JP2016057211A - Welding deformation analysis device, method, and program - Google Patents

Welding deformation analysis device, method, and program Download PDF

Info

Publication number
JP2016057211A
JP2016057211A JP2014184746A JP2014184746A JP2016057211A JP 2016057211 A JP2016057211 A JP 2016057211A JP 2014184746 A JP2014184746 A JP 2014184746A JP 2014184746 A JP2014184746 A JP 2014184746A JP 2016057211 A JP2016057211 A JP 2016057211A
Authority
JP
Japan
Prior art keywords
welding
strain
inherent
inherent strain
structure model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184746A
Other languages
Japanese (ja)
Inventor
智史 只野
Satoshi Tadano
智史 只野
中谷 祐二郎
Yujiro Nakatani
祐二郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014184746A priority Critical patent/JP2016057211A/en
Publication of JP2016057211A publication Critical patent/JP2016057211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding deformation analysis technology implemented highly accurately without increasing the information amount of a database based on an inherent strain method.SOLUTION: The welding deformation analysis device 10 includes a first calculation part 11 (11a) for calculating (n-1)-th inherent strain distributed on the welding part of a joint model by n-1 times of welding operations, a second calculation part 11 (11b) for calculating n-th inherent strain distributed on the welding part of the joint model welded by n times of welding operations, a difference strain deriving part 12 for deriving difference strain distributed to the welding part of the joint model singly by the n times of welding operations based on a difference between the n-th inherent strain and the (n-1)-th inherent strain, a registration part 13 for registering first inherent strain and each difference strain up to the n-th, an analysis execution part 14 for applying the first inherent strain or the difference strain corresponding to each welding path to a structure model to execute deformation analysis, and a result reflection part 15 for reflecting each result of the execution and the deformation analysis of the welding path 61 in the structure model according to the order of execution.SELECTED DRAWING: Figure 1

Description

本発明は、構造物の溶接時に生じる変形を解析する技術に関する。   The present invention relates to a technique for analyzing deformation that occurs during welding of a structure.

構造物の溶接時に生じる変形をコンピュータシミュレーションにより解析する方法として、有限要素法を用いる熱弾塑性解析法や固有ひずみ法が広く採用されている。
このうち熱弾塑性解析法は、溶接部材の物性及びこの物性の温度特性に基づいて詳細解析を行う手法であるために、大型又は複雑な構造物の溶接変形解析には実用的ではない。
Thermal elasto-plastic analysis methods using the finite element method and intrinsic strain methods are widely adopted as methods for analyzing deformations occurring during welding of structures by computer simulation.
Among these, the thermoelastic-plastic analysis method is a method for performing detailed analysis based on the physical properties of the welded member and the temperature characteristics of the physical property, and is not practical for analyzing the welding deformation of a large or complex structure.

一方、固有ひずみ法は、線形解析を行える弾性解析法を用いる手法であるために、計算時間を短縮することができ、大規模解析であっても計算負荷が小さく、大型又は複雑構造物の溶接変形解析に対応することができる。   On the other hand, the eigenstrain method is a technique that uses an elastic analysis method that can perform linear analysis. Therefore, the calculation time can be shortened, and even in a large-scale analysis, the calculation load is small and welding of a large or complex structure is required. It can deal with deformation analysis.

固有ひずみ法は、単純規模の継手モデルの溶接部に生じる固有ひずみを、熱弾塑性解析等による詳細解析により求め、データベース化する。そして、解析対象となる大規模又は複雑な実構造物の溶接部に対し、このデータベースから取得した固有ひずみを適用して弾性解析を行い、構造物全体の溶接変形を解析する手法である(例えば、特許文献1,2)。   In the inherent strain method, the inherent strain generated in the welded portion of a simple-scale joint model is obtained by detailed analysis such as thermoelastic-plastic analysis and is made into a database. Then, it is a technique for analyzing the welding deformation of the entire structure by applying an elastic analysis to the welded part of a large-scale or complex actual structure to be analyzed by applying the inherent strain acquired from this database (for example, Patent Documents 1, 2).

特開平6−180271号公報JP-A-6-180271 特開2006−879号公報Japanese Patent Laid-Open No. 2006-879

上述の原理により、固有ひずみ法による溶接変形の解析精度は、継手モデルから求めた固有ひずみの、実構造物の溶接部に生じる固有ひずみに対する忠実性に、依存する。
一方において、溶接現象は溶接熱源の移動現象と密接な関連性を有するため、複数の溶接部を有する構造物の溶接変形は、溶接パスの施工順序に大きく依存することが知られている。
Based on the above-described principle, the analysis accuracy of welding deformation by the inherent strain method depends on the fidelity of the inherent strain obtained from the joint model to the inherent strain generated in the weld of the actual structure.
On the other hand, since the welding phenomenon is closely related to the movement phenomenon of the welding heat source, it is known that the welding deformation of the structure having a plurality of welds largely depends on the welding pass construction sequence.

しかし、従来の固有ひずみ法においては、そのような溶接パスの施工順序を考慮した解析を実施するのは困難である。
なぜならば、溶接順序の影響を厳密に考慮するとなると、拘束条件等を多彩に変化させた継手モデルの固有ひずみを詳細解析し、データベースを現状よりも飛躍的に充実させる必要があるからである。
However, in the conventional inherent strain method, it is difficult to perform an analysis in consideration of the welding pass execution sequence.
This is because, if the influence of the welding sequence is strictly considered, it is necessary to perform detailed analysis of the inherent strain of the joint model in which the constraint conditions and the like are changed in various ways, and to dramatically improve the database from the current state.

さらに、複数の溶接部の各々に多層溶接を施す場合まで考慮するとなると、溶接パスの順序の組み合わせの増大に伴って、データベースに登録させる継手モデルの固有ひずみの情報量が膨大なものになってしまう。   Furthermore, when considering the case where multilayer welding is applied to each of the plurality of welds, the amount of information on the inherent strain of the joint model registered in the database becomes enormous with the increase in the combination of the welding pass order. End up.

本発明はこのような事情を考慮してなされたもので、データベースの情報量を増大させることなく、固有ひずみ法に基づき高精度に実施することができる溶接変形解析技術を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a welding deformation analysis technique that can be carried out with high accuracy based on the inherent strain method without increasing the amount of information in a database. To do.

溶接変形解析装置において、n−1回(nは2以上の自然数)の溶接操作により前記溶接部に分布する第n−1固有ひずみを演算する第1演算部と、n回の溶接操作で溶接した継手モデルの溶接部に分布する第n固有ひずみを演算する第2演算部と、前記第n固有ひずみ及び第n−1固有ひずみの差分に基づいて第n回目の溶接操作が単独で前記溶接部に分布させた差分ひずみを導出する差分ひずみ導出部と、前記継手モデルにおける第1固有ひずみ及び第n回目までの各々の前記差分ひずみを登録する登録部と、変形解析の対象となる構造物モデルを構築する構造物モデル構築部と、前記構造物モデルに施工される複数の溶接パス及びその順番を設定する溶接パス設定部と、各々の前記溶接パスに対応する前記第1固有ひずみ又は前記差分ひずみを前記構造物モデルに適用し前記変形解析を実行する解析実行部と、前記溶接パスの施工及び前記変形解析の結果を前記構造物モデルに前記施工の順番に従ってその都度反映させる結果反映部と、を備えることを特徴とする。   In the welding deformation analysis apparatus, welding is performed by n-1 times (where n is a natural number equal to or greater than 2) a first calculation unit that calculates the (n-1) inherent strain distributed in the welded portion and n times of welding operations. A second computing unit that computes the nth inherent strain distributed in the welded portion of the joint model, and the nth welding operation based solely on the difference between the nth inherent strain and the n-1th intrinsic strain. A differential strain deriving unit for deriving the differential strain distributed in the part, a registration unit for registering each of the differential strains up to the first intrinsic strain and the n-th in the joint model, and a structure to be subjected to deformation analysis A structure model construction section for constructing a model, a plurality of welding paths to be constructed on the structure model and a welding path setting section for setting the order thereof, and the first intrinsic strain corresponding to each of the welding paths or the Difference An analysis execution unit that applies deformation to the structure model and executes the deformation analysis; and a result reflection unit that reflects the results of the welding path construction and the deformation analysis in the structure model according to the order of the construction each time; It is characterized by providing.

本発明により、データベースの情報量を増大させることなく、固有ひずみ法に基づき高精度に実施することができる溶接変形解析技術が提供される。   The present invention provides a welding deformation analysis technique that can be carried out with high accuracy based on the inherent strain method without increasing the amount of information in the database.

本発明の実施形態に係る溶接変形解析装置を示すブロック図。The block diagram which shows the welding deformation | transformation analyzer which concerns on embodiment of this invention. (A)T字溶接の継手モデルを示す斜視図、(B)突合せ溶接の継手モデルを示す斜視図。(A) The perspective view which shows the joint model of T-shaped welding, (B) The perspective view which shows the joint model of butt welding. (A)1回の溶接操作で単層溶接したT字溶接の継手モデルの断面図、(B)2回の溶接操作で単層溶接したT字溶接の継手モデルの断面図、(C)6回の溶接操作で複層溶接したT字溶接の継手モデルの断面図。(A) Cross-sectional view of a T-welded joint model welded with a single layer by one welding operation, (B) Cross-sectional view of a T-welded joint model welded with a single layer by two welding operations, (C) 6 Sectional drawing of the joint model of T-shaped welding which carried out multilayer welding by the welding operation of 1 time. (A)変形解析の対象となる構造物モデルの斜視図、(B)この構造物モデルの上面図。(A) The perspective view of the structure model used as the object of a deformation | transformation analysis, (B) The top view of this structure model. 実施形態に係る溶接変形解析方法及びプログラムのフローチャート。The flowchart of the welding deformation | transformation analysis method and program which concern on embodiment.

以下、本発明の実施形態を添付図面に基づいて説明する。
実施形態に係る溶接変形解析装置10は、n−1回(n=2として、以下の説明を続ける)の溶接操作により継手モデル(図3A)の溶接部に分布する第n−1固有ひずみ511を演算する第1演算部11(11a)と、n回の溶接操作で溶接した継手モデル(図3B)の溶接部に分布する第n固有ひずみ512を演算する第2演算部11(11b)と、第n固有ひずみ512及び第n−1固有ひずみ511の差分に基づいて第n回目の溶接操作が単独で継手モデル(図3B)の溶接部に分布させた差分ひずみを導出する差分ひずみ導出部12と、継手モデルにおける第1固有ひずみ511及び第n回目までの各々の差分ひずみを登録する登録部13と、変形解析の対象となる構造物モデル(図4)を構築する構造物モデル構築部24と、構造物モデル(図4)に施工される複数の溶接パス61(61A〜61L)及びその順番を設定する溶接パス設定部25と、各々の溶接パス61(61A〜61L)に対応する第1固有ひずみ511又は差分ひずみを構造物モデル(図4)に適用し変形解析を実行する解析実行部14と、溶接パス61の施工及び変形解析の結果を構造物モデル(図4)に施工の順番に従ってその都度反映させる結果反映部15と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The welding deformation analysis apparatus 10 according to the embodiment includes an (n-1) th inherent strain 51 distributed in the welded portion of the joint model (FIG. 3A) by n-1 times (n = 2, and the following description is continued). a first calculation unit 11 for calculating a 1 (11a), n times welded joint model welding operation of the second operational unit 11 for computing the first n inherent strain 51 2 distributed in welds (Fig. 3B) (11b ) And the difference between the nth intrinsic strain 51 2 and the n−1 intrinsic strain 51 1 , the nth welding operation alone derives the differential strain distributed to the welded portion of the joint model (FIG. 3B). The differential strain deriving unit 12, the registration unit 13 for registering each of the first inherent strain 51 1 and the nth differential strain in the joint model, and a structure model (FIG. 4) to be subjected to deformation analysis are constructed. Structure model construction unit 24 and structure A plurality of welding paths 61 (61A to 61L) constructed in the model (FIG. 4) and a welding path setting unit 25 for setting the order thereof, and a first inherent strain 51 corresponding to each welding path 61 (61A to 61L). The analysis execution unit 14 that applies deformation strain analysis by applying 1 or differential strain to the structure model (FIG. 4), and the results of construction and deformation analysis of the welding pass 61 are applied to the structure model (FIG. 4) according to the order of construction. And a result reflecting unit 15 for reflecting each time.

継手モデル選択部21は、溶接様式及び溶接パスが規定された継手モデルを選択するものである。
継手モデルの形状および寸法は、構造物モデル(図4)を構成する部材の開先形状や板厚を模擬したものを採用する。
具体的には、溶接を構造的および熱的に安定的に施工することができる寸法である、板幅200〜300mm程度、溶接線方向幅300mm程度とする。
The joint model selection unit 21 selects a joint model in which a welding mode and a welding path are defined.
As the shape and dimensions of the joint model, a shape simulating the groove shape and the plate thickness of the members constituting the structure model (FIG. 4) is adopted.
Specifically, the plate width is about 200 to 300 mm and the weld line direction width is about 300 mm, which are dimensions capable of structurally and thermally stably performing welding.

上記説明において、継手モデルの例として、図2Aに示すT字溶接の様式で、図3Bに示すように部材の当接部分の両側に単層の溶接パス531,532を合計2回(n=2)施工した場合を例示して説明した。
しかし、選択される継手モデルはこれに限定されるものではなく、図2Bに示すような突合せ溶接の様式やその他の溶接様式があり、図3Cに示すように当接部分の両側に複層の溶接パス531〜536(図の例示はn=6)を施工させた場合もある。
つまり、溶接操作の回数nは、2以上の自然数として一般化することができる。
In the above description, as an example of the joint model, a single-layer welding pass 53 1 , 53 2 is formed twice on both sides of the contact portion of the member as shown in FIG. n = 2) The case where construction was performed was described as an example.
However, the joint model selected is not limited to this, and there are a butt welding mode as shown in FIG. 2B and other welding modes, as shown in FIG. 3C. Welding passes 53 1 to 53 6 (n = 6 in the illustration in the figure) may be applied.
That is, the number n of welding operations can be generalized as a natural number of 2 or more.

溶接条件入力部22は、固有ひずみ演算部11において固有ひずみの計算に必要な溶接条件を入力するものである。溶接条件としては、溶接の種類、溶接時の電流、電圧、溶接速度、トーチ角度、溶接ワイヤー供給速度、入熱効率等があるが、これらに限定されるわけでない。   The welding condition input unit 22 inputs welding conditions necessary for calculation of the inherent strain in the inherent strain calculation unit 11. The welding conditions include, but are not limited to, the type of welding, current during welding, voltage, welding speed, torch angle, welding wire supply speed, heat input efficiency, and the like.

材料物性入力部23は、構造物モデル(図4)を構成する部材の材料物性を入力するものである。熱的な材料物性としては、熱伝導率、比熱などがあり、機械的な材料物性としては、ヤング率、耐力、線膨張係数、加工硬化指数などがある。
さらに、これら材料物性は、室温から金属の溶融温度までの温度依存性や、相変態に伴うヒステリシスを表現したものを用いる事ができる。
The material physical property input unit 23 inputs material physical properties of members constituting the structure model (FIG. 4). Thermal material properties include thermal conductivity and specific heat, and mechanical material properties include Young's modulus, yield strength, linear expansion coefficient, work hardening index, and the like.
Furthermore, the physical properties of these materials can be expressed in terms of temperature dependence from room temperature to the melting temperature of the metal and hysteresis accompanying phase transformation.

溶接操作により、局部的な温度上昇に伴う熱膨張・収縮が生じるが、周囲の温度上昇しない部分により、自由変形が妨げられる領域が生じる。このような領域は、溶接部とその周辺に主に圧縮の塑性変形を伴って、残留応力を生じさせている。
固有ひずみとは、このような残留応力の原因となる局部的な力学的不適合を説明するために導入された概念である。
The welding operation causes thermal expansion / contraction caused by a local temperature rise, but an area where free deformation is hindered by a portion where the surrounding temperature does not rise occurs. Such a region produces residual stress mainly in the welded part and its periphery, accompanied by compressive plastic deformation.
Intrinsic strain is a concept introduced to explain local mechanical incompatibility that causes such residual stress.

固有ひずみ演算部11は、継手モデル選択部21で選択された継手モデル(図2)に対し、溶接条件入力部22,材料物性入力部23から入力された溶接条件及び材料物性の情報に基づいて、継手モデルの溶接部に分布する固有ひずみを演算するものである。
固有ひずみ演算部11においては、溶接部材の材料物性及びこの物性の材料温度特性に基づいて詳細解析を行う熱弾塑性解析法が採用されている。
この熱弾塑性解析法により、溶接熱源による熱伝導解析の結果と材料物性とに基づいて、溶接部近傍に発生する固有ひずみが演算される。
The inherent strain calculation unit 11 is based on the welding condition and material property information input from the welding condition input unit 22 and the material property input unit 23 with respect to the joint model (FIG. 2) selected by the joint model selection unit 21. The intrinsic strain distributed in the welded part of the joint model is calculated.
In the intrinsic strain calculation unit 11, a thermoelastic-plastic analysis method for performing detailed analysis based on the material physical properties of the welded member and the material temperature characteristics of the physical properties is employed.
By this thermoelastic-plastic analysis method, the inherent strain generated in the vicinity of the weld is calculated based on the result of the heat conduction analysis by the welding heat source and the material physical properties.

継手モデルに対する溶接操作の回数がnである場合、固有ひずみ演算部11は、施工順番に倣って、一回目の溶接パス531による第1固有ひずみ511、一回目と二回目の溶接パス531,532による第2固有ひずみ512、一回目から三回目までの溶接パス531,532,533による第3固有ひずみ513、…、一回目からn回目までの溶接パス531〜53nによる第n固有ひずみ51nのようにn個の固有ひずみの演算結果を出力する。 When the number of welding operations for the joint model is n, the inherent strain calculation unit 11 follows the construction order, the first inherent strain 51 1 by the first welding pass 53 1 , the first and second welding passes 53. 1 , 53 2 , second intrinsic strain 51 2 , first to third welding passes 53 1 , 53 2 , 53 3 , third intrinsic strain 51 3 ,..., First to nth welding passes 53 1 to 53 n and outputs the operation result of n inherent strain as the n inherent strain 51 n by.

差分ひずみ導出部12は、第2固有ひずみ512及び第1固有ひずみ511の差分に基づく第2差分ひずみ、第3固有ひずみ513及び第2固有ひずみ512の差分に基づく第3差分ひずみ、…第n固有ひずみ51n及び第n−1固有ひずみ51n-1の差分に基づく第n差分ひずみを導出する。
このように差分ひずみ導出部12は、第2回目から第n回目までの各々の溶接操作が、単独で継手モデルの溶接部に分布させた差分ひずみを導出する。
The differential strain deriving unit 12 includes a second differential strain based on the difference between the second intrinsic strain 51 2 and the first intrinsic strain 51 1, a third differential strain based on the difference between the third intrinsic strain 51 3 and the second intrinsic strain 51 2. ,... The nth differential strain is derived based on the difference between the nth inherent strain 51 n and the (n−1) th inherent strain 51 n−1 .
In this way, the differential strain deriving unit 12 derives the differential strain that each welding operation from the second time to the n-th time is independently distributed to the welded portion of the joint model.

このような差分ひずみの導出は、固有ひずみが構造的および熱的に安定的に発生している面(例えば溶接線中心面)において、継手モデルの溶接部近傍の要素に溶接パスの施工後に生じた固有ひずみ6成分(垂直ひずみ3成分及びせん断ひずみ3成分)を抽出する。   Such differential strain derivation occurs on the surface where the inherent strain is generated structurally and thermally stably (for example, the center plane of the weld line) after the welding pass is applied to the element near the weld of the joint model. 6 inherent strains (normal strain 3 components and shear strain 3 components) are extracted.

次に、この抽出した固有ひずみから、各々の溶接パスが単独で生じさせた差分ひずみを、分離する。なお、固有ひずみの値には、固有ひずみの発生における既存の溶接パスの残留ひずみの影響や後続の溶接パスによる再溶融の影響も含まれている。このため、単独の溶接パスにより生じる差分ひずみを厳密に求めることができる。   Next, the differential strain generated by each welding pass independently is separated from the extracted inherent strain. Note that the value of the inherent strain includes the influence of the residual strain of the existing welding pass in the generation of the inherent strain and the effect of remelting by the subsequent welding pass. For this reason, the differential strain caused by a single welding pass can be determined strictly.

登録部13は、継手モデルについて演算部11及び導出部12によって導いた第1固有ひずみ511及び第n回目までの各々の差分ひずみを登録する。
このように登録されている複数の差分ひずみは、構造物モデル(図4)の溶接変形解析を実行するための解析初期値として、解析実行部14に入力される。
The registration unit 13 registers the first inherent strain 51 1 and the differential strains up to the n-th time derived by the calculation unit 11 and the derivation unit 12 for the joint model.
The plurality of differential strains registered in this way are input to the analysis execution unit 14 as analysis initial values for executing the welding deformation analysis of the structure model (FIG. 4).

構造物モデル構築部24は、変形解析の対象となる構造物モデル(図4)を、構成部材62(62A〜62D)を組み合わせて構築するものである。
初期状態における構造物モデルは、溶接パス61が無い状態で、それぞれの構成部材62が、相互に拘束されていない状態で構成されている。
そして構造物モデル構築部24は、溶接順序に従って施工された溶接パス61の影響(拘束、熱変形)を順次反映させて、構造物モデルを再構築することができる。
The structure model constructing unit 24 constructs a structure model (FIG. 4) to be subjected to deformation analysis by combining the constituent members 62 (62A to 62D).
The structure model in the initial state is configured in a state in which there is no welding path 61 and the respective constituent members 62 are not restrained from each other.
Then, the structure model construction unit 24 can reconstruct the structure model by sequentially reflecting the influence (restraint, thermal deformation) of the welding path 61 constructed according to the welding order.

溶接パス設定部25は、構造物モデルの構成部材62(62A〜62D)が互いに当接する箇所を溶接部と認定し、この溶接部に施工される複数の溶接パス61(61A〜61L)及びその順番を設定する。   The welding path setting unit 25 recognizes a place where the structural members 62 (62A to 62D) of the structure model are in contact with each other as a welding part, and a plurality of welding paths 61 (61A to 61L) to be constructed in the welded part and its Set the order.

解析実行部14は、溶接パス設定部25で設定された順番に従って各々の溶接パス61(61A〜61L)に対応する第1固有ひずみ51又は差分ひずみを、登録部13から取得する。そして取得した第1固有ひずみ511又は差分ひずみを、対応する溶接パス61の部分に適用し、構造物モデル(図4)の変形解析を実行するものである。
なお、解析実行部14における構造物モデル(図4)の変形解析は、各々の溶接パス61が順次追加される度に実行され、その都度結果が出力される。
The analysis execution unit 14 acquires the first inherent strain 51 or the differential strain corresponding to each welding path 61 (61 </ b> A to 61 </ b> L) from the registration unit 13 in the order set by the welding path setting unit 25. Then the first natural strain 51 1 or differential strain obtained was applied to a portion of the corresponding weld pass 61, and executes the deformation analysis of the structure model (FIG. 4).
Note that the deformation analysis of the structure model (FIG. 4) in the analysis execution unit 14 is performed each time the welding paths 61 are sequentially added, and the result is output each time.

この解析実行部14は、適用された第1固有ひずみ511又は差分ひずみに基づく線形弾性解析による。具体的には、汎用的な有限要素法コードを用い、内力として固有ひずみ(差分ひずみ)を与え、その際の構造物モデル全体の変形を求める。
これにより、大規模又は複雑な構造物モデル(図4)の変形解析を、簡便に実施することができる。
なお図示を省略するが、溶接パスが曲線形状を有する場合は、固有ひずみの座標変換等を行い、曲線形状に沿って固有ひずみを適用して解析することも可能である。
The analysis execution unit 14 performs linear elastic analysis based on the applied first inherent strain 51 1 or differential strain. Specifically, using a general-purpose finite element method code, an inherent strain (differential strain) is given as an internal force, and the deformation of the entire structure model at that time is obtained.
Thereby, deformation analysis of a large-scale or complex structure model (FIG. 4) can be easily performed.
Although not shown in the figure, when the welding path has a curved shape, it is possible to perform an analysis by applying the inherent strain along the curved shape by performing coordinate transformation of the inherent strain or the like.

結果反映部15は、溶接パス61の施工及び変形解析の結果を、構造物モデル(図4)に、施工の順番に従ってその都度反映させるものである。
つまり、順次、溶接パス61(61A〜61L)が施工されるにつれ、構成部材62(62A〜62D)間の拘束条件及び熱変形等の影響関係が、変化する。
これらの影響関係の変化に対し、構造物モデル(図4)の形状も敏感に変化する。このため、溶接パス61(61A〜61L)の施工順番が異なれば、最終的な構造物モデルの形状も大きく異なる。
The result reflecting unit 15 reflects the result of construction and deformation analysis of the welding path 61 in the structure model (FIG. 4) in accordance with the order of construction.
That is, as the welding path 61 (61A to 61L) is sequentially constructed, the constraint condition between the constituent members 62 (62A to 62D) and the influence relationship such as thermal deformation change.
The shape of the structure model (FIG. 4) also changes sensitively to changes in these influence relationships. For this reason, if the construction order of the welding passes 61 (61A to 61L) is different, the shape of the final structure model is also greatly different.

そこで結果反映部15は、単独の溶接パス61による第1固有ひずみ51又は差分ひずみが構造物モデルに適用される度に、構造物モデル構築部24に対し、構造物モデルの形状を更新するように指示する。
つまりこの結果反映部15は、溶接パス61(61A〜61L)の施工本数がm本であれば、構造物モデルの形状更新をm回実行することになる。
そして、構造物モデルの形状更新がなされる度に、その結果が、コンター図等により結果表示部16に、出力される。
Therefore, the result reflection unit 15 updates the shape of the structure model to the structure model construction unit 24 each time the first inherent strain 51 or the differential strain due to the single welding pass 61 is applied to the structure model. To instruct.
That is, as a result, if the number of constructions of the welding paths 61 (61A to 61L) is m, the reflection unit 15 performs shape update of the structure model m times.
Each time the shape of the structure model is updated, the result is output to the result display unit 16 using a contour diagram or the like.

図5のフローチャートに基づいて、実施形態に係る溶接変形解析方法及び溶接変形解析プログラムを説明する。
構造物モデル(図4)の構成部材62の溶接様式及び溶接パス61に対応する継手モデル(図2)を選択する(S11)。相互に溶接される構成部材62の材料物性及び溶接条件を入力する(S12)。なお、これら構成部材62の溶接操作がn回にわたる場合は、各々の溶接操作に対し、異なる溶接条件を設定することができる。
Based on the flowchart of FIG. 5, a welding deformation analysis method and a welding deformation analysis program according to the embodiment will be described.
The joint model (FIG. 2) corresponding to the welding mode of the structural member 62 of the structure model (FIG. 4) and the welding path 61 is selected (S11). The material properties and welding conditions of the component members 62 to be welded to each other are input (S12). In addition, when the welding operation of these structural members 62 is performed n times, different welding conditions can be set for each welding operation.

まず1回目の溶接操作(S13)において、継手モデルの溶接部(図3A)に分布する第1固有ひずみ511が演算される(S14)。さらに、n回目までの各々の溶接操作により、継手モデルの溶接部に分布する第2から第nまでの固有ひずみ51が演算される(S15 Yes/No)。 First, in the first welding operation (S13), the first inherent strain 51 1 distributed in the welded portion (FIG. 3A) of the joint model is calculated (S14). Further, the second to nth inherent strains 51 distributed in the welded portion of the joint model are calculated by the respective welding operations up to the nth time (S15 Yes / No).

第j固有ひずみ51j及び第j−1固有ひずみ51j-1(2≦j≦n)の差分に基づいて、第j回目の溶接操作が単独で継手モデルの溶接部に分布させた差分ひずみを導出し、第n回目まで導出された差分ひずみと第1固有ひずみ511とを登録する(S16)。
次に、構造物モデル(図4)に施工される複数の溶接パス61k(1≦k≦m)及びその順番を設定する(S17)。
Based on the difference between the j-th intrinsic strain 51 j and the j-1 intrinsic strain 51 j-1 (2 ≦ j ≦ n), the differential strain in which the j-th welding operation is independently distributed in the welded part of the joint model And the differential strain and the first inherent strain 51 1 derived up to the n-th time are registered (S16).
Next, a plurality of welding passes 61 k (1 ≦ k ≦ m) to be constructed in the structure model (FIG. 4) and their order are set (S17).

まず、溶接パス61が施工されていない状態(k=0)を想定して(S18)、構成部材62(62A〜62D)を組み合わせて構造物モデルを構築する(S19)。
そして、一回目からm回目にわたる溶接パス61k(1≦k≦m)の施行に対応する差分ひずみ又は第1固有ひずみ511を取得し(S20)、構造物モデルに適用し変形解析を実行する(S21)。
なお、この解析結果は、単独の溶接パス61kの施工の度に、構造物モデルにその都度反映され、構造物モデルの形状を更新させる(S22、S23 No/Yes、END)。
First, assuming a state where the welding pass 61 is not applied (k = 0) (S18), a structural model is constructed by combining the constituent members 62 (62A to 62D) (S19).
Then, the differential strain or the first inherent strain 51 1 corresponding to the execution of the welding pass 61 k (1 ≦ k ≦ m) from the first to the m-th is acquired (S20), and applied to the structure model to execute the deformation analysis. (S21).
This analysis result is reflected in the structure model each time a single welding pass 61 k is applied, and the shape of the structure model is updated (S22, S23 No / Yes, END).

以上述べた実施形態の溶接変形解析装置によれば、複数回の溶接操作により形成される固有ひずみと前回の溶接操作までに形成された固有ひずみとの差分ひずみを適用することにより、データベースの情報量を増大させることなく、固有ひずみ法に基づく溶接変形解析を高精度に実施することができる。   According to the welding deformation analysis apparatus of the embodiment described above, by applying the differential strain between the inherent strain formed by a plurality of welding operations and the inherent strain formed up to the previous welding operation, the database information Without increasing the amount, welding deformation analysis based on the inherent strain method can be performed with high accuracy.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

また、溶接変形解析装置の構成要素は、コンピュータのプロセッサで実現することも可能であり、溶接変形解析プログラムにより動作させることが可能である。   In addition, the constituent elements of the welding deformation analysis apparatus can be realized by a processor of a computer and can be operated by a welding deformation analysis program.

10…溶接変形解析装置、11(11a,11b)…固有ひずみ演算部(第1演算部,第2演算部,演算部)、12…差分ひずみ導出部(導出部)、13…登録部、14…解析実行部、15…結果反映部、16…結果表示部、21…継手モデル選択部、22…溶接条件入力部、23…材料物性入力部、24…構造物モデル構築部、25…溶接パス設定部、51(511)…第1固有ひずみ511、51(512)…第2固有ひずみ512、51(51n)…第n固有ひずみ51n、53(531〜536)…溶接パス、61(61A〜61L),61k…溶接パス、62(62A〜62D)…構成部材。 DESCRIPTION OF SYMBOLS 10 ... Welding deformation | transformation analysis apparatus, 11 (11a, 11b) ... Intrinsic strain calculating part (1st calculating part, 2nd calculating part, calculating part), 12 ... Differential strain derivation | leading-out part (derivation | leading-out part), 13 ... Registration part, 14 ... Analysis execution part, 15 ... Result reflection part, 16 ... Result display part, 21 ... Joint model selection part, 22 ... Welding condition input part, 23 ... Material property input part, 24 ... Structural model construction part, 25 ... Welding path Setting unit 51 (51 1 )... First intrinsic strain 51 1 , 51 (51 2 )... Second intrinsic strain 51 2 , 51 (51 n )... N n intrinsic strain 51 n , 53 (53 1 to 53 6 ) ... weld pass, 61 (61A~61L), 61 k ... weld pass, 62 (62A to 62D) ... components.

Claims (3)

n−1回(nは2以上の自然数)の溶接操作により前記溶接部に分布する第n−1固有ひずみを演算する第1演算部と、
n回の溶接操作で溶接した継手モデルの溶接部に分布する第n固有ひずみを演算する第2演算部と、
前記第n固有ひずみ及び第n−1固有ひずみの差分に基づいて第n回目の溶接操作が単独で前記溶接部に分布させた差分ひずみを導出する差分ひずみ導出部と、
前記継手モデルにおける第1固有ひずみ及び第n回目までの各々の前記差分ひずみを登録する登録部と、
変形解析の対象となる構造物モデルを構築する構造物モデル構築部と、
前記構造物モデルに施工される複数の溶接パス及びその順番を設定する溶接パス設定部と、
各々の前記溶接パスに対応する前記第1固有ひずみ又は前記差分ひずみを前記構造物モデルに適用し前記変形解析を実行する解析実行部と、
前記溶接パスの施工及び前記変形解析の結果を前記構造物モデルに前記施工の順番に従ってその都度反映させる結果反映部と、を備えることを特徴とする溶接変形解析装置。
a first computing unit that computes the n-1th inherent strain distributed in the welded part by n-1 times (n is a natural number of 2 or more) welding operation;
a second computing unit that computes the nth inherent strain distributed in the welded portion of the joint model welded by n welding operations;
A differential strain deriving unit for deriving a differential strain in which the n-th welding operation is independently distributed to the weld based on the difference between the n-th inherent strain and the n-1th inherent strain;
A registration unit for registering each of the first inherent strain and the differential strain up to the nth time in the joint model;
A structure model building unit for building a structure model to be subjected to deformation analysis;
A plurality of welding paths constructed in the structure model and a welding path setting unit for setting the order thereof;
An analysis execution unit that applies the first inherent strain or the differential strain corresponding to each welding path to the structure model and executes the deformation analysis;
A welding deformation analysis apparatus, comprising: a result reflection unit that reflects a result of the welding path construction and the deformation analysis on the structure model each time in the order of the construction.
n−1回(nは2以上の自然数)の溶接操作により前記溶接部に分布する第n−1固有ひずみを演算するステップと、
n回の溶接操作で溶接した継手モデルの溶接部に分布する第n固有ひずみを演算するステップと、
前記第n固有ひずみ及び第n−1固有ひずみの差分に基づいて第n回目の溶接操作が単独で前記溶接部に分布させた差分ひずみを導出するステップと、
前記継手モデルにおける第1固有ひずみ及び第n回目までの各々の前記差分ひずみを登録するステップと、
変形解析の対象となる構造物モデルを構築するステップと、
前記構造物モデルに施工される複数の溶接パス及びその順番を設定するステップと、
各々の前記溶接パスに対応する前記第1固有ひずみ又は前記差分ひずみを前記構造物モデルに適用し前記変形解析を実行するステップと、
前記溶接パスの施工及び前記変形解析の結果を前記構造物モデルに前記施工の順番に従ってその都度反映させるステップと、を含むことを特徴とする溶接変形解析方法。
a step of calculating an n-1th inherent strain distributed in the weld by n-1 times (n is a natural number of 2 or more) welding operation;
calculating the nth inherent strain distributed in the weld of the joint model welded by n welding operations;
Deriving a differential strain that the n-th welding operation is independently distributed to the weld based on the difference between the n-th inherent strain and the n-1th inherent strain;
Registering each of the first inherent strain and the differential strain up to the nth time in the joint model;
Building a structure model for deformation analysis; and
Setting a plurality of welding paths and their order to be constructed in the structure model; and
Applying the first inherent strain or the differential strain corresponding to each welding path to the structure model and performing the deformation analysis;
Reflecting the result of the construction of the welding pass and the deformation analysis to the structure model in accordance with the order of the construction each time.
コンピュータに、
n−1回(nは2以上の自然数)の溶接操作により前記溶接部に分布する第n−1固有ひずみを演算するステップ、
n回の溶接操作で溶接した継手モデルの溶接部に分布する第n固有ひずみを演算するステップ、
前記第n固有ひずみ及び第n−1固有ひずみの差分に基づいて第n回目の溶接操作が単独で前記溶接部に分布させた差分ひずみを導出するステップ、
前記継手モデルにおける第1固有ひずみ及び第n回目までの各々の前記差分ひずみを登録するステップ、
変形解析の対象となる構造物モデルを構築するステップ、
前記構造物モデルに施工される複数の溶接パス及びその順番を設定するステップ、
各々の前記溶接パスに対応する前記第1固有ひずみ又は前記差分ひずみを前記構造物モデルに適用し前記変形解析を実行するステップ、
前記溶接パスの施工及び前記変形解析の結果を前記構造物モデルに前記施工の順番に従ってその都度反映させるステップ、を実行させることを特徴とする溶接変形解析プログラム。
On the computer,
a step of calculating the (n-1) th intrinsic strain distributed in the welded part by n-1 times (n is a natural number of 2 or more) welding operation;
calculating the nth inherent strain distributed in the weld portion of the joint model welded by n welding operations;
Deriving a differential strain in which the nth welding operation is independently distributed to the weld based on the difference between the nth inherent strain and the n-1th inherent strain;
Registering each of the first inherent strain and the differential strain up to the nth time in the joint model;
Building a structure model for deformation analysis;
A step of setting a plurality of welding passes to be constructed in the structure model and their order;
Applying the first inherent strain or the differential strain corresponding to each of the welding passes to the structure model to perform the deformation analysis;
A welding deformation analysis program for executing the step of reflecting the construction of the welding pass and the result of the deformation analysis in the structure model in accordance with the order of the construction each time.
JP2014184746A 2014-09-11 2014-09-11 Welding deformation analysis device, method, and program Pending JP2016057211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184746A JP2016057211A (en) 2014-09-11 2014-09-11 Welding deformation analysis device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184746A JP2016057211A (en) 2014-09-11 2014-09-11 Welding deformation analysis device, method, and program

Publications (1)

Publication Number Publication Date
JP2016057211A true JP2016057211A (en) 2016-04-21

Family

ID=55758303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184746A Pending JP2016057211A (en) 2014-09-11 2014-09-11 Welding deformation analysis device, method, and program

Country Status (1)

Country Link
JP (1) JP2016057211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356417A (en) * 2017-06-30 2017-11-17 暨南大学 A kind of bolted joint damnification recognition method for merging Time-Series analysis and comentropy
JPWO2020116308A1 (en) * 2018-12-05 2021-10-14 日本製鉄株式会社 Stress evaluation method for As-weld welds on bogie frames for railway vehicles
CN114619161A (en) * 2022-02-16 2022-06-14 江苏科技大学 Model construction and leveling method for sheet welding deformation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356417A (en) * 2017-06-30 2017-11-17 暨南大学 A kind of bolted joint damnification recognition method for merging Time-Series analysis and comentropy
CN107356417B (en) * 2017-06-30 2019-10-18 暨南大学 A kind of bolted joint damnification recognition method merging Time-Series analysis and comentropy
JPWO2020116308A1 (en) * 2018-12-05 2021-10-14 日本製鉄株式会社 Stress evaluation method for As-weld welds on bogie frames for railway vehicles
JP7047939B2 (en) 2018-12-05 2022-04-05 日本製鉄株式会社 Stress evaluation method for As-weld welds of bogie frames for railway vehicles
CN114619161A (en) * 2022-02-16 2022-06-14 江苏科技大学 Model construction and leveling method for sheet welding deformation

Similar Documents

Publication Publication Date Title
Islam et al. Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures
Li et al. An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks
Qian et al. Time-variant system reliability analysis method for a small failure probability problem
Cho et al. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method
Deng et al. Predicting welding deformation in thin plate panel structure by means of inherent strain and interface element
Maekawa et al. Fast three-dimensional multipass welding simulation using an iterative substructure method
JP2016057211A (en) Welding deformation analysis device, method, and program
Pirondi et al. Comparative study of cohesive zone and virtual crack closure techniques for three-dimensional fatigue debonding
Kang et al. Predicting ductile crack initiation of steel bridge structures due to extremely low-cycle fatigue using local and non-local models
De Moura Application of cohesive zone modeling to composite bonded repairs
Park et al. Effect of welding sequence to minimize fillet welding distortion in a ship’s small component fabrication using joint rigidity method
Elanwar et al. Framework for online model updating in earthquake hybrid simulations
Okano et al. Temperature distribution effect on relation between welding heat input and angular distortion
Gannon et al. Effect of residual stress shakedown on stiffened plate strength and behaviour
Kordkheili et al. On the geometrically nonlinear analysis of sandwich shells with viscoelastic core: A layerwise dynamic finite element formulation
Armentani et al. DBEM and FEM analysis on non-linear multiple crack propagation in an aeronautic doubler-skin assembly
Augello et al. Analysis of plate reinforced by straight and curved stiffeners by using novel plate elements with refined through-the-thickness expansion
Camilleri et al. Thermal distortion of stiffened plate due to fillet welds computational and experimental investigation
Oliveira et al. Partitioned path-following strategy for nonlinear structural analyses using the boundary element method
Chen et al. Comparative study of welding deformation of a stiffened panel under various welding procedures
JP7474382B2 (en) Scaling method and system based on point-wise registration procedure
Akoussan et al. Numerical method for nonlinear complex eigenvalues problems depending on two parameters: Application to three-layered viscoelastic composite structures
Lu et al. Extended layerwise/solid-element method of composite sandwich plates with damage
JP6437244B2 (en) Constraint-specific deformation data calculation system and calculation program, welding deformation prediction system and welding deformation prediction program
Zang et al. Finite element model updating of an assembled aero-engine casing