JP2016065769A - Transport vehicle - Google Patents

Transport vehicle Download PDF

Info

Publication number
JP2016065769A
JP2016065769A JP2014194102A JP2014194102A JP2016065769A JP 2016065769 A JP2016065769 A JP 2016065769A JP 2014194102 A JP2014194102 A JP 2014194102A JP 2014194102 A JP2014194102 A JP 2014194102A JP 2016065769 A JP2016065769 A JP 2016065769A
Authority
JP
Japan
Prior art keywords
deck
vehicle
vehicle body
transport vehicle
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014194102A
Other languages
Japanese (ja)
Inventor
幹雄 板東
Mikio Bando
幹雄 板東
一野瀬 昌則
Masanori Ichinose
昌則 一野瀬
真二郎 齋藤
Shinjiro Saito
真二郎 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2014194102A priority Critical patent/JP2016065769A/en
Priority to PCT/JP2015/056265 priority patent/WO2016047166A1/en
Publication of JP2016065769A publication Critical patent/JP2016065769A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude

Abstract

PROBLEM TO BE SOLVED: To provide a transport vehicle capable of further improving correction accuracy for correcting a vehicle position detected by a global coordinate system in response to a vehicle body attitude.SOLUTION: A transport vehicle comprises: a vehicle body frame 40; a deck 90 disposed in an upper portion in front of the vehicle body frame 40; and a driving room mounted on the deck 90. The transport vehicle also comprises: two antennas 101 and 102 receiving positioning satellite radio waves (GPS); and a vehicle-body-attitude detector 200 (inertia measuring unit: IMU). The two GPS antennas 101 and 102 are attached to the deck 90 to be spaced apart from each other in the width direction of the transport vehicle. The vehicle-body-attitude detector 200 is located within a rectangular region 400 having, as a diagonal, a line segment DL that joins installation positions of the two GPS antennas 101 and 102 to each other or within a range in which the deck 90 can be attached.SELECTED DRAWING: Figure 3

Description

本発明は、運搬車両の位置計測技術に関する。   The present invention relates to a position measurement technique for a transport vehicle.

全地球測位システム(GPS:Global Positioning System)が検出した車両位置の誤差を補正する技術として、特許文献1には、「GPSにより車両位置を検出する位置検出手段と、光ビーコンから位置情報を含む光ビーコンデータを受信する車載通信手段と、その光ビーコンデータを受信すると車両上方撮像を開始する撮像手段と、撮像画像から光ビーコンヘッド像を抽出する抽出手段と、車両が光ビーコンの真下に位置するときに画像中で光ビーコンヘッド像が占める位置を基準位置として予め設定しておき、抽出された光ビーコンヘッド像が基準位置に位置するか否かを判定する真下判定手段と、光ビーコンヘッド像が基準位置に位置する場合に、その光ビーコンヘッド像の撮像時点での車両位置を光ビーコンデータの示す位置と一致させるように、車両位置を補正する位置補正手段とを備える」技術が開示されている。   As a technique for correcting an error in a vehicle position detected by a global positioning system (GPS), Patent Document 1 includes “position detection means for detecting a vehicle position by GPS and position information from an optical beacon. In-vehicle communication means for receiving optical beacon data, imaging means for starting imaging above the vehicle when the optical beacon data is received, extraction means for extracting an optical beacon head image from the captured image, and the vehicle is located directly below the optical beacon A position that the optical beacon head image occupies in the image is set as a reference position in advance, and a right-down determination unit that determines whether or not the extracted optical beacon head image is positioned at the reference position; and an optical beacon head When the image is located at the reference position, the vehicle position at the time when the optical beacon head image is captured is And a position correcting means for correcting the vehicle position so as to coincide with the position indicated by the data ”.

特開2010−276583号公報JP 2010-276583 A

鉱山内を走行する運搬車両は、積荷の積載状態及び非積載状態(空荷状態)によって運搬車両の車体姿勢が変わるので、GPSが算出した車両位置に車体姿勢の変化による誤差が含まれることがある。そこで、運搬車両に慣性計測装置(IMU:Inertial Measurement Unit)を搭載し、GPSが検出した車両位置をIMUが検出した車体姿勢情報を用いて補正をすることが行われている。この車体姿勢情報の検出精度が低いと、上記補正後の車両位置の精度も低下するという懸念がある。   A transport vehicle traveling in a mine changes the body posture of the transport vehicle depending on the loaded state and unloaded state (empty state) of the load. Therefore, an error due to a change in the body posture may be included in the vehicle position calculated by GPS. is there. Therefore, an inertial measurement device (IMU: Internal Measurement Unit) is mounted on the transport vehicle, and the vehicle position detected by the GPS is corrected using the vehicle body posture information detected by the IMU. If the detection accuracy of the vehicle body posture information is low, there is a concern that the accuracy of the corrected vehicle position also decreases.

この点に関し、特許文献1では、GPSが算出した車両位置とグローバル座標との位置ずれを補正する構成は開示されているが、IMUが検出した車体姿勢情報に含まれる誤差については考慮されておらず、GPS及びIMUを併用した際に車体姿勢情報に含まれる誤差による補正精度の低下という課題が依然として残る。   In this regard, Patent Document 1 discloses a configuration that corrects the positional deviation between the vehicle position calculated by the GPS and the global coordinates, but does not consider the error included in the vehicle body posture information detected by the IMU. However, when GPS and IMU are used together, there remains a problem that the correction accuracy is reduced due to an error included in the vehicle body posture information.

本発明は上記課題を解決するためになされたものであり、グローバル座標系で検出された車両位置に対して車体姿勢に応じた補正を行う際の補正精度をより向上させることができる運搬車両を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and provides a transport vehicle capable of further improving the correction accuracy when correcting the vehicle position detected in the global coordinate system according to the vehicle body posture. The purpose is to provide.

上記課題を解決するための本発明は、車体フレームと、前記車体フレームの前方上部に配置されるデッキと、前記デッキに載置される運転室と、を備えた運搬車両であって、二つの測位衛星電波受信アンテナと、前記運搬車両の姿勢を検出する車体姿勢検出装置と、を有し、前記二つの測位衛星電波受信アンテナは、前記運搬車両の幅方向に間隔を空けて、それぞれ前記デッキに取り付けられ、前記車体姿勢検出装置は、前記運搬車両の上面視において、前記二つの測位衛星電波受信アンテナの設置位置を結ぶ線分を対角線とする矩形領域又は前記デッキの取付可能範囲内に位置する、ことを特徴とする。   The present invention for solving the above-mentioned problems is a transport vehicle comprising a vehicle body frame, a deck disposed at an upper front portion of the vehicle body frame, and a cab mounted on the deck. A positioning satellite radio wave reception antenna and a vehicle body attitude detection device for detecting the attitude of the transport vehicle, wherein the two positioning satellite radio wave reception antennas are spaced apart from each other in the width direction of the transport vehicle, respectively. The vehicle body posture detection device is located in a rectangular area having a line segment connecting the installation positions of the two positioning satellite radio wave receiving antennas as a diagonal line or an attachable range of the deck in a top view of the transport vehicle. It is characterized by.

本発明により、グローバル座標系で検出された車両位置に対して車体姿勢に応じた補正を行う際の補正精度をより向上させることができる運搬車両が提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to provide a transport vehicle that can further improve the correction accuracy when performing correction according to the vehicle body posture with respect to the vehicle position detected in the global coordinate system. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係るダンプ車両の全体構成図1 is an overall configuration diagram of a dump vehicle according to an embodiment of the present invention. 本発明の一実施形態に係るダンプの機能構成を示すブロック図The block diagram which shows the function structure of the dump dump concerning one embodiment of the present invention. ダンプの上面図であって、(a)は2本のGPSアンテナの設置位置を対角線とする矩形領域とデッキとの重複領域内にIMUを設置した状態を示し、(b)は更に対角線上に設置した状態を示す。It is a top view of dumping, (a) shows the state where IMU was installed in the overlap area of the rectangular area and deck which set the installation position of two GPS antennas as a diagonal line, (b) is further on a diagonal line Indicates the installed state. ダンプの上面図であって、(a)は2本のGPSアンテナの設置位置を対角線とする矩形領域とデッキとの重複領域内、かつ2本のGPSアンテナの距離Δxの中心を通るy軸(前後軸)上にIMUを設置した状態を示し、(b)は矩形領域とデッキとの重複領域がない場合に、デッキにIMUを設置した状態を示す。FIG. 6A is a top view of a dump, in which (a) shows a y-axis passing through the center of a distance Δx between two rectangular antennas within an overlapping area between a rectangular area and a deck whose diagonals are two GPS antenna installation positions; (B) shows a state where the IMU is installed on the deck when there is no overlapping area between the rectangular area and the deck. ダンプの上面図であって、2本のGPSアンテナの設置位置を対角線とする矩形領域が形成できない場合にデッキにIMUを設置した状態を示す。It is a top view of a dump truck, and shows a state in which an IMU is installed on a deck when a rectangular area whose diagonal is the installation position of two GPS antennas cannot be formed.

以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明する。以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。なお、以下の実施の形態において、その構成要素(処理ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須ではない。   In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. In the following embodiments, when referring to the number of elements, etc. (including the number, numerical value, quantity, range, etc.), unless otherwise specified and in principle limited to a specific number in principle, It is not limited to the specific number, and may be more or less than the specific number. In the following embodiments, the constituent elements (including processing steps and the like) are not necessarily essential unless explicitly stated or considered to be clearly essential in principle.

また、以下の実施の形態における各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、後述する各構成、機能、処理部、処理手段等は、コンピュータ上で実行されるプログラムとして実現しても良い。すなわち、ソフトウェアとして実現しても良い。各構成、機能、処理部、処理手段等を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。   In addition, each of the configurations, functions, processing units, processing units, and the like in the following embodiments may be realized in part or in whole as, for example, an integrated circuit or other hardware. In addition, each configuration, function, processing unit, processing unit, and the like, which will be described later, may be realized as a program executed on a computer. That is, it may be realized as software. Information such as programs, tables, files, etc. for realizing each configuration, function, processing unit, processing means, etc. is stored in memory, hard disk, storage device such as SSD (Solid State Drive), storage medium such as IC card, SD card, DVD, etc. Can be stored.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一または関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same or related reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.

以下、鉱山内をオペレータが運転することなく自律走行する運搬車両(ダンプトラック、以下「ダンプ」と略記する)に本発明を適用したダンプの構成について図1及び図2を参照して説明する。図1は本発明の一実施形態に係るダンプの全体構成図である。図2は、本発明の一実施形態に係るダンプの機能構成を示すブロック図である。   Hereinafter, a configuration of a dump truck in which the present invention is applied to a transport vehicle (a dump truck, hereinafter abbreviated as “dump truck”) that autonomously travels without being operated by an operator in the mine will be described with reference to FIGS. 1 and 2. FIG. 1 is an overall configuration diagram of a dump truck according to an embodiment of the present invention. FIG. 2 is a block diagram showing a functional configuration of a dump according to an embodiment of the present invention.

図1のダンプ1の構成を説明するにあたり、本実施形態において用いる座標系について説明する。座標系には、ダンプ1の車体座標系とローカル座標系が存在する。車体座標系は、後述する後輪車輪軸(車幅方向)と平行にx軸、車体フレーム40の前後軸(長手方向)と平行にy軸、x軸及びy軸に直交し上方向にz軸が設定される。車体座標系の原点は車両の全長、全幅、全高の範囲内で任意に設定できる。また、ローカル座標系は、車両の位置管理を行う座標系であり、地球上のある位置を原点として真東にE軸、真北にN軸、上方向にU軸が設定される。なお、ローカル座標系は、地球上の絶対座標であるグローバル座標系において、地球上のある位置を原点とする相対座標であるので、グローバル座標系に含まれるものとする。   In describing the configuration of the dump 1 in FIG. 1, a coordinate system used in the present embodiment will be described. The coordinate system includes a vehicle body coordinate system of the dump 1 and a local coordinate system. The vehicle body coordinate system includes an x-axis parallel to a rear wheel axis (vehicle width direction), which will be described later, a y-axis parallel to the front-rear axis (longitudinal direction) of the vehicle body frame 40, and the z-axis upward in the vertical direction. An axis is set. The origin of the vehicle body coordinate system can be arbitrarily set within the range of the overall length, width, and height of the vehicle. The local coordinate system is a coordinate system for managing the position of the vehicle, and the E axis is set to the true east, the N axis is set to the true north, and the U axis is set to the upper direction with a certain position on the earth as the origin. Note that the local coordinate system is a relative coordinate having a certain position on the earth as the origin in the global coordinate system that is an absolute coordinate on the earth, and is therefore included in the global coordinate system.

図1に示すダンプ1は、車体フレーム40と、車体フレーム40の前方下部に取り付けられた従動輪である前輪10及び後方下部に取り付けられた駆動輪である後輪20と、車体フレーム40上に支持軸60を介して回動可能に支持された荷台30と、伸縮することで支持軸60を中心に荷台30を回動させるホイストシリンダ50とを備える。ホイストシリンダ50を伸長させると、荷台30は支持軸60を中心に回動しながら前端を上昇させて傾斜角度を増していくように動作し、荷台30の上に積載した積荷35が荷台30の後端から排出される。   The dump truck 1 shown in FIG. 1 includes a vehicle body frame 40, a front wheel 10 that is a driven wheel attached to a lower front portion of the vehicle body frame 40, a rear wheel 20 that is a drive wheel attached to a lower rear portion, and a vehicle body frame 40. A loading platform 30 that is rotatably supported via a support shaft 60 and a hoist cylinder 50 that rotates the loading platform 30 about the support shaft 60 by expanding and contracting are provided. When the hoist cylinder 50 is extended, the loading platform 30 operates so as to raise the front end while rotating about the support shaft 60 to increase the inclination angle, and the loading 35 loaded on the loading platform 30 becomes the loading platform 30. It is discharged from the rear end.

後輪20は二つのタイヤが横幅を広げるように左右両側共に配置され、後輪タイヤ幅は前輪の約2倍に形成される(図3参照)。また、車体フレーム40には、ブレーキ、ステアリング、エンジン等を含む走行駆動装置350(図2参照)が搭載される。走行駆動装置350から後輪20に駆動力が伝達されることで、前輪10及び後輪20によってダンプ20が路面上を走行する。   The rear wheels 20 are arranged on both the left and right sides so that the two tires have a wider width, and the rear wheel tire width is approximately twice that of the front wheels (see FIG. 3). The vehicle body frame 40 is mounted with a travel drive device 350 (see FIG. 2) including a brake, a steering, an engine, and the like. When the driving force is transmitted from the traveling drive device 350 to the rear wheel 20, the dump wheel 20 travels on the road surface by the front wheel 10 and the rear wheel 20.

車体フレーム40の前方上部にはラジエータ(不図示)を収容する建屋70と、その上部に設置され、運転席80を支持するデッキ90とが備えられる。   A front portion 70 of the vehicle body frame 40 includes a building 70 that houses a radiator (not shown), and a deck 90 that is installed on the upper portion and supports the driver's seat 80.

ダンプ1の前方には、グローバル座標系の車両位置を検出するための構成として、2本のGPSアンテナ(測位衛星電波受信アンテナに相当)101、102と、それらGPSアンテナ101、102が受信したGPS衛星情報を基にダンプ1のグローバル座標系の車両位置を検出する車両位置検出装置103と、自車両の車体姿勢を算出する車体姿勢算出装置200と、ダンプ1の自律走行制御を行う車載端末装置300と、を備える。   In front of the dump 1, as a configuration for detecting the vehicle position in the global coordinate system, two GPS antennas (corresponding to positioning satellite radio wave receiving antennas) 101 and 102, and GPS received by the GPS antennas 101 and 102 are provided. Vehicle position detection device 103 that detects the vehicle position of the global coordinate system of dump 1 based on satellite information, vehicle body posture calculation device 200 that calculates the vehicle body posture of the host vehicle, and in-vehicle terminal device that performs autonomous travel control of dump 1 300.

本実施形態では、グローバル座標系の車両位置検出装置としてGPSを用いるが、車両位置算出装置はGPSに限らず、全地球航法衛星システム(GNSS:Global Navigation System)を構成する航法衛星から測位衛星電波を受信して自車両の位置を取得するものであればよく、GLONASS(Global Navigation Satellite System)、GALILEOを用いてもよい。   In this embodiment, GPS is used as a global coordinate system vehicle position detection device. However, the vehicle position calculation device is not limited to GPS, and positioning satellite radio waves are generated from navigation satellites that constitute a global navigation satellite system (GNSS). May be used as long as the position of the host vehicle is acquired, and GLONASS (Global Navigation Satellite System) or GALILEO may be used.

また、本実施形態では、車体姿勢算出装置200としてIMUを用いるので、以下ではIMU200と記載する。   Further, in the present embodiment, an IMU is used as the vehicle body posture calculation device 200, and hence is referred to as an IMU 200 below.

図1では、車両位置検出装置103及びIMU200をデッキ90の上面に設置した状態を図示するが、デッキ90とIMU200及び車両位置検出装置103の設置位置は、デッキ90の上面に設置する場合に限らず、デッキ90の下面に設置してもよい。車載端末装置300の配置位置も一例にすぎず、図1に限定されない。   Although FIG. 1 illustrates a state where the vehicle position detection device 103 and the IMU 200 are installed on the upper surface of the deck 90, the installation positions of the deck 90, the IMU 200 and the vehicle position detection device 103 are limited to the case where they are installed on the upper surface of the deck 90. Instead, it may be installed on the lower surface of the deck 90. The arrangement position of the in-vehicle terminal device 300 is only an example, and is not limited to FIG.

前輪10には、車輪の回転数により車輪が向いている方向の速度を計測する車輪速度センサ210が備えられる。車輪速度センサ210は、後輪20に取り付けられてもよいし、前輪10及び後輪20の双方に取り付けられてもよい。   The front wheel 10 is provided with a wheel speed sensor 210 that measures the speed in the direction in which the wheel faces depending on the number of rotations of the wheel. The wheel speed sensor 210 may be attached to the rear wheel 20 or may be attached to both the front wheel 10 and the rear wheel 20.

また、車体フレーム40には、操舵角(前輪車輪の車体軸に対する傾き)を検出する操舵角センサ220(図2参照)及び走行制御装置350も搭載される。I   The vehicle body frame 40 is also equipped with a steering angle sensor 220 (see FIG. 2) for detecting the steering angle (tilt of the front wheels relative to the vehicle body axis) and a travel control device 350. I

車両位置検出装置103は、GPSアンテナ101、102から得られるGPS衛星情報を基に、メインとなるGPSアンテナ101の位置(GPS基準位置)を検出する。また、GPSアンテナ101から102へのベクトルを検出する。   The vehicle position detection device 103 detects the position (GPS reference position) of the main GPS antenna 101 based on GPS satellite information obtained from the GPS antennas 101 and 102. Further, a vector from the GPS antenna 101 to 102 is detected.

IMU200は、図2に示すように、加速度センサ201、ジャイロセンサ202及び車体姿勢演算部203を含む。加速度センサ201は車体座標系のx軸、y軸の少なくとも2軸に対する加速度を検出し、ジャイロセンサは車体座標系の少なくともz軸周りの角速度を検出する。
車体姿勢演算部203は、車体にかかる重力方向を含めた加速度と、車体フレーム40の回転角速度が計測された結果と、車輪速度センサ210が計測した車両運動方向の車体速度と、操舵角センサ220が検知した操舵角とを用いて、車体フレーム40の車体姿勢情報として、ダンプ1のピッチ角、ロール角、及びヨー角(これらを総称して姿勢角という)を算出する。ここで、ピッチ角は、x軸がローカル座標系EN面平面となす角度であり、ロール角は、x軸周りの回転角度であり、ヨー角はx軸がローカル座標系E軸となす角度である。
As shown in FIG. 2, the IMU 200 includes an acceleration sensor 201, a gyro sensor 202, and a vehicle body posture calculation unit 203. The acceleration sensor 201 detects acceleration with respect to at least two axes of the x-axis and y-axis of the vehicle body coordinate system, and the gyro sensor detects an angular velocity around at least the z-axis of the vehicle body coordinate system.
The vehicle body posture calculation unit 203 includes the acceleration including the direction of gravity applied to the vehicle body, the result of measuring the rotational angular velocity of the vehicle body frame 40, the vehicle body velocity in the vehicle movement direction measured by the wheel speed sensor 210, and the steering angle sensor 220. Is used to calculate the pitch angle, roll angle, and yaw angle (collectively referred to as the attitude angle) of the dump truck 1 as the vehicle body posture information of the vehicle body frame 40. Here, the pitch angle is an angle formed by the x axis with the local coordinate system EN plane, the roll angle is a rotation angle around the x axis, and the yaw angle is an angle formed by the x axis with the local coordinate system E axis. is there.

車載端末装置300は、車両位置検出装置103から取得したGPS基準位置を、IMU200から取得した姿勢角を用いて補正するとともに予め記憶されたGPS基準位置とダンプ1の車両原点との位置ずれ情報を基に、ダンプ1の自律走行制御に用いる車両位置に補正する車両位置補正部301と、ダンプ1の運行管理を行う運行管理サーバ(不図示)との間でダンプ1に対して付与された走行許可区間を示す走行許可区間情報の要求及び応答の送受信を行う無線通信制御部302と、ダンプ1が自律走行する経路を示す地図情報を格納した地図情報記憶部303と、走行許可区間内の経路に車両位置が沿って走行させるための制御信号、例えば操舵角信号、ブレーキ作動信号、燃料噴射信号を、走行駆動装置350に出力する自律走行制御部304と、を含む。   The in-vehicle terminal device 300 corrects the GPS reference position acquired from the vehicle position detection device 103 using the attitude angle acquired from the IMU 200 and also stores positional deviation information between the GPS reference position stored in advance and the vehicle origin of the dump 1. Based on the vehicle position correction unit 301 that corrects the vehicle position used for the autonomous traveling control of the dump 1 and the operation management server (not shown) that manages the operation of the dump 1, the travel given to the dump 1 A wireless communication control unit 302 that transmits and receives a request and response for travel permission section information indicating a permitted section, a map information storage unit 303 that stores map information indicating a route on which the dump 1 travels autonomously, and a route in the travel permitted section Autonomous traveling that outputs a control signal for traveling along the vehicle position to the traveling drive device 350, such as a steering angle signal, a brake actuation signal, and a fuel injection signal It includes a control unit 304, a.

鉱山用のダンプ10は特に積載量が大きく、積荷の積載状態では車体フレーム40に大きな重量が乗る。そのため車体フレーム40が必ずしも剛体として扱えるわけではなく、特に車体フレーム40のy軸にはフレームのねじり、うねりが生じる。また、車体フレーム40は前輪10及び後輪20とダンパ等を介して繋がっているので、車両運動とは別に車体フレーム40自体の振動などが生じる。IMU200の取付位置によっては、これらの影響により、計測される加速度・角速度には車両運動以外の誤差要因、例えば振動、うねり、ねじりによる影響が含まれる。   The dump truck 10 for mine has a particularly large loading capacity, and a heavy weight is put on the body frame 40 in a loaded state. Therefore, the body frame 40 is not necessarily handled as a rigid body, and in particular, the frame is twisted and undulated on the y-axis of the body frame 40. Further, since the vehicle body frame 40 is connected to the front wheels 10 and the rear wheels 20 via dampers, vibration of the vehicle body frame 40 itself is generated separately from the vehicle motion. Depending on the mounting position of the IMU 200, due to these effects, the measured acceleration / angular velocity includes an error factor other than the vehicle motion, for example, the effects of vibration, swell, and torsion.

したがって、車両運動以外の誤差要因を含んだ姿勢角を用いて、車両位置補正部301が車両位置の補正を行うと、補正後の車両位置が実際のダンプ1のローカル座標系の位置からずれることとなり、自律走行制御における位置制御の精度低下を招く。   Therefore, when the vehicle position correction unit 301 corrects the vehicle position using the attitude angle including an error factor other than the vehicle motion, the corrected vehicle position is deviated from the actual position of the local coordinate system of the dump truck 1. Thus, the accuracy of position control in autonomous traveling control is reduced.

そこで、IMU200の姿勢角に上記誤差要因が含まれることを軽減するために、ダンプ1の上面視において、二つGPSアンテナ101,102の設置位置を結ぶ線分を対角線とする矩形領域又はデッキ90の取付可能範囲内にIMU200を位置させる構成について、図3乃至図5を参照して説明する。上記「デッキ90の取付可能範囲内には、デッキに直接設けるほか、設けられたサポート(支柱)や手すりなどを介して設けられる場合も含む。」図3は、ダンプの上面図であって、(a)は2本のGPSアンテナの設置位置を対角線とする矩形領域とデッキとの重複領域内にIMUを設置した状態を示し、(b)は更に対角線上に設置した状態を示す。図4は、ダンプの上面図であって、(a)は2本のGPSアンテナの設置位置を対角線とする矩形領域とデッキとの重複領域内、かつ2本のGPSアンテナの距離Δxの中心を通るy軸(前後軸)上にIMUを設置した状態を示し、(b)は矩形領域とデッキとの重複領域がない場合に、デッキにIMUを設置した状態を示す。図5は、ダンプの上面図であって、2本のGPSアンテナの設置位置を対角線とする矩形領域が形成できない場合にデッキにIMUを設置した状態を示す。   Therefore, in order to reduce the fact that the error angle is included in the attitude angle of the IMU 200, a rectangular area or deck 90 having a line segment connecting the installation positions of the two GPS antennas 101 and 102 as a diagonal line when the dump 1 is viewed from above. A configuration in which the IMU 200 is positioned within the attachable range will be described with reference to FIGS. 3 to 5. The above-mentioned “within the mountable range of the deck 90 includes not only directly provided on the deck but also provided via a support (post) or a handrail.” FIG. 3 is a top view of the dump truck. (A) shows the state where the IMU is installed in the overlapping area between the rectangular area and the deck where the installation positions of the two GPS antennas are diagonal lines, and (b) shows the state where they are further installed on the diagonal line. FIG. 4 is a top view of the dump, in which (a) shows the center of the distance Δx between the two GPS antennas in the overlapping area between the rectangular area and the deck whose diagonal is the installation position of the two GPS antennas. The state where the IMU is installed on the passing y-axis (front-rear axis) is shown, and (b) shows the state where the IMU is installed on the deck when there is no overlapping area between the rectangular area and the deck. FIG. 5 is a top view of the dump truck and shows a state in which an IMU is installed on the deck when a rectangular area whose diagonal line is the installation position of the two GPS antennas cannot be formed.

図3の(a)、(b)及び図4の(a)では、ダンプ1の上面視においてGPSアンテナ101、102は、ダンプ1の前方、かつダンプ1の車体フレーム40からはみ出してデッキ90に取り付けられる。GPSアンテナ101、102は、x軸方向に距離Δx、y軸方向に距離Δy離して取り付けられる。図3では、GPSアンテナ101、102の取付位置の2点を線分をDLで表し、これを対角線とする矩形領域を符号400で表す。   3 (a), 3 (b), and 4 (a), the GPS antennas 101 and 102 protrude from the front of the dump 1 and from the body frame 40 of the dump 1 to the deck 90 when the dump 1 is viewed from above. It is attached. The GPS antennas 101 and 102 are attached with a distance Δx in the x-axis direction and a distance Δy in the y-axis direction. In FIG. 3, two points of the attachment positions of the GPS antennas 101 and 102 are represented by DL as a line segment, and a rectangular region having the diagonal line as a line is represented by reference numeral 400.

姿勢角に含まれるうねり、ねじりによる誤差は、簡単にモデル化するとそれぞれピッチ角誤差、ロール角誤差となると考えられる。また、メインとなるGPSアンテナ101周辺から見ると、うねり・ねじりの誤差は共にある振幅を持った波として扱えるので、以下のように表すことができる。
うねり誤差[deg]=うねり振幅×sin (GPSアンテナからの距離/周期)
ねじり誤差[deg]=ねじり振幅×sin (GPSアンテナからの距離/周期)
Errors due to undulation and torsion included in the attitude angle are considered to be a pitch angle error and a roll angle error, respectively, when modeled simply. Further, when viewed from the vicinity of the main GPS antenna 101, the undulation and torsion errors can be handled as waves having a certain amplitude, and can be expressed as follows.
Swell error [deg] = swell amplitude × sin (distance / period from GPS antenna)
Twist error [deg] = torsion amplitude × sin (distance / period from GPS antenna)

うねりやねじりの周期はダンプ車体長に比べ十分に長いと考えられるので、GPSアンテナ101からの距離が長ければ長いほど誤差が大きくなる。そのため、GPSアンテナ101からIMU200までの距離が短くなるようにIMU200を配置する。このときの配置の目安としては、うねり、ねじり誤差が少ないと考えられる距離である。これは、ねじりやうねりの誤差が少ないと考えられる長さ(許容誤差距離)と言い換えることができる。   Since the swell and twist cycles are considered to be sufficiently longer than the dump vehicle body length, the longer the distance from the GPS antenna 101, the greater the error. Therefore, the IMU 200 is arranged so that the distance from the GPS antenna 101 to the IMU 200 is shortened. As a guideline of the arrangement at this time, a distance that is considered to have little swell and twist error. This can be rephrased as a length (allowable error distance) that is considered to have little torsional or undulating error.

例えば、図3(a)、(b)、図4(a)のように、デッキ90の奥行き分(Δy)だけずらしてもう一つのGPSアンテナ102を設置すれば、GPSアンテナ間の差異を車体傾きを近似することができる。GPSアンテナ101と、もう一方のGPSアンテナ102までのローカル座標系EN平面に対する傾きを車両位置検出装置103が出力するベクトルから計算し、その間にIMU200が存在すれば、GPSを受信したタイミングでIMU200から得られる誤差を含んだ傾きを修正することができる。この処理により、運動中の車体フレーム40に現れる、うねり・ねじりによる誤差が静的な状態に近づき、位置の補正(ローカル座標系と車体座標系との間の変換)への影響を少なくすることができる。同様に、車体フレーム40の幅方向にもキャブデッキの幅分(Δx)だけずらして取り付ければ同様の効果が得られる。   For example, as shown in FIGS. 3 (a), 3 (b), and 4 (a), if another GPS antenna 102 is installed with a shift of the depth of the deck 90 (Δy), the difference between the GPS antennas can be reduced. The slope can be approximated. The inclination with respect to the local coordinate system EN plane to the GPS antenna 101 and the other GPS antenna 102 is calculated from a vector output by the vehicle position detection device 103. If the IMU 200 exists between them, the GPS is received from the IMU 200 at the timing of receiving the GPS. The obtained inclination including the error can be corrected. By this processing, errors due to waviness and torsion appearing on the moving body frame 40 approach a static state, and the influence on position correction (conversion between the local coordinate system and the vehicle body coordinate system) is reduced. Can do. Similarly, the same effect can be obtained by shifting the body frame 40 in the width direction by shifting the width of the cab deck (Δx).

これは、図3(a)、(b)、図4(a)において複数のGPSアンテナ101および102で囲まれた平面(矩形領域400を含む平面)を考え、その平面に歪みが無いと仮定し、その平面上にIMU200が存在するとして計算することになる。従って、その平面上にIMU200を配置してもよい。より具体的には、図3の(a)に示すように、矩形領域400とデッキ90との重複領域内にIMU200を配置する。これにより、姿勢角に含まれるうねり、ねじれの影響を低減することができる。   3A, 3B and 4A, a plane surrounded by a plurality of GPS antennas 101 and 102 (a plane including the rectangular region 400) is assumed, and it is assumed that there is no distortion in the plane. Then, the calculation is performed assuming that the IMU 200 exists on the plane. Therefore, the IMU 200 may be arranged on the plane. More specifically, as shown in FIG. 3A, the IMU 200 is arranged in an overlapping area between the rectangular area 400 and the deck 90. Thereby, the influence of the wave | undulation and twist included in a posture angle can be reduced.

この平面は更に詳細に見れば、GPSアンテナ100とGPSアンテナ101とによって作られる平面であるため、この軸から離れれば誤差を含むことになる。理想的にはGPSアンテナ100とGPSアンテナ101を結ぶ線上にIMU200が存在すると更に望ましい(図3の(b)参照)。これにより、GPSアンテナ101、102との最短距離である対角線DL上にIMU200を配置することができ、図3の(a)の場合よりもねじれ、うねりの影響を低減することができる。   In more detail, since this plane is a plane formed by the GPS antenna 100 and the GPS antenna 101, an error is included if the plane is separated from this axis. Ideally, it is more desirable that the IMU 200 exists on a line connecting the GPS antenna 100 and the GPS antenna 101 (see FIG. 3B). Thereby, IMU200 can be arrange | positioned on the diagonal line DL which is the shortest distance with GPS antenna 101,102, and the influence of a twist and a wave | undulation can be reduced rather than the case of (a) of FIG.

また車体フレーム40自体の振動による姿勢検出誤差は、IMU200において、加速度センサ201にうねり、ねじれ以外の誤差が乗ることにより発生する。例えば、車体フレーム40のx軸周りに発生するロール角速度は、車輪速度センサ210と操舵角センサ220によって計算される横加速度とは別に発生し、これが、加速度センサ201の出力値に相対的に大きく影響する。   Further, the posture detection error due to the vibration of the vehicle body frame 40 itself is caused by an error other than the undulation and torsion of the acceleration sensor 201 in the IMU 200. For example, the roll angular velocity generated around the x-axis of the body frame 40 is generated separately from the lateral acceleration calculated by the wheel speed sensor 210 and the steering angle sensor 220, and this is relatively larger than the output value of the acceleration sensor 201. Affect.

そこで、図4の(a)のようにIMU200をΔxの中点を通る車体フレーム40のy軸(ax1と図示)上に設置することで、車体のロール角運動による角速度の影響を最小限に抑えることができる。   Therefore, as shown in FIG. 4A, the IMU 200 is installed on the y-axis (shown as ax1) of the vehicle body frame 40 passing through the midpoint of Δx, thereby minimizing the influence of the angular velocity due to the roll angular motion of the vehicle body. Can be suppressed.

また、図4の(b)に示すように、デッキ90の前方に突出した支持体102aを備え、支持体102の前方端部にGPSアンテナ102を取り付けるともに、GPSアンテナ101をデッキ90のy軸ax1を挟んでGPSアンテナ102とは反対側のデッキ90の前端部に備えた場合、矩形領域400とデッキ90との重複領域がない、すなわち、矩形領域400がダンプ1からはみ出した状態となる。この場合、IMU200をデッキ90に設置してもよい。更には、デッキ90における前後軸ax1上に設置してもよい。GPSアンテナ101、102の設置位置は、ダンプ1は荷台30の回動範囲に干渉しないことや、デッキ90の面積などの制約を受けるので、ダンプ1の車体から前方にはみ出した状態でGPSアンテナ101、102を設けなければならないことがある。この場合、デッキ90にIMU200を設置することで、GPSアンテナ101、102へより近づけることができ、GPS衛星信号とIMUの検出誤差をより小さくすることができる。   Further, as shown in FIG. 4B, a support body 102 a protruding forward of the deck 90 is provided, the GPS antenna 102 is attached to the front end of the support body 102, and the GPS antenna 101 is attached to the y-axis of the deck 90. When the front end portion of the deck 90 on the opposite side of the GPS antenna 102 with the ax1 interposed is provided, there is no overlapping area between the rectangular area 400 and the deck 90, that is, the rectangular area 400 protrudes from the dump 1. In this case, the IMU 200 may be installed on the deck 90. Further, the deck 90 may be installed on the front-rear axis ax1. The installation positions of the GPS antennas 101 and 102 are such that the dump 1 does not interfere with the rotation range of the loading platform 30 and is restricted by the area of the deck 90 and the like. , 102 may have to be provided. In this case, by installing the IMU 200 on the deck 90, the GPS antennas 101 and 102 can be brought closer, and the detection error between the GPS satellite signal and the IMU can be further reduced.

また、図5に示すように、GPSアンテナ101、102を前後軸ax1方向に間隔を空けずにデッキ90に設置した場合、矩形領域400が形成できず、矩形領域400とデッキ90との重複領域がない。この場合デッキ90にIMU200を設置することで、デッキ90外にIMU200を設置する場合に比べてGPSアンテナ101、102とIMU200との距離を近づけることができ、姿勢角に対する誤差要因の影響を低減できる。   Further, as shown in FIG. 5, when the GPS antennas 101 and 102 are installed on the deck 90 without being spaced apart in the front-rear axis ax1 direction, the rectangular area 400 cannot be formed, and the rectangular area 400 overlaps with the deck 90. There is no. In this case, by installing the IMU 200 on the deck 90, the distance between the GPS antennas 101 and 102 and the IMU 200 can be made shorter than when the IMU 200 is installed outside the deck 90, and the influence of error factors on the posture angle can be reduced. .

本実施形態によれば、車体姿勢情報に含まれる車体フレーム自体の振動による姿勢検出誤差、うねりによる誤差による姿勢検出誤差、ねじりによる姿勢検出誤差を少なくすることができ、車両位置の検出精度を向上させることができる。   According to the present embodiment, posture detection error due to vibration of the vehicle body frame itself included in vehicle body posture information, posture detection error due to waviness error, posture detection error due to torsion can be reduced, and vehicle position detection accuracy is improved. Can be made.

なお、上記した実施形態は、本発明を説明するための例示であり、本発明の範囲を上記実施形態に限定する趣旨ではない。当業者は、本発明の要旨を逸脱しない範囲で、他の様々な態様で本発明を実施することできる。   The above-described embodiment is an example for explaining the present invention, and is not intended to limit the scope of the present invention to the above-described embodiment. Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.

一例として、図3、図4に示すIMUの各取付位置例を適宜組み合わせてもよい。例えば図3の(b)に示す対角線上DL、かつ図4の(a)に示すy軸ax1の交点上にIMU200を設置してもよい。これにより、車体フレームの振動、うねり、ねじれを低減する位置にIMUを配置することができる。   As an example, the IMU mounting position examples shown in FIGS. 3 and 4 may be appropriately combined. For example, the IMU 200 may be installed on the diagonal line DL shown in FIG. 3B and the intersection of the y-axis ax1 shown in FIG. Thereby, IMU can be arrange | positioned in the position which reduces the vibration of a vehicle body frame, a wave | undulation, and a twist.

また、図3及び図4の(a)では、GPSアンテナ101、102は、デッキ90からはみ出した位置に取り付けられるが、デッキ90上に取り付けてもよい。この場合、矩形領域400の面積は、デッキ90の上面よりも小さくなるが、デッキ90上における矩形領域400内、即ち
デッキ90と矩形領域400との重複領域内にIMU200を設置することで、上記で説明したのと同様の効果を奏することができる。
In FIGS. 3 and 4A, the GPS antennas 101 and 102 are attached at positions protruding from the deck 90, but may be attached on the deck 90. In this case, the area of the rectangular area 400 is smaller than the upper surface of the deck 90, but the IMU 200 is installed in the rectangular area 400 on the deck 90, that is, in the overlapping area of the deck 90 and the rectangular area 400. The same effect as described in the above can be obtained.

また、本実施形態では本発明をダンプに適用した例を挙げて説明したが、ダンプ以外の作業機械である油圧ショベルやホイールローダ等の車両位置の検出にも適用することができる。   In the present embodiment, the example in which the present invention is applied to a dump truck has been described. However, the present invention can also be applied to detection of a vehicle position such as a hydraulic excavator or a wheel loader that is a working machine other than the dump truck.

1:ダンプ、40:車体フレーム、90:デッキ、101,102:GPSアンテナ、200:IMU、400:矩形領域、 1: dump, 40: body frame, 90: deck, 101, 102: GPS antenna, 200: IMU, 400: rectangular area,

Claims (3)

車体フレームと、前記車体フレームの前方上部に配置されるデッキと、前記デッキに載置される運転室と、を備えた運搬車両であって、
二つの測位衛星電波受信アンテナと、
前記運搬車両の姿勢を検出する車体姿勢検出装置と、を有し、
前記二つの測位衛星電波受信アンテナは、前記運搬車両の幅方向に間隔を空けて、それぞれ前記デッキに取り付けられ、
前記車体姿勢検出装置は、前記運搬車両の上面視において、前記二つの測位衛星電波受信アンテナの設置位置を結ぶ線分を対角線とする矩形領域又は前記デッキの取付可能範囲内に位置する、
ことを特徴とする運搬車両。
A transport vehicle comprising a vehicle body frame, a deck disposed at an upper front portion of the vehicle body frame, and a cab mounted on the deck,
Two positioning satellite radio receiving antennas,
A vehicle body posture detection device for detecting the posture of the transport vehicle,
The two positioning satellite radio wave receiving antennas are attached to the deck, with an interval in the width direction of the transport vehicle,
The vehicle body posture detection device is located in a rectangular area having a line connecting the installation positions of the two positioning satellite radio wave reception antennas as diagonal lines or in an attachable range of the deck in a top view of the transport vehicle.
A transport vehicle characterized by that.
前記車体姿勢検出装置は、前記矩形領域又は前記デッキの取付可能範囲内において、前記二つの測位衛星電波受信アンテナの幅方向に沿った距離の中点を通る前記車体フレームの前後軸上に配置される、
ことを特徴とする請求項1に記載の運搬車両。
The vehicle body posture detection device is disposed on the longitudinal axis of the vehicle body frame passing through the midpoint of the distance along the width direction of the two positioning satellite radio wave receiving antennas within the rectangular area or the mountable range of the deck. The
The transport vehicle according to claim 1.
前記二つの測位衛星電波受信アンテナは、前記運搬車両の前後方向に間隔を空けて、それぞれ前記デッキに取り付けられ、
前記車体姿勢検出装置は、前記矩形領域と前記デッキとの重複領域がある場合には当該重複領域内に設置され、前記重複領域がない場合には前記デッキに設置される、
ことを特徴とする請求項1に記載の運搬車両。
The two positioning satellite radio wave receiving antennas are respectively attached to the deck with an interval in the front-rear direction of the transport vehicle,
The vehicle body posture detection device is installed in the overlapping area when there is an overlapping area between the rectangular area and the deck, and is installed in the deck when there is no overlapping area.
The transport vehicle according to claim 1.
JP2014194102A 2014-09-24 2014-09-24 Transport vehicle Pending JP2016065769A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014194102A JP2016065769A (en) 2014-09-24 2014-09-24 Transport vehicle
PCT/JP2015/056265 WO2016047166A1 (en) 2014-09-24 2015-03-03 Transport vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194102A JP2016065769A (en) 2014-09-24 2014-09-24 Transport vehicle

Publications (1)

Publication Number Publication Date
JP2016065769A true JP2016065769A (en) 2016-04-28

Family

ID=55580708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194102A Pending JP2016065769A (en) 2014-09-24 2014-09-24 Transport vehicle

Country Status (2)

Country Link
JP (1) JP2016065769A (en)
WO (1) WO2016047166A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054465A (en) * 2017-09-15 2019-04-04 株式会社小松製作所 Display system, display method, and display device
JP2019088259A (en) * 2017-11-16 2019-06-13 井関農機株式会社 Work vehicle
JP2020089388A (en) * 2020-02-17 2020-06-11 井関農機株式会社 Work vehicle and automatic straight traveling support system of the same
WO2020256036A1 (en) * 2019-06-20 2020-12-24 ヤンマーパワーテクノロジー株式会社 Work vehicle
WO2022009949A1 (en) * 2020-07-09 2022-01-13 株式会社Nichijo Transport vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098904B2 (en) * 2017-09-29 2022-07-12 セイコーエプソン株式会社 Physical quantity sensor, inertial measurement unit, mobile positioning device, electronic device and mobile body
WO2019148430A1 (en) * 2018-02-01 2019-08-08 深圳市固胜智能科技有限公司 Mounting structure for inertial measurement unit and pan-tilt device
US11280616B2 (en) 2019-07-11 2022-03-22 Caterpillar Inc. Operating status identification system for machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064725A (en) * 2001-08-28 2003-03-05 Maeda Corp Unmanned mechanical earth work system
WO2005119290A1 (en) * 2004-05-17 2005-12-15 Csi Wireless Inc. Satellite position and heading sensor for vehicle steering control
JP5419665B2 (en) * 2009-12-10 2014-02-19 三菱電機株式会社 POSITION LOCATION DEVICE, POSITION LOCATION METHOD, POSITION LOCATION PROGRAM, Velocity Vector Calculation Device, Velocity Vector Calculation Method, and Velocity Vector Calculation Program
JP6008510B2 (en) * 2012-02-20 2016-10-19 株式会社小野測器 Measuring device and measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054465A (en) * 2017-09-15 2019-04-04 株式会社小松製作所 Display system, display method, and display device
US11230825B2 (en) 2017-09-15 2022-01-25 Komatsu Ltd. Display system, display method, and display apparatus
JP2019088259A (en) * 2017-11-16 2019-06-13 井関農機株式会社 Work vehicle
WO2020256036A1 (en) * 2019-06-20 2020-12-24 ヤンマーパワーテクノロジー株式会社 Work vehicle
JP2021000020A (en) * 2019-06-20 2021-01-07 ヤンマーパワーテクノロジー株式会社 Work vehicle
JP2020089388A (en) * 2020-02-17 2020-06-11 井関農機株式会社 Work vehicle and automatic straight traveling support system of the same
WO2022009949A1 (en) * 2020-07-09 2022-01-13 株式会社Nichijo Transport vehicle
JP2022015384A (en) * 2020-07-09 2022-01-21 株式会社Nichijo Transport vehicle
JP7041720B2 (en) 2020-07-09 2022-03-24 株式会社Nichijo Carrier

Also Published As

Publication number Publication date
WO2016047166A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2016047166A1 (en) Transport vehicle
AU2015325965B2 (en) Movement control device for work vehicle, and work vehicle
JP6386839B2 (en) Position calculation device and transport vehicle
JP4586172B2 (en) Inertial navigation system
JP6315696B2 (en) Transportation vehicle stop position calculation device
CN104871106A (en) Mining machine, management system for mining machine, and management method for mining machine
US20140168009A1 (en) Multi-IMU INS for vehicle control
JP6671152B2 (en) Abnormality detection device of self-position estimation device and vehicle
AU2015200793B2 (en) Compensating for acceleration induced inclination errors
WO2013047180A1 (en) Construction machine
JP2017016477A (en) Work machine travel assist system and transport vehicle
JP6586509B2 (en) Antenna mounting structure and dump truck
JP2020064011A (en) Laser scanner calibration method, and transporting machine
JP7084244B2 (en) Work machine control system, work machine, and work machine control method
WO2014156903A1 (en) Delivery vehicle
JP7016297B2 (en) Work machine
JP6297228B2 (en) Work vehicle control system, work vehicle, and work vehicle control method
JP7419119B2 (en) working machine
JP2021172972A (en) Control system and control method
WO2021210613A1 (en) Positioning system for work machine, work machine, and positioning method for work machine
US11873621B2 (en) System and method for tracking motion of linkages for self-propelled work vehicles in independent coordinate frames
EP3913146B1 (en) Work machine with collision mitigation system
JP7141883B2 (en) WORKING MACHINE CONTROL SYSTEM, WORKING MACHINE, AND WORKING MACHINE CONTROL METHOD
US20230417017A1 (en) Swiveling work machine and method for detecting orientation of swiveling work machine
JP7165239B1 (en) electronic controller