。
測色装置1は、先端透光部2から光が入出射される直径3cm×長さ10cm程度の略円筒状のプローブ3に、測定光学系4と制御回路5が内蔵されている。
プローブ3の先端側外周面にはネジ6が形成され、前記測定光学系4と測定対象面Sの位置関係を一定に維持するためのスペーサ7が前記ネジ6に螺合されて、先端透光部2に設けられている。
The colorimetric device 1 shown in FIGS. 1 and 2 irradiates measurement light, reflects it on the measurement target surface S, and measures the color of the measurement target surface S based on the RGB light intensity included in the reflected light. belongs to.
In the color measuring device 1, a measuring optical system 4 and a control circuit 5 are built in a substantially cylindrical probe 3 having a diameter of about 3 cm and a length of about 10 cm through which light enters and exits from the tip light transmitting portion 2.
A screw 6 is formed on the outer peripheral surface of the distal end side of the probe 3, and a spacer 7 for maintaining the positional relationship between the measurement optical system 4 and the measurement target surface S is screwed to the screw 6 to transmit the distal end light transmitting Part 2 is provided.

測定光学系4は、発光素子11から発せられた白色の測定光を凹面鏡12で反射させ、先端透光部2から測定対象面Sに対して照射する光源13と、先端透光部2から取り込まれる測定対象面Sからの反射光に含まれるRGBの各色の光強度を検出する受光素子14R、14G、14Bを備えている。   The measurement optical system 4 reflects the white measurement light emitted from the light emitting element 11 by the concave mirror 12, and takes in the light source 13 that irradiates the measurement target surface S from the tip transparent part 2 and the tip transparent part 2. Light receiving elements 14R, 14G, and 14B that detect the light intensity of each color of RGB included in the reflected light from the surface S to be measured.

発光素子11は、白色LEDなどが用いられ、凹面鏡12に対向して光軸X上に配されて成る。
凹面鏡12は、プローブ3の内径に等しい直径(約25mm)を有し、発光素子11から発せられた測定光を測定対象面Sに向かって収束するように反射させ、例えば、先端透光部2から測定対象面Sに至る標準作動距離WD=5cmの位置で直径4mmのスポットが形成されるように測定光学系4が設計されている。
The light emitting element 11 is a white LED or the like and is arranged on the optical axis X so as to face the concave mirror 12.
The concave mirror 12 has a diameter (about 25 mm) equal to the inner diameter of the probe 3, reflects the measurement light emitted from the light emitting element 11 so as to converge toward the measurement target surface S, and, for example, the distal end light transmitting portion 2 The measurement optical system 4 is designed so that a spot having a diameter of 4 mm is formed at a position where the standard working distance WD = 5 cm from the surface to the measurement target surface S.

受光素子14R、14G、14Bは、光軸Xに沿って凹面鏡12の背面側に配されており、本例では、光軸Xの周りに中心角120°で等角的に配されている。
この受光素子14R、14G、14Bは、RGBカラーセンサとして用いられるSiフォトダイオードが用いられ、赤色光検出用の受光素子14Rの最大感度波長が620nm(感度波長範囲:590〜720nm)、緑色光検出用の受光素子14Gの最大感度波長が540nm(感度波長範囲:480〜600nm)、青色光検出用の受光素子14Bの最大感度波長が460nm(感度波長範囲:590〜720nmに選定されている。
The light receiving elements 14R, 14G, and 14B are arranged on the back side of the concave mirror 12 along the optical axis X. In this example, the light receiving elements 14R, 14G, and 14B are arranged equiangularly around the optical axis X at a central angle of 120 °.
As the light receiving elements 14R, 14G, and 14B, Si photodiodes used as RGB color sensors are used, the maximum sensitivity wavelength of the light receiving element 14R for detecting red light is 620 nm (sensitivity wavelength range: 590 to 720 nm), and green light detection is performed. The maximum sensitivity wavelength of the light receiving element 14G for light is selected to be 540 nm (sensitivity wavelength range: 480 to 600 nm), and the maximum sensitivity wavelength of the light receiving element 14B for detecting blue light is set to 460 nm (sensitivity wavelength range: 590 to 720 nm).

また、受光素子14R、14G、14Bは、測定対象面Sで反射され先端透光部2から取り込まれた光を、凹面鏡12に形成されたスリット15を通して検出するように配されている。
このスリット15は、凹面鏡12で反射されて測定対象面Sに形成される測定光のスポットと、各受光素子14R、14G、14Bを結ぶ直線L1と凹面鏡12との交点に形成されている。
また、このスリット15を介して、発光素子11から発せられた光が受光素子14R、14G、14Bに直接入射されることのないように、発光素子11から照射されてスリット15を透過する光の光束線L2と重ならない位置に受光素子14R、14G、14Bが配されている。
The light receiving elements 14R, 14G, and 14B are arranged so as to detect the light reflected from the measurement target surface S and taken in from the distal end light transmitting portion 2 through the slit 15 formed in the concave mirror 12.
The slit 15 is formed at the intersection of the spot of measurement light reflected on the concave mirror 12 and formed on the measurement target surface S, and the straight line L1 connecting the light receiving elements 14R, 14G, and 14B and the concave mirror 12.
In addition, the light emitted from the light emitting element 11 and transmitted through the slit 15 is prevented from being directly incident on the light receiving elements 14R, 14G, and 14B through the slit 15. The light receiving elements 14R, 14G, and 14B are arranged at positions that do not overlap with the light beam L2.

スペーサ7は、図2(a)に示すように、遮光性材料で形成されたパイプ先端を、所定角度(本例では75°)に切断すると共に、その内面のパイプ後端側に、プローブ3のネジ6と螺合されるネジ21が形成されて、プローブ3に対して着脱可能に装着されるアタッチメントとして形成されている。
また、斜めに切断された端面22には、測定対象面Sに当接されたときに測定対象面Sをキズつけず、また、漏れ光が入射されることがないようにフェルトなどのクッション材(図示せず)が貼り付けられている。
さらに、発光素子11から測定光を照射したときに、測定対象面Sで拡散反射された光が、スペーサ7内で乱反射し、スリット15を通って受光素子14R、14G、14Bに達することがないように、スペーサ7の内面が黒のマット仕上げとなっている。
As shown in FIG. 2A, the spacer 7 cuts the pipe tip formed of a light-shielding material at a predetermined angle (75 ° in this example), and on the pipe rear end side of the inner surface, the probe 3 A screw 21 to be screwed with the screw 6 is formed, and is formed as an attachment that is detachably attached to the probe 3.
Further, the end face 22 cut obliquely does not scratch the measurement target surface S when abutted against the measurement target surface S, and cushioning material such as felt so that leakage light is not incident. (Not shown) is pasted.
Further, when the measurement light is irradiated from the light emitting element 11, the light diffusely reflected by the measurement target surface S is diffusely reflected in the spacer 7 and does not reach the light receiving elements 14 R, 14 G, and 14 B through the slit 15. Thus, the inner surface of the spacer 7 has a black matte finish.

そして、図2(b)に示すように、スペーサ7をプローブ3に螺合させ、このスペーサ7の端面22を測定対象面Sに当接させた状態で光軸Xの先端透光部2から測定対象面Sまでの長さが予め設定された標準作動距離(例えば5cm)に一致するようにセットすれば、端面22を測定対象面Sに当接させるだけで、標準作動距離WD=5cmの位置に光スポットを形成することができるので、常に一定の作動距離で測定可能となる。   Then, as shown in FIG. 2B, the spacer 7 is screwed into the probe 3 and the end surface 22 of the spacer 7 is in contact with the surface S to be measured. If the length to the measurement target surface S is set so as to coincide with a preset standard working distance (for example, 5 cm), the standard working distance WD = 5 cm can be obtained simply by bringing the end face 22 into contact with the measurement target surface S. Since a light spot can be formed at a position, measurement is always possible at a constant working distance.

また、スペーサ7の端面22が75°にカットされているので、この端面22を測定対象面Sに当接させることにより、プローブ3の光軸Xが測定対象面Sに対して75°の角度に維持されるので、特定対象面Sに照射される測定光の入射角度を常に一定の角度に維持して一定の条件下で測定することができる。
さらに、スペーサ7は遮光性材料で形成されているので、端面22が測定対象面に密接されていれば、外乱光がスペーサ7内に入射されることがない。
Further, since the end surface 22 of the spacer 7 is cut at 75 °, the optical axis X of the probe 3 is at an angle of 75 ° with respect to the measurement target surface S by bringing the end surface 22 into contact with the measurement target surface S. Therefore, the incident angle of the measurement light applied to the specific target surface S can always be maintained at a constant angle and measurement can be performed under a certain condition.
Furthermore, since the spacer 7 is formed of a light-shielding material, disturbance light is not incident on the spacer 7 as long as the end face 22 is in close contact with the measurement target surface.

制御回路5は、発光素子11の点灯制御と、受光素子14R、14G、14Bの検出信号に基づいてRGBの光強度を検出する演算処理と行い、その際に、測定光が所定の発光周期で測定対象面Sに照射されるように発光素子11を点灯制御すると共に、受光素子14R、14G、14Bでその発光周期に同期して同期検波を行う光変調器(図示せず)が組み込まれている。   The control circuit 5 performs lighting control of the light emitting element 11 and arithmetic processing for detecting the light intensity of RGB based on the detection signals of the light receiving elements 14R, 14G, and 14B. At that time, the measurement light is emitted at a predetermined light emission period. A light modulator (not shown) that controls the lighting of the light emitting element 11 so as to irradiate the measurement target surface S and performs synchronous detection in synchronization with the light emission cycle by the light receiving elements 14R, 14G, and 14B is incorporated. Yes.

同期検波により、測定光の発光周期と異なる周期の光を排除することができ、例えば、発光周期を外乱光の変化に比して十分に高い高周波に設定すれば、高周波成分と低周波成分を分離して検出し、高周波成分の光強度から低周波成分の光強度をマイナスすることにより、光変調された測定光の反射光強度のみを検出することができる。   By synchronous detection, it is possible to eliminate light having a period different from the light emission period of the measurement light.For example, if the light emission period is set to a sufficiently high frequency compared to the change in disturbance light, the high frequency component and the low frequency component are reduced. By detecting separately and subtracting the light intensity of the low frequency component from the light intensity of the high frequency component, it is possible to detect only the reflected light intensity of the light modulated measurement light.

このように、本例では、外乱光を排除する光分離手段として、遮光性材料で形成されたスペーサ7と光変調器を用いている。したがって、スペーサ7の端面22を測定対象面Sに密接することにより外乱光の入射を阻止することができるが、測定対象面Sが湾曲して端面22を完全に密接できないときなど外乱光の入射を阻止できないときでも、光変調器により外乱光の影響を受けることなく測定光の反射光強度のみを測定することができる。   As described above, in this example, the spacer 7 made of a light-shielding material and the light modulator are used as the light separating means for eliminating disturbance light. Accordingly, the disturbance light can be prevented from entering by bringing the end surface 22 of the spacer 7 into close contact with the measurement target surface S. Even when the light cannot be blocked, only the reflected light intensity of the measurement light can be measured by the optical modulator without being affected by disturbance light.

なお、プローブ3は、図示しないコンピュータに有線又は無線により接続され、プローブ3から出力された測定信号に基づき、その測定結果を図示しないコンピュータディスプレイに表示させ、必要に応じて所定の記憶領域に記憶する。   The probe 3 is connected to a computer (not shown) by wire or wirelessly, and based on the measurement signal output from the probe 3, the measurement result is displayed on a computer display (not shown) and stored in a predetermined storage area as necessary. To do.

以上が本発明の一構成例であって、次にその作用について説明する。
例えば、自動車のボディ色を測定する場合、スペーサ7の端面22を測定対象面Sとなる自動車ボディの任意の箇所に密接させるだけで、光軸Xが測定対象面Sに対して75°の角度となり、プローブ3の先端透光部2から測定対象面Sに至る光軸Xの長さが標準作動距離WD=5cmに維持される。
The above is one configuration example of the present invention, and the operation thereof will be described next.
For example, when measuring the body color of an automobile, the optical axis X is at an angle of 75 ° with respect to the measurement target surface S simply by bringing the end surface 22 of the spacer 7 into close contact with an arbitrary portion of the automobile body serving as the measurement target surface S. Thus, the length of the optical axis X from the tip transparent portion 2 of the probe 3 to the measurement target surface S is maintained at the standard working distance WD = 5 cm.

この状態で、発光素子11を点灯させると、白色光が凹面反射鏡12で反射されて収束光束となり、光軸Xに沿って先端透光部2からスペーサ7内を通り、測定対象面Sに対し傾斜角75°(入射角15°)で照射され、標準作動距離WDの位置に光スポットを形成する。これにより、測定対象面Sで表面反射が生じ、反射光は正反射されるだけでなく、周囲に拡散反射されるが、一般に色を測定するときは、正反射光を除いて拡散反射光を測定する。   In this state, when the light emitting element 11 is turned on, the white light is reflected by the concave reflecting mirror 12 to become a convergent light beam, passes from the tip translucent portion 2 along the optical axis X through the spacer 7 and onto the measurement target surface S. On the other hand, it is irradiated with an inclination angle of 75 ° (incident angle of 15 °), and a light spot is formed at the position of the standard working distance WD. As a result, surface reflection occurs on the measurement target surface S, and the reflected light is not only specularly reflected but also diffusely reflected to the surroundings. Generally, when measuring colors, diffuse reflected light is excluded except for specularly reflected light. taking measurement.

本例では、受光素子14R、14G、14Bが光軸Xに沿って配されているので、測定対象面Sで拡散反射された光のうち、光軸X方向に反射された光、即ち正反射方向から約30°傾いた方向に反射された光のみが、スペーサ7内を通り、凹面鏡12のスリット15を透過して受光素子14R、14G、14Bで検出される。
したがって、正反射光の影響を受けることなく、測定対象面Sの色を正確に測定することができる。
In this example, since the light receiving elements 14R, 14G, and 14B are arranged along the optical axis X, the light reflected in the optical axis X direction out of the light diffusely reflected by the measurement target surface S, that is, regular reflection. Only the light reflected in the direction inclined about 30 ° from the direction passes through the spacer 7, passes through the slit 15 of the concave mirror 12, and is detected by the light receiving elements 14 R, 14 G, and 14 B.
Therefore, the color of the measurement target surface S can be accurately measured without being affected by the regular reflection light.

受光素子14R、14G、14Bは、光の三原色である赤色(620nm)、緑色(540nm)、青色(460nm)の光強度を検出するので、これらの値からボディ色を測定することができ、図示しないコンピュータにより従来公知の計算式により測定結果が任意の表色系に返還して表示される。
なお、メタリック塗料については測定光の照射方向により反射光が異なるので、必要に応じて複数方向から照射した測定結果を総合判断することにより、そのボディ色を特定することが可能である。
The light receiving elements 14R, 14G, and 14B detect light intensities of red (620 nm), green (540 nm), and blue (460 nm), which are the three primary colors of light, so that the body color can be measured from these values. The measurement result is returned to an arbitrary color system and displayed by a computer that does not use a conventionally known calculation formula.
In addition, since reflected light changes with the irradiation directions of measurement light about a metallic paint, it is possible to specify the body color by comprehensively determining the measurement results irradiated from a plurality of directions as necessary.

このとき、測定対象面Sの測定箇所は、遮光性材料で形成されたスペーサ7の端面22が密接して覆われているので、外乱光が入射されることなく正確に色を測定することができる。
また、発光素子11は制御回路5により所定の発光周期で点滅され、受光素子14R、14G、14Bでその発光周期に同期して同期検波を行うようにしているので、測定対象面7が湾曲して端面22戸の隙間から外乱光が入射する場合でも、本例では、正確に色を測定することができる。
即ち、発光素子11の発光周期を外乱光の変化に比して十分に高い高周波に設定すれば、高周波成分と低周波成分を分離して検出することができるので、外乱光が入射されても、光変調された測定光の反射光強度のみを検出することができる。
At this time, since the measurement surface of the measurement target surface S is covered with the end face 22 of the spacer 7 formed of a light-shielding material, the color can be accurately measured without incident disturbance light. it can.
Further, since the light emitting element 11 is blinked by the control circuit 5 at a predetermined light emission period, and the light receiving elements 14R, 14G, and 14B perform synchronous detection in synchronization with the light emission period, the measurement target surface 7 is curved. Even in the case where ambient light is incident from the gap between the 22 end faces, the color can be accurately measured in this example.
That is, if the light emission period of the light emitting element 11 is set to a sufficiently high frequency compared to the change of disturbance light, the high frequency component and the low frequency component can be detected separately, so that even if disturbance light is incident Only the reflected light intensity of the light-modulated measurement light can be detected.

また、発光素子11及び受光素子14R、14G、14Bを、同一の光軸Xに沿って配することにより、小型プローブ3に内蔵させることができ、測色装置1を小型化することができる。   Further, by arranging the light emitting element 11 and the light receiving elements 14R, 14G, and 14B along the same optical axis X, the light probe 11 can be built in the small probe 3, and the color measuring device 1 can be miniaturized.

図3に示す測色装置31は、遮光性材料からなるスペーサ7に替えて、プローブ3にフレームタイプのスペーサ32を取り付けたものである。
本例のスペーサ32は、プローブ3のネジ6に螺合されるナット部33と、測定対象面Sに当接されるテーパ面34と、これらを連結する複数本のロッド35からなる。
ナット部33には光軸Xと直交するフランジ36が形成され、テーパ面34が前記ロッド35を介して光軸Xに対して75°傾斜して形成されている。
また、テーパ面34にはクッション材(図示せず)が設けられると共に、光軸Xと交差する部分に観察孔37が形成され、プローブ3から照射された測定光の光スポットがその観察孔37内に形成されるようになっている。
A color measuring device 31 shown in FIG. 3 is obtained by attaching a frame type spacer 32 to the probe 3 instead of the spacer 7 made of a light shielding material.
The spacer 32 of this example includes a nut portion 33 that is screwed onto the screw 6 of the probe 3, a tapered surface 34 that is in contact with the measurement target surface S, and a plurality of rods 35 that connect them.
A flange 36 perpendicular to the optical axis X is formed in the nut portion 33, and a tapered surface 34 is formed with an inclination of 75 ° with respect to the optical axis X via the rod 35.
In addition, a cushion material (not shown) is provided on the tapered surface 34, and an observation hole 37 is formed at a portion intersecting the optical axis X, and the light spot of the measurement light emitted from the probe 3 is the observation hole 37. It is designed to be formed inside.

このスペーサ32をプローブ3に装着し、光軸Xに沿って先端透光部2からスペーサ32の先端に至る長さを予め設定された標準作動距離WDに一致させた状態で、テーパ面34を測定対象面Sに当接させれば、発光素子11及び受光素子14R、14G、14Bと測定対象面Sとの間隔が予め設定された一定の距離に維持されることとなる。   With the spacer 32 attached to the probe 3, the taper surface 34 is formed in a state in which the length from the tip translucent portion 2 to the tip of the spacer 32 along the optical axis X matches the preset standard working distance WD. If they are brought into contact with the measurement target surface S, the distances between the light emitting element 11 and the light receiving elements 14R, 14G, and 14B and the measurement target surface S are maintained at a predetermined constant distance.

また、テーパ面34が光軸に対して75°に傾いているので、このテーパ面34を測定対象面Sに当接させることにより、プローブ3の光軸Xが測定対象面Sに対して75°の角度に維持される。したがって、テーパ面34を測定対象面Sに当接するだけで標準作動距離WDの位置に光スポットを形成することができるので、常に、一定の条件の下で測定することが可能となる。   Further, since the tapered surface 34 is inclined at 75 ° with respect to the optical axis, the optical axis X of the probe 3 is 75 with respect to the measurement target surface S by bringing the tapered surface 34 into contact with the measurement target surface S. Maintained at an angle of °. Therefore, since the light spot can be formed at the position of the standard working distance WD simply by contacting the tapered surface 34 with the measurement target surface S, it is always possible to perform measurement under certain conditions.

このようなフレームタイプのスペーサ31を用いれば、測定対象面S上の測定箇所を外部から視認することが容易であり、キズが形成された部位を誤って測定するということも防止できる。
また、実施例1と同様、プローブ3の制御回路5により同期検波がなされるので、観察孔37に外乱光が照射されて、その反射光がプローブに入射されることがあっても、測定光の拡散反射光のうち光軸X方向に反射された反射光成分の光強度のみを測定することができる。
If such a frame type spacer 31 is used, it is easy to visually recognize a measurement location on the measurement target surface S from the outside, and it is possible to prevent erroneous measurement of a site where a scratch is formed.
In addition, since the synchronous detection is performed by the control circuit 5 of the probe 3 as in the first embodiment, even if disturbance light is irradiated on the observation hole 37 and the reflected light is incident on the probe, the measurement light Only the light intensity of the reflected light component reflected in the optical axis X direction can be measured.

なお、上記実施例1及び2では、いずれも、プローブ3にスペーサ7又は32を着脱可能に装着する場合について説明したが、プローブ3にスペーサ7又は32を一体に形成してもよい。
また、光分離手段として、実施例1では遮光性材料で形成したスペーサ7と光変調器を併用した場合について説明し、実施例2では光変調器のみを用いる場合について説明したが、遮光性材料で形成したスペーサ7のみを用いる場合であってもよい。
In each of the first and second embodiments, the case where the spacer 7 or 32 is detachably attached to the probe 3 has been described. However, the spacer 7 or 32 may be integrally formed on the probe 3.
Further, as the light separating means, the case where the spacer 7 formed of the light blocking material and the light modulator are used together is described in the first embodiment, and the case where only the light modulator is used is described in the second embodiment. Only the spacer 7 formed in (1) may be used.

本発明は、自動車ボディその他任意の測定対象面の色を測定する測色装置の用途に適用できる。   The present invention can be applied to the use of a color measurement device that measures the color of an automobile body or any other measurement target surface.

1 測色装置
S 測定対象面
2 先端透光部
3 プローブ
4 測定光学系
7 スペーサ
11 発光素子
12 凹面鏡
13 光源
14R 受光素子
14G 受光素子
14B 受光素子
X 光軸
22 端面





DESCRIPTION OF SYMBOLS 1 Colorimetry apparatus S Measurement object surface 2 Tip light transmission part 3 Probe 4 Measurement optical system 7 Spacer 11 Light emitting element 12 Concave mirror 13 Light source 14R Light receiving element 14G Light receiving element 14B Light receiving element X Optical axis 22 End face





Claims (6)

測定対象面に測定光を照射し、その反射光に含まれるRGBの光強度に基づいて測定対象面の色を測定する測色装置において、
発光素子から発せられた白色の測定光を測定対象面に対して照射する光源と、測定対象面からの反射光に含まれるRGBの光強度を検出する受光素子が、先端透光部から光が入出射されるプローブ内にその光軸に沿って配されると共に、当該プローブの先端透光部にはスペーサが形成され、
当該スペーサは、その端面を測定対象面に接触させた状態で、前記先端透光部から測定対象面までの光軸の長さを予め設定された一定の距離に維持すると共に、測定対象面で正反射された測定光が前記受光素子に入射されない角度に前記光軸を維持する形状に形成され、
前記受光素子でRGBの光強度を検出する際に、受光素子に入射される外乱光の影響を排除する光分離手段を備えたことを特徴とする測色装置。
In a color measurement device that irradiates measurement light onto a measurement target surface and measures the color of the measurement target surface based on the RGB light intensity contained in the reflected light,
A light source that irradiates the measurement target surface with white measurement light emitted from the light emitting element, and a light receiving element that detects the RGB light intensity included in the reflected light from the measurement target surface, Along the optical axis in the probe that enters and exits, and a spacer is formed at the tip transparent portion of the probe,
The spacer maintains the length of the optical axis from the tip light transmitting portion to the measurement target surface at a predetermined constant distance in a state where the end surface is in contact with the measurement target surface, It is formed in a shape that maintains the optical axis at an angle at which specularly reflected measurement light is not incident on the light receiving element,
A colorimetric apparatus comprising: a light separation unit that eliminates the influence of disturbance light incident on a light receiving element when the light receiving element detects RGB light intensity.
前記スペーサが、プローブに対して着脱可能に形成されたアタッチメントである請求項1記載の測色装置。   The color measuring device according to claim 1, wherein the spacer is an attachment formed to be detachable from the probe. 前記スペーサが、プローブと一体的に形成されてなる請求項1記載の測色装置。   The color measuring device according to claim 1, wherein the spacer is formed integrally with the probe. 前記光分離手段として、発光素子から照射される測定光を所定の発光周期で照射させ、受光素子で前記測定光の発光周期に同期した同期検波を行う光変調器を用いた請求項1乃至3記載の測色装置。   4. An optical modulator that irradiates measurement light emitted from a light emitting element with a predetermined light emission period and performs synchronous detection synchronized with the light emission period of the measurement light with a light receiving element as the light separating unit. The colorimetric device described. 前記光分離手段として、遮光性筒状体で形成されたスペーサを用いた請求項1乃至3記載の測色装置。   4. The color measuring device according to claim 1, wherein a spacer formed of a light-shielding cylindrical body is used as the light separating means. 前記光分離手段として、遮光性筒状体で形成されたスペーサと、発光素子から照射される測定光を所定の発光周期で照射させ、受光素子で前記測定光の発光周期に同期した同期検波を行う光変調器とを併用した請求項1乃至3記載の測色装置。



As the light separation means, a spacer formed of a light-shielding cylindrical body and measurement light emitted from the light emitting element are irradiated with a predetermined light emission period, and synchronous detection synchronized with the light emission period of the measurement light is performed by the light receiving element. The colorimetric apparatus according to claim 1, wherein the colorimetric device is used in combination with a light modulator to be used.



JP2014196108A 2014-09-26 2014-09-26 Color measuring device Active JP6487167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196108A JP6487167B2 (en) 2014-09-26 2014-09-26 Color measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196108A JP6487167B2 (en) 2014-09-26 2014-09-26 Color measuring device

Publications (3)

Publication Number Publication Date
JP2016065841A true JP2016065841A (en) 2016-04-28
JP2016065841A5 JP2016065841A5 (en) 2018-06-28
JP6487167B2 JP6487167B2 (en) 2019-03-20

Family

ID=55805388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196108A Active JP6487167B2 (en) 2014-09-26 2014-09-26 Color measuring device

Country Status (1)

Country Link
JP (1) JP6487167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147131A1 (en) * 2017-02-09 2018-08-16 ストローブ株式会社 Color measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530179U (en) * 1978-08-18 1980-02-27
JP2006071589A (en) * 2004-09-06 2006-03-16 Univ Kansai Color measuring instrument and light source device
JP2007114038A (en) * 2005-10-20 2007-05-10 Agilent Technol Inc Color sensor system
WO2014061191A1 (en) * 2012-10-16 2014-04-24 コニカミノルタ株式会社 Attachment for optical characteristic measuring apparatus, and optical characteristic measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530179U (en) * 1978-08-18 1980-02-27
JP2006071589A (en) * 2004-09-06 2006-03-16 Univ Kansai Color measuring instrument and light source device
JP2007114038A (en) * 2005-10-20 2007-05-10 Agilent Technol Inc Color sensor system
WO2014061191A1 (en) * 2012-10-16 2014-04-24 コニカミノルタ株式会社 Attachment for optical characteristic measuring apparatus, and optical characteristic measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147131A1 (en) * 2017-02-09 2018-08-16 ストローブ株式会社 Color measuring device

Also Published As

Publication number Publication date
JP6487167B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
US9243953B1 (en) Spectrophotometric colorimeter based on LED light source and method for realizing the same
US9322644B2 (en) Method and apparatus for the examination of an object
US6760116B2 (en) Three-dimensional shape and color detecting apparatus
US9316581B2 (en) Method, apparatus, and article to facilitate evaluation of substances using electromagnetic energy
JP2012103236A (en) Device and method for determining surface characteristic by using multiplex measurement
US6631000B1 (en) Device and procedure for the quality control of in particular finished surfaces
US20120250022A1 (en) Hand-Held Color Measurement Device
CN106574866B (en) Measuring device for reflection measurement
JP2010133934A (en) Surface measuring apparatus having two measuring unit
US9459206B2 (en) System and apparatus for measurement of light scattering from a sample
WO2017163319A1 (en) Color measurement device
CN106415243B (en) Surface property measuring apparatus
JP2009080044A (en) Optical characteristic measuring apparatus
JP6487167B2 (en) Color measuring device
US20180180480A1 (en) Multi-Angle Colorimeter
WO2018147131A1 (en) Color measuring device
JP5913143B2 (en) Colorimeter
US10393655B2 (en) Apparatus for retro-reflection measurement using a holed mirror and circular aperture for annular band detection
KR102249615B1 (en) Colorimetry device and method
WO2018131442A1 (en) Color measuring device and method
US20040065833A1 (en) Method and apparatus for illuminating and collecting radiation
US10571333B2 (en) Colorimetric device
WO2021110759A1 (en) Colour measurement
JP2005091172A (en) Color measuring instrument

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250