JP2016063673A - Protection structure for solar cell - Google Patents

Protection structure for solar cell Download PDF

Info

Publication number
JP2016063673A
JP2016063673A JP2014190795A JP2014190795A JP2016063673A JP 2016063673 A JP2016063673 A JP 2016063673A JP 2014190795 A JP2014190795 A JP 2014190795A JP 2014190795 A JP2014190795 A JP 2014190795A JP 2016063673 A JP2016063673 A JP 2016063673A
Authority
JP
Japan
Prior art keywords
solar cell
protective structure
light
power generation
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014190795A
Other languages
Japanese (ja)
Inventor
幸三 三好
Kozo Miyoshi
三好  幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTELLATECH Inc
Original Assignee
ASTELLATECH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTELLATECH Inc filed Critical ASTELLATECH Inc
Priority to JP2014190795A priority Critical patent/JP2016063673A/en
Publication of JP2016063673A publication Critical patent/JP2016063673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protection structure capable of improving total power generation amount and designability of a solar cell, suppressing power generation amount from decreasing due to an obstacle or the like, protecting the solar cell from scattering matter, and preventing generation of light pollution by reflectance.SOLUTION: The protection structure, having a three-dimensional structure installed on the incident light side of the solar cell, includes a physical protection function against the solar cell and a function for changing an incidence angle of incident light as well as a function for changing a reflection angle of light reflected on a surface of the solar cell.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池モジュールの表面側に設置する光学機能を持った保護構造体に関する。   The present invention relates to a protective structure having an optical function that is installed on the surface side of a solar cell module.

近年、太陽光発電は環境保護と安全性の観点から普及が進んでおり、家庭用にも急速に広がってきている。太陽電池は主にシリコン材料をベースとしたシリコン型太陽電池が主流であるが、化合物半導体や、有機材料を用いた太陽電池も作られるようになり、それぞれ異なる特徴を持つ。一般的には、単純に変換効率と価格の兼ね合いで選定されるケースが多い。   In recent years, solar power generation has been spreading from the viewpoint of environmental protection and safety, and has been rapidly spreading to home use. The main type of solar cell is a silicon type solar cell based on a silicon material. However, a solar cell using a compound semiconductor or an organic material has also been made and has different characteristics. In general, there are many cases in which the selection is simply based on a balance between conversion efficiency and price.

一般家庭に太陽電池を設置する場合には、経済性以外にもデザイン性が重要な要素を占める。新築の住宅においては、ある程度太陽電池を屋根デザインにマッチした形での設置が可能であるが、後付けの形ではかなり困難である。   When installing solar cells in ordinary households, design is an important factor in addition to economic efficiency. In a newly built house, it is possible to install solar cells in a form that matches the roof design to some extent, but it is quite difficult to retrofit.

太陽電池の発電量に関しては、屋根の形状等の事情から必ずしも最適の設置はできず、近隣の住宅、電柱等の障害物により部分的に陰が生じて極端に発電量を落としてしまうケースもある。   As for the amount of power generated by solar cells, it cannot always be installed optimally due to the shape of the roof, etc., and there are cases where the shade is caused by obstacles such as neighboring houses and utility poles, resulting in extremely low power generation. is there.

特に太陽電池が単純に直列接続されている場合、光によって生じる電流値は、直列接続されているセルの中で最も低いものに引きずられてしまう。一般的に陰の部分の光量は直射光の10分の1程度であるから、一般的な100V出力を得るために200個のセルを直列につなぐと、この内たった1個のセルが陰になっただけで全体の出力が10分の1になってしまうということがおこる。   In particular, when solar cells are simply connected in series, the current value generated by light is dragged to the lowest cell connected in series. In general, the amount of light in the shadow area is about one-tenth that of direct light. Therefore, when 200 cells are connected in series to obtain a general 100V output, only one of these cells appears in the shadow. It just happens that the overall output is reduced to 1/10.

また、太陽電池表面はガラス材であることが多く、さらにその表面はフラットであるから太陽光を特定の方向に反射する。入射角が大きくなると際立って反射光強度が大きくなり、太陽電池の発電に使えないばかりか、近隣住宅に迷惑をかけるといった問題も起きている。   In addition, the surface of the solar cell is often a glass material, and the surface is flat so that sunlight is reflected in a specific direction. When the incident angle is increased, the reflected light intensity is remarkably increased, and not only can it be used for power generation of solar cells, but also causes problems for neighboring houses.

これらの課題の内、デザイン性と反射光抑制に関しては、セラミックス凸状膨隆部および表面彩色層を配設してデザイン性と反射光の抑制をする提案(特許文献1参照)がなされている。   Among these problems, with respect to designability and reflected light suppression, a proposal has been made to suppress the designability and reflected light by disposing a ceramic convex bulge and a surface coloring layer (see Patent Document 1).

また、太陽光の利用効率改善のためには、光の入射角を変えて、朝夕の発電効率を上げる提案(特許文献2参照)や、マイクロレンズ等を用いて広範囲の角度で入射する光を集光する提案(特許文献3参照)がなされている。   In addition, in order to improve the utilization efficiency of sunlight, a proposal for increasing the power generation efficiency in the morning and evening by changing the incident angle of light (see Patent Document 2), and light incident at a wide range of angles using a microlens, etc. The proposal which condenses (refer patent document 3) is made | formed.

特開2012−134546号公報JP 2012-134546 A 特開平8−162658号公報JP-A-8-162658 特開2009−139418号公報JP 2009-139418 A

しかしながら、特許文献1の太陽電池では、太陽電池表面での散乱を用いているため、障害物の陰の影響による発電量の低下に関しては全く効果がない。また、飛散物の衝突などによる物理的な保護に関しても無力である。   However, since the solar cell of Patent Document 1 uses scattering on the surface of the solar cell, there is no effect on the reduction in the amount of power generation due to the influence of the obstacle. It also has no power for physical protection due to collision of flying objects.

また、特許文献2の太陽電池では、太陽電池が南中方向を向いて設置できることを前提としており、障害物の陰の影響による発電量の低下に関しては全く効果がない。また、デザイン性に関しても大きく制限を受け、建築物としての意匠性は著しく低い。   In addition, the solar cell of Patent Document 2 is premised on that the solar cell can be installed in the south-central direction, and has no effect at all on the reduction in the amount of power generation due to the influence of the obstacle. In addition, the design is greatly limited, and the design as a building is extremely low.

特許文献3の集光装置でも、障害物の陰の影響による発電量の低下に関しては効果がないし、デザイン性に関してもほとんどバリエーションが持てず、建築物としての意匠性は著しく低い。   Even the light collecting device of Patent Document 3 has no effect on the reduction in the amount of power generation due to the influence of an obstacle, and there is almost no variation in design, and the design as a building is extremely low.

本発明は、これらの前述の問題に鑑みてなされたもので、太陽電池の発電量を落とすことなくデザイン性を改善し、飛散物から太陽電池を保護し、かつ反射光による光害をも防止できる保護構造体を提供することを目的とする。   The present invention has been made in view of these above-mentioned problems, improves design without reducing the amount of power generated by the solar cell, protects the solar cell from scattered objects, and prevents light damage caused by reflected light. It is an object to provide a protective structure that can be used.

上記課題を解決するために、本発明は、太陽電池の入射光側に設置する立体的構造を有する保護構造体であって、太陽電池に対して物理的な保護機能をもち、入射光の入射角を変更する機能を有し、かつ太陽電池表面で反射される光の反射角を変更する機能を有することを特徴とする保護構造体を提供するものである。   In order to solve the above problems, the present invention is a protective structure having a three-dimensional structure installed on the incident light side of a solar cell, having a physical protection function for the solar cell, and receiving incident light. A protective structure having a function of changing an angle and a function of changing a reflection angle of light reflected on the surface of a solar cell is provided.

このような立体的構造を有する保護構造体であれば、個々の太陽電池の状況に合わせて、光学設計が可能であるため、障害物の陰が生じる場合にはその部分へ構造体からの屈折・反射等を用いて光を供給することができるし、反射光が直接外部に出ないので光害の防止もできる。   If the protective structure has such a three-dimensional structure, optical design is possible in accordance with the situation of each individual solar cell. Therefore, when the shadow of an obstacle occurs, the part is refracted from the structure. -Light can be supplied using reflection or the like, and since the reflected light does not directly go outside, light pollution can be prevented.

さらに、周辺環境の変化で障害物等の状況が変わった場合には、保護構造体のみを再度最適なものに変更すれば発電量を回復できる。   Furthermore, when the state of an obstacle or the like changes due to a change in the surrounding environment, the amount of power generation can be recovered by changing only the protective structure to an optimum one again.

光学的機能を持つために、これら保護構造体は、プラスチック材料、金属材料、酸化物材料の内から選ばれる少なくとも1種類以上の材料から構成されることが望ましい。   In order to have an optical function, it is desirable that these protective structures are made of at least one material selected from a plastic material, a metal material, and an oxide material.

また、デザイン性が特別重要な場合には、保護構造体は染料もしくは顔料を含むことが望ましい。   Further, when the design is particularly important, the protective structure preferably contains a dye or a pigment.

また、上記保護構造体の材料及び形状決定に際しては、光学計算を用いて設計されることが望ましい。   Further, when determining the material and shape of the protective structure, it is desirable to design using optical calculation.

本発明では、太陽電池の入射光側に設置する立体的構造を有する保護構造体であって、太陽電池に対して物理的な保護機能をもち、入射光の入射角を変更する機能を有し、かつ太陽電池表面で反射される光の反射角を変更する機能を有する。   The present invention is a protective structure having a three-dimensional structure that is installed on the incident light side of a solar cell, has a physical protection function for the solar cell, and has a function of changing the incident angle of incident light. And has a function of changing the reflection angle of light reflected from the surface of the solar cell.

このため、障害物の陰が生じる場合にはその部分へ構造体からの屈折・反射等を用いて光を供給することができる。また、反射光が直接外部に出ないので光害の防止にもなる。   For this reason, when the shadow of an obstacle arises, light can be supplied to the portion using refraction / reflection from the structure. Further, since the reflected light does not go directly to the outside, it also prevents light pollution.

また、保護構造体には光学的機能があれば、様々な材料が使え、彩色も可能であるので、デザイン性が著しく向上する。   Further, if the protective structure has an optical function, various materials can be used and coloring is possible, so that the design is remarkably improved.

物理的な保護機能は、太陽電池そのものの強度を補完できるため、その分太陽電池の物理的強度を減少させることが可能となり、太陽電池の重量の低減にも効果的である。   Since the physical protection function can supplement the strength of the solar cell itself, the physical strength of the solar cell can be reduced correspondingly, and the weight of the solar cell is also effective.

本発明の保護構造体の模式断面図である。It is a schematic cross section of the protective structure of the present invention. 本発明の保護構造体の模式断面図である。It is a schematic cross section of the protective structure of the present invention. 本発明の保護構造体の模式断面図である。It is a schematic cross section of the protective structure of the present invention. 本発明の保護構造体の実施例を示す模式図である。It is a schematic diagram which shows the Example of the protection structure of this invention. 本発明の保護構造体の模式図である。It is a schematic diagram of the protection structure of the present invention. 本発明の保護構造体の模式図である。It is a schematic diagram of the protection structure of the present invention. 本発明の保護構造体の模式図である。It is a schematic diagram of the protection structure of the present invention. 本発明の保護構造体の模式図である。It is a schematic diagram of the protection structure of the present invention.

本発明の実施の形態を、以下図面を用いて説明するが、本発明はこれに限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

従来、集光型の太陽電池以外では太陽電池の入射光側に部材を設置するという発想はなかった。これは、太陽電池の発電効率を落とさないためには当然のことである。このため、特殊な評価環境における変換効率のみを重視し、この変換効率が独り歩きするため、実際の現場での実発電量に対する認識が不十分であった。また、住宅用途では、デザイン性が非常に重要であるにもかかわらず、これまでは十分に考慮されていないということがあった。   Conventionally, there has been no idea of installing a member on the incident light side of the solar cell other than the concentrating solar cell. This is natural in order not to reduce the power generation efficiency of the solar cell. For this reason, only the conversion efficiency in a special evaluation environment is emphasized, and this conversion efficiency walks alone, so that the actual power generation amount at the actual site is not sufficiently recognized. In addition, in the case of residential use, although design is very important, there has been a case where it has not been sufficiently considered so far.

以上の点に鑑み鋭意精査した結果、実際の設置環境で発電量を増加させる、もしくは、若干の総発電量の低下があっても、デザイン性が著しく向上し商業的に十分な優位性がある保護構造体の発明に至った。   As a result of careful examination in view of the above points, even if the power generation amount is increased in the actual installation environment or the total power generation amount is slightly decreased, the design is remarkably improved and there is a commercially sufficient advantage. It came to invention of a protection structure.

図1は、本発明による保護構造体の一例を示す模式断面図である。保護構造体構成部材2aは金属反射面を有している。また、図1では入射光(実線矢印)が太陽電池モジュール1に到達する様子を示してある。   FIG. 1 is a schematic cross-sectional view showing an example of a protective structure according to the present invention. The protective structure constituting member 2a has a metal reflecting surface. Further, FIG. 1 shows a state in which incident light (solid arrow) reaches the solar cell module 1.

図1から容易にわかるように、入射光は直接太陽電池モジュール1に入射するものと一旦保護構造体構成部材2aに反射してから入射するものに分けられる。保護構造体構成部材2aの設計の仕方によって、特定の入射角での入射光強度を高めたり、特定の太陽電池セルへの入射光量を増やしたりできる。   As can be easily understood from FIG. 1, incident light is classified into one that is directly incident on the solar cell module 1 and one that is incident on the protective structure constituting member 2 a after being reflected once. Depending on the design method of the protective structural member 2a, the incident light intensity at a specific incident angle can be increased, or the amount of incident light on a specific solar cell can be increased.

図2は、図1の本発明による保護構造体で反射光(破線矢印)が太陽電池モジュール1から外部に出る様子を示している。直接角度を変えずに出ていくものと保護構造体構成部材2aに反射してから異なる方向へでていくものがあることが分かる。   FIG. 2 shows a state in which reflected light (broken line arrow) goes out from the solar cell module 1 in the protection structure according to the present invention of FIG. It can be seen that there are those that go out without changing the angle directly and those that go out in different directions after being reflected by the protective structural member 2a.

図1および図2の保護構造体構成部材2aは太陽電池モジュール1の対向面では概略平行に並んでいるように描かれているが、実際には僅かな角度の違いを持たせることによって、光をバラバラに反射できる。これによって、一方向に全ての光が反射されること起因する光害を防ぐことができる。   The protective structural member 2a in FIGS. 1 and 2 is drawn so as to be substantially parallel on the facing surface of the solar cell module 1, but in reality, a slight difference in angle is applied to make the light Can be reflected separately. Thereby, it is possible to prevent light pollution caused by reflection of all light in one direction.

図3は保護構造体構成部材2bとして透光性のプラスチック材料と保護構造体構成部材2a組み合わせて用いた場合である。入射光(実線矢印)および反射光(破線矢印)を保護構造体構成部材2b内で屈折させることにより角度が変えている。   FIG. 3 shows a case where the protective structure constituting member 2b is used in combination with a translucent plastic material and the protective structure constituting member 2a. The angle is changed by refracting the incident light (solid line arrow) and the reflected light (broken line arrow) in the protective structure constituting member 2b.

保護構造体は太陽電池の保護と光の光路を変えること、さらにデザイン性を向上させることが目的であるから、特定の形状に限られるものではない。例えば、図5に示すように棒状の保護構造体構成部材2cを用いてもよいし、図6に示すように立体メッシュ状の保護構造体構成部材2dを用いてもよい。また、必ずしも直線形状である必要もなく、図7に示すように曲線状の保護構造体構成部材2dを用いてもよいし、図8に示すように円錐状の保護構造体構成部材2eを用いてもよい。そして、これらは均質に並んでいなくてもよい。   The protective structure is not limited to a specific shape because it is intended to protect the solar cell, change the optical path of light, and improve the design. For example, a bar-shaped protective structure constituting member 2c may be used as shown in FIG. 5, or a three-dimensional mesh-like protective structure constituting member 2d may be used as shown in FIG. Moreover, it does not necessarily need to be linear, and a curved protective structure constituting member 2d may be used as shown in FIG. 7, or a conical protective structure constituting member 2e is used as shown in FIG. May be. And these do not need to be homogeneously arranged.

また、これら保護構造体の作成には同じ種類の構成部材を組み合わせる必要はなく、必要に応じて様々な形状の構成部材を組み合わせればよい。   Moreover, it is not necessary to combine the same kind of constituent members for the production of these protective structures, and constituent members having various shapes may be combined as necessary.

さらにいえば、本発明の保護構造体は全てが光学的機能を持つ必要はなく、必要とする特定の部分のみに光学的機能があればよい。それ以外の部分は主にデザイン性を考慮し、例えば単純に光を散乱させるだけでもよい。太陽光が均質に当たる設置がなされている場合には、屈折光、反射光を散らして光強度が均質になる光学設計とし、デザイン性に注力すればよい。   Furthermore, it is not necessary for all of the protective structures of the present invention to have an optical function, and it is sufficient that only a specific part that is required has an optical function. The other parts mainly take into consideration the design, and for example, simply scatter light. If the installation is such that the sunlight hits uniformly, the optical design should be focused on the design by making the light intensity uniform by scattering the refracted light and reflected light.

つぎに、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実施例1)
まず、125ミクロンの厚さを持つPET(ポリエチレンテレフタレート)フィルムにスパッタリング法によりアルミニウムを成膜した。この時のアルミニウムの膜厚は140nmとし、90%以上の反射率を得た。
Example 1
First, aluminum was deposited on a PET (polyethylene terephthalate) film having a thickness of 125 microns by sputtering. At this time, the film thickness of aluminum was 140 nm, and a reflectance of 90% or more was obtained.

そののち、このアルミニウム付きPETフィルムを2mm幅に裁断し、図1に示すような配置で太陽電池モジュール1上に設置した。このときのアルミニウム付きPETフィルムの設置間隔は3mmとした。   After that, the PET film with aluminum was cut into a width of 2 mm and placed on the solar cell module 1 in the arrangement as shown in FIG. The installation interval of the aluminum-attached PET film at this time was 3 mm.

その後、30度の角度でソーラーシミュレーターを用いて太陽電池モジュール1に白色光を照射し、保護構造体の有無による発電量を比較した。   Then, the solar cell module 1 was irradiated with white light using a solar simulator at an angle of 30 degrees, and the power generation amount with and without the protective structure was compared.

この結果、本発明による保護構造体を設置した場合の方が設置なしに比べて1.22倍の発電量が得られた。   As a result, a power generation amount of 1.22 times was obtained when the protective structure according to the present invention was installed, compared to the case without the installation.

また、太陽電池モジュール1からの反射光も著しく低減できた。   Moreover, the reflected light from the solar cell module 1 could be remarkably reduced.

(実施例2)
図4ではこの保護構造体を用いて障害物3の陰4の影響による発電量の低下を改善した例である。障害物3の陰4は必ず、太陽を背にして障害物3から伸びてくるので、反射機能を持つ保護構造体構成部材2aを障害物3に対向して設置すればよい。
(Example 2)
FIG. 4 shows an example in which the reduction in power generation due to the influence of the shade 4 of the obstacle 3 is improved using this protective structure. Since the shade 4 of the obstacle 3 always extends from the obstacle 3 with the sun behind, the protective structure constituting member 2a having a reflecting function may be installed facing the obstacle 3.

例えば、全体の5%に陰が生じるとすれば、残りの95%の領域から5%分の光量を陰の部分に回してやればよい。全面に太陽光が当たる場合に比べれば発電量は低下するが、部分的な陰による著しい発電量の低下を防ぐことができる。   For example, if shade is generated in 5% of the whole, the amount of light of 5% may be turned to the shaded portion from the remaining 95% region. Although the amount of power generation is lower than when the entire surface is exposed to sunlight, it is possible to prevent a significant decrease in the amount of power generation due to partial shade.

本発明は、住宅用太陽電池だけでなく、景観を守る観点からメガソーラーへの適応も有効である。 The present invention is effective not only for residential solar cells but also for application to mega solar from the viewpoint of protecting the landscape.

1 太陽電池モジュール、
2a,2b,2c,2d,2e,2f 保護構造体構成部材
3 障害物、 4 陰
1 solar cell module,
2a, 2b, 2c, 2d, 2e, 2f Protective structure constituent member 3 Obstacle, 4 shade

Claims (4)

太陽電池の入射光側に設置する立体的構造を有する保護構造体であって、太陽電池に対して物理的な保護機能をもち、太陽電池への入射光の入射角を変更する機能を有し、かつ太陽電池表面で反射される光の反射角を変更する機能を有することを特徴とする保護構造体。   A protective structure having a three-dimensional structure installed on the incident light side of the solar cell, having a physical protection function for the solar cell, and having a function of changing the incident angle of the incident light to the solar cell. And the protective structure characterized by having the function to change the reflection angle of the light reflected by the solar cell surface. プラスチック材料、金属材料、酸化物材料の内から選ばれる少なくとも1種類以上の材料から構成されることを特徴とする請求項1記載の保護構造体。   The protective structure according to claim 1, wherein the protective structure is made of at least one material selected from a plastic material, a metal material, and an oxide material. 染料もしくは顔料を含むことを特徴とする請求項1および請求項2記載の保護構造体。   The protective structure according to claim 1 or 2, wherein the protective structure contains a dye or a pigment. 光学計算を用いて設計されることを特徴とする請求項1から請求項3に記載の保護構造体。   The protective structure according to claim 1, wherein the protective structure is designed using optical calculation.
JP2014190795A 2014-09-19 2014-09-19 Protection structure for solar cell Pending JP2016063673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190795A JP2016063673A (en) 2014-09-19 2014-09-19 Protection structure for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190795A JP2016063673A (en) 2014-09-19 2014-09-19 Protection structure for solar cell

Publications (1)

Publication Number Publication Date
JP2016063673A true JP2016063673A (en) 2016-04-25

Family

ID=55798437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190795A Pending JP2016063673A (en) 2014-09-19 2014-09-19 Protection structure for solar cell

Country Status (1)

Country Link
JP (1) JP2016063673A (en)

Similar Documents

Publication Publication Date Title
JP7177699B2 (en) glass building materials
US20080121270A1 (en) Photovoltaic roof tile system
van Dijk et al. 3D-printed concentrator arrays for external light trapping on thin film solar cells
WO2010083120A3 (en) Photovoltaic (pv) enhancement films for enhancing optical path lengths and methods of manufacturing pv enhancement films
WO2012164814A1 (en) Solar cell module
JPWO2007040065A1 (en) Solar cell and solar cell module
PT2208234E (en) Photovoltaic device
US20120234371A1 (en) Incident angle dependent smart solar concentrator
US20070256732A1 (en) Photovoltaic module
CN101355108A (en) Solar battery structure
CN206992126U (en) The two-sided photovoltaic module of anti-dazzle
JP2023107850A (en) Glass building material
CN105577093B (en) New clean photovoltaic panel
JP6667218B2 (en) Solar cell module
JP2016063673A (en) Protection structure for solar cell
TWI436492B (en) Concentrating photovoltaic module
KR102075692B1 (en) The photovoltaic module having an invisible inside
Sng et al. InVestigation and analysis of bifacial photovoltaics modules with reflective layer
CN207818593U (en) Photovoltaic module cellular construction and solar power system
RU2615041C1 (en) Solar beams concentrator for solar cell with radial arrangement of mirror reflecting electrodes
KR20110114036A (en) Solar electricity generation module using cover glass having patterns for transmittance enhancement
Kim et al. A Basic Study on Anti-reflection Coating PV Technology for Reducing Reflected Sunlight on the Building Skin
US20190245105A1 (en) Solar power harvesting building envelope
KR102075693B1 (en) The photovoltaic module with improved power generation by an invisible inside and a morphology surface
CN203932087U (en) Solar module