JP2016062751A - Transmission electron microscope - Google Patents

Transmission electron microscope Download PDF

Info

Publication number
JP2016062751A
JP2016062751A JP2014189813A JP2014189813A JP2016062751A JP 2016062751 A JP2016062751 A JP 2016062751A JP 2014189813 A JP2014189813 A JP 2014189813A JP 2014189813 A JP2014189813 A JP 2014189813A JP 2016062751 A JP2016062751 A JP 2016062751A
Authority
JP
Japan
Prior art keywords
sample
pyroelectric crystal
needle
transmission electron
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014189813A
Other languages
Japanese (ja)
Inventor
潤 河合
Jun Kawai
潤 河合
晋 今宿
Shin Imayado
晋 今宿
一誓 大谷
Issei Otani
一誓 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2014189813A priority Critical patent/JP2016062751A/en
Publication of JP2016062751A publication Critical patent/JP2016062751A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transmission electron microscope of which the structure is simple, small-sized and lightweight.SOLUTION: The transmission electron microscope includes: a vacuum container 10; an electron beam emission part including a pyroelectric crystal 11 disposed within the vacuum container 10, an insulator member 24 which has a lower dielectric constant relative to the pyroelectric crystal 11 and covers one polarized face of the pyroelectric crystal 11, a conductive needle 23 which is erected on the one polarized face of the pyroelectric crystal 11 and includes a protrusive end protruding from the insulator member 24, and temperature change means which changes a temperature of the pyroelectric crystal 11; a specimen holding part 14 which is disposed within the vacuum container 10 and holds a specimen in such a manner that the specimen is positioned on an extension of the protrusive end of the needle 23, the specimen holding part 14 being electrically connected with the other polarized face of the pyroelectric crystal 11 and grounded; and observation means for observing a projection image of the specimen or a diffraction image of the specimen generated by electron beams emitted from the protrusive end of the needle 23 and transmitted through a specimen S.SELECTED DRAWING: Figure 1

Description

本発明は、透過型電子顕微鏡に関する。   The present invention relates to a transmission electron microscope.

透過型電子顕微鏡(以下、TEMともいう)は、電子線を試料に照射し、その結果得られる試料の透過電子線像や、試料によって回折された電子線の像(回折電子線像)を観察する装置である。TEMは、鏡筒と呼ばれる真空容器内に、電子線発生装置(電子銃)、照射系レンズ、試料保持台、対物レンズ、結像系レンズ、透過電子線像や回折電子線像を投影するための蛍光板等を上から順に配置して成る(特許文献1、2等)。   A transmission electron microscope (hereinafter also referred to as TEM) irradiates a sample with an electron beam, and observes a transmission electron beam image of the sample obtained as a result and an image of the electron beam diffracted by the sample (diffracted electron beam image). It is a device to do. TEM projects an electron beam generator (electron gun), an irradiation system lens, a sample holder, an objective lens, an imaging system lens, a transmission electron beam image, and a diffraction electron beam image in a vacuum container called a lens barrel. Are arranged in order from the top (Patent Documents 1, 2, etc.).

電子銃は、フィラメント(陰極)、ウェーネルト電極(グリッド)、アノード(陽極)、及び電圧印加装置を備え、アース電位の陽極に対して負の電圧(加速電圧)を陰極に印加して電子を加速することにより試料に対して電子線を照射する。TEMでは、高空間分解能を得るために100kV以上の高電圧を陰極に印加して電子を加速しており、放電が生じ易い。そこで、鏡筒内を超高真空状態にしたり、複数段で電子線を加速することで各段の印加電圧を低く抑えるとともに、各段の距離を長くすることにより電位勾配を小さくし、不所望の放電が生じないようにしている。   The electron gun includes a filament (cathode), a Wehnelt electrode (grid), an anode (anode), and a voltage application device, and applies a negative voltage (acceleration voltage) to the cathode to accelerate the electrons. As a result, the sample is irradiated with an electron beam. In TEM, electrons are accelerated by applying a high voltage of 100 kV or higher to the cathode in order to obtain high spatial resolution, and discharge is likely to occur. Therefore, the inside of the lens barrel is in an ultra-high vacuum state or the electron beam is accelerated in multiple stages to keep the applied voltage at each stage low, and the potential gradient is reduced by increasing the distance between each stage, which is undesirable. The discharge is prevented from occurring.

また、上述したように、鏡筒内には、電子銃から放出される電子線を集束し、整形して試料に照射するための照射系レンズ、透過電子線あるいは回折電子線の拡大投影像を得るための対物レンズ、透過電子線又は回折電子線を蛍光板に結像するための結像系レンズ等が収容されている。TEMでは通常、照射系レンズ、対物レンズ、及び結像系レンズは電子レンズから構成されており、特に照射系レンズ及び結像系レンズは、それぞれ複数段の電子レンズで構成されるのが一般的である。   In addition, as described above, an electron beam emitted from the electron gun is focused in the lens barrel, an irradiation system lens for irradiating the sample with a focused electron beam, a transmission electron beam or a diffracted electron beam enlarged projection image. An objective lens for obtaining, an imaging system lens for imaging a transmission electron beam or a diffraction electron beam on a fluorescent plate, and the like are accommodated. In TEM, the illumination system lens, objective lens, and imaging system lens are usually composed of electronic lenses. In particular, the illumination system lens and the imaging system lens are generally composed of multiple stages of electronic lenses. It is.

特開2007-242514号公報JP 2007-242514 特開2012-199022号公報JP 2012-199022

このように従来のTEMは、鏡筒内に組み込まれる構成部品の点数が多く、また、不所望の放電の発生を防止するために鏡筒を長くする必要があったため、光学顕微鏡に比べると非常に大きく、重量化していた。   As described above, the conventional TEM has a large number of components incorporated in the lens barrel, and it is necessary to lengthen the lens barrel in order to prevent the occurrence of undesired discharge. It was large and heavy.

本発明が解決しようとする課題は、小形で軽量な透過型電子顕微鏡を提供することである。   The problem to be solved by the present invention is to provide a small and lightweight transmission electron microscope.

上記課題を解決するために成された本発明に係る透過型電子顕微鏡は、
a) 真空容器と、
b) 前記真空容器内に配置された焦電結晶と、該焦電結晶に比べて低い誘電率を有し該焦電結晶の一方の分極面を覆う絶縁体部材と、前記焦電結晶の前記一方の分極面に立設された前記絶縁体部材から突出する突出端を有する導電性の針と、前記焦電結晶の温度を変化させる温度変化手段とを有する電子線放出部と、
c) 前記真空容器内に配置された、前記針の突出端の延長線上に試料が位置するように該試料を保持する試料保持部であって、前記焦電結晶の他方の分極面と電気的に接続され、且つ接地された試料保持部と、
d) 前記針の突出端から放出され前記試料を透過した電子線による該試料の投影像又は該試料の回折像を観察するための観察手段と、
を備えることを特徴とする。
The transmission electron microscope according to the present invention, which has been made to solve the above problems,
a) a vacuum vessel;
b) a pyroelectric crystal disposed in the vacuum vessel; an insulator member having a lower dielectric constant than the pyroelectric crystal and covering one polarization surface of the pyroelectric crystal; and the pyroelectric crystal An electron beam emitter having a conductive needle having a protruding end protruding from the insulator member provided on one polarization surface, and a temperature changing means for changing the temperature of the pyroelectric crystal;
c) a sample holder that is arranged in the vacuum vessel and holds the sample so that the sample is positioned on an extension line of the protruding end of the needle, and is electrically connected to the other polarization surface of the pyroelectric crystal. A sample holder connected to and grounded,
d) observation means for observing a projection image of the sample or a diffraction image of the sample by an electron beam emitted from the protruding end of the needle and transmitted through the sample;
It is characterized by providing.

焦電結晶は、その温度変化に伴い自発分極の大きさが変化する結晶である。平衡状態では、周囲に浮遊する荷電粒子が付着することにより分極による焦電結晶表面の電荷が打ち消され、外部に電界が現れない電気的に中性な状態を保っている。この状態から焦電結晶に温度変化を与えると、焦電結晶の分極の状態が変化して、表面が正あるいは負に帯電する。その後、温度を一定に保つと浮遊荷電粒子によって表面の帯電が解消される。大気中では浮遊荷電粒子が大量に存在するため、焦電結晶の表面の帯電はすみやかに解消されるが、真空中では浮遊荷電粒子が少ないために、焦電結晶の表面の帯電が解消されるまでには数分程度の時間がかかる。   A pyroelectric crystal is a crystal in which the magnitude of spontaneous polarization changes with changes in temperature. In the equilibrium state, the charged particles floating around the surface adhere to the surface, so that the charge on the pyroelectric crystal surface due to the polarization is canceled out, and an electrically neutral state in which no electric field appears outside is maintained. When a temperature change is given to the pyroelectric crystal from this state, the polarization state of the pyroelectric crystal changes, and the surface is charged positively or negatively. Thereafter, when the temperature is kept constant, the surface charge is eliminated by the suspended charged particles. Since there are a large number of floating charged particles in the atmosphere, the charge on the surface of the pyroelectric crystal is quickly eliminated. However, in the vacuum, the charge on the surface of the pyroelectric crystal is eliminated because there are few floating charged particles. It takes a few minutes to complete.

焦電結晶の表面が帯電した状態においては、該焦電結晶の一方の分極面に対向するように配置され、且つ該焦電結晶の他方の分極面と電気的に接続された試料保持部と焦電結晶との間に電場が生じる。従って、焦電結晶の一方の分極面を負に帯電させると、負の浮遊荷電粒子(電子)が焦電結晶から試料保持部に向かって加速される。本発明では、焦電結晶の一方の分極面に導電性の針を立設し、しかも、その針の先端が突出するように焦電結晶の一方の分極面を絶縁性部材で覆ったため、焦電結晶の一方の分極面と試料保持部に保持された試料の間の電位勾配が針の先端(突出端)と試料の間で局所的に高められ、針以外の分極面と試料の間の電位差はほぼゼロとなる。この結果、針の突出端の近傍に存在する浮遊電子のみが試料保持部に保持された試料に向かって加速されるため、試料のうち針の突出端の延長線上に位置する狭い範囲に電子線を集中して照射することができる。従って、本発明では、通常のTEMにおいて電子線を収束するために用いられている電子レンズや、電子線を加速するための機構を省略することができ、装置を小形化及び軽量化することができる。なお、焦電結晶の自発分極が大きいほど、また、針の先端の面積が小さいほど、試料保持部に保持された試料と針の間の電位勾配が大きくなる。   In a state in which the surface of the pyroelectric crystal is charged, a sample holding unit disposed so as to face one polarization surface of the pyroelectric crystal and electrically connected to the other polarization surface of the pyroelectric crystal; An electric field is generated between the pyroelectric crystals. Therefore, when one polarization surface of the pyroelectric crystal is negatively charged, negative floating charged particles (electrons) are accelerated from the pyroelectric crystal toward the sample holding portion. In the present invention, a conductive needle is erected on one polarization surface of the pyroelectric crystal, and the one polarization surface of the pyroelectric crystal is covered with an insulating member so that the tip of the needle protrudes. The potential gradient between one polarization surface of the electrocrystal and the sample held in the sample holder is locally increased between the tip (protruding end) of the needle and the sample, and between the polarization surface other than the needle and the sample. The potential difference is almost zero. As a result, only the stray electrons existing in the vicinity of the protruding end of the needle are accelerated toward the sample held in the sample holder, so that the electron beam is applied to a narrow range located on the extension line of the protruding end of the needle in the sample. Can be focused and irradiated. Therefore, in the present invention, an electron lens used for converging an electron beam in a normal TEM and a mechanism for accelerating the electron beam can be omitted, and the apparatus can be reduced in size and weight. it can. Note that the greater the spontaneous polarization of the pyroelectric crystal, and the smaller the area of the tip of the needle, the greater the potential gradient between the sample held in the sample holder and the needle.

真空中では、焦電結晶に100℃程度の温度変化を与えてその表面を帯電させると、雰囲気中の浮遊電子が加速されて電子線が発生する。従来の透過型電子顕微鏡において電子線を加速するために必要なエネルギーに比べると、焦電結晶に100℃程度の温度変化を与えるために必要なエネルギーは小さいため、電源装置を小形化することができる。また、焦電結晶から電子線を発生させる雰囲気としては2×10−2Torr(約2.67Pa)よりも高真空であれば良い。一般的なTEMでは、放電を防止するため、及び電子銃のフィラメントの劣化や切断を防止するために、1×10−6Torr(約1.33×10−4Pa)の超真空にすることが要求されることと比較すると、本発明は耐圧性の低いシール構造を真空容器のシール構造として採用することができるため、製造コストを低減することができる。 In a vacuum, when the pyroelectric crystal is subjected to a temperature change of about 100 ° C. to charge its surface, floating electrons in the atmosphere are accelerated and an electron beam is generated. Compared to the energy required for accelerating the electron beam in the conventional transmission electron microscope, the energy required to give a temperature change of about 100 ° C. to the pyroelectric crystal is small. it can. In addition, the atmosphere for generating an electron beam from the pyroelectric crystal may be higher than 2 × 10 −2 Torr (about 2.67 Pa). In general TEM, in order to prevent electric discharge and to prevent deterioration and cutting of the electron gun filament, an ultra vacuum of 1 × 10 −6 Torr (about 1.33 × 10 −4 Pa) is used. Compared with the requirement, the present invention can employ a seal structure having a low pressure resistance as the seal structure of the vacuum vessel, so that the manufacturing cost can be reduced.

前記観察手段は、例えば試料保持部に保持される試料を挟んで導電性の針と反対側に位置するように真空容器内に配置された蛍光板と、該蛍光板上に投影される試料を透過した電子線による該試料の投影像又は該試料の回折像を撮像する撮像手段とから構成することができる。   The observation means transmits, for example, a fluorescent plate disposed in the vacuum vessel so as to be positioned on the opposite side of the conductive needle across the sample held in the sample holding unit, and the sample projected on the fluorescent plate. An imaging unit that images a projection image of the sample by an electron beam or a diffraction image of the sample can be used.

なお、本発明に係る透過型電子顕微鏡では、集束レンズが無くても試料の狭い範囲に電子線を集中して照射することができるが、電子線放出部と試料保持部の間に集束レンズを配置しても良く、この構成によれば、拡大倍率を大きくすることができる。さらに、試料保持部と観察手段との間に対物レンズを配置すれば、より一層、拡大倍率を大きくすることができる。   In the transmission electron microscope according to the present invention, an electron beam can be focused and irradiated on a narrow area of a sample without a focusing lens, but a focusing lens is provided between the electron beam emitting portion and the sample holding portion. The magnification may be increased according to this configuration. Furthermore, if an objective lens is disposed between the sample holder and the observation means, the magnification can be further increased.

前記温度変化手段は、焦電結晶に接するペルチェ素子と、該ペルチェ素子に電力を供給する電力供給手段とを備えるものとすることができる。このような構成によれば、透過型電子顕微鏡の一層の小形化を図ることができる。   The temperature changing means may include a Peltier element in contact with the pyroelectric crystal and power supply means for supplying power to the Peltier element. According to such a configuration, it is possible to further reduce the size of the transmission electron microscope.

本発明によれば、電子線放出部を小形化することができ、さらに、電子線を集束するための電子レンズや電圧を印加するための部品を省略することができるため、装置全体を小形化、軽量化できる。   According to the present invention, the electron beam emitting portion can be reduced in size, and further, an electron lens for focusing the electron beam and components for applying a voltage can be omitted. Can be lighter.

本発明に係る透過型電子顕微鏡の第1実施例を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of a transmission electron microscope according to the present invention. 針から試料に電子線が向かう様子を説明するための図。The figure for demonstrating a mode that an electron beam goes to a sample from a needle | hook. 拡大倍率の説明図。Explanatory drawing of magnification. 本実施例に係る透過型電子顕微鏡を用いて観察した試料の例を示し、(a)は銅製メッシュのSEM像、(b)は銅製メッシュの実体像。The example of the sample observed using the transmission electron microscope which concerns on a present Example is shown, (a) is a SEM image of a copper mesh, (b) is a solid image of a copper mesh. 針の先端から蛍光板までの距離を55mmに固定し、針の先端から試料までの距離を5mm(a)、3mm(b)、1mm(c)に変更したときの透過電子線像を示す。The transmission electron beam image when the distance from the tip of the needle to the fluorescent plate is fixed to 55 mm and the distance from the tip of the needle to the sample is changed to 5 mm (a), 3 mm (b), and 1 mm (c) is shown. 針の先端から試料までの距離を1mmに固定し、針の先端から蛍光板までの距離を15mm(a)、30mm(b)、45mm(c)、50mm(d)に変更したときの透過電子線像を示す。Transmission electron beam when the distance from the tip of the needle to the sample is fixed to 1 mm and the distance from the tip of the needle to the fluorescent plate is changed to 15 mm (a), 30 mm (b), 45 mm (c), or 50 mm (d) Show the image. 本発明に係る透過型電子顕微鏡の第2実施例を示す概略構成図。The schematic block diagram which shows 2nd Example of the transmission electron microscope which concerns on this invention. 針から試料に電子線が向かう様子を説明するための図。The figure for demonstrating a mode that an electron beam goes to a sample from a needle | hook. 電子レンズの縦断側面図(a)及び実体像(b)。The longitudinal side view (a) and solid image (b) of an electronic lens. 本実施例の透過型電子顕微鏡を用いたときの透過電子線像(a)、及び透過電子線像の大きさ及び発光強度を示すグラフ(b)。The transmission electron beam image (a) when using the transmission electron microscope of a present Example, and the graph (b) which shows the magnitude | size and emitted light intensity of a transmission electron beam image. 第1実施例の透過型電子顕微鏡を用いたときの透過電子線像(a)、及び透過電子線像の大きさ及び発光強度を示すグラフ(b)。The transmission electron beam image (a) when using the transmission electron microscope of 1st Example, and the graph (b) which shows the magnitude | size and emitted light intensity of a transmission electron beam image. 焦電結晶により試料に電子線が照射される原理を説明する図。The figure explaining the principle in which an electron beam is irradiated to a sample with a pyroelectric crystal.

本発明に係る透過型電子顕微鏡の具体的な実施例について図面を参照して説明する。   Specific examples of the transmission electron microscope according to the present invention will be described with reference to the drawings.

[実施例1]
図1は本発明の第1実施例の透過型電子顕微鏡の概略構成図である。なお、以下の説明では、図1中、+z方向を「上」、−z方向を「下」とする。
図1に示す透過型電子顕微鏡は、接地された導電性の真空容器10と、真空容器10内に配置された6mm×6mm×5mmの直方体状のLiTaO3の単結晶から成る焦電結晶11と、焦電結晶11を加熱/冷却するためのペルチェ素子12と、該ペルチェ素子12に電力を供給する電源装置13と、試料Sを保持する試料保持具14と、試料Sを透過した電子線あるいは試料Sにより回折した電子線が入射する蛍光板15と、蛍光板15上の電子線像を撮影するためのデジタルカメラ等から成る撮像装置16と、を有する。
[Example 1]
FIG. 1 is a schematic configuration diagram of a transmission electron microscope according to the first embodiment of the present invention. In the following description, in FIG. 1, the + z direction is “up” and the −z direction is “down”.
A transmission electron microscope shown in FIG. 1 includes a grounded conductive vacuum vessel 10, a pyroelectric crystal 11 made of a single crystal of 6 mm × 6 mm × 5 mm rectangular LiTaO 3 disposed in the vacuum vessel 10, and A Peltier element 12 for heating / cooling the pyroelectric crystal 11, a power supply device 13 for supplying power to the Peltier element 12, a sample holder 14 for holding the sample S, and an electron beam or a sample transmitted through the sample S A fluorescent plate 15 on which an electron beam diffracted by S is incident; and an imaging device 16 including a digital camera or the like for taking an electron beam image on the fluorescent plate 15.

真空容器10は金属管、例えばステンレス製の管から構成されており、垂直管部101と該垂直管部101の上下方向中央付近から水平方向に延びる水平管部102と、垂直管部101の上下方向中央部よりもやや上部に形成された開口から約45°の角度で斜め下方に延びる窓用管部103とを有する。垂直管部101の上下端は、それぞれ平板状の蓋104、105で閉塞されている。また、水平管部102の先端には、真空ポンプとしてのロータリーポンプ(図示せず)に接続された蛇腹ダクト17が連結されている。さらに、窓用管部103の端部開口にはガラス製の窓板106が取り付けられており、該窓板106と対向するように撮像装置16が真空容器10の外部に配置されている。詳しくは図示しないが、垂直管部101と窓用管部103の間、及び垂直管部101と水平管部102の間はいずれも溶接等により密接されている。また、垂直管部101と蓋104、105の間、水平管部102と蛇腹ダクト17の間、窓用管部103と窓板106の間はそれぞれOリング等のシール部材を介して気密に且つ着脱可能に連結されている。   The vacuum vessel 10 is composed of a metal tube, for example, a stainless steel tube, and includes a vertical tube portion 101, a horizontal tube portion 102 extending in the horizontal direction from the vicinity of the vertical center of the vertical tube portion 101, and upper and lower portions of the vertical tube portion 101. A window tube 103 extending obliquely downward at an angle of about 45 ° from an opening formed slightly above the central portion in the direction. The upper and lower ends of the vertical pipe portion 101 are closed by flat lids 104 and 105, respectively. A bellows duct 17 connected to a rotary pump (not shown) as a vacuum pump is connected to the tip of the horizontal tube portion 102. Further, a glass window plate 106 is attached to the end opening of the window tube portion 103, and the imaging device 16 is disposed outside the vacuum container 10 so as to face the window plate 106. Although not shown in detail, the vertical pipe part 101 and the window pipe part 103 and the vertical pipe part 101 and the horizontal pipe part 102 are all in close contact by welding or the like. In addition, the space between the vertical tube portion 101 and the lids 104 and 105, the space between the horizontal tube portion 102 and the bellows duct 17, and the space between the tube portion 103 for window and the window plate 106 are hermetically sealed through seal members such as O-rings. It is detachably connected.

垂直管部101の両端の蓋104、105にはそれぞれ開口が形成されており、これら開口に銅製の第1ロッド20及び第2ロッド21が挿入されている。第1ロッド20の上部及び第2ロッド21の下部は真空容器10から突出しており、これら突出端に接続された導線によって第1ロッド20及び第2ロッド21は接地されている。第1ロッド20及び第2ロッド21はエポキシ系接着剤や銀ペースト等により蓋104、105の開口に気密に且つ電気的に接続されている。このため、真空容器10も、第1ロッド20及び第2ロッド21と同様に接地された状態にある。   Openings are respectively formed in the lids 104 and 105 at both ends of the vertical pipe portion 101, and the first rod 20 and the second rod 21 made of copper are inserted into these openings. The upper part of the first rod 20 and the lower part of the second rod 21 protrude from the vacuum vessel 10, and the first rod 20 and the second rod 21 are grounded by a conductive wire connected to these protruding ends. The first rod 20 and the second rod 21 are hermetically and electrically connected to the openings of the lids 104 and 105 with an epoxy adhesive, silver paste, or the like. For this reason, the vacuum vessel 10 is also in a state of being grounded in the same manner as the first rod 20 and the second rod 21.

第2ロッド21の上面には、ペルチェ素子12を介して焦電結晶11が接合されている。ペルチェ素子12は電源装置13に接続されており、該電源装置13から電流が供給されることにより焦電結晶11を加熱/冷却する。焦電結晶11は温度変化により上下に分極するように配置されており、特に本実施例では、焦電結晶11を冷却することにより該焦電結晶11の上側が正に、下側が負にそれぞれ分極し、その結果、上面が負(−)に帯電し、下面が正(+)に帯電するように配置されている。すなわち、本実施例では、焦電結晶11の上面及び下面がそれぞれ分極面となる。なお、本実施例とは分極面が上下逆になるように焦電結晶11を配置しても良い。この場合は、焦電結晶11を加熱すると焦電結晶11の上面が負に分極(正に帯電)し、下面が正に分極(負に帯電)することになる。   The pyroelectric crystal 11 is bonded to the upper surface of the second rod 21 via the Peltier element 12. The Peltier element 12 is connected to a power supply device 13, and the pyroelectric crystal 11 is heated / cooled by supplying a current from the power supply device 13. The pyroelectric crystal 11 is arranged so as to be vertically polarized by a temperature change. In particular, in this embodiment, by cooling the pyroelectric crystal 11, the upper side of the pyroelectric crystal 11 becomes positive and the lower side becomes negative. As a result, the upper surface is negatively charged (−) and the lower surface is positively (+) charged. That is, in the present embodiment, the upper surface and the lower surface of the pyroelectric crystal 11 are polarization surfaces. Note that the pyroelectric crystal 11 may be arranged so that the polarization plane is upside down from the present embodiment. In this case, when the pyroelectric crystal 11 is heated, the upper surface of the pyroelectric crystal 11 is negatively polarized (positively charged), and the lower surface is positively polarized (negatively charged).

電源装置13は、ペルチェ素子12に供給する電流の向きを数分毎に周期的に切り替える機能を有する。これにより、ペルチェ素子12の上面が周期的に吸熱と放熱を繰り返し、それに伴いペルチェ素子12の上面に接合された焦電結晶11の冷却及び加熱が周期的に繰り返されて温度が変化する。この結果、焦電結晶11は正と負に、又は負と正に分極する。従って、本実施例ではペルチェ素子12及び電源装置18から温度変化手段が構成される。   The power supply device 13 has a function of periodically switching the direction of the current supplied to the Peltier element 12 every several minutes. As a result, the upper surface of the Peltier element 12 periodically repeats heat absorption and heat dissipation, and accordingly, the pyroelectric crystal 11 bonded to the upper surface of the Peltier element 12 is periodically cooled and heated to change the temperature. As a result, the pyroelectric crystal 11 is polarized positively and negatively or negatively and positively. Therefore, in this embodiment, the Peltier element 12 and the power supply device 18 constitute a temperature changing means.

図1及び図2に示すように、焦電結晶11の上面には金属製、例えば銅製の支持台22が接合されており、この支持台22に導電性を有する針23が立設されている。針23の材料としては、タングステンや金等の導電性を有する金属を用いることができる。本実施例では、直径0.2mm、長さ5mmの金線を針23として用いた。   As shown in FIGS. 1 and 2, a metal, for example, copper support base 22 is joined to the upper surface of the pyroelectric crystal 11, and a conductive needle 23 is erected on the support base 22. . As a material of the needle 23, a conductive metal such as tungsten or gold can be used. In this example, a gold wire having a diameter of 0.2 mm and a length of 5 mm was used as the needle 23.

また、支持台22表面からの電場の発生を防ぐため、支持台22の表面には絶縁性のグリース24が塗布されている。このとき、針23の先端部がグリース24よりも突出するように支持台22に塗布されるグリース24の厚さが設定されている。グリース24としては、温度変化や圧力の変化による硬度の変化が小さいグリースが好ましく、特に真空装置のゴムガスケット面の気密保持や真空バルブのコックの摩擦面の潤滑のために用いられる真空用グリース(例えばシリコーングリース)や、高電圧用絶縁グリース(例えばシリコーングリース)が好適である。シリコーンの比誘電率は約3であり、LiTaOの比誘電率(約50)に比べて十分に小さい。この点からも、シリコーングリースは好適である。
なお、焦電結晶11、針23、グリース24、ペルチェ素子12、電源装置13が、本発明の電子線放出部を構成する。
In addition, an insulating grease 24 is applied to the surface of the support table 22 in order to prevent the generation of an electric field from the surface of the support table 22. At this time, the thickness of the grease 24 applied to the support base 22 is set so that the tip of the needle 23 protrudes from the grease 24. The grease 24 is preferably a grease with a small change in hardness due to a change in temperature or pressure, and in particular, a vacuum grease (used for airtight maintenance of a rubber gasket surface of a vacuum device and lubrication of a friction surface of a cock of a vacuum valve). For example, silicone grease) and high-voltage insulating grease (for example, silicone grease) are suitable. The relative dielectric constant of silicone is about 3, which is sufficiently smaller than the relative dielectric constant of LiTaO 3 (about 50). From this point, silicone grease is preferable.
The pyroelectric crystal 11, the needle 23, the grease 24, the Peltier element 12, and the power supply device 13 constitute the electron beam emitting unit of the present invention.

図1に示すように、第1ロッド20の下面には蛍光板15が接合されている。蛍光板15の下面は針23の延長線と略直交している。蛍光板15は、銅(Cu)及びアルミニウム(Al)を添加した硫化亜鉛(ZnS)をアルミ箔に塗布したもので、硫化亜鉛に電子線が当たると励起されて発光する。蛍光板15の発光の様子は、垂直管部101に対して約45°傾けて取り付けられた窓用管部103を通して撮像装置16で撮影されるようになっている。   As shown in FIG. 1, a fluorescent plate 15 is bonded to the lower surface of the first rod 20. The lower surface of the fluorescent plate 15 is substantially orthogonal to the extension line of the needle 23. The fluorescent plate 15 is obtained by applying zinc sulfide (ZnS) to which copper (Cu) and aluminum (Al) are added to an aluminum foil, and is excited to emit light when an electron beam hits the zinc sulfide. The state of light emission of the fluorescent plate 15 is photographed by the image pickup device 16 through the window tube portion 103 attached to the vertical tube portion 101 at an angle of about 45 °.

試料保持具14は塩化ビニル製のチューブ状部材から成る。試料保持具14の下部は第2ロッド21の上部外周に嵌め込まれており、試料保持具14の上端部には試料Sが保持されるようになっている。このとき、試料Sが針23の先端と蛍光板15の間に位置し、且つ試料Sと蛍光板15が略平行な状態で対向するように試料保持具14の長さ等が設定されている。また、第2ロッド21に対する試料保持具14の取付位置を変更することにより、針23の先端から試料Sまでの距離、及び試料Sから蛍光板15までの距離を変更できるようになっている。   The sample holder 14 is a tube-shaped member made of vinyl chloride. The lower part of the sample holder 14 is fitted into the upper outer periphery of the second rod 21, and the sample S is held on the upper end of the sample holder 14. At this time, the length of the sample holder 14 is set so that the sample S is positioned between the tip of the needle 23 and the fluorescent plate 15 and the sample S and the fluorescent plate 15 face each other in a substantially parallel state. Further, the distance from the tip of the needle 23 to the sample S and the distance from the sample S to the fluorescent plate 15 can be changed by changing the mounting position of the sample holder 14 with respect to the second rod 21.

なお、焦電結晶11の下面は導線等によって第2ロッド21に電気的に接続されている。また、試料保持具14に保持された試料Sは導線によって第2ロッド21に電気的に接続されている。さらに、上述したように、第2ロッド21は導線等によって接地されているため、試料Sと焦電結晶11の下面はいずれも接地電位となる。   Note that the lower surface of the pyroelectric crystal 11 is electrically connected to the second rod 21 by a conducting wire or the like. Further, the sample S held by the sample holder 14 is electrically connected to the second rod 21 by a conducting wire. Furthermore, as described above, since the second rod 21 is grounded by a conducting wire or the like, both the sample S and the lower surface of the pyroelectric crystal 11 are at ground potential.

次に本実施例の透過型電子顕微鏡の動作について図12を参照しながら説明する。
試料保持具14に試料Sを保持し、試料Sと第2ロッド21を電気的に接続する。そして、真空容器10を密閉した後、図示しないロータリーポンプにより真空容器10内の排気を行う。真空容器10内の排気は、内部圧力が数Pa程度(例えば1Pa〜5Pa)になるまで行う。この状態でペルチェ素子12に所定方向の電流を供給し、予め加熱しておいた焦電結晶11を冷却すると、焦電結晶11が分極し、上面に正の電荷が、下面に負の電荷が表れる。このとき、焦電結晶11の上面(支持台22)が絶縁性のグリース22で覆われており、針23の先端のみグリース22から突出しているため、針23から試料S及び蛍光板15に向かって強い電場が形成される(図12の(a)に示す状態)。これにより、針23近傍の浮遊電子が試料Sに向かって加速される(図12の(b))。そして、試料Sに吸収されることなく該試料Sを通過した電子線、あるいは試料Sによって回折した電子線は蛍光板15に入射し、この結果、該蛍光板15に塗布されているZnSが励起されて発光する(図12の(c))。
Next, the operation of the transmission electron microscope of this embodiment will be described with reference to FIG.
The sample S is held by the sample holder 14, and the sample S and the second rod 21 are electrically connected. And after sealing the vacuum vessel 10, the inside of the vacuum vessel 10 is exhausted by a rotary pump (not shown). The vacuum chamber 10 is evacuated until the internal pressure reaches about several Pa (for example, 1 Pa to 5 Pa). In this state, when a current in a predetermined direction is supplied to the Peltier element 12 and the pyroelectric crystal 11 that has been heated in advance is cooled, the pyroelectric crystal 11 is polarized, so that a positive charge is present on the upper surface and a negative charge is present on the lower surface. appear. At this time, since the upper surface (support base 22) of the pyroelectric crystal 11 is covered with the insulating grease 22, and only the tip of the needle 23 protrudes from the grease 22, the needle 23 faces the sample S and the fluorescent plate 15. A strong electric field is formed (state shown in FIG. 12A). Thereby, stray electrons near the needle 23 are accelerated toward the sample S ((b) of FIG. 12). Then, an electron beam that has passed through the sample S without being absorbed by the sample S or an electron beam diffracted by the sample S is incident on the fluorescent plate 15, and as a result, ZnS applied to the fluorescent plate 15 is excited. Light is emitted ((c) of FIG. 12).

ペルチェ素子12による焦電結晶11の冷却が続き、焦電結晶11とペルチェ素子12の温度差がなくなると、焦電結晶11からペルチェ素子12への熱の移動、つまり温度変化が無くなるため、焦電結晶11の分極面は真空中の浮遊荷電粒子等により中和される。このため、針23から蛍光板15に向かう電場が無くなり、針23近傍から蛍光板15に向かって電子線が流れなくなる。そこで、ペルチェ素子12に供給する電流の向きを反対側に切り替えて、焦電結晶11を加熱した後、再びペルチェ素子12に供給する電流の向きを切り替えて焦電結晶11を冷却する。これにより、上述したように、針23から蛍光板15に向かって電子線が流れ、試料Sの透過電子線像(又は回折電子線像)を観察することができる。   If the pyroelectric crystal 11 is continuously cooled by the Peltier element 12 and the temperature difference between the pyroelectric crystal 11 and the Peltier element 12 is eliminated, the heat transfer from the pyroelectric crystal 11 to the Peltier element 12, that is, the temperature change is eliminated. The polarization surface of the electrocrystal 11 is neutralized by floating charged particles in vacuum. For this reason, the electric field from the needle 23 toward the fluorescent plate 15 is eliminated, and the electron beam does not flow from the vicinity of the needle 23 toward the fluorescent plate 15. Therefore, the direction of the current supplied to the Peltier element 12 is switched to the opposite side, the pyroelectric crystal 11 is heated, and then the direction of the current supplied to the Peltier element 12 is switched again to cool the pyroelectric crystal 11. Thereby, as described above, an electron beam flows from the needle 23 toward the fluorescent plate 15, and a transmission electron beam image (or diffracted electron beam image) of the sample S can be observed.

このとき、透過電子線像の拡大倍率は、針23の先端から試料Sまでの距離と試料Sから蛍光板15までの距離の比で決まる。例えば、図3の(a)に示すように、針23の先端から試料Sまでの距離と試料Sから蛍光板15までの距離が1:3のときは4倍の拡大像が得られ、図3の(b)に示すように、針23の先端から試料Sまでの距離と試料Sから蛍光板15までの距離が1:1のときは2倍の拡大像が得られる。   At this time, the magnification of the transmission electron beam image is determined by the ratio of the distance from the tip of the needle 23 to the sample S and the distance from the sample S to the fluorescent plate 15. For example, as shown in FIG. 3A, when the distance from the tip of the needle 23 to the sample S and the distance from the sample S to the fluorescent plate 15 is 1: 3, an enlarged image 4 times larger is obtained. As shown in (b), when the distance from the tip of the needle 23 to the sample S and the distance from the sample S to the fluorescent plate 15 are 1: 1, a double magnified image is obtained.

本実施例に係る透過型電子顕微鏡を用いて、図4に示す銅製メッシュを観察した結果を図5及び図6に示す。図4の(a)は銅製のメッシュの走査型電子顕微鏡像(SEM像)を、(b)は実体画像である。また、図5の(a)〜(c)は、針23の先端から蛍光板15までの距離を55mmに固定し、針23から銅製メッシュまでの距離を5mm、3mm、1mmに変更したときの透過電子線像を示し、図6の(a)〜(d)は、針23の先端から銅製メッシュまでの距離を1mmに固定し、銅製メッシュから蛍光板までの距離を15mm、30mm、45mm、50mmに変更したときの透過電子線像を示す。   The results of observing the copper mesh shown in FIG. 4 using the transmission electron microscope according to this example are shown in FIGS. 4A is a scanning electron microscope image (SEM image) of a copper mesh, and FIG. 4B is a substantial image. 5A to 5C show the transmission when the distance from the tip of the needle 23 to the fluorescent plate 15 is fixed to 55 mm, and the distance from the needle 23 to the copper mesh is changed to 5 mm, 3 mm, and 1 mm. FIGS. 6A to 6D show an electron beam image, in which the distance from the tip of the needle 23 to the copper mesh is fixed to 1 mm, and the distance from the copper mesh to the fluorescent plate is 15 mm, 30 mm, 45 mm, and 50 mm. The transmission electron beam image when changed is shown.

なお、図5及び図6はいずれも、真空容器10内を1Paまで減圧した状態で、ペルチェ素子12に3Vの電圧を印加して焦電結晶11を約120秒間加熱し、100℃にした後、ペルチェ素子12に流す電流の向きを逆にして60秒かけて焦電結晶11を−10℃まで冷却したときの、冷却中における蛍光板15の発光の様子を観察したものである。   5 and 6, after the vacuum vessel 10 is depressurized to 1 Pa, a voltage of 3 V is applied to the Peltier element 12 and the pyroelectric crystal 11 is heated for about 120 seconds to 100 ° C. The state of light emission of the fluorescent plate 15 during cooling is observed when the pyroelectric crystal 11 is cooled to −10 ° C. over 60 seconds by reversing the direction of the current flowing through the Peltier element 12.

図5及び図6から、本実施例に係る透過型電子顕微鏡によれば、針23の先端から試料Sまでの距離や、試料から蛍光板までの距離を変更することにより、拡大倍率が異なる透過電子線像が得られることが分かる。   5 and 6, according to the transmission electron microscope according to the present embodiment, the transmission electrons having different magnifications can be changed by changing the distance from the tip of the needle 23 to the sample S or the distance from the sample to the fluorescent plate. It can be seen that a line image is obtained.

[実施例2]
図7は本発明の第2実施例の透過型電子顕微鏡の概略構成図、図8は針23周辺の拡大図である。第2実施例は、試料Sと針23の間に集束レンズとしての電子レンズ30が配置されている点で第1実施例と異なる。その他の構成は第1実施例と同じであるため、同一符号を付して説明を省略する。
電子レンズ30は、試料保持具14に保持される試料Sのやや下側に位置するように該試料保持具14内に取り付けられている。図9の(a)は電子レンズ30の縦断側面図、(b)は電子レンズ30の大きさを説明するための実体画像を示す。電子レンズ30は直径20mm、高さが11mmの円筒状の部品であり、純鉄製のヨーク301で覆われた真鍮製のスペーサ302と、該スペーサ302の中央部に配置されたネオジム磁石303とから構成されている。
[Example 2]
FIG. 7 is a schematic configuration diagram of a transmission electron microscope according to the second embodiment of the present invention, and FIG. 8 is an enlarged view around the needle 23. The second embodiment is different from the first embodiment in that an electron lens 30 as a focusing lens is disposed between the sample S and the needle 23. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
The electron lens 30 is mounted in the sample holder 14 so as to be positioned slightly below the sample S held by the sample holder 14. FIG. 9A is a longitudinal side view of the electronic lens 30, and FIG. 9B is a substantial image for explaining the size of the electronic lens 30. The electron lens 30 is a cylindrical part having a diameter of 20 mm and a height of 11 mm. The electron lens 30 includes a brass spacer 302 covered with a pure iron yoke 301 and a neodymium magnet 303 disposed at the center of the spacer 302. It is configured.

針23と試料Sの間に電子レンズ30を配置したことにより、針23から放出される電子線は図6に示すように電子レンズ30を通過する際に集束された後、試料Sに照射される。なお、針23の先端から電子レンズ30までの距離は1mmに、針23の先端から蛍光板15までの距離は40mmにそれぞれ設定されている。   Since the electron lens 30 is disposed between the needle 23 and the sample S, the electron beam emitted from the needle 23 is focused when passing through the electron lens 30 as shown in FIG. The The distance from the tip of the needle 23 to the electron lens 30 is set to 1 mm, and the distance from the tip of the needle 23 to the fluorescent plate 15 is set to 40 mm.

図10の(a)は、線径が100μmで目開きが150μmの銅製メッシュを試料Sとしたときの、本実施例に係る透過型電子顕微鏡による透過電子線像(図中、白矢印で示す小さい円形の像)である。また、図10の(b)は、図10の(a)に示す透過電子線像の発光強度を示すグラフである。このグラフの横軸は透過電子線像の中心を通る直線上に位置する任意の点を原点としたときの原点からの距離(μm)を、縦軸は発光強度を示す。図8の(b)において、距離が300μmから700μmの範囲において発光が観察されたことから、透過電子線像の直径は約400μmであったことが分かる。   FIG. 10A shows a transmission electron beam image (indicated by a white arrow in the figure) of the transmission electron microscope according to the present example when a copper mesh having a wire diameter of 100 μm and an opening of 150 μm is used as the sample S. A small circular image). FIG. 10B is a graph showing the emission intensity of the transmission electron beam image shown in FIG. The horizontal axis of this graph represents the distance (μm) from the origin when an arbitrary point located on a straight line passing through the center of the transmission electron beam image is the origin, and the vertical axis represents the emission intensity. In FIG. 8B, since light emission was observed in the range of 300 μm to 700 μm, it can be seen that the diameter of the transmission electron beam image was about 400 μm.

一方、図11の(a)は、図10と同じ銅製メッシュを試料Sとしたときの、第1実施例に係る透過型電子顕微鏡(つまり、電子レンズなしの透過型電子顕微鏡)による透過電子線像(図中、白矢印で示す。)であり、図11の(b)は該透過電子線像の発光強度のグラフである。図11の(b)において、距離が2000μmから8000μmの範囲において発光が観察されたことから、電子レンズ30がない場合の透過電子線像の直径は約6000μmであったことが分かる。   On the other hand, FIG. 11A shows a transmission electron beam obtained by the transmission electron microscope (that is, the transmission electron microscope without an electron lens) according to the first example when the same copper mesh as that of FIG. (B) in FIG. 11 is a graph of the emission intensity of the transmission electron beam image. In FIG. 11B, since light emission was observed in the range of 2000 μm to 8000 μm, it can be seen that the diameter of the transmitted electron beam image without the electron lens 30 was about 6000 μm.

なお、本発明は上記した実施例に限定されるものではなく、例えば次のような変形が可能である。
電子レンズは、針と試料の間の他、試料と蛍光板の間に配置しても良い。この場合の電子レンズは、対物レンズあるいは結像系レンズとして機能する。
上記実施例では透過電子線像について説明したが、回折電子線像についても同様の結果が得られる。
上記実施例では、ペルチェ素子だけで焦電結晶を加熱・冷却するようにしたが、ペルチェ素子は焦電結晶の冷却のみに用い、焦電結晶の加熱は電熱線等のヒータを用いても良い。この場合は、ペルチェ素子とヒータが温度変化手段を構成することになる。
In addition, this invention is not limited to an above-described Example, For example, the following modifications are possible.
The electron lens may be disposed between the sample and the fluorescent plate as well as between the needle and the sample. The electron lens in this case functions as an objective lens or an imaging lens.
Although the transmission electron beam image has been described in the above embodiment, the same result can be obtained for the diffraction electron beam image.
In the above embodiment, the pyroelectric crystal is heated and cooled only by the Peltier element. However, the Peltier element may be used only for cooling the pyroelectric crystal, and a heater such as a heating wire may be used for heating the pyroelectric crystal. . In this case, the Peltier element and the heater constitute temperature changing means.

10…真空容器
101…垂直管部
102…水平管部
103…窓用管部
104、105…蓋
106…窓板
11…焦電結晶
12…ペルチェ素子
13…電源装置
14…試料保持具
15…蛍光板
16…撮像装置
17…蛇腹ダクト
20…第1ロッド
21…第2ロッド
22…支持体
23…針
24…グリース
30…電子レンズ
301…ヨーク
302…スペーサ
303…ネオジム磁石
S…試料
DESCRIPTION OF SYMBOLS 10 ... Vacuum vessel 101 ... Vertical tube part 102 ... Horizontal tube part 103 ... Window tube part 104, 105 ... Cover 106 ... Window plate 11 ... Pyroelectric crystal 12 ... Peltier element 13 ... Power supply device 14 ... Sample holder 15 ... Fluorescent plate DESCRIPTION OF SYMBOLS 16 ... Imaging device 17 ... Bellows duct 20 ... 1st rod 21 ... 2nd rod 22 ... Support body 23 ... Needle 24 ... Grease 30 ... Electron lens 301 ... Yoke 302 ... Spacer 303 ... Neodymium magnet S ... Sample

Claims (4)

e) 真空容器と、
f) 前記真空容器内に配置された焦電結晶と、該焦電結晶に比べて低い誘電率を有し該焦電結晶の一方の分極面を覆う絶縁体部材と、前記焦電結晶の前記一方の分極面に立設された前記絶縁体部材から突出する突出端を有する導電性の針と、前記焦電結晶の温度を変化させる温度変化手段とを有する電子線放出部と、
g) 前記真空容器内に配置された、前記針の突出端の延長線上に試料が位置するように該試料を保持する試料保持部であって、前記焦電結晶の他方の分極面と電気的に接続され、且つ接地された試料保持部と、
h) 前記針の突出端から放出され前記試料を透過した電子線による該試料の投影像又は該試料の回折像を観察するための観察手段と、
を備えることを特徴とする透過型電子顕微鏡。
e) a vacuum vessel;
f) a pyroelectric crystal disposed in the vacuum vessel; an insulator member having a lower dielectric constant than the pyroelectric crystal and covering one polarization surface of the pyroelectric crystal; and the pyroelectric crystal An electron beam emitter having a conductive needle having a protruding end protruding from the insulator member provided on one polarization surface, and a temperature changing means for changing the temperature of the pyroelectric crystal;
g) a sample holding unit that is arranged in the vacuum vessel and holds the sample so that the sample is positioned on an extension line of the protruding end of the needle, and is electrically connected to the other polarization surface of the pyroelectric crystal. A sample holder connected to and grounded,
h) an observation means for observing a projection image of the sample or a diffraction image of the sample by an electron beam emitted from the protruding end of the needle and transmitted through the sample;
A transmission electron microscope comprising:
請求項1に記載の透過型電子顕微鏡において、さらに、
前記電子線放出部と前記試料保持部の間に配置された、前記針の突出端から放出された前記電子線を前記試料保持部に保持された試料上に集束するための集束レンズ
を備えることを特徴とする透過型電子顕微鏡。
The transmission electron microscope according to claim 1, further comprising:
A focusing lens disposed between the electron beam emitting unit and the sample holding unit for focusing the electron beam emitted from the protruding end of the needle onto the sample held by the sample holding unit; A transmission electron microscope.
請求項1又は2に記載の透過型電子顕微鏡において、さらに、
前記試料保持部と前記観察手段の間に配置された対物レンズを備えることを特徴とする透過型電子顕微鏡。
The transmission electron microscope according to claim 1, further comprising:
A transmission electron microscope comprising an objective lens disposed between the sample holder and the observation means.
前記温度変化手段が、前記焦電結晶に接するペルチェ素子と、該ペルチェ素子に電力を供給する電力供給手段とを備えることを特徴とする請求項1〜3のいずれかに記載の透過型電子顕微鏡。   The transmission electron microscope according to any one of claims 1 to 3, wherein the temperature changing means includes a Peltier element in contact with the pyroelectric crystal and power supply means for supplying power to the Peltier element. .
JP2014189813A 2014-09-18 2014-09-18 Transmission electron microscope Pending JP2016062751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189813A JP2016062751A (en) 2014-09-18 2014-09-18 Transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189813A JP2016062751A (en) 2014-09-18 2014-09-18 Transmission electron microscope

Publications (1)

Publication Number Publication Date
JP2016062751A true JP2016062751A (en) 2016-04-25

Family

ID=55798090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189813A Pending JP2016062751A (en) 2014-09-18 2014-09-18 Transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2016062751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725005A (en) * 2017-10-27 2019-05-07 北京纳米能源与系统研究所 Transmission electron microscope sample club head and the transmission electron microscope sample bar for applying it
CN113155878A (en) * 2021-04-06 2021-07-23 北京化工大学 Transmission electron microscope sample silking platform and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725005A (en) * 2017-10-27 2019-05-07 北京纳米能源与系统研究所 Transmission electron microscope sample club head and the transmission electron microscope sample bar for applying it
CN109725005B (en) * 2017-10-27 2021-07-27 北京纳米能源与系统研究所 Transmission electron microscope sample rod head and transmission electron microscope sample rod applying same
CN113155878A (en) * 2021-04-06 2021-07-23 北京化工大学 Transmission electron microscope sample silking platform and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5769244B2 (en) Industrial X-ray tube
JP7302916B2 (en) Charged particle beam device
JP6501285B2 (en) Electron beam generator and electron beam application device
CN103733734A (en) Radiation generating apparatus and radiation imaging apparatus
JP6218403B2 (en) X-ray tube equipped with a field emission electron gun and X-ray inspection apparatus using the same
US9659738B2 (en) X-ray source and the use thereof and method for producing X-rays
US10636623B2 (en) Ion beam device
US10903037B2 (en) Charged particle beam device
JP2015191795A (en) X-ray generator
KR20140109809A (en) X-ray generation tube, x-ray generation device including the x-ray generation tube, x-ray imaging system
JP2004031207A (en) Electron beam irradiation equipment and scanning electron microscope apparatus
WO2007043412A1 (en) X-ray tube and x-ray source including same
JP2016062751A (en) Transmission electron microscope
JP6727193B2 (en) High voltage feedthrough assembly, electron diffraction or imaging device, and method of operating an electrode device in a vacuum environment
KR20160058582A (en) X-ray source using nano electron emitter
JP4056970B2 (en) X-ray generator using heteropolar crystal
JP4526113B2 (en) Microfocus X-ray tube and X-ray apparatus using the same
JP5057329B2 (en) X-ray generator using heteropolar crystal
JP2004138460A (en) X-ray microinspection apparatus
Cosslett et al. An improved X-ray shadow projection microscope
JP7167196B2 (en) X-ray generating tube, X-ray generator and X-ray imaging system
JP2020202167A (en) Transmission electron microscope (TEM) with photoemission electron microscope (PEEM) function
JPH117913A (en) Electron beam generator and method for cooling same
RU184642U1 (en) Pyroelectric X-ray Source
JP5742059B2 (en) Electron generation method