JP2016063062A - Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element arranged by use thereof, and magnetic memory device - Google Patents

Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element arranged by use thereof, and magnetic memory device Download PDF

Info

Publication number
JP2016063062A
JP2016063062A JP2014189666A JP2014189666A JP2016063062A JP 2016063062 A JP2016063062 A JP 2016063062A JP 2014189666 A JP2014189666 A JP 2014189666A JP 2014189666 A JP2014189666 A JP 2014189666A JP 2016063062 A JP2016063062 A JP 2016063062A
Authority
JP
Japan
Prior art keywords
layer
metal ferromagnetic
ferromagnetic layer
ferroelectric
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014189666A
Other languages
Japanese (ja)
Other versions
JP6355162B2 (en
Inventor
茂樹 中川
Shigeki Nakagawa
茂樹 中川
蹟 史
Ji Shi
蹟 史
陽太 高村
Yota Takamura
陽太 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2014189666A priority Critical patent/JP6355162B2/en
Publication of JP2016063062A publication Critical patent/JP2016063062A/en
Application granted granted Critical
Publication of JP6355162B2 publication Critical patent/JP6355162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a half-metal ferromagnetic junction structure which enables the modulation of the spin polarization of a half-metal ferromagnetic layer, and a multiferroic structure.SOLUTION: A combination of a metal ferromagnetic layer 1 as a free layer, a tunnel barrier layer 2 and a half-metal ferromagnetic layer 3 as a pin layer constitutes a three-layer tunnel junction (MTJ) structure S1. To the three-layer MTJ structure S1, a ferroelectric layer 4 having an intrinsic polarization P is bonded on the side of the half-metal ferromagnetic layer 3 and further, a conductive layer 5 is bonded under the ferroelectric layer 4, thereby modulating the spin polarization of the half-metal ferromagnetic layer 3. A combination of the half-metal ferromagnetic layer 3, the ferroelectric layer 4 and the conductive layer 5 constitutes a half-metal ferromagnetic junction structure S2. A combination of the three-layer MTJ structure S1 and the half-metal ferromagnetic junction structure S2, which share the half-metal ferromagnetic layer 3, constitutes a five-layer MTJ element S3.SELECTED DRAWING: Figure 2

Description

本発明は、ハーフメタル強磁性体(HMF)層を含むハーフメタル強磁性体接合構造、これを用いた5層磁気トンネル接合(MTJ)素子、及び磁気メモリ(MRAM)装置に関する。   The present invention relates to a half-metal ferromagnetic junction structure including a half-metal ferromagnetic (HMF) layer, a five-layer magnetic tunnel junction (MTJ) element using the same, and a magnetic memory (MRAM) device.

一般に、強磁性体層においては、図1の(A)に示すように、アップスピン及びダウンスピンがフェルミレベルEまで占有しており、この結果、スピン分極により占有状態数に差を生じ、そのスピン分極率Pは、
P=(D(E)−D(E))/(D(E)+D(E))
で与えられる。これに対し、ハーフメタル強磁性体(HMF)層たとえばCoMnSi等よりなるフルホイスラー合金層においては、図1の(B)に示すように、アップスピンは金属的バンド構造を有するが、ダウンスピンはフェルミレベルE近傍でエネルギーギャップが存在する半導体的バンド構造を有する。この結果、スピン分極率Pは、
P=D(E)/D(E
=1
で与えられ、理論的に100%となる。
Generally, in the ferromagnetic layer, as shown in (A) of FIG. 1, up-spin and down-spin have occupied up to the Fermi level E F, as a result, caused the difference in the number of occupied state by the spin polarization, The spin polarizability P is
P = (D ↑ (E F ) -D ↓ (E F)) / (D ↑ (E F) + D ↓ (E F))
Given in. On the other hand, in a full Heusler alloy layer made of a half-metal ferromagnet (HMF) layer such as Co 2 MnSi, the up spin has a metallic band structure as shown in FIG. spin has a semiconductor band structure present energy gap at the Fermi level E F vicinity. As a result, the spin polarizability P is
P = D (E F ) / D (E F )
= 1
Which is theoretically 100%.

従って、上述のハーフメタル強磁性体層を磁性トンネル接合(MTJ)素子に適用すると、大きなトンネル磁気抵抗(TMR)効果を期待できる。   Therefore, when the above-mentioned half-metal ferromagnetic layer is applied to a magnetic tunnel junction (MTJ) element, a large tunnel magnetoresistance (TMR) effect can be expected.

従来の磁気メモリ(MRAM)装置の1セルは、1つの3層MTJ素子及び1つのトランジスタよりなる。3層MTJ素子はトンネル障壁層を挟んだ2つの磁性層よりなる3層構造をなし、トンネル障壁層の上側磁性層は、磁化方向が自由な方向になるので、フリー層と呼ばれ、他方、トンネル障壁層の下側磁性層は、磁化が特定方向に固定されているので、ピン層と呼ばれる。この場合、ピン層の磁化方向に対するフリー層の磁化方向が平行か反平行かに応じて3層MTJ素子は低磁気抵抗状態(たとえば記憶状態“0”に相当)か高磁気抵抗状態(たとえば記憶状態“1”に相当)かになる。   One cell of a conventional magnetic memory (MRAM) device includes one three-layer MTJ element and one transistor. The three-layer MTJ element has a three-layer structure including two magnetic layers sandwiching the tunnel barrier layer, and the upper magnetic layer of the tunnel barrier layer is called a free layer because the magnetization direction is a free direction. The lower magnetic layer of the tunnel barrier layer is called a pinned layer because the magnetization is fixed in a specific direction. In this case, depending on whether the magnetization direction of the free layer is parallel or antiparallel to the magnetization direction of the pinned layer, the three-layer MTJ element is in a low magnetoresistance state (for example, corresponding to the memory state “0”) or a high magnetoresistance state (for example, the memory layer). Corresponding to state “1”).

従って、上述のMRAM装置の集積度はピン層にハーフメタル強磁性体層を適用することによって向上できる(参照:特許文献1、2)。   Therefore, the degree of integration of the MRAM device described above can be improved by applying a half metal ferromagnetic layer to the pinned layer (see: Patent Documents 1 and 2).

さらに、MRAM装置においては、書込み動作時に偏極したスピン流を3層MTJ素子に流すことによってフリー層の磁化方向を反転させるスピントランスファトルク(STT)方式を採用することにより、低消費電力化や集積度の向上に寄与することができる。   Further, in the MRAM device, by adopting a spin transfer torque (STT) method that reverses the magnetization direction of the free layer by flowing a polarized spin current in the write operation to the three-layer MTJ element, low power consumption and This can contribute to improvement of the degree of integration.

さらにまた、MRAM装置においては、磁性層の垂直方向の磁化を利用した垂直磁化方式を採用して、フリー層の磁化方向の反転を少ない電流で行えるようにすることにより、集積度の向上に寄与できる。   Furthermore, in the MRAM device, the perpendicular magnetization method utilizing the perpendicular magnetization of the magnetic layer is adopted, and the magnetization direction of the free layer can be reversed with a small current, thereby contributing to the improvement of the degree of integration. it can.

このように、ハーフメタル強磁性体層を用いたSTT−垂直磁化型MRAM装置により集積度の向上が期待できる。   Thus, an improvement in integration can be expected by the STT-perpendicular magnetization type MRAM device using the half-metal ferromagnetic layer.

特開2001−257395号公報JP 2001-257395 A 特開2011−141934号公報JP 2011-141934 A

しかしながら、ハーフメタル強磁性体層の状態密度及びバンド構造はその成分固有で変化しないと考えられ、従って、ハーフメタル強磁性体層のスピン分極率は固定と考えられる。この結果、上述の従来のハーフメタル強磁性体層を適用した3層MTJ素子を含むMRAM装置は2値メモリセル構造を維持し、集積度の向上に限界があるという課題がある。   However, it is considered that the density of states and the band structure of the half-metal ferromagnetic layer do not change depending on the component, and therefore the spin polarizability of the half-metal ferromagnetic layer is considered to be fixed. As a result, the MRAM device including the three-layer MTJ element to which the above-described conventional half-metal ferromagnetic layer is applied has a problem that the binary memory cell structure is maintained and the degree of integration is limited.

従って、本発明はハーフメタル強磁性体層のスピン分極率を変調できるハーフメタル強磁性体接合構造、及びこれを用いたMTJ素子を提供することを目的とする。
また、本発明はMTJ素子を含むMRAM装置に4値以上の多値記憶を実現できるメモリセル構造を提供してMRAM装置の集積度を向上させることも目的とする。
Accordingly, an object of the present invention is to provide a half-metal ferromagnetic junction structure capable of modulating the spin polarizability of a half-metal ferromagnetic layer, and an MTJ element using the same.
It is another object of the present invention to provide a memory cell structure capable of realizing multilevel storage of four or more values in an MRAM device including an MTJ element, thereby improving the integration degree of the MRAM device.

上述の課題を解決するために、本発明に係るハーフメタル強磁性体接合構造は、ハーフメタル強磁性体層と、ハーフメタル強磁性体層の下に設けられた強誘電体層と、強誘電体層の下に設けられた導電層とを具備し、強誘電体層の分極によってハーフメタル強磁性体層のスピン分極率を変調するものである。この場合、強誘電体層の分極はハーフメタル強磁性体層内の強誘電体層との界面に少数スピンキャリアを誘起させる。
また、本発明に係る5層MTJ素子は、金属強磁性体層と、金属強磁性体層の下に設けられたトンネル障壁層と、トンネル障壁層の下に設けられたハーフメタル強磁性体層と、ハーフメタル強磁性体層の下に設けられた強誘電体層と、強誘電体層の下に設けられた導電層とを具備し、強誘電体層の分極によってハーフメタル強磁性体層のスピン分極率を変調するものである。この場合、強誘電体層の分極はハーフメタル強磁性体層内の強誘電体層との界面に少数スピンキャリアを誘起させる。
In order to solve the above-described problems, a half metal ferromagnetic junction structure according to the present invention includes a half metal ferromagnetic layer, a ferroelectric layer provided under the half metal ferromagnetic layer, and a ferroelectric. And a conductive layer provided under the body layer, and modulates the spin polarizability of the half-metal ferromagnetic layer by the polarization of the ferroelectric layer. In this case, the polarization of the ferroelectric layer induces minority spin carriers at the interface with the ferroelectric layer in the half-metal ferromagnetic layer.
The five-layer MTJ element according to the present invention includes a metal ferromagnetic layer, a tunnel barrier layer provided below the metal ferromagnetic layer, and a half metal ferromagnetic layer provided below the tunnel barrier layer. And a ferroelectric layer provided under the half metal ferromagnetic layer and a conductive layer provided under the ferroelectric layer, and the half metal ferromagnetic layer is formed by polarization of the ferroelectric layer. This modulates the spin polarizability. In this case, the polarization of the ferroelectric layer induces minority spin carriers at the interface with the ferroelectric layer in the half-metal ferromagnetic layer.

さらに、本発明に係るMRAM装置は、上述の5層MTJ素子と、金属強磁性体層に接続されたビット線と、導電層に接続されたセンス線とを具備し、金属強磁性体層の磁化方向と強誘電体層の分極の方向及び大きさとの組合せにより4値以上の多値記憶情報を記憶するものである。   Furthermore, an MRAM device according to the present invention includes the above-described five-layer MTJ element, a bit line connected to the metal ferromagnetic layer, and a sense line connected to the conductive layer, Multivalue storage information of four or more values is stored by a combination of the magnetization direction and the polarization direction and magnitude of the ferroelectric layer.

また、強誘電体層は強誘電性及び反強磁性の2つの特性を兼ね備えるマルチフェロイック層に置換し得る。マルチフェロイック層を用いた場合には、ハーフメタル強磁性体層の磁化の一方向異方性が導かれる。この結果、ハーフメタル強磁性体層の垂直磁化を固定し、ハーフメタル強磁性体層は磁化固定層(ピン層)として効率よく作用する。 Further, the ferroelectric layer can be replaced with a multiferroic layer having both characteristics of ferroelectricity and antiferromagnetism. When a multiferroic layer is used, the unidirectional anisotropy of magnetization of the half metal ferromagnetic layer is introduced. As a result, the perpendicular magnetization of the half metal ferromagnetic layer is fixed, and the half metal ferromagnetic layer acts efficiently as a magnetization fixed layer (pinned layer).

ハーフメタル強磁性体層のスピン分極率を変調することができる。また、5層MTJ素子を含むMRAM装置の4値以上の多値記憶メモリセル構造を実現できるので、MRAM装置の集積度を向上できる。   The spin polarizability of the half-metal ferromagnetic layer can be modulated. In addition, since the multi-value storage memory cell structure having four or more values of the MRAM device including the five-layer MTJ element can be realized, the integration degree of the MRAM device can be improved.

(A)は金属強磁性体層の状態密度を示すグラフ、(B)はハーフメタル強磁性体層の状態密度を示すグラフである。(A) is a graph which shows the density of states of a metal ferromagnetic layer, (B) is a graph which shows the density of states of a half metal ferromagnetic layer. 本発明に係るハーフメタル強磁性体接合構造の実施の形態を含む垂直磁化型MRAM装置を示す図である。1 is a diagram showing a perpendicular magnetization type MRAM device including an embodiment of a half-metal ferromagnetic junction structure according to the present invention. FIG. 図2の5層MTJ素子の金属強磁性体層の磁化方向が反平行状態かつ強誘電体層の分極方向が下向き状態のバンド図である。FIG. 3 is a band diagram in which the magnetization direction of the metal ferromagnetic layer of the five-layer MTJ element of FIG. 2 is antiparallel and the polarization direction of the ferroelectric layer is downward. 図2の5層MTJ素子の金属強磁性体層の磁化方向が平行状態かつ強誘電体層の分極方向が下向き状態のバンド図である。FIG. 3 is a band diagram in which the magnetization direction of the metal ferromagnetic layer of the five-layer MTJ element of FIG. 2 is parallel and the polarization direction of the ferroelectric layer is downward. 図2の5層MTJ素子の金属強磁性体層の磁化方向が反平行状態かつ強誘電体層の分極方向が上向き状態のバンド図である。FIG. 3 is a band diagram in which the magnetization direction of the metal ferromagnetic layer of the five-layer MTJ element of FIG. 2 is antiparallel and the polarization direction of the ferroelectric layer is upward. 図2の5層MTJ素子の金属強磁性体層の磁化方向が平行状態かつ強誘電体層の分極方向が上向き状態のバンド図である。FIG. 3 is a band diagram in which the magnetization direction of the metal ferromagnetic layer of the five-layer MTJ element of FIG. 2 is parallel and the polarization direction of the ferroelectric layer is upward. 図2の5層MTJ素子のトンネル障壁層のコンダクタンスを示すグラフである。3 is a graph showing conductance of a tunnel barrier layer of the 5-layer MTJ element of FIG. 図2の垂直磁化型MRAM装置の変更例を示す図である。FIG. 3 is a diagram illustrating a modification of the perpendicular magnetization type MRAM device of FIG. 2. 図8のハーフメタル強磁性体層の磁界−磁化(H−M)特性図である。FIG. 9 is a magnetic field-magnetization (HM) characteristic diagram of the half-metal ferromagnetic layer of FIG. 8.

図2は本発明に係るハーフメタル強磁性体接合構造の実施の形態を含む垂直磁化型MRAM装置を示す図である。   FIG. 2 is a diagram showing a perpendicular magnetization type MRAM device including an embodiment of a half-metal ferromagnetic junction structure according to the present invention.

図2において、たとえば、FeCoB等よりなるフリー層としての厚さ約1〜2nmの金属強磁性体層1、MgO等の絶縁体よりなる厚さ約1nmのトンネル障壁層2、及びCoMnSi(CMS)等よりなるピン層としての厚さ約1nmのハーフメタル強磁性体層3は、3層MTJ構造S1を構成する。他方、3層MTJ構造S1のハーフメタル強磁性体層3側には自発分極Pを有するBaTiO等よりなる厚さ約10nmの強誘電体層4及びTa等の導電体よりなる厚さ約1nmの導電層5が接合され、ハーフメタル強磁性体層3のスピン分極率を変調する。この場合、ハーフメタル強磁性体層3及び強誘電体層4及び導電層5はハーフメタル強磁性体接合構造S2を構成する。 In FIG. 2, for example, a metal ferromagnetic layer 1 having a thickness of about 1 to 2 nm as a free layer made of FeCoB or the like, a tunnel barrier layer 2 having a thickness of about 1 nm made of an insulator such as MgO, and Co 2 MnSi ( A half-metal ferromagnetic layer 3 having a thickness of about 1 nm as a pinned layer made of CMS) or the like constitutes a three-layer MTJ structure S1. On the other hand, on the half-metal ferromagnetic layer 3 side of the three-layer MTJ structure S1, a ferroelectric layer 4 made of BaTiO 3 or the like having spontaneous polarization P or the like and a thickness of about 1 nm made of a conductor such as Ta or the like. The conductive layers 5 are bonded to modulate the spin polarizability of the half-metal ferromagnetic layer 3. In this case, the half metal ferromagnetic layer 3, the ferroelectric layer 4 and the conductive layer 5 constitute a half metal ferromagnetic junction structure S2.

ハーフメタル強磁性体層3を共通とする3層MTJ構造S1及びハーフメタル強磁性体接合構造S2は合せて5層MTJ素子S3を構成する。図2において、金属強磁性体層1のトンネル障壁層2との反対側はビット線BLに接続されている。さらに、導電層5の強誘電体層4の反対側はソース線SLに接続されている.また、ハーフメタル強磁性体層3とセンス線SLとの間には、ワード線WL1の電位によって制御されるMOSトランジスタよりなるスイッチング素子SW1が接続されている。さらに、ハーフメタル強磁性体層3とビット線BLとの間には、ワード線WL2の電位によって制御されるMOSトランジスタよりなるスイッチング素子SW2が接続されている。尚、MRAM装置においては、行方向に複数のワード線WL1及び複数のワード線WL2が設けられ、他方、列方向に複数のビット線BL及び複数のセンス線SLが設けられ、行方向及び列方向の各交点に1つのセルが設けられている。スイッチング素子SW1、SW2及びワード線WL1、WL2はCMOS技術によって製造され、金属強磁性体層1、トンネル障壁層2、ハーフメタル強磁性体層3、強誘電体層4、導電層5は多層膜製造装置を用いてナノヘテロ構造として製造され、ビット線BL及びセンス線SLはCu配線技術等によって製造される。     The three-layer MTJ structure S1 and the half-metal ferromagnetic junction structure S2 that share the half-metal ferromagnetic layer 3 together constitute a five-layer MTJ element S3. In FIG. 2, the opposite side of the metal ferromagnetic layer 1 to the tunnel barrier layer 2 is connected to the bit line BL. Furthermore, the opposite side of the conductive layer 5 to the ferroelectric layer 4 is connected to the source line SL. Further, a switching element SW1 made of a MOS transistor controlled by the potential of the word line WL1 is connected between the half metal ferromagnetic layer 3 and the sense line SL. Further, a switching element SW2 made of a MOS transistor controlled by the potential of the word line WL2 is connected between the half metal ferromagnetic layer 3 and the bit line BL. In the MRAM device, a plurality of word lines WL1 and a plurality of word lines WL2 are provided in the row direction, while a plurality of bit lines BL and a plurality of sense lines SL are provided in the column direction. One cell is provided at each intersection. The switching elements SW1, SW2 and the word lines WL1, WL2 are manufactured by CMOS technology, and the metal ferromagnetic layer 1, the tunnel barrier layer 2, the half metal ferromagnetic layer 3, the ferroelectric layer 4, and the conductive layer 5 are multilayer films. A nano heterostructure is manufactured using a manufacturing apparatus, and the bit line BL and the sense line SL are manufactured by Cu wiring technology or the like.

金属強磁性体層1の自発磁化Mの方向は可変で、その書込み動作はワード線WL1の電位によってスイッチング素子SW1をオンにし、STTを利用してビット線BLとセンス線SLとの間にスピン偏極した比較的に大きい書込電流を流すことによって制御される。他方、メモリセルの読出し動作もスイッチング素子SW1をオンにすることによってビット線BLとセンス線SLとの間を流れる読出電流を検出することによって行われる。 Direction of the spontaneous magnetization M 1 of a metal ferromagnetic layer 1 is variable, the write operation to turn on the switching element SW1 by the potential of the word line WL1, between the bit line BL and sense lines SL by using the STT It is controlled by passing a relatively large write current that is spin-polarized. On the other hand, the read operation of the memory cell is also performed by detecting the read current flowing between the bit line BL and the sense line SL by turning on the switching element SW1.

強誘電体層4の自発分極Pの方向及び大きさを決定する書込み動作はワード線WL2の電位によってスイッチング素子SW2をオンにすることによって行われ、このときにセンス線SLとビット線BLによって強誘電体層4に電圧を印加することによって自発分極Pを生じさせる。この印加電圧の極性及び大きさ、印加方法等で自発分極Pの残留分極の方向及び大きさを制御することが可能である。   The write operation for determining the direction and magnitude of the spontaneous polarization P of the ferroelectric layer 4 is performed by turning on the switching element SW2 by the potential of the word line WL2, and at this time, the write operation is strongly performed by the sense line SL and the bit line BL. Spontaneous polarization P is generated by applying a voltage to the dielectric layer 4. The direction and magnitude of the remanent polarization of the spontaneous polarization P can be controlled by the polarity and magnitude of the applied voltage, the application method, and the like.

次に、図2のハーフメタル強磁性体層3のスピン分極率の変調について図3、図4、図5、図6のバンド図を参照して説明する。図2においては、金属強磁性体層1の磁化方向Mの上下方向と強誘電体層4の分極方向Pの上下方向との組合せは以下の4通りである。尚、ハーフメタル強磁性体層3の磁化方向Mは常に上向きである。
AP−状態(図3):磁化方向Mが下向き状態(MTJのM、Mが反平行状態)かつ分極方向Pが下向き状態である。
P−状態(図4):磁化方向Mが上向き状態(MTJのM、Mが平行状態)かつ分極方向Pが下向き状態である。
AP+状態(図5):磁化方向Mが下向き状態(MTJのM、Mが反平行状態)かつ分極方向Pが上向き状態である。
P+状態(図6):磁化方向Mが上向き状態(MTJのM、Mが平行状態)かつ分極方向Pが上向き状態である。
Next, the modulation of the spin polarizability of the half-metal ferromagnetic layer 3 in FIG. 2 will be described with reference to the band diagrams in FIGS. 3, 4, 5, and 6. In FIG. 2, there are the following four combinations of the vertical direction of the magnetization direction M 1 of the metal ferromagnetic layer 1 and the vertical direction of the polarization direction P of the ferroelectric layer 4. Incidentally, the magnetization direction M3 of the half-metal ferromagnetic layer 3 is always upward.
AP- state (Figure 3): the magnetization direction M 1 is directed downward (M 1, M 3 is antiparallel state of the MTJ) and the polarization direction P is facing down.
P-state (FIG. 4): Magnetization direction M 1 is in an upward state (MT 1 and M 3 of MTJ are in a parallel state), and polarization direction P is in a downward state.
AP + state (FIG. 5): Magnetization direction M 1 is in a downward state (MTJ M 1 and M 3 are antiparallel states) and polarization direction P is in an upward state.
P + state (FIG. 6): Magnetization direction M 1 is in an upward state (MT 1 and M 3 of MTJ are in a parallel state), and polarization direction P is in an upward state.

図3、図4においては、強誘電体層4の分極方向Pによってハーフメタル強磁性体層3内の強誘電体層4側界面に負電荷が誘起する。この負電荷による電界によってハーフメタル強磁性体層3のダウンスピンのバンド構造にバンドベンディングが励起される。しかし、ハーフメタル強磁性体層3のダウンスピンのフェルミレベルEでの状態密度D↓,3は、強誘電体層4の分極方向Pに依存せず、依然として0である。つまり、強誘電体層4の下向きの分極方向Pによる変調はハーフメタル強磁性体層3のスピン分極を変化させない。従って、Julliereモデルに基づき、金属強磁性体層1(スピン分極率P=0.6と仮定)及びハーフメタル強磁性体層3のフェルミレベルでのダウンスピンの状態密度D↓,3=0をもとに演算されたトンネル障壁層2のAP−状態、P−状態のコンダクタンスGは、図7に示すように、スピン分極率変調度kに依存せず、一定値0.2及び0.8となる。 3 and 4, a negative charge is induced at the ferroelectric layer 4 side interface in the half-metal ferromagnetic layer 3 by the polarization direction P of the ferroelectric layer 4. Band bending is excited in the down-spin band structure of the half-metal ferromagnetic layer 3 by the electric field due to the negative charge. However, the state density D at the Fermi level E F of the spin-down half-metal ferromagnetic layer 3, 3 is independent of the polarization direction P of the ferroelectric layer 4 still is zero. That is, the modulation by the downward polarization direction P of the ferroelectric layer 4 does not change the spin polarization of the half-metal ferromagnetic layer 3. Therefore, based on the Julliere model, the down-spin state density D ↓, 3 = 0 at the Fermi level of the metal ferromagnetic layer 1 (assuming the spin polarizability P 1 = 0.6) and the half metal ferromagnetic layer 3 As shown in FIG. 7, the conductance G of the AP-state and P-state of the tunnel barrier layer 2 calculated based on the above-mentioned values does not depend on the spin polarizability modulation degree k, and has a constant value of 0.2 and 0. 8

他方、図5、図6においては、強誘電体層4の分極方向Pによってハーフメタル強磁性体層3内の強誘電体層4側界面に少数スピンキャリアである正電荷が誘起する。この正電荷による電界によってハーフメタル強磁性体層3のダウンスピンのバンド構造にバンドベンディングが誘起される。この場合、強誘電体層4の分極方向Pに依存して、ハーフメタル強磁性体層3内の強誘電体層4との界面においてダウンスピンのフェルミレベルEでのスピン分極率変調度kで表される状態密度D↓,3=kが発生する。つまり、強誘電体層4の上向き分極方向Pによってハーフメタル強磁性体層3のスピン分極率は変調する。従って、Julliereモデルに基づき、金属強磁性体層1(スピン分極率P=0.6と仮定)及びハーフメタル強磁性体層3のフェルミレベルでのダウンスピンの状態密度D↓,3=kをもとに演算されたトンネル障壁層2のAP+状態、P+状態のコンダクタンスGは、図7に示すように、スピン分極率変調度kに依存して増加する。尚、スピン分極率変調度kは強誘電体層4の分極Pの方向および大きさに応じた値であり、上述の4つのコンダクタンスGが最小となるときにk=0と定義する。 On the other hand, in FIG. 5 and FIG. 6, positive charges as minority spin carriers are induced at the ferroelectric layer 4 side interface in the half metal ferromagnetic layer 3 by the polarization direction P of the ferroelectric layer 4. Band bending is induced in the down-spin band structure of the half-metal ferromagnetic layer 3 by the electric field due to the positive charge. In this case, the intensity depending on the polarization direction P of the dielectric layer 4, the spin polarization of the modulation degree k of the Fermi level E F of the down spin at the interface between the ferroelectric layer 4 of the half-metal ferromagnetic layer 3 The density of states D ↓, 3 = k is expressed. That is, the spin polarizability of the half-metal ferromagnetic layer 3 is modulated by the upward polarization direction P of the ferroelectric layer 4. Accordingly, based on the Julliere model, the down-spin state density D ↓, 3 = k at the Fermi level of the metal ferromagnetic layer 1 (assuming the spin polarizability P 1 = 0.6) and the half metal ferromagnetic layer 3 As shown in FIG. 7, the conductance G of the AP + state and the P + state of the tunnel barrier layer 2 calculated based on the above increases depending on the spin polarizability modulation degree k. The spin polarizability modulation k is a value corresponding to the direction and magnitude of the polarization P of the ferroelectric layer 4 and is defined as k = 0 when the above-described four conductances G are minimized.

図7に示すように、たとえば、k=0.4のときに、金属強磁性体層1の磁化方向M及び強誘電体層4の分極方向Pに応じて4値のトンネル障壁層2のコンダクタンスGが実現していることが分かる。従って、k=0.4のときのP+状態、P−状態、AP+状態、AP−状態に00、01、10、11を割当てることにより4値メモリ状態を実現できる。 As shown in FIG. 7, for example, when k = 0.4, the quaternary tunnel barrier layer 2 of the quaternary tunnel barrier layer 2 depends on the magnetization direction M 1 of the metal ferromagnetic layer 1 and the polarization direction P of the ferroelectric layer 4. It can be seen that conductance G is realized. Therefore, a quaternary memory state can be realized by assigning 00, 01, 10, and 11 to the P + state, P- state, AP + state, and AP- state when k = 0.4.

強誘電体層4の分極Pは、残留分極の方向だけでなく大きさも変化させることができるので、この大きさによってP+状態およびAP+状態でのハーフメタル強磁性体層3のスピン分極率変調度kを可変することができる。これにより、たとえば、k=0.4以外の値に設定することによって異なるコンダクタンスGを実現できるので、上述の4値以上のメモリ状態を実現できる。   Since the polarization P of the ferroelectric layer 4 can change not only the direction of remanent polarization but also the magnitude, the degree of spin polarizability modulation of the half-metal ferromagnetic layer 3 in the P + state and the AP + state depends on this magnitude. k can be varied. Thereby, for example, different conductances G can be realized by setting to a value other than k = 0.4, so that the above-described four or more memory states can be realized.

図8は図2の垂直磁化型MRAM装置の変更例を示す図である。図8においては、図2の強誘電体層4を強誘電性及び反強磁性の2つの特性を兼ね備えるたとえばBiFeOよりなるマルチフェロイック層4’に置換し、ハーフメタル強磁性体接合構造S2をハーフメタル強磁性体接合構造S2’に置換した。 FIG. 8 is a diagram showing a modification of the perpendicular magnetization type MRAM device of FIG. In FIG. 8, the ferroelectric layer 4 of FIG. 2 is replaced with a multiferroic layer 4 ′ made of, for example, BiFeO 3 having both characteristics of ferroelectricity and antiferromagnetism, and a half-metal ferromagnetic junction structure S2 Was replaced with a half-metal ferromagnetic junction structure S2 ′.

図8において、ハーフメタル強磁性体接合構造S2’は、上述したハーフメタル強磁性体接合構造S2と同様に、ハーフメタル強磁性体層3のスピン分極率の変調を誘起できる。加えて、ハーフメタル強磁性体接合構造S2’にすることにより交換バイアス効果によるハーフメタル強磁性体層3の磁化を安定させる効果が発現する。ハーフメタル強磁性体接合構造S2’の製造は、上述の複合成膜装置を用いてたとえばBiFeOよりなる厚さ約10nmのマルチフェロイック層4’を基板上の導電層5上に成長させ、さらに、たとえばCoFeSiよりなる厚さ約1nmのハーフメタル強磁性体層3をマルチフェロイック層4’上に成長させて垂直磁化を実現する。その後、BiFeOのネール温度380℃以上に加熱し、マルチフェロイック層4’の面と垂直な磁場の基で冷却する。従って、マルチフェロイック層4’の反強磁性から交換バイアス効果を引き起こし、図9の磁界−磁化(H−M)特性図に示すごとく、ハーフメタル強磁性体層3の磁化の一方向異方性を導く。この結果、ハーフメタル強磁性体層3は5層MTJ素子S3の固定層(ピン層)として効率よく作用する。 In FIG. 8, the half metal ferromagnetic junction structure S2 ′ can induce the modulation of the spin polarizability of the half metal ferromagnetic layer 3 in the same manner as the half metal ferromagnetic junction structure S2 described above. In addition, the effect of stabilizing the magnetization of the half-metal ferromagnetic layer 3 due to the exchange bias effect is exhibited by adopting the half-metal ferromagnetic junction structure S2 ′. Production of the half-metal ferromagnetic junction structure S2 ′ is performed by growing a multiferroic layer 4 ′ made of, for example, BiFeO 3 and having a thickness of about 10 nm on the conductive layer 5 on the substrate using the composite film forming apparatus described above. Further, for example, perpendicular magnetization is realized by growing a half-metal ferromagnetic layer 3 made of Co 2 FeSi and having a thickness of about 1 nm on the multiferroic layer 4 ′. Thereafter, the NeFe temperature of BiFeO 3 is heated to 380 ° C. or higher, and the BiFeO 3 is cooled by a magnetic field perpendicular to the surface of the multiferroic layer 4 ′. Accordingly, the exchange bias effect is caused by the antiferromagnetism of the multiferroic layer 4 ′, and the one-way anisotropic magnetization of the half-metal ferromagnetic layer 3 is shown in the magnetic field-magnetization (HM) characteristic diagram of FIG. Guide sex. As a result, the half metal ferromagnetic layer 3 efficiently acts as a fixed layer (pinned layer) of the five-layer MTJ element S3.

上述の実施の形態においては、5層MTJ素子は、垂直磁化方式を採用しているが、金属強磁性体層1及びハーフメタル強磁性体層3の材料を適宜選択することにより面内磁化方式を採用できる。   In the above-described embodiment, the five-layer MTJ element adopts the perpendicular magnetization method, but by selecting the material of the metal ferromagnetic layer 1 and the half metal ferromagnetic layer 3 as appropriate, the in-plane magnetization method is used. Can be adopted.

尚、本発明は上述の実施の形態の自明の範囲のいかなる変更も適用し得る。   It should be noted that the present invention can be applied to any modifications within the obvious range of the above-described embodiment.

本発明は磁気メモリ装置以外に磁気ヘッド、磁気センサ等にも利用できる。   The present invention can be used not only for magnetic memory devices but also for magnetic heads, magnetic sensors, and the like.

1:金属強磁性体層
2:トンネル障壁層
3:ハーフメタル強磁性体層
4:強誘電体層
4’:マルチフェロイック層
5:導電層
S1:3層MTJ構造
S2、S2’:ハーフメタル強磁性体接合構造
S3:5層MTJ素子
BL:ビット線
SL:センス線
WL1、WL2:ワード線
1: Metal ferromagnetic layer 2: Tunnel barrier layer 3: Half metal ferromagnetic layer 4: Ferroelectric layer 4 ′: Multiferroic layer 5: Conductive layer S1: Three-layer MTJ structure S2, S2 ′: Half metal Ferromagnetic junction structure S3: 5-layer MTJ element BL: bit line
SL: sense lines WL1, WL2: word lines

Claims (8)

ハーフメタル強磁性体層と、
前記ハーフメタル強磁性体層の下に設けられた強誘電体層と、
前記強誘電体層の下に設けられた導電層と
を具備し、
前記強誘電体層の分極によって前記ハーフメタル強磁性体層のスピン分極率を変調するハーフメタル強磁性体接合構造。
A half-metal ferromagnetic layer;
A ferroelectric layer provided under the half-metal ferromagnetic layer;
A conductive layer provided under the ferroelectric layer,
A half-metal ferromagnetic junction structure that modulates the spin polarizability of the half-metal ferromagnetic layer by the polarization of the ferroelectric layer.
さらに、前記強誘電体層の分極の方向及び大きさを制御する手段を具備する請求項1に記載のハーフメタル強磁性体接合構造。   The half-metal ferromagnetic junction structure according to claim 1, further comprising means for controlling the direction and magnitude of polarization of the ferroelectric layer. ハーフメタル強磁性体層と、
前記ハーフメタル強磁性体層の下に設けられ、強誘電性及び反強磁性を有するマルチフェロイック層と、
前記マルチフェロイック層の下に設けられた導電層と
を具備し、
前記マルチフェロイック層の分極によって前記ハーフメタル強磁性体層のスピン分極率を変調するハーフメタル強磁性体構造。
A half-metal ferromagnetic layer;
A multiferroic layer provided under the half-metal ferromagnetic layer and having ferroelectricity and antiferromagnetism;
A conductive layer provided under the multiferroic layer,
A half-metal ferromagnetic structure in which a spin polarizability of the half-metal ferromagnetic layer is modulated by polarization of the multiferroic layer.
さらに、前記マルチフェロイック層の分極の方向及び大きさを制御する手段を具備する請求項3に記載のハーフメタル強磁性体構造。   The half-metal ferromagnetic structure according to claim 3, further comprising means for controlling a polarization direction and a magnitude of the multiferroic layer. 金属強磁性体層と、
前記金属強磁性体層の下に設けられたトンネル障壁層と、
前記トンネル障壁層の下に設けられたハーフメタル強磁性体層と、
前記ハーフメタル強磁性体層の下に設けられた強誘電体層と、
前記強誘電体層の下に設けられた導電層と
を具備し、
前記強誘電体層の分極によって前記ハーフメタル強磁性体層のスピン分極率を変調する5層磁気トンネル接合素子。
A metal ferromagnetic layer;
A tunnel barrier layer provided under the metal ferromagnetic layer;
A half-metal ferromagnetic layer provided under the tunnel barrier layer;
A ferroelectric layer provided under the half-metal ferromagnetic layer;
A conductive layer provided under the ferroelectric layer,
A five-layer magnetic tunnel junction element that modulates the spin polarizability of the half-metal ferromagnetic layer by the polarization of the ferroelectric layer.
金属強磁性体層と、
前記金属強磁性体層の下に設けられたトンネル障壁層と、
前記トンネル障壁層の下に設けられたハーフメタル強磁性体層と、
前記ハーフメタル強磁性体層の下に設けられ、強誘電性及び反強磁性を有するマルチフェロイック層と、
前記マルチフェロイック層の下に設けられた導電層と
を具備し、
前記マルチフェロイック層の分極によって前記ハーフメタル強磁性体層のスピン分極率を変調する5層磁気トンネル接合素子。
A metal ferromagnetic layer;
A tunnel barrier layer provided under the metal ferromagnetic layer;
A half-metal ferromagnetic layer provided under the tunnel barrier layer;
A multiferroic layer provided under the half-metal ferromagnetic layer and having ferroelectricity and antiferromagnetism;
A conductive layer provided under the multiferroic layer,
A five-layer magnetic tunnel junction element that modulates the spin polarizability of the half-metal ferromagnetic layer by the polarization of the multiferroic layer.
請求項5もしくは6に記載の5層磁気トンネル接合素子と、
前記金属強磁性体層に接続されたビット線と、
前記導電層に接続されたセンス線と
を具備し、
前記金属強磁性体層の磁化方向と前記強誘電体層もしくは前記マルチフェロイック層の分極の方向及び大きさとの組合せにより4値以上の多値記憶情報を記憶する磁気メモリ装置。
The five-layer magnetic tunnel junction device according to claim 5 or 6,
A bit line connected to the metal ferromagnetic layer;
A sense line connected to the conductive layer;
A magnetic memory device for storing multilevel storage information of four or more values by a combination of a magnetization direction of the metal ferromagnetic layer and a polarization direction and magnitude of the ferroelectric layer or the multiferroic layer.
さらに、
第1、第2のワード線と、
前記ハーフメタル強磁性体層と前記センス線との間に接続され、前記第1のワード線の電位によって制御される第1のスイッチング素子と、
前記ハーフメタル強磁性体層と前記ビット線との間に接続され、前記第2のワード線の電位によって制御される第2のスイッチング素子と
を具備する請求項7に記載の磁気メモリ装置。
further,
First and second word lines;
A first switching element connected between the half-metal ferromagnetic layer and the sense line and controlled by the potential of the first word line;
The magnetic memory device according to claim 7, further comprising: a second switching element connected between the half-metal ferromagnetic layer and the bit line and controlled by a potential of the second word line.
JP2014189666A 2014-09-18 2014-09-18 Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device Expired - Fee Related JP6355162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189666A JP6355162B2 (en) 2014-09-18 2014-09-18 Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189666A JP6355162B2 (en) 2014-09-18 2014-09-18 Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device

Publications (2)

Publication Number Publication Date
JP2016063062A true JP2016063062A (en) 2016-04-25
JP6355162B2 JP6355162B2 (en) 2018-07-11

Family

ID=55798166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189666A Expired - Fee Related JP6355162B2 (en) 2014-09-18 2014-09-18 Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device

Country Status (1)

Country Link
JP (1) JP6355162B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186227A (en) * 2017-04-27 2018-11-22 Tdk株式会社 Laminated structure and spin modulation element
US10263181B2 (en) 2017-05-31 2019-04-16 Tdk Corporation Laminated structure and spin modulation element
US10355201B2 (en) 2017-05-31 2019-07-16 Tdk Corporation Laminated structure and spin modulation element
US10461244B2 (en) 2017-05-31 2019-10-29 Tdk Corporation Laminated structure and spin modulation element
US10629801B2 (en) 2017-05-31 2020-04-21 Tdk Corporation Laminated structure and spin modulation element
US11411171B2 (en) 2018-08-07 2022-08-09 Ip2Ipo Innovations Limited Non-volatile memory cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179219A (en) * 2002-11-25 2004-06-24 Matsushita Electric Ind Co Ltd Magnetic device and magnetic memory using the same
JP2004214251A (en) * 2002-12-27 2004-07-29 Hitachi Ltd Magnetoresistance effect element, magnetic head provided therewith and magnetic recording and reproducing device
JP2006286713A (en) * 2005-03-31 2006-10-19 Osaka Univ Magnetoresistive element and method of magnetization reversal
JP2011138924A (en) * 2009-12-28 2011-07-14 Hitachi Ltd Magnetic memory cell and magnetic memory
JP2015061045A (en) * 2013-09-20 2015-03-30 株式会社東芝 Spin-based mosfet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179219A (en) * 2002-11-25 2004-06-24 Matsushita Electric Ind Co Ltd Magnetic device and magnetic memory using the same
JP2004214251A (en) * 2002-12-27 2004-07-29 Hitachi Ltd Magnetoresistance effect element, magnetic head provided therewith and magnetic recording and reproducing device
JP2006286713A (en) * 2005-03-31 2006-10-19 Osaka Univ Magnetoresistive element and method of magnetization reversal
JP2011138924A (en) * 2009-12-28 2011-07-14 Hitachi Ltd Magnetic memory cell and magnetic memory
JP2015061045A (en) * 2013-09-20 2015-03-30 株式会社東芝 Spin-based mosfet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186227A (en) * 2017-04-27 2018-11-22 Tdk株式会社 Laminated structure and spin modulation element
US10263181B2 (en) 2017-05-31 2019-04-16 Tdk Corporation Laminated structure and spin modulation element
US10355201B2 (en) 2017-05-31 2019-07-16 Tdk Corporation Laminated structure and spin modulation element
US10461244B2 (en) 2017-05-31 2019-10-29 Tdk Corporation Laminated structure and spin modulation element
US10629801B2 (en) 2017-05-31 2020-04-21 Tdk Corporation Laminated structure and spin modulation element
US11411171B2 (en) 2018-08-07 2022-08-09 Ip2Ipo Innovations Limited Non-volatile memory cell

Also Published As

Publication number Publication date
JP6355162B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6355162B2 (en) Half-metal ferromagnetic junction structure, five-layer magnetic tunnel junction element using the same, and magnetic memory device
JP7227614B2 (en) Manufacturing method of laminated structure of magnetic material and BiSb, magnetoresistive memory, pure spin injection source
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP5260040B2 (en) Unidirectional current magnetization reversal magnetoresistive element and magnetic recording apparatus
WO2011033873A1 (en) Magnetoresistive element and non-volatile semiconductor memory device using same
KR102325455B1 (en) Method and device for providing magnetic junctions with rare earth-transition metal layers
US10783943B2 (en) MRAM having novel self-referenced read method
US9646666B2 (en) Voltage controlled spin switches for low power applications
WO2015040926A1 (en) Magnetoresistive element and magnetic memory
JP6424272B2 (en) Magnetoresistive element and memory circuit
US8848435B2 (en) Magnetic resistance memory apparatus having multi levels and method of driving the same
TW201724597A (en) Magnetic junction, magnetic memory and method for programming the magnetic junction
JP6483403B2 (en) Magnetoresistive element and STT-MRAM
JP5316967B2 (en) Magnetic memory element and nonvolatile memory device
JP6436476B2 (en) Five-layer magnetic tunnel junction element and magnetic memory device
CN106935256B (en) Spin torque magnetic random access memory element and magnetoresistance effect type magnetic head
US20140319632A1 (en) Perpendicular stt-mram having permeable dielectric layers
US9424903B2 (en) Memory apparatus and memory device
KR102486320B1 (en) Magnetic juction residing on a substrate and usable in magnetic device and magnetic memory including the same and method for providing the same
KR20150042025A (en) Ferromagnetic multilayer thin film and magnetic tunnel junction structure including the same
KR20150009664A (en) Magnetic tunnel junction structure having perpendicular magnetic anisotropy and magnetic device including the same
JP2013016820A (en) Tunnel magnetoresistance effect element, and magnetic memory cell and random access memory including the same
JPWO2010125641A1 (en) Tunnel magnetoresistive element, magnetic memory cell and random access memory using the same
CN115802871A (en) Magneton spin torque device, storage structure and electronic equipment
KR20200050839A (en) Magnetic Tunnel Junction Device and Magnetic Resistance Memory Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6355162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees