JP2016061262A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2016061262A
JP2016061262A JP2014191517A JP2014191517A JP2016061262A JP 2016061262 A JP2016061262 A JP 2016061262A JP 2014191517 A JP2014191517 A JP 2014191517A JP 2014191517 A JP2014191517 A JP 2014191517A JP 2016061262 A JP2016061262 A JP 2016061262A
Authority
JP
Japan
Prior art keywords
combustion
exhaust
exhaust valve
amount
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014191517A
Other languages
Japanese (ja)
Other versions
JP6358007B2 (en
Inventor
佳 ▲吉▼村
佳 ▲吉▼村
Kei Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2014191517A priority Critical patent/JP6358007B2/en
Priority to DE102015217812.9A priority patent/DE102015217812B4/en
Publication of JP2016061262A publication Critical patent/JP2016061262A/en
Application granted granted Critical
Publication of JP6358007B2 publication Critical patent/JP6358007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine that can suppress occurrence of misfire and reduction of torque during premixing compression self-ignition combustion.SOLUTION: A control device for an internal combustion engine includes: an exhaust valve 22 opened/closed to communicate/block an exhaust passage 24a and a combustion chamber 7 with/from each other; an exhaust side variable valve train 23 that can optionally change opening/closing timing of the exhaust valve 22; a cylinder internal pressure sensor 30 for detecting internal pressure of a cylinder 5; and an ECU 3 that determines that excessive combustion has occurred in main combustion in the case where timing of the main combustion when the cylinder internal pressure detected by the cylinder internal pressure sensor 30 exceeds a preset pressure threshold value is advanced from a preset excessive combustion threshold value, so as to increase fuel injection amount of closed time injection by preset closed time injection increase amount and delay the opening/closing timing of the exhaust valve 22 immediately before a closed period in accordance with the fuel injection amount of the closed time injection.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の制御装置に関し、特に、予混合圧縮自着火燃焼機能を備える内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine having a premixed compression auto-ignition combustion function.

従来、ガソリンエンジン等の内燃機関の燃焼形態としては、点火プラグからの火花放電により強制的に混合気を着火させるSI(Spark Ignition)燃焼が広く一般的であったが、近年、気筒内に高温の既燃ガスを導入して混合気を自着火させる予混合圧縮自着火燃焼を燃焼形態として利用するガソリンエンジンの開発が進められている。ここで、予混合圧縮自着火燃焼は、HCCI(Homogeneous Charge Compression Ignition)燃焼と称される。   Conventionally, as a combustion mode of an internal combustion engine such as a gasoline engine, SI (Spark Ignition) combustion in which an air-fuel mixture is forcibly ignited by spark discharge from a spark plug has been widely used. Development of a gasoline engine that uses premixed compression self-ignition combustion, which introduces the burned gas and self-ignites the air-fuel mixture, as a combustion mode is underway. Here, the premixed compression self-ignition combustion is referred to as HCCI (Homogeneous Charge Compression Ignition) combustion.

このHCCI燃焼は、気筒内の混合気を圧縮し、高温かつ高圧化することにより、火花点火によらず混合気を自着火させるというものである。HCCI燃焼は、気筒内の各所で同時多発的に自着火する燃焼であり、SI燃焼に比べて燃焼期間が短く、より高い熱効率が得られるという利点を有する。   In this HCCI combustion, the air-fuel mixture in the cylinder is compressed, and the air-fuel mixture is self-ignited regardless of spark ignition by increasing the temperature and pressure. HCCI combustion is combustion in which self-ignition occurs at various locations in the cylinder at the same time, and has an advantage that the combustion period is shorter than that of SI combustion and higher thermal efficiency can be obtained.

このようなHCCI燃焼機能を備える内燃機関において、排気行程から吸気行程にかけて吸気弁と排気弁とをともに閉じて、排ガスを内部EGR(Exhaust Gas Recirculation)ガスとして燃焼室に封鎖させる負のバルブオーバーラップ(NVO:Negative Valve Overlap)期間を設け、内部EGRガスにより燃焼室内の温度である筒内温度を高温にするものがある。また、このNVO期間に燃料を噴射するNVO噴射を行うようにしたものもある。NVO噴射による燃料は、高圧かつ高温の環境下にさらされるので、直ぐに燃焼を引き起こす(以下、「NVO燃焼」という)。このため、圧縮行程におけるメイン燃焼に先立ち筒内温度を上昇させておくことができ、メイン燃焼の失火を抑制させることができる。   In an internal combustion engine having such an HCCI combustion function, a negative valve overlap that closes both the intake valve and the exhaust valve from the exhaust stroke to the intake stroke and seals the exhaust gas as an internal EGR (Exhaust Gas Recirculation) gas in the combustion chamber. Some (NVO: Negative Valve Overlap) periods are provided, and the internal cylinder temperature, which is the temperature in the combustion chamber, is increased by internal EGR gas. There is also an NVO injection that injects fuel during the NVO period. The fuel produced by NVO injection is exposed to a high-pressure and high-temperature environment, and thus immediately causes combustion (hereinafter referred to as “NVO combustion”). For this reason, the in-cylinder temperature can be raised prior to the main combustion in the compression stroke, and misfire of the main combustion can be suppressed.

このようなNVO燃焼を行う内燃機関において、メイン燃焼が過剰燃焼となった際の排ガス中には、未燃焼燃料がほとんど含まれていない。よって、過剰燃焼となったメイン燃焼の直後のNVO燃焼では、内部EGRガス中の未燃焼燃料が少ないため、筒内の温度上昇が抑制され、次サイクルのメイン燃焼は燃焼が悪化してしまう。   In an internal combustion engine that performs such NVO combustion, the exhaust gas when the main combustion becomes excessive combustion contains almost no unburned fuel. Therefore, in the NVO combustion immediately after the main combustion that has become excessive combustion, since there is little unburned fuel in the internal EGR gas, the temperature rise in the cylinder is suppressed, and the combustion in the main combustion in the next cycle is deteriorated.

このような問題を解決するため、特許文献1では、過剰燃焼となったメイン燃焼の直後のNVO期間において、NVO噴射の燃料噴射量を増加させてNVO燃焼を活発にし、筒内温度を上昇させる内燃機関の制御装置が提案されている。これにより、過剰燃焼となったメイン燃焼の次サイクルのメイン燃焼の燃焼が悪化することを防ぐことができる。   In order to solve such a problem, in Patent Document 1, in the NVO period immediately after the main combustion that has become excessive combustion, the fuel injection amount of NVO injection is increased to make NVO combustion active and raise the in-cylinder temperature. Control devices for internal combustion engines have been proposed. Thereby, it can prevent that the combustion of the main combustion of the next cycle of the main combustion which became excess combustion deteriorates.

特開2013−19345号公報JP 2013-19345 A

しかしながら、このような特許文献1に記載の内燃機関の制御装置にあっては、NVO噴射の燃料噴射量を増加させてNVO燃焼を活発化させるため、NVO期間中の筒内ガス量が多くなり、次サイクルのメイン燃焼前の筒内の燃料量Fに対する残留ガス量Gの割合(以下、単に「G/F」という)が大きくなってしまう。その結果、次サイクルのメイン燃焼時のG/Fが失火限界以下となって、失火が発生したりトルクが減少したりするという問題があった。   However, in such a control device for an internal combustion engine described in Patent Document 1, the amount of in-cylinder gas during the NVO period increases because the fuel injection amount of NVO injection is increased to activate NVO combustion. The ratio of the residual gas amount G to the fuel amount F in the cylinder before main combustion in the next cycle (hereinafter simply referred to as “G / F”) becomes large. As a result, G / F at the time of main combustion in the next cycle is below the misfire limit, and there is a problem that misfire occurs or torque decreases.

そこで、本発明は、予混合圧縮自着火燃焼時の失火やトルク減少の発生を抑えることができる内燃機関の制御装置を提供することを目的としている。   Therefore, an object of the present invention is to provide a control device for an internal combustion engine that can suppress the occurrence of misfire and torque reduction during premixed compression self-ignition combustion.

上記課題を解決する内燃機関の制御装置の発明の一態様は、火花点火燃焼と予混合圧縮自着火燃焼とが切り替え可能に構成されるとともに、排気行程から吸気行程にかけて吸気弁及び排気弁をともに閉じて排ガスを燃焼室に封鎖させる封鎖期間を設け、封鎖期間に燃焼室へ燃料を噴射する封鎖時噴射を実行し、封鎖時噴射された燃料の燃焼により燃焼室温度を上昇させた後に予混合圧縮自着火燃焼を行う内燃機関の制御装置であって、予混合圧縮自着火燃焼の発生を検出するメイン燃焼検出部と、排気弁の開閉時期を任意に変更可能な排気側可変動弁機構と、予混合圧縮自着火燃焼の発生が予め設定された閾値以上に進角した場合に、封鎖時噴射の燃料噴射量を増加させるとともに、封鎖時噴射の燃料噴射量に応じて封鎖期間直前の排気弁の開閉時期を遅らせる制御部と、を備えるものである。   An aspect of the invention of a control device for an internal combustion engine that solves the above problems is configured to be able to switch between spark ignition combustion and premixed compression auto-ignition combustion, and includes both an intake valve and an exhaust valve from the exhaust stroke to the intake stroke. A closed period is provided to close and seal off the exhaust gas in the combustion chamber. During the closed period, fuel is injected into the combustion chamber, and injection is performed when the fuel is injected. A control device for an internal combustion engine that performs compression self-ignition combustion, a main combustion detection unit that detects the occurrence of premixed compression self-ignition combustion, and an exhaust-side variable valve mechanism that can arbitrarily change the opening / closing timing of the exhaust valve, When the occurrence of premixed compression auto-ignition combustion advances beyond a preset threshold value, the fuel injection amount of the injection at the time of blockage is increased, and the exhaust immediately before the blockage period according to the fuel injection amount of the injection at the time of blockage Valve In which and a control unit to delay the closing timing.

このように本発明の一態様によれば、予混合圧縮自着火燃焼時の失火やトルク減少の発生を抑えることができる。   Thus, according to one aspect of the present invention, it is possible to suppress the occurrence of misfire and torque reduction during premixed compression self-ignition combustion.

図1は、本発明の一実施形態に係る内燃機関の制御装置を示す図であり、その概念ブロック図である。FIG. 1 is a diagram showing a control device for an internal combustion engine according to an embodiment of the present invention, and is a conceptual block diagram thereof. 図2は、本発明の一実施形態に係る内燃機関の制御装置を示す図であり、その燃焼安定化処理を説明するフローチャートである。FIG. 2 is a diagram illustrating a control apparatus for an internal combustion engine according to an embodiment of the present invention, and is a flowchart for explaining the combustion stabilization process. 図3は、本発明の一実施形態に係る内燃機関の制御装置を示す図であり、その燃焼安定化処理による筒内の燃料量に対する残留ガス量の割合の変化を示すタイムチャートである。FIG. 3 is a diagram showing a control apparatus for an internal combustion engine according to an embodiment of the present invention, and is a time chart showing a change in the ratio of the residual gas amount to the fuel amount in the cylinder by the combustion stabilization process. 図4は、本発明の一実施形態に係る内燃機関の制御装置を示す図であり、封鎖時噴射量と排気弁遅角量によるエンジン負荷変化率を示すグラフである。FIG. 4 is a diagram showing a control device for an internal combustion engine according to an embodiment of the present invention, and is a graph showing an engine load change rate according to an injection amount at the time of blockage and an exhaust valve retardation amount. 図5は、本発明の一実施形態に係る内燃機関の制御装置を示す図であり、封鎖時噴射量と排気弁遅角量による筒内の燃料量に対する残留ガス量の割合を示すグラフである。FIG. 5 is a diagram showing a control device for an internal combustion engine according to an embodiment of the present invention, and is a graph showing the ratio of the residual gas amount to the fuel amount in the cylinder according to the injection amount at the time of blockage and the exhaust valve retard amount. .

以下、図面を参照して、本発明の実施形態について詳細に説明する。
図1において、本発明の一実施形態に係る内燃機関の制御装置を搭載した車両1は、内燃機関型のエンジン2と、制御部としてのECU(Electronic Control Unit)3とを含んで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, a vehicle 1 equipped with an internal combustion engine control apparatus according to an embodiment of the present invention includes an internal combustion engine type engine 2 and an ECU (Electronic Control Unit) 3 as a control unit. .

エンジン2には、気筒としてのシリンダ5が形成されている。シリンダ5には、このシリンダ5内を上下に往復動可能なピストン6が収納されている。また、シリンダ5の上部には、燃焼室7が設けられている。この燃焼室7には、シリンダ5の内部の圧力である筒内圧力を把握するための筒内圧センサ30が設けられている。   The engine 2 is formed with a cylinder 5 as a cylinder. The cylinder 5 houses a piston 6 that can reciprocate up and down in the cylinder 5. A combustion chamber 7 is provided in the upper part of the cylinder 5. The combustion chamber 7 is provided with an in-cylinder pressure sensor 30 for grasping the in-cylinder pressure that is the pressure inside the cylinder 5.

エンジン2は、シリンダ5内でピストン6が往復する間に、吸気行程、圧縮行程、膨張行程および排気行程からなる一連の4行程を行う、いわゆる4サイクルのガソリンエンジンである。   The engine 2 is a so-called four-cycle gasoline engine that performs a series of four strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke while the piston 6 reciprocates in the cylinder 5.

また、ピストン6は、不図示のコネクティングロッドを介してクランクシャフトと連結している。コネクティングロッドは、ピストン6の往復運動をクランクシャフトの回転運動に変換するようになっている。   The piston 6 is connected to the crankshaft via a connecting rod (not shown). The connecting rod converts the reciprocating motion of the piston 6 into the rotational motion of the crankshaft.

また、燃焼室7には、点火プラグ8と、インジェクタ9が設けられている。点火プラグ8は、燃焼室7内に電極を突出させた状態で配設され、図示しないイグナイタによってその点火時期が調整されるようになっている。インジェクタ9は、図示しない燃料タンクから燃料ポンプによって供給された燃料を燃焼室7内に噴射する、いわゆる筒内噴射式の燃料噴射弁である。   The combustion chamber 7 is provided with a spark plug 8 and an injector 9. The spark plug 8 is disposed in a state in which an electrode protrudes into the combustion chamber 7, and its ignition timing is adjusted by an igniter (not shown). The injector 9 is a so-called in-cylinder fuel injection valve that injects fuel supplied from a fuel tank (not shown) by a fuel pump into the combustion chamber 7.

エンジン2には、吸気ポート11と、排気ポート21が設けられている。吸気ポート11は、燃焼室7と後述する吸気通路14aとを連通するようになっている。また、吸気ポート11には、吸気弁12が設けられている。   The engine 2 is provided with an intake port 11 and an exhaust port 21. The intake port 11 communicates the combustion chamber 7 with an intake passage 14a described later. The intake port 11 is provided with an intake valve 12.

吸気弁12は、吸気通路14aと燃焼室7とを連通または遮断するように開閉されるようになっている。吸気弁12の開閉は、吸気側可変動弁機構13によって行われるようになっている。   The intake valve 12 is opened and closed so as to communicate or block the intake passage 14a and the combustion chamber 7. The intake valve 12 is opened and closed by an intake side variable valve mechanism 13.

吸気側可変動弁機構13としては、例えば電磁石とスプリング等から構成された電磁アクチュエータにより吸気弁12の開閉を行う電磁式の可変動弁機構を用いることができる。具体的には、吸気側可変動弁機構13は、電磁石の励磁によって吸気弁12に固定された可動部を吸引することで、スプリングによって常時閉弁方向に付勢されている吸気弁12を開弁方向に移動させるようになっている。   As the intake side variable valve mechanism 13, for example, an electromagnetic variable valve mechanism that opens and closes the intake valve 12 by an electromagnetic actuator composed of an electromagnet and a spring can be used. Specifically, the intake side variable valve mechanism 13 opens the intake valve 12 that is normally urged in the valve closing direction by a spring by attracting a movable portion fixed to the intake valve 12 by excitation of an electromagnet. It is designed to move in the valve direction.

また、吸気側可変動弁機構13は、ECU3と電気的に接続されており、電磁石の励磁、非励磁がECU3によって制御されるようになっている。したがって、ECU3は、吸気弁12の開閉時期を任意に変更でき、これにより吸気弁12の開弁期間を容易に調整することができる。   The intake side variable valve mechanism 13 is electrically connected to the ECU 3 so that the excitation and de-excitation of the electromagnet is controlled by the ECU 3. Therefore, the ECU 3 can arbitrarily change the opening / closing timing of the intake valve 12, thereby easily adjusting the valve opening period of the intake valve 12.

なお、吸気側可変動弁機構13としては、電磁アクチュエータに替えて油圧アクチュエータを用いた油圧式の可変動弁機構を用いてもよい。また、吸気側可変動弁機構13として、主カムおよび副カム等のカム部材を用いて吸気弁12の開閉時期を変更可能な機械式の可変動弁機構を用いても構わない。   The intake side variable valve mechanism 13 may be a hydraulic variable valve mechanism using a hydraulic actuator instead of the electromagnetic actuator. Further, as the intake side variable valve mechanism 13, a mechanical variable valve mechanism that can change the opening / closing timing of the intake valve 12 using cam members such as a main cam and a sub cam may be used.

さらに、この吸気側可変動弁機構13は、例えば電磁石に対する励磁電流がECU3によって調整されることにより、吸気弁12の開閉時期とともに吸気弁12のリフト量を連続的に変化させることが可能な構成であってもよい。   Further, the intake side variable valve mechanism 13 is configured such that, for example, the exciting current for the electromagnet is adjusted by the ECU 3 so that the lift amount of the intake valve 12 can be continuously changed with the opening / closing timing of the intake valve 12. It may be.

また、吸気ポート11には、吸気管14が接続されている。この吸気管14の内部には、吸気ポート11と連通する吸気通路14aが形成されている。吸気通路14aには、電子制御式のスロットルバルブ15が設けられている。スロットルバルブ15は、ECU3に電気的に接続されている。   An intake pipe 14 is connected to the intake port 11. An intake passage 14 a communicating with the intake port 11 is formed in the intake pipe 14. An electronically controlled throttle valve 15 is provided in the intake passage 14a. The throttle valve 15 is electrically connected to the ECU 3.

スロットルバルブ15は、ECU3からの指令信号に応じてスロットル開度が制御されることで、エンジン2の吸入空気量を調整するようになっている。   The throttle valve 15 adjusts the intake air amount of the engine 2 by controlling the throttle opening degree according to a command signal from the ECU 3.

一方、排気ポート21には、排気弁22が設けられている。排気弁22は、後述する排気通路24aと燃焼室7とを連通または遮断するように開閉されるようになっている。排気弁22の開閉は、排気側可変動弁機構23によって行われるようになっている。   On the other hand, the exhaust port 21 is provided with an exhaust valve 22. The exhaust valve 22 is opened and closed so as to communicate or block an exhaust passage 24a described later and the combustion chamber 7. The exhaust valve 22 is opened and closed by an exhaust side variable valve mechanism 23.

排気側可変動弁機構23は、上述した吸気側可変動弁機構13と同様の構成であるため、詳細な説明を省略するが、電磁石の励磁、非励磁がECU3によって制御されることで、排気弁22の開閉時期が任意に変更される。なお、排気側可変動弁機構23として、電磁アクチュエータに替えて油圧アクチュエータを用いた油圧式の可変動弁機構を用いてもよい。また、排気側可変動弁機構23として、主カムおよび副カム等のカム部材を用いて排気弁22の開閉時期を変更可能な機械式の可変動弁機構を用いても構わない。したがって、ECU3は、排気弁22の開弁期間を容易に調整することができる。   Since the exhaust side variable valve mechanism 23 has the same configuration as the intake side variable valve mechanism 13 described above, detailed description thereof is omitted, but the excitation and deexcitation of the electromagnet is controlled by the ECU 3 so that the exhaust The opening / closing timing of the valve 22 is arbitrarily changed. The exhaust side variable valve mechanism 23 may be a hydraulic variable valve mechanism using a hydraulic actuator instead of the electromagnetic actuator. Further, as the exhaust-side variable valve mechanism 23, a mechanical variable valve mechanism that can change the opening / closing timing of the exhaust valve 22 using cam members such as a main cam and a sub cam may be used. Therefore, the ECU 3 can easily adjust the valve opening period of the exhaust valve 22.

また、排気ポート21には、排気管24が接続されている。この排気管24の内部には、排気ポート21と連通する排気通路24aが形成されている。   An exhaust pipe 24 is connected to the exhaust port 21. An exhaust passage 24 a communicating with the exhaust port 21 is formed in the exhaust pipe 24.

上述のように構成されたエンジン2は、スロットルバルブ15により流量調整された吸気と噴射燃料との混合気を、点火プラグ8により点火して着火させる点火式のエンジンである。また、吸気側可変動弁機構13および排気側可変動弁機構23により吸気弁12と排気弁22の開閉タイミングを調節することで、燃焼室7内に噴射燃料と吸気を予め混合しておき、その混合気を圧縮して自着火させる予混合圧縮自着火燃焼(HCCI燃焼)が可能である。つまり、火花点火燃焼によるSIモードと、HCCI燃焼によるHCCIモードとが切り替え可能に構成されている。   The engine 2 configured as described above is an ignition type engine in which an air-fuel mixture of intake air and injected fuel whose flow rate is adjusted by a throttle valve 15 is ignited by an ignition plug 8 to be ignited. Further, by adjusting the opening / closing timing of the intake valve 12 and the exhaust valve 22 by the intake side variable valve mechanism 13 and the exhaust side variable valve mechanism 23, the injected fuel and intake air are mixed in the combustion chamber 7 in advance. Premixed compression self-ignition combustion (HCCI combustion) in which the air-fuel mixture is compressed and self-ignited is possible. That is, the SI mode by spark ignition combustion and the HCCI mode by HCCI combustion can be switched.

本実施形態では、上述のように構成されたエンジン2は、ECU3によってその運転状態が制御されるようになっている。ECU3は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。   In the present embodiment, the operating state of the engine 2 configured as described above is controlled by the ECU 3. The ECU 3 includes a computer unit that includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a flash memory, an input port, and an output port.

ECU3のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをECU3として機能させるためのプログラムが記憶されている。すなわち、ECU3において、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、ECU3として機能する。   A program for causing the computer unit to function as the ECU 3 is stored in the ROM of the ECU 3 together with various control constants and various maps. That is, in the ECU 3, the computer unit functions as the ECU 3 when the CPU executes a program stored in the ROM.

また、ECU3の入力側には、前述した筒内圧センサ30、に加え、アクセル開度センサ31およびクランク角センサ32等の各種センサ類が接続されている。ここで、アクセル開度センサ31は、例えば加速要求時等に運転者によって操作される図示しないアクセルペダルの開度であるアクセル開度を検知するようになっている。また、クランク角センサ32は、クランクシャフトの回転角度を検知するようになっている。ECU3は、クランク角センサ32から入力される検知結果に基づきエンジン回転数を算出するようになっている。   In addition to the in-cylinder pressure sensor 30 described above, various sensors such as an accelerator opening sensor 31 and a crank angle sensor 32 are connected to the input side of the ECU 3. Here, the accelerator opening sensor 31 detects an accelerator opening that is an opening of an accelerator pedal (not shown) operated by the driver when, for example, an acceleration is requested. The crank angle sensor 32 detects the rotation angle of the crankshaft. The ECU 3 calculates the engine speed based on the detection result input from the crank angle sensor 32.

一方、ECU3の出力側には、前述した点火プラグ8、インジェクタ9、スロットルバルブ15、吸気側可変動弁機構13および排気側可変動弁機構23等の各種制御対象類が接続されている。   On the other hand, various control objects such as the above-described ignition plug 8, injector 9, throttle valve 15, intake side variable valve mechanism 13 and exhaust side variable valve mechanism 23 are connected to the output side of the ECU 3.

ECU3は、エンジン2の運転状態に応じてSI燃焼とHCCI燃焼とを切り替えるようになっている。具体的には、ECU3は、エンジン回転数及びエンジン負荷をパラメータとする燃焼領域マップを参照することにより、エンジン2の運転領域がSI燃焼領域およびHCCI燃焼領域のいずれにあるかを判断し、この判断に基づきSI燃焼を行うかHCCI燃焼を行うかを選択するようになっている。   The ECU 3 switches between SI combustion and HCCI combustion according to the operating state of the engine 2. Specifically, the ECU 3 determines whether the operation region of the engine 2 is in the SI combustion region or the HCCI combustion region by referring to a combustion region map using the engine speed and the engine load as parameters. Based on the determination, whether to perform SI combustion or HCCI combustion is selected.

ECU3は、アクセル開度センサ31から入力されたアクセル開度やクランク角センサ32から入力される検知結果から算出したエンジン回転数などに基づき機関負荷としてのエンジン負荷を算出するようになっている。   The ECU 3 calculates an engine load as an engine load based on the accelerator opening input from the accelerator opening sensor 31 and the engine speed calculated from the detection result input from the crank angle sensor 32.

ECU3は、HCCI燃焼を行うHCCIモードでは、エンジン回転数及びエンジン負荷に基づいて、運転者から要求されたエンジン負荷を出力するための吸気弁12及び排気弁22のバルブタイミングやインジェクタ9による燃料噴射量を決定する。   In the HCCI mode in which the HCCI combustion is performed, the ECU 3 performs the valve timing of the intake valve 12 and the exhaust valve 22 for outputting the engine load requested by the driver based on the engine speed and the engine load, and the fuel injection by the injector 9. Determine the amount.

また、ECU3は、HCCIモードでは、排気行程から吸気行程にかけて吸気弁12及び排気弁22をともに閉じる封鎖期間(NVO期間)を設定するようになっている。また、ECU3は、この封鎖期間中にインジェクタ9から燃料を噴射させる封鎖時噴射を行わせるようになっている。そして、ECU3は、封鎖時噴射の後、吸気行程から圧縮行程にかけての所定期間に封鎖時噴射よりも多い量の燃料を噴射させるメイン噴射を行わせる。   Further, in the HCCI mode, the ECU 3 sets a blockage period (NVO period) during which both the intake valve 12 and the exhaust valve 22 are closed from the exhaust stroke to the intake stroke. In addition, the ECU 3 is configured to perform injection at the time of blockage in which fuel is injected from the injector 9 during the blockage period. Then, after the injection at the time of closing, the ECU 3 performs main injection for injecting a larger amount of fuel than the injection at the time of closing in a predetermined period from the intake stroke to the compression stroke.

なお、封鎖時噴射は、全てを封鎖期間中に行わなくてもよく、少なくとも封鎖時噴射の半分以上を封鎖期間に行えばよい。また、封鎖期間中に全ての封鎖時噴射を行うようにしてもよい。封鎖時噴射のタイミングは、エンジン2の運転状態から設定される。   In addition, it is not necessary to perform all the injection at the time of blockage during the blockade period, and at least half of the injection at the time of blockage may be performed during the blockage period. Moreover, you may make it perform all the injections at the time of blockade during a blockade period. The timing of injection at the time of blockage is set from the operating state of the engine 2.

ECU3は、筒内圧センサ30から入力された筒内圧を監視し、筒内圧センサ30の検出する筒内圧が予め設定された圧力閾値よりも高くなるメイン燃焼のタイミングが、予め設定された過剰燃焼閾値よりも進角した場合、メイン燃焼が過剰燃焼したと判断し、封鎖時噴射の燃料噴射量を予め設定された封鎖時噴射増量分だけ増加させる。また、ECU3は、その増加させた封鎖時噴射の直後のメイン噴射の燃料噴射量は、封鎖時噴射増量分だけ減少させる。要するに、封鎖時噴射とメイン噴射とのトータルの燃料噴射量が変化しないように制御する。すなわち、筒内圧センサ30は、本発明に係るメイン燃焼検出部を構成する。   The ECU 3 monitors the in-cylinder pressure input from the in-cylinder pressure sensor 30, and the main combustion timing at which the in-cylinder pressure detected by the in-cylinder pressure sensor 30 is higher than a preset pressure threshold is set to a preset excess combustion threshold. If the angle of advance is more advanced, it is determined that the main combustion is excessively burned, and the fuel injection amount of the injection at the time of blockage is increased by a preset increase in injection at the time of blockade. Further, the ECU 3 decreases the fuel injection amount of the main injection immediately after the increased injection at the time of blockade by the increase in injection at the time of blockade. In short, control is performed so that the total fuel injection amount of the injection at the time of closing and the main injection does not change. That is, the in-cylinder pressure sensor 30 constitutes a main combustion detection unit according to the present invention.

ここで、圧力閾値は、メイン燃焼を識別できる筒内圧力であり、予め実験等により求められ、ECU3のROMに記憶されている。また、過剰燃焼閾値は、過剰燃焼を識別できるクランクシャフトの回転角であり、予め実験等により求められ、ECU3のROMに記憶されている。また、封鎖時噴射増量は、メイン燃焼が過剰燃焼した場合の燃料不足分を補うことができる燃料噴射量の増分であり、予め実験等により求められ、ECU3のROMに記憶されている。   Here, the pressure threshold is an in-cylinder pressure that can identify main combustion, and is obtained in advance by experiments or the like and stored in the ROM of the ECU 3. Further, the excess combustion threshold is a rotation angle of the crankshaft that can identify excess combustion, and is obtained in advance by experiments or the like and stored in the ROM of the ECU 3. Further, the increase in injection at the time of blockade is an increment of the fuel injection amount that can compensate for the fuel shortage when the main combustion is excessively burned, and is obtained in advance by experiments or the like and stored in the ROM of the ECU 3.

また、ECU3は、メイン燃焼が過剰燃焼したと判断したとき、封鎖期間に入る直前の排気弁22の開閉時期を予め設定された排気弁遅角量分だけ遅らせる。ここで、排気弁遅角量は、排気弁22の開閉時期を遅らせるクランクシャフトの回転角の量であり、例えば、封鎖時噴射量から排気弁遅角量が決まる後述するマップにより求められる。このマップは、予め実験等により求められ、ECU3のROMに記憶されている。   Further, when the ECU 3 determines that the main combustion has excessively burned, the ECU 3 delays the opening / closing timing of the exhaust valve 22 immediately before entering the blockage period by a preset exhaust valve retardation amount. Here, the exhaust valve retard amount is the amount of the crankshaft rotation angle that delays the opening and closing timing of the exhaust valve 22, and is obtained, for example, from a map described later in which the exhaust valve retard amount is determined from the injection amount at the time of blockade. This map is obtained in advance by experiments or the like and stored in the ROM of the ECU 3.

このように、排気弁22の開閉時期を遅らせることで、封鎖時噴射前の筒内の残留ガス量を減らし、次サイクルのG/Fを抑制させる。その結果、次サイクルのメイン燃焼でのG/Fを失火限界以下に抑制させることができ、失火やトルクの減少の発生を抑えることができる。   Thus, by delaying the opening and closing timing of the exhaust valve 22, the amount of residual gas in the cylinder before injection at the time of blockage is reduced, and G / F in the next cycle is suppressed. As a result, the G / F in the main combustion of the next cycle can be suppressed below the misfire limit, and the occurrence of misfire and torque reduction can be suppressed.

以上のように構成された本実施形態に係る内燃機関の制御装置による燃焼安定化処理について、図2を参照して説明する。なお、以下に説明する燃焼安定化処理は、HCCI燃焼を行うHCCIモードに移行すると開始され、予め設定された時間間隔で実行され、SI燃焼を行うSIモードに移行すると実行が停止される。   A combustion stabilization process performed by the control apparatus for an internal combustion engine according to the present embodiment configured as described above will be described with reference to FIG. The combustion stabilization process described below is started when the mode is shifted to the HCCI mode in which HCCI combustion is performed, is executed at a preset time interval, and is stopped when the mode is shifted to the SI mode in which SI combustion is performed.

まず、ECU3は、アクセル開度及びエンジン回転数に基づきエンジン負荷を算出する(ステップS11)。次いで、ECU3は、エンジン回転数及びエンジン負荷に基づきバルブタイミングや燃料噴射量を決定し、各種制御対象類を制御する(ステップS12)。   First, the ECU 3 calculates the engine load based on the accelerator opening and the engine speed (step S11). Next, the ECU 3 determines the valve timing and the fuel injection amount based on the engine speed and the engine load, and controls various control objects (step S12).

次いで、ECU3は、メイン燃焼のタイミングが前述の過剰燃焼閾値よりも進角したか否かを判定する(ステップS13)。メイン燃焼のタイミングが過剰燃焼閾値よりも進角していないと判定した場合、ECU3は、処理を終了する。   Next, the ECU 3 determines whether or not the timing of main combustion has advanced from the above-described excessive combustion threshold (step S13). When it is determined that the main combustion timing is not advanced from the excessive combustion threshold, the ECU 3 ends the process.

一方、メイン燃焼のタイミングが過剰燃焼閾値よりも進角していると判定した場合、ECU3は、封鎖時噴射量を前述の封鎖時噴射増量分だけ増加させるとともに、封鎖時噴射量を増加させた分だけメイン噴射量を減少させるように設定する(ステップS14)。次いで、ECU3は、増加された封鎖時噴射量に基づき、排気弁22の開閉時期を前述の排気弁遅角量だけ遅角させる(ステップS15)。   On the other hand, when it is determined that the timing of the main combustion is advanced from the excessive combustion threshold, the ECU 3 increases the injection amount at the time of blockage by the amount of increase in the injection at the time of blockage and increases the injection amount at the time of blockade. The main injection amount is set so as to decrease by the amount (step S14). Next, the ECU 3 retards the opening / closing timing of the exhaust valve 22 by the exhaust valve retardation amount based on the increased injection amount at the time of closing (step S15).

このような燃焼安定化処理による作用について図3を参照して説明する。
図3の上段に示すように、従来の内燃機関の制御装置では、メイン燃焼が過剰燃焼で進角した場合(図中、ECで示す)、封鎖時噴射量を増量させているが、封鎖時噴射量を増加させて封鎖期間中の燃焼である封鎖時燃焼を活発化させるため、封鎖期間中の筒内の残留ガス量が多くなる。この結果、次サイクルのメイン燃焼前のG/Fが失火限界以上となり、失火やトルクの減少が発生するおそれがあった。
The effect | action by such a combustion stabilization process is demonstrated with reference to FIG.
As shown in the upper part of FIG. 3, in the control device for a conventional internal combustion engine, when the main combustion is advanced by excessive combustion (indicated by EC in the figure), the injection amount at the time of blockage is increased. Since the injection amount is increased to activate the combustion at the time of blockage, which is the combustion during the blockage period, the amount of residual gas in the cylinder during the blockage period increases. As a result, the G / F before the main combustion in the next cycle becomes equal to or greater than the misfire limit, which may cause misfire or torque reduction.

本実施形態では、図3の下段に示すように、メイン燃焼が過剰燃焼で進角した場合(図中、ECで示す)、封鎖時噴射量を増量させる。さらに、増量させた封鎖時噴射量に対応した排気弁遅角量だけ排気弁22の開閉時期を遅らせる。排気弁22の開閉時期を遅らせると、図3の「ピストンスピード」に示すように、ピストンスピードが上がっているタイミング(図中、一点鎖線で囲んだ部分)で排気弁22が開けられ、既燃ガスが多く排出される。   In the present embodiment, as shown in the lower part of FIG. 3, when the main combustion is advanced by excessive combustion (indicated by EC in the figure), the injection amount at the time of blockage is increased. Further, the opening / closing timing of the exhaust valve 22 is delayed by an exhaust valve retardation amount corresponding to the increased injection amount at the time of closing. When the opening / closing timing of the exhaust valve 22 is delayed, as shown in “Piston speed” in FIG. 3, the exhaust valve 22 is opened at the timing when the piston speed is increased (portion surrounded by a one-dot chain line in the figure). A lot of gas is discharged.

また、排気弁22の開閉時期を遅らせると、図3の「筒内体積」に示すように、筒内体積が減っていくタイミング(図中、一点鎖線で囲んだ部分)で排気弁22が開けられ、既燃ガスが多く排出される。このため、封鎖期間中の筒内の残留ガス量が少なくなる。この結果、次サイクルのメイン燃焼前のG/Fが失火限界より小さくなり、失火やトルク減少の発生を抑えることができる。   Further, when the opening / closing timing of the exhaust valve 22 is delayed, the exhaust valve 22 is opened at a timing (a portion surrounded by a one-dot chain line in the figure) at which the in-cylinder volume decreases as shown in “in-cylinder volume” of FIG. A lot of burned gas is discharged. For this reason, the residual gas amount in the cylinder during the sealing period is reduced. As a result, the G / F before main combustion in the next cycle becomes smaller than the misfire limit, and the occurrence of misfire and torque reduction can be suppressed.

このような内燃機関の制御装置の封鎖時噴射量から排気弁遅角量が決まるマップについて説明する。   A map in which the exhaust valve retardation amount is determined from the injection amount at the time of closing of the control device for the internal combustion engine will be described.

図4は、封鎖時噴射量と排気弁遅角量によるエンジン負荷の変化率[%]を示すグラフである。封鎖時噴射量の増量に伴う排気弁22の開閉時期の調整によりエンジン負荷が変化することを防ぐため、エンジン負荷の変化量がプラスマイナス1%以下となる範囲(例えば、図中、太線で囲んだ部分)を調整可能範囲として、この範囲内で排気弁22の開閉時期を調整する。   FIG. 4 is a graph showing the rate of change [%] of the engine load depending on the injection amount at the time of closing and the exhaust valve retard amount. In order to prevent the engine load from changing due to the adjustment of the opening / closing timing of the exhaust valve 22 due to the increase in the injection amount at the time of blockage, a range in which the change amount of the engine load is within ± 1% or less (for example, surrounded by a bold line in the figure) The opening / closing timing of the exhaust valve 22 is adjusted within this range.

図5は、封鎖時噴射量と排気弁遅角量によるG/Fの値を示すグラフである。図中点線で囲んだ範囲は図4の調整可能範囲を示している。図4の調整可能範囲内で封鎖時噴射量を増量してもG/Fが変化しないように排気弁22の開閉時期を調整する。例えば、図中太線で囲んだ部分の調整目標領域に入るように排気弁遅角量を決定するようにする。   FIG. 5 is a graph showing the value of G / F depending on the injection amount at the time of closing and the exhaust valve retard amount. A range surrounded by a dotted line in the figure indicates the adjustable range of FIG. The opening / closing timing of the exhaust valve 22 is adjusted so that the G / F does not change even if the injection amount at the time of blockage is increased within the adjustable range of FIG. For example, the exhaust valve retard amount is determined so as to enter the adjustment target region surrounded by the bold line in the figure.

このように、上述の実施形態では、筒内圧センサ30の検出する筒内圧が予め設定された圧力閾値よりも高くなるメイン燃焼のタイミングが、予め設定された過剰燃焼閾値よりも進角した場合、メイン燃焼が過剰燃焼したと判断し、封鎖時噴射の燃料噴射量を予め設定された封鎖時噴射増量分だけ増加させるとともに、封鎖時噴射の燃料噴射量に応じて封鎖期間直前の排気弁22の開閉時期を遅らせるECU3を備える。   Thus, in the above-described embodiment, when the timing of main combustion at which the in-cylinder pressure detected by the in-cylinder pressure sensor 30 is higher than a preset pressure threshold is advanced from a preset excess combustion threshold, It is determined that the main combustion is excessively burned, and the fuel injection amount of the injection at the time of blockage is increased by a preset increase in injection amount at the time of the blockade, and the exhaust valve 22 immediately before the blockage period is set according to the fuel injection amount of the injection at the time of blockage. ECU3 which delays opening and closing time is provided.

これにより、封鎖時噴射の燃料噴射量に応じて排気弁の開閉時期が遅らされ、既燃ガスを多く排出することができるタイミングで排気弁22が開けられる。このため、既燃ガスを多く排出して封鎖時噴射前の筒内の残留ガス量を減らすことができ、次のサイクルのメイン燃焼前の残留ガス量を減らして、予混合圧縮自着火燃焼時の失火やトルク減少の発生を抑えることができる。   Accordingly, the opening / closing timing of the exhaust valve is delayed according to the fuel injection amount of the injection at the time of blockage, and the exhaust valve 22 is opened at a timing at which a large amount of burned gas can be discharged. For this reason, it is possible to reduce the amount of residual gas in the cylinder before injection at the time of blockage by discharging a large amount of burned gas, reducing the amount of residual gas before main combustion in the next cycle, and at the time of premixed compression auto-ignition combustion The occurrence of misfire and torque reduction can be suppressed.

また、ECU3は、封鎖時噴射の燃料噴射量が多いほど、封鎖期間直前の排気弁22の開閉時期を遅らせる量を増加させる。   Further, the ECU 3 increases the amount by which the opening / closing timing of the exhaust valve 22 immediately before the blockage period is delayed as the fuel injection amount of the block-time injection increases.

これにより、封鎖時噴射の燃料噴射量が多いほど封鎖期間直前の排気弁22の開閉時期が遅くなる。このため、封鎖時噴射の燃料噴射量が多いほど既燃ガスを多く排出して封鎖時噴射前の筒内の残留ガス量を減らすことができ、次のサイクルのメイン燃焼前の残留ガス量を減らして、予混合圧縮自着火燃焼時の失火やトルク減少の発生を抑えることができる。   Thereby, the opening / closing timing of the exhaust valve 22 immediately before the closing period is delayed as the fuel injection amount of the injection at the closing time is larger. For this reason, as the fuel injection amount at the time of blockage increases, the amount of burned gas can be discharged to reduce the amount of residual gas in the cylinder before injection at the time of blockage, and the amount of residual gas before main combustion in the next cycle can be reduced. This can reduce the occurrence of misfire and torque reduction during premixed compression self-ignition combustion.

本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。   While embodiments of the invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

1 車両
2 エンジン(内燃機関)
3 ECU(制御部)
7 燃焼室
9 インジェクタ
21 排気ポート
22 排気弁
23 排気側可変動弁機構
30 筒内圧センサ(メイン燃焼検出部)
1 Vehicle 2 Engine (Internal combustion engine)
3 ECU (control unit)
7 Combustion chamber 9 Injector 21 Exhaust port 22 Exhaust valve 23 Exhaust side variable valve mechanism 30 In-cylinder pressure sensor (main combustion detector)

Claims (2)

火花点火燃焼と予混合圧縮自着火燃焼とが切り替え可能に構成されるとともに、
排気行程から吸気行程にかけて吸気弁及び排気弁をともに閉じて排ガスを燃焼室に封鎖させる封鎖期間を設け、前記封鎖期間に燃焼室へ燃料を噴射する封鎖時噴射を実行し、前記封鎖時噴射された燃料の燃焼により燃焼室温度を上昇させた後に前記予混合圧縮自着火燃焼を行う内燃機関の制御装置であって、
前記予混合圧縮自着火燃焼の発生を検出するメイン燃焼検出部と、
前記排気弁の開閉時期を任意に変更可能な排気側可変動弁機構と、
前記予混合圧縮自着火燃焼の発生が予め設定された閾値以上に進角した場合に、前記封鎖時噴射の燃料噴射量を増加させるとともに、前記封鎖時噴射の燃料噴射量に応じて前記封鎖期間直前の前記排気弁の開閉時期を遅らせる制御部と、を備える内燃機関の制御装置。
The spark ignition combustion and the premixed compression auto-ignition combustion are configured to be switchable,
From the exhaust stroke to the intake stroke, both the intake valve and the exhaust valve are closed to provide a blockage period in which the exhaust gas is sealed in the combustion chamber, and during the blockage period, fuel is injected into the combustion chamber during blockade injection. A control apparatus for an internal combustion engine that performs the premixed compression auto-ignition combustion after raising the combustion chamber temperature by combustion of the remaining fuel,
A main combustion detector for detecting the occurrence of the premixed compression auto-ignition combustion;
An exhaust side variable valve mechanism capable of arbitrarily changing the opening and closing timing of the exhaust valve;
When the occurrence of the premixed compression self-ignition combustion is advanced by a predetermined threshold value or more, the fuel injection amount of the injection at the time of closing is increased, and the sealing period according to the fuel injection amount of the injection at the time of sealing A control unit for delaying the opening / closing timing of the exhaust valve immediately before.
前記制御部は、前記封鎖時噴射の燃料噴射量が多いほど、前記封鎖期間直前の前記排気弁の開閉時期を遅らせる量を増加させる請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the control unit increases the amount of delaying the opening / closing timing of the exhaust valve immediately before the blocking period as the fuel injection amount of the injection at the time of blocking increases.
JP2014191517A 2014-09-19 2014-09-19 Control device for internal combustion engine Active JP6358007B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014191517A JP6358007B2 (en) 2014-09-19 2014-09-19 Control device for internal combustion engine
DE102015217812.9A DE102015217812B4 (en) 2014-09-19 2015-09-17 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191517A JP6358007B2 (en) 2014-09-19 2014-09-19 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016061262A true JP2016061262A (en) 2016-04-25
JP6358007B2 JP6358007B2 (en) 2018-07-18

Family

ID=55444999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191517A Active JP6358007B2 (en) 2014-09-19 2014-09-19 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6358007B2 (en)
DE (1) DE102015217812B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101152A1 (en) * 2016-11-30 2018-06-07 三菱重工業株式会社 Marine diesel engine
CN108223178A (en) * 2016-12-22 2018-06-29 丰田自动车株式会社 The control device of internal combustion engine
CN109072786A (en) * 2016-04-27 2018-12-21 五十铃自动车株式会社 The control device and internal-combustion engine system of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094317B2 (en) * 2020-03-31 2022-07-01 本田技研工業株式会社 Fuel injection control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139985A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Combustion control method for gasoline self-igniting engine
JP2007247480A (en) * 2006-03-15 2007-09-27 Hitachi Ltd Control device and control method of internal combustion engine
JP2013019345A (en) * 2011-07-12 2013-01-31 Nippon Soken Inc Control device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748255B2 (en) * 2009-06-03 2011-08-17 マツダ株式会社 ENGINE CONTROL METHOD AND CONTROL DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139985A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Combustion control method for gasoline self-igniting engine
JP2007247480A (en) * 2006-03-15 2007-09-27 Hitachi Ltd Control device and control method of internal combustion engine
JP2013019345A (en) * 2011-07-12 2013-01-31 Nippon Soken Inc Control device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072786A (en) * 2016-04-27 2018-12-21 五十铃自动车株式会社 The control device and internal-combustion engine system of internal combustion engine
WO2018101152A1 (en) * 2016-11-30 2018-06-07 三菱重工業株式会社 Marine diesel engine
JP2018091181A (en) * 2016-11-30 2018-06-14 三菱重工業株式会社 Marine diesel engine
KR20190060854A (en) * 2016-11-30 2019-06-03 미츠비시 쥬고교 가부시키가이샤 Marine diesel engines
CN109983210A (en) * 2016-11-30 2019-07-05 三菱重工业株式会社 Marine diesel engine
KR102181617B1 (en) 2016-11-30 2020-11-23 미츠비시 쥬고교 가부시키가이샤 Marine diesel engine
CN108223178A (en) * 2016-12-22 2018-06-29 丰田自动车株式会社 The control device of internal combustion engine
CN108223178B (en) * 2016-12-22 2021-08-31 丰田自动车株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP6358007B2 (en) 2018-07-18
DE102015217812A1 (en) 2016-03-24
DE102015217812B4 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP4836088B2 (en) Control device and control method for compression self-ignition internal combustion engine
US6981487B2 (en) Knocking determination apparatus for internal combustion engine
US6910449B2 (en) Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
RU2669101C2 (en) Method and system for pre-ignition control
JP5784682B2 (en) Control device for internal combustion engine
US20110307163A1 (en) Controller of internal combustion engine
JP5428473B2 (en) Method and apparatus for controlling an internal combustion engine
JP6358007B2 (en) Control device for internal combustion engine
CN108625996B (en) Method and system for engine control
US10669953B2 (en) Engine control system
JP2007056798A (en) Controller for internal combustion engine
JP5625842B2 (en) Control device for internal combustion engine
JP2006037812A (en) Valve characteristic control device for engine
EP1435442B1 (en) Internal combustion engine, method for auto-ignition operation and computer readable storage device
US9291141B2 (en) Control device and control method for internal combustion engine
JP5098985B2 (en) Control device for internal combustion engine
JP6610401B2 (en) Control device for internal combustion engine
JP6848412B2 (en) Internal combustion engine control device
JP2014224470A (en) Control device of internal combustion engine
JP5677221B2 (en) Control device for internal combustion engine
JP6844237B2 (en) Internal combustion engine control device
JP6658266B2 (en) Control device for internal combustion engine
JP2009216035A (en) Control device of internal combustion engine
JP2008215171A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6358007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151