JP2016055244A - Flue gas treatment apparatus - Google Patents

Flue gas treatment apparatus Download PDF

Info

Publication number
JP2016055244A
JP2016055244A JP2014182958A JP2014182958A JP2016055244A JP 2016055244 A JP2016055244 A JP 2016055244A JP 2014182958 A JP2014182958 A JP 2014182958A JP 2014182958 A JP2014182958 A JP 2014182958A JP 2016055244 A JP2016055244 A JP 2016055244A
Authority
JP
Japan
Prior art keywords
spray nozzle
desulfurization
spray nozzles
spray
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014182958A
Other languages
Japanese (ja)
Inventor
今田 典幸
Noriyuki Imada
典幸 今田
片川 篤
Atsushi Katagawa
篤 片川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014182958A priority Critical patent/JP2016055244A/en
Publication of JP2016055244A publication Critical patent/JP2016055244A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flue gas treatment apparatus having a desulfurization device equipped with spray nozzles smoothly spraying without increasing the flow rate of an exhaust gas flow rising in the vicinity of the plurality of spray nozzles spraying downward an absorbent in the desulfurization device.SOLUTION: In a flue gas treatment apparatus where a plurality of branch headers 39 disposed with a plurality of desulphurization spray nozzles 27 spraying a desulfurization liquid into an exhaust gas passage disposed in an absorption tower 5 and main headers 38 connected with the branch headers 39 are installed with multi-stages in a vertical direction and the spray nozzles 27 are installed so that an interval in a vertical direction becomes 0.2d or more and 0.5d or less to an interval d in a horizontal direction between adjacent spray nozzles 27 in the spray nozzles 27 installed on each stage of the branch headers 39,: power can be reduced by about 10% in comparison with a conventional structure while highly maintaining a desulphurization rate, pressure loss in the absorption tower can be reduced and, as a result, power for operating a desulfurization device can be reduced.SELECTED DRAWING: Figure 1

Description

本発明は、火力発電所に用いられる発電用ボイラの排ガスに含まれる硫黄酸化物を除去する排ガス処理装置に係り、特に脱硫液を排ガス中に噴霧する湿式脱硫処理技術に関するものである。   The present invention relates to an exhaust gas treatment apparatus that removes sulfur oxides contained in the exhaust gas of a power generation boiler used in a thermal power plant, and more particularly to a wet desulfurization treatment technique in which a desulfurization liquid is sprayed into the exhaust gas.

発電所における排ガス処理装置として、脱硫液を排ガス中に噴霧することで排ガス中の硫黄酸化物(主にSO2)を吸収、除去する湿式脱硫装置を使用した装置構成の一例を図3に示す。図3に示す例では、燃料として石炭を使用する例であるが、硫黄含有量の多い重油などでも同様な構成となるのが一般的である。ボイラ1に石炭21と燃焼用空気36を供給し、石炭21の燃焼反応によって発生した熱により、図示しないボイラ熱交換器で高圧蒸気を作る。得られた高圧蒸気により図示しないタービンを回転させ、タービンと連結した発電機により発電をする。 FIG. 3 shows an example of an apparatus configuration using a wet desulfurization apparatus that absorbs and removes sulfur oxide (mainly SO 2 ) in exhaust gas by spraying a desulfurization liquid into the exhaust gas as an exhaust gas treatment apparatus in a power plant. . The example shown in FIG. 3 is an example in which coal is used as the fuel, but it is general that the same configuration is used even with heavy oil having a high sulfur content. Coal 21 and combustion air 36 are supplied to the boiler 1, and high pressure steam is produced by a boiler heat exchanger (not shown) by heat generated by the combustion reaction of the coal 21. A turbine (not shown) is rotated by the obtained high-pressure steam, and power is generated by a generator connected to the turbine.

一方、ボイラ1から排出される燃焼排ガスは、空気予熱器3で燃焼用空気と熱交換した後、集塵機4で煤塵が除去される。集塵機4としては、濾布を使用したバグフィルタや、排ガス流路内に電極を設置した電気式集塵器などがある。バグフィルタは、設備コストは安価であるが、圧力損失が大きいこと、濾布を定期的に交換する必要があるなどの問題もあり、圧力損失が小さく、比較的メンテナンスが容易な電気式集塵器が広く使用されている。一般に集塵機部のガス温度は160〜200℃程度である。集塵機4を出た排ガスを湿式脱硫装置の吸収塔5に供給し、排ガス中のSO2を除去した後、煙突2から放出する。 On the other hand, the flue gas discharged from the boiler 1 is subjected to heat exchange with the combustion air by the air preheater 3, and then dust is removed by the dust collector 4. Examples of the dust collector 4 include a bag filter using a filter cloth and an electric dust collector in which an electrode is installed in an exhaust gas passage. Bag filters have low equipment costs, but there are also problems such as large pressure loss and the need to replace the filter cloth regularly. Electric dust collection with low pressure loss and relatively easy maintenance. The bowl is widely used. Generally, the gas temperature of the dust collector section is about 160 to 200 ° C. The exhaust gas discharged from the dust collector 4 is supplied to the absorption tower 5 of the wet desulfurization apparatus, and after removing SO 2 in the exhaust gas, the exhaust gas is discharged from the chimney 2.

ここで、湿式脱硫装置の吸収塔5では、内部にノズル27が複数段設置され、脱硫液28を循環ポンプ26により昇圧し、噴霧する構成となっている。一般に脱硫液28としてCaCO3やNaOH溶液が使用される。吸収塔5内に噴霧された脱硫液28は、排ガス中のSO2を吸収し、吸収塔5の下部に脱硫液28として捕集され、排水ライン29より、図示しない排水処理設備に送られる。 Here, in the absorption tower 5 of the wet desulfurization apparatus, a plurality of nozzles 27 are installed inside, and the desulfurization liquid 28 is pressurized by the circulation pump 26 and sprayed. In general, a CaCO 3 or NaOH solution is used as the desulfurization liquid 28. The desulfurization liquid 28 sprayed in the absorption tower 5 absorbs SO 2 in the exhaust gas, is collected as a desulfurization liquid 28 in the lower part of the absorption tower 5, and is sent from a drain line 29 to a wastewater treatment facility (not shown).

前記従来技術においては、脱硫装置の吸収塔5の内部に脱硫液噴霧ノズル27を多段に設置し、それぞれのノズル27から脱硫液を噴霧し、排ガスと気液接触させることで、排ガス中のSO2を吸収、除去している。 In the prior art, the desulfurization liquid spray nozzles 27 are installed in multiple stages inside the absorption tower 5 of the desulfurization apparatus, and the desulfurization liquid is sprayed from the nozzles 27 and brought into gas-liquid contact with the exhaust gas. 2 is absorbed and removed.

脱硫装置の吸収塔5の内部に設置するノズル27の配置構造の一例を図8に示す。図8(A)に吸収塔5の一つの水平断面方向に配置されたスプレノズル27を示し、図8(B)にスプレノズル27が複数段上下方向に配置された吸収塔5の側断面図を示し、図8(C)には上下方向に3段配置されたスプレノズル27を備えた吸収塔5の部分側断面図を示す。   An example of the arrangement structure of the nozzles 27 installed inside the absorption tower 5 of the desulfurization apparatus is shown in FIG. FIG. 8A shows a spray nozzle 27 arranged in one horizontal sectional direction of the absorption tower 5, and FIG. 8B shows a side sectional view of the absorption tower 5 in which the spray nozzles 27 are arranged in a plurality of vertical directions. FIG. 8C shows a partial cross-sectional side view of the absorption tower 5 provided with the spray nozzles 27 arranged in three stages in the vertical direction.

脱硫装置の吸収塔5の下部に貯留された吸収液28は、循環ポンプ26により昇圧され、吸収液配管とヘッダ37を通過し、吸収塔5の内部に設置したスプレノズル27より噴霧される。ヘッダ37は主ヘッダ38と分岐ヘッダ39より構成され、分岐ヘッダ39の部分から水平方向にスプレノズル27が配置される構成となっている。   The absorption liquid 28 stored in the lower part of the absorption tower 5 of the desulfurization apparatus is pressurized by the circulation pump 26, passes through the absorption liquid piping and the header 37, and is sprayed from the spray nozzle 27 installed inside the absorption tower 5. The header 37 is composed of a main header 38 and a branch header 39, and the spray nozzle 27 is arranged in the horizontal direction from the branch header 39.

このとき、図8(B)に破線で囲んだ部分に示すスプレノズル27とその近傍の様子を拡大したものを図9に示す。図9には3つのスプレノズル27の側面図を示すが、スプレノズル27から噴出した脱硫液は、スプレノズル27の出口付近では液膜40となっており、スプレノズル27から離れるに従って液膜40が分散した液滴41となる。   At this time, FIG. 9 shows an enlarged view of the spray nozzle 27 shown in a portion surrounded by a broken line in FIG. FIG. 9 shows a side view of the three spray nozzles 27. The desulfurized liquid ejected from the spray nozzle 27 forms a liquid film 40 in the vicinity of the outlet of the spray nozzle 27, and the liquid film 40 is dispersed as the distance from the spray nozzle 27 increases. Droplet 41 is obtained.

スプレノズル27の近傍には液膜40があるため、スプレノズル27の近傍では排ガスが流れない領域となり、図9に矢印で示すようにスプレノズル27の近傍を迂回するようなガス流れが形成されている。そのため、従来のスプレノズル27の配置では、2つのスプレノズル27、27の間を上昇する排ガスの流路が狭くなり、ガス流速が増加し、圧力損失も増加するという問題があった。   Since there is the liquid film 40 in the vicinity of the spray nozzle 27, the exhaust gas does not flow in the vicinity of the spray nozzle 27, and a gas flow that bypasses the vicinity of the spray nozzle 27 is formed as shown by an arrow in FIG. Therefore, the conventional arrangement of the spray nozzle 27 has a problem that the flow path of the exhaust gas rising between the two spray nozzles 27, 27 becomes narrow, the gas flow rate increases, and the pressure loss also increases.

特許文献1(特許第5289668号公報)には、脱硫装置の吸収塔の内部に上下方向に複数段設置した複数のスプレノズルについて、吸収塔の塔壁部分から塔内の排ガスの上昇流がすり抜けるのを防ぐために、通常のスプレノズルの他に、該スプレノズルより一段低く、しかも塔壁により近い部分に補助スプレノズルを配置した構成が開示されている。   In Patent Document 1 (Japanese Patent No. 5289668), regarding a plurality of spray nozzles installed in a plurality of stages in the vertical direction inside an absorption tower of a desulfurization apparatus, the upward flow of exhaust gas in the tower passes through the tower wall portion of the absorption tower. In order to prevent this, in addition to a normal spray nozzle, a configuration is disclosed in which an auxiliary spray nozzle is disposed at a position one step lower than the spray nozzle and closer to the tower wall.

特許文献2(特開平11−179144号公報)には、脱硫装置の吸収塔の内部に上下方向に複数段設置した複数のスプレノズルの間隙部に、前記スプレノズルより一段低い位置に副スプレノズルを配置して噴霧吸収液の希薄部を少なくして、噴霧吸収液と排ガスとの接触を効果的に行う構成が開示されている。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 11-179144), a sub spray nozzle is arranged at a position one step lower than the spray nozzle in the gaps of a plurality of spray nozzles installed in a plurality of stages in the vertical direction inside the absorption tower of the desulfurization apparatus. Thus, a configuration has been disclosed in which the lean portion of the spray absorbing liquid is reduced to effectively make contact between the spray absorbing liquid and the exhaust gas.

特許文献3(特開平11−128651号公報)には、吸収塔の同一水平面に格子状に配置されたスプレノズルから噴出される吸収液滴の局所的な濃度を計測して、所定の濃度値からの偏差が大きなスプレノズルの配置位置を変更する構成が開示されている。   In Patent Document 3 (Japanese Patent Laid-Open No. 11-128651), the local concentration of absorbing droplets ejected from spray nozzles arranged in a grid on the same horizontal surface of an absorption tower is measured, and a predetermined concentration value is calculated. A configuration is disclosed in which the arrangement position of the spray nozzle having a large deviation is changed.

特許第5289668号公報Japanese Patent No. 5289668 特開平11−179144号公報JP 11-179144 A 特開平11−128651号公報JP-A-11-128651

上記従来技術によれば、吸収塔内を上昇する排ガス流に対してスプレノズルの配置に対する工夫が十分でなく、隣接するスプレノズル間の排ガス流れの流速が均一とは言いがたく、排ガスと噴霧吸収液との気液接触が不均衡となり、その結果脱硫率が望ましいレベルになく、改善の余地があった。   According to the above prior art, the arrangement of the spray nozzles is not sufficient for the exhaust gas flow rising in the absorption tower, and it is difficult to say that the flow rate of the exhaust gas flow between adjacent spray nozzles is uniform. As a result, the desulfurization rate was not at a desirable level and there was room for improvement.

本発明の課題は、上述したように、脱硫装置内の吸収液を下向きに噴霧する複数のスプレノズルの近傍を上昇する排ガスの流れの流速が増加しないで、スムーズに行えるスプレノズルを備えた吸収塔を有する排煙処理装置を提供することである。   As described above, an object of the present invention is to provide an absorption tower equipped with a spray nozzle that can smoothly perform without increasing the flow rate of the flow of exhaust gas that rises in the vicinity of a plurality of spray nozzles that spray the absorbent in the desulfurization device downward. It is providing the flue gas processing apparatus which has.

上記本発明の課題は、次の解決手段で解決される。
すなわち、脱硫装置の吸収塔内に設けた排ガス流路内に脱硫液を噴霧する複数の脱硫用スプレノズルを設けた分岐ヘッダと該分岐ヘッダを接続した主ヘッダを上下方向に複数段設置し、排ガス中の硫黄酸化物を吸収除去する排煙処理装置において、各段の分岐ヘッダに設けたスプレノズルにおける隣接するスプレノズル同士の間隔dに対して、鉛直方向で0.2d以上、0.5d以下の間隔となるようにスプレノズルを設置したことを特徴とする排煙処理装置である。
(作用)
本発明に基づく吸収塔内に設けたスプレノズル近傍の様子を図4に示す。ガス流れに対し、垂直方向にd(m)の間隔で設置したスプレノズルを、排ガスの流路方向に対して0.2dから0.5dの間隔となるようにずらして設置している。排ガスの流路方向に対して、スプレノズルをずらして配置することで、スプレノズル近傍に形成される液膜によって狭められる流路を広く確保できることがわかる。
The problems of the present invention are solved by the following means.
That is, a branch header provided with a plurality of desulfurization spray nozzles for spraying a desulfurization liquid in an exhaust gas passage provided in an absorption tower of a desulfurization apparatus and a main header connecting the branch headers are installed in a plurality of stages in the vertical direction, In the flue gas treatment apparatus that absorbs and removes sulfur oxides in the vertical direction, with respect to the distance d between adjacent spray nozzles in the spray nozzle provided in the branch header of each stage, the distance in the vertical direction is 0.2 d or more and 0.5 d or less. It is a flue gas processing apparatus characterized by installing a spray nozzle to become.
(Function)
FIG. 4 shows the state in the vicinity of the spray nozzle provided in the absorption tower according to the present invention. The spray nozzles installed at intervals of d (m) in the vertical direction with respect to the gas flow are arranged so as to be shifted from 0.2 d to 0.5 d with respect to the flow direction of the exhaust gas. It can be seen that a wide flow path narrowed by the liquid film formed in the vicinity of the spray nozzle can be secured by disposing the spray nozzle with respect to the flow direction of the exhaust gas.

このようなスプレノズルの配置にした際のガス流速分布のイメージを図中に重ねて記載するが、従来構造の場合に比べて、ガス流れの圧力損失が小さくなることがわかる。
一方、吸収塔内の排ガス流路の水平断面方向のスプレノズル配置は、従来と同等であり、排ガスと吸収液滴が接触する範囲は変化がないことから、吸収塔の脱硫性能自体は変化することがない。
The image of the gas flow velocity distribution when such a spray nozzle is arranged is described in the drawing, and it can be seen that the pressure loss of the gas flow is smaller than in the case of the conventional structure.
On the other hand, the spray nozzle arrangement in the horizontal cross-section direction of the exhaust gas flow channel in the absorption tower is the same as the conventional one, and the range where the exhaust gas and the absorbing droplets contact does not change, so the desulfurization performance of the absorption tower itself will change. There is no.

本発明にしたがってスプレノズルをスプレヘッダへ取り付けることにより、脱硫装置の脱硫率は高く維持したまま、動力を従来構造に比べて約10%低減することが可能となり、スプレノズルの配置を変更することで、脱硫性能を低下することなく、吸収塔での圧力損失を低減することができ、その結果として脱硫装置作動用動力を低減することが可能となり、消費動力も低減できるという効果がある。   By attaching the spray nozzle to the spray header according to the present invention, it becomes possible to reduce the power by about 10% compared to the conventional structure while keeping the desulfurization rate of the desulfurization apparatus high. By changing the arrangement of the spray nozzle, desulfurization is achieved. The pressure loss in the absorption tower can be reduced without degrading the performance, and as a result, the power for operating the desulfurization apparatus can be reduced, and the power consumption can be reduced.

本発明に基づく排煙処理装置の脱硫装置におけるスプレノズル配置を示す要部平断面図(図1(A))と要部側断面図(図1(B))である。They are a principal part plane sectional view (Drawing 1 (A)) and a principal part side sectional view (Drawing 1 (B)) which show spray nozzle arrangement in a desulfurization device of a flue gas processing device based on the present invention. 図1の排煙処理装置の吸収塔の概略側断面図である。It is a schematic sectional side view of the absorption tower of the flue gas processing apparatus of FIG. 一般的な排煙処理装置の構成を示す図である。It is a figure which shows the structure of a general smoke removal processing apparatus. 本発明に基づく脱硫装置吸収塔内のスプレノズル配置におけるスプレ部近傍の脱硫液およびガス流れの様子を示す図である。It is a figure which shows the mode of the desulfurization liquid and gas flow of the spray part vicinity in the spray nozzle arrangement | positioning in the desulfurization apparatus absorption tower based on this invention. 本発明と従来技術の脱硫装置吸収塔内部の高さ方向距離と圧力損失との関係を示す図である。It is a figure which shows the relationship between the height direction distance inside a desulfurization apparatus absorption tower of this invention, and a prior art, and a pressure loss. 本発明に基づく3種類のスプレノズル配置態様を示す図である。It is a figure which shows three types of spray nozzle arrangement | positioning aspects based on this invention. 本発明に基づく、脱硫装置内部のスプレノズル高さと圧力損失、脱硫率を数値解析で評価した結果及びその結果より、消費動力の差を評価した結果を示す図である。It is a figure which shows the result of having evaluated the difference of power consumption from the result which evaluated the spray nozzle height inside a desulfurization apparatus based on this invention, the pressure loss, and the desulfurization rate by numerical analysis. 従来の排煙処理装置の脱硫装置吸収塔におけるスプレノズル配置を示す要部平断面図(図8(A))と要部側断面図(図8(B))と吸収塔の概略側断面図(図8(C))である。The principal part plane sectional view (Drawing 8 (A)) and the principal part side sectional view (Drawing 8 (B)) which show arrangement of the spray nozzle in the desulfurization device absorption tower of the conventional flue gas treatment device, and the schematic side sectional view of the absorption tower ( FIG. 8C). 従来の排煙処理装置の脱硫装置吸収塔内のスプレノズル配置におけるスプレ部近傍の脱硫液およびガス流れの様子を示す図である。It is a figure which shows the mode of the desulfurization liquid and gas flow of the spray part vicinity in the spray nozzle arrangement | positioning in the desulfurization apparatus absorption tower of the conventional flue gas treatment apparatus.

本発明の実施例を図1に示す。図1は図3に示す排ガス処理システムの脱硫装置5の内部に設置する吸収液を噴霧するスプレノズル27を備えたスプレヘッダ37(主ヘッダ38と分岐ヘッダ39からなる)を3段配置した構成を示す平断面図(図1(A))及び側断面図(図1(B))であり、図2は、図1のスプレノズル27を備えた主ヘッダ38へ吸収塔5の底部から吸収液28を循環供給する構成を示す脱硫装置吸収塔5の部分側断面図である。   An embodiment of the present invention is shown in FIG. FIG. 1 shows a configuration in which spray headers 37 (consisting of a main header 38 and a branch header 39) having a spray nozzle 27 for spraying an absorbing liquid installed in the desulfurization apparatus 5 of the exhaust gas treatment system shown in FIG. 3 are arranged in three stages. FIG. 2 is a cross-sectional plan view (FIG. 1A) and a side cross-sectional view (FIG. 1B). FIG. 2 shows the absorption liquid 28 from the bottom of the absorption tower 5 to the main header 38 having the spray nozzle 27 of FIG. It is a partial sectional side view of the desulfurization apparatus absorption tower 5 which shows the structure which circulates and supplies.

図1に示すように主ヘッダ38から分岐した分岐ヘッダ39に取り付けられたスプレノズル27は、取り付け高さが異なる2種類からなり、隣り合うスプレノズル27が同じ高さにならないように設置している。   As shown in FIG. 1, the spray nozzles 27 attached to the branch header 39 branched from the main header 38 are of two types having different attachment heights, and are installed so that the adjacent spray nozzles 27 do not have the same height.

上記構成からなる脱硫装置吸収塔5内部の圧力損失の変化を図5に示す。図5は縦軸に脱硫装置吸収塔5の高さ方向距離を、横軸に最上段スプレノズル27の出口部の圧力と、各高さ位置における圧力との差を示している。図5には、比較のために図8と図9に示す従来技術のスプレノズル27の配置態様における脱硫装置吸収塔5内部の圧力損失も合わせて示す。   FIG. 5 shows changes in pressure loss inside the desulfurization apparatus absorption tower 5 having the above-described configuration. FIG. 5 shows the distance in the height direction of the desulfurization apparatus absorption tower 5 on the vertical axis, and the difference between the pressure at the outlet of the uppermost spray nozzle 27 and the pressure at each height position on the horizontal axis. For comparison, FIG. 5 also shows the pressure loss inside the desulfurization apparatus absorption tower 5 in the arrangement mode of the prior art spray nozzle 27 shown in FIGS. 8 and 9.

従来のスプレノズル27の配置態様におけるガス流れの圧力損失(図中に破線で示す)では、各段のスプレノズル27部分で急激な圧力損失が生じているが、これは、スプレノズル27近傍の液膜により脱硫装置吸収塔5内部を上昇する排ガスの流速が増加したためである。一方、各スプレノズル27間では、緩やかな圧力損失の増加があるが、これは、液滴と排ガスとの接触によるものである。   In the pressure loss of the gas flow in the arrangement mode of the conventional spray nozzle 27 (indicated by a broken line in the figure), a sudden pressure loss occurs in the spray nozzle 27 portion of each stage. This is due to the liquid film in the vicinity of the spray nozzle 27. This is because the flow rate of the exhaust gas rising inside the desulfurization apparatus absorption tower 5 has increased. On the other hand, there is a gradual increase in pressure loss between the spray nozzles 27, which is due to contact between the droplets and the exhaust gas.

これに対し、本実施例のスプレノズル27の配置態様の場合における、排ガス上昇流の圧力損失を実線で示すが、スプレノズル27部分における前記圧力損失が小さくなり、その結果として全体の排ガス上昇流の圧力損失が従来技術に比較して小さくなることが分かる。   On the other hand, in the case of the arrangement mode of the spray nozzle 27 of the present embodiment, the pressure loss of the exhaust gas upward flow is shown by a solid line, but the pressure loss in the spray nozzle 27 portion becomes small, and as a result, the pressure of the entire exhaust gas upward flow It can be seen that the loss is reduced compared to the prior art.

隣接する2つのスプレノズル27の横方向の間隔d(dは隣接する2つのスプレノズル27の横方向の間隔)と本実施例に基づく2つのスプレノズル27の高さ方向の距離との関係について、数値解析により評価した結果を以下に示す。複数のスプレノズル27から液滴を噴霧させ、隣接する2つのスプレノズル27の高さ方向の距離を0から0.9dと変化させた場合の、ガス側の圧力損失と脱硫率とを数値解析により算出した結果を図7に示す。   Numerical analysis of the relationship between the distance d between the two adjacent spray nozzles 27 in the horizontal direction (d is the distance between the two adjacent spray nozzles 27 in the horizontal direction) and the distance between the two spray nozzles 27 according to this embodiment in the height direction. The results of the evaluation are shown below. Numerically analyzing the pressure loss and desulfurization rate on the gas side when droplets are sprayed from a plurality of spray nozzles 27 and the distance in the height direction of two adjacent spray nozzles 27 is changed from 0 to 0.9 d. The results are shown in FIG.

図7(A)は、スプレノズル高さ(隣接する2つのスプレノズル27の高さ方向の距離)と圧力損失との関係を示す。高さ方向に隣接する2つのスプレノズル27の配置をずらすことで、ガスが通過しやすくなり、圧力損失は低下することが分かる。図7(B)は、スプレノズル27の高さと脱硫率との関係を示す。スプレノズル27の高さが0.3d以上となると、上方に設置したスプレノズル27から噴出した液滴が、下側にずらしたスプレノズル27の液膜部分あるいはスプレノズル27本体に衝突するようになるため、噴霧液滴とガスとの接触効率が悪くなり、吸収液がSO2を吸収する性能が低下することが分かる。 FIG. 7A shows the relationship between the spray nozzle height (the distance in the height direction between two adjacent spray nozzles 27) and the pressure loss. It can be seen that by shifting the arrangement of the two spray nozzles 27 adjacent to each other in the height direction, the gas easily passes and the pressure loss decreases. FIG. 7B shows the relationship between the height of the spray nozzle 27 and the desulfurization rate. When the height of the spray nozzle 27 is 0.3 d or more, the liquid droplets ejected from the spray nozzle 27 installed above collide with the liquid film portion of the spray nozzle 27 shifted downward or the spray nozzle 27 body. It can be seen that the contact efficiency between the droplet and the gas is deteriorated, and the performance of the absorbing solution to absorb SO 2 is lowered.

前記圧力損失の低下は、排ガスを脱硫装置側に搬送するファンの動力が低減できるメリットとなるが、脱硫率が低下してしまうので、圧力損失の低下前と同じ脱硫性能を出すためには、脱硫液の噴霧量を増加させる必要があり、すなわち、脱硫液循環ポンプの動力増加となり、デメリットとなる。   The decrease in the pressure loss is an advantage that the power of the fan that conveys the exhaust gas to the desulfurization apparatus can be reduced.However, since the desulfurization rate decreases, in order to achieve the same desulfurization performance as before the decrease in the pressure loss, It is necessary to increase the spray amount of the desulfurization liquid, that is, the power of the desulfurization liquid circulation pump is increased, which is a disadvantage.

そこで、両者の影響を総合的に評価するために、図7(A)と図7(B)の結果をもとに、動力比で再整理した結果を図7(C)に示す。この結果より、隣接する2つのスプレノズル27の高さを変えていくことで、隣接する2つのスプレノズル27の高さの差が0.3d近傍で、消費動力が最小となることが分かる。このことから、本実施例に基づくスプレノズル27の位置は、従来の隣接する2つのスプレノズル27のノズル高さに対し、0.2d〜0.5dの範囲に設定することが最も効果的であることが分かる。   FIG. 7C shows the result of rearranging the power ratio based on the results shown in FIGS. 7A and 7B in order to comprehensively evaluate the influence of both. From this result, it can be seen that by changing the heights of the two adjacent spray nozzles 27, the power consumption is minimized when the difference in height between the two adjacent spray nozzles 27 is in the vicinity of 0.3d. From this, it is most effective to set the position of the spray nozzle 27 based on the present embodiment in the range of 0.2d to 0.5d with respect to the nozzle height of two conventional adjacent spray nozzles 27. I understand.

また、本発明の他のスプレノズル27の配置態様の実施例を図6に示す。分岐スプレヘッダ39へのスプレノズル27の取り付け方法として、図6(A)、図6(B)及び図6(C)などの取り付け方法がある。   Moreover, the Example of the arrangement | positioning aspect of the other spray nozzle 27 of this invention is shown in FIG. As a method for attaching the spray nozzle 27 to the branch spray header 39, there are attachment methods such as FIG. 6 (A), FIG. 6 (B) and FIG. 6 (C).

図6(A)、図6(B)及び図6(C)の全てにおいて分岐ヘッダ39の互いに反対側の位置にスプレノズル27を取り付けるが、図6(A)では一方のスプレノズル27は分岐スプレヘッダ39と同じ高さ位置に直線状の連絡管42を介して取り付け、他方のスプレノズル27は先端の液滴噴霧部が分岐スプレヘッダ39より低い高さ位置にあるジグザグ状の折れ曲がり連絡管42を介して分岐スプレヘッダ39に取り付ける。また、図6(B)では一方のスプレノズル27は分岐スプレヘッダ39と同じ高さ位置に直線状の連絡管42を介して分岐スプレヘッダ39に取り付け、他方のスプレノズル27は先端の液滴噴霧部が分岐スプレヘッダ39より低い高さ位置にあるL字状の折れ曲がり連絡管42を介して分岐スプレヘッダ39に取り付ける。また、図6(C)では一方のスプレノズル27は先端の液滴噴霧部が分岐スプレヘッダ39より高い高さ位置にあるL字状の折れ曲がり連絡管42を介して分岐スプレヘッダ39に取り付け、他方のスプレノズル27は先端の液滴噴霧部が分岐スプレヘッダ39より低い位置にあるL字状の折れ曲がり連絡管42を介して分岐スプレヘッダ39に取り付ける。   6A, 6B, and 6C, the spray nozzle 27 is attached to a position on the opposite side of the branch header 39. In FIG. 6A, one spray nozzle 27 is the branch spray header 39. The other spray nozzle 27 branches through a zigzag bent connecting pipe 42 in which the droplet spraying portion at the tip is at a lower position than the branching spray header 39. Attach to spray header 39. Further, in FIG. 6B, one spray nozzle 27 is attached to the branch spray header 39 through a linear connecting pipe 42 at the same height as the branch spray header 39, and the other spray nozzle 27 has a droplet spraying portion at the tip branching. Attached to the branching spray header 39 via an L-shaped bent connecting pipe 42 at a lower height than the spray header 39. Further, in FIG. 6C, one spray nozzle 27 is attached to the branch spray header 39 via an L-shaped bent communication pipe 42 in which the droplet spraying portion at the tip is higher than the branch spray header 39, and the other spray nozzle. 27 is attached to the branch spray header 39 via an L-shaped bent connecting pipe 42 in which the liquid droplet spraying portion at the tip is positioned lower than the branch spray header 39.

分岐スプレヘッダ39へのスプレノズル27の取り付け方法は、図6(A)、図6(B)及び図6(C)のいずれの方法でも図7で説明した場合と同様な効果が期待できる。   With respect to the method of attaching the spray nozzle 27 to the branch spray header 39, the same effect as described in FIG. 7 can be expected by any of the methods shown in FIGS. 6 (A), 6 (B), and 6 (C).

1 ボイラ 2 煙突
3 空気予熱器 4 集塵機
5 脱硫装置 21 石炭
26 吸収液用循環ポンプ 27 スプレノズル
28 脱硫吸収液 29 排水ライン
36 燃焼用空気 38 主ヘッダ
39 分岐ヘッダ 40 液膜
41 液滴 42 連絡管
DESCRIPTION OF SYMBOLS 1 Boiler 2 Chimney 3 Air preheater 4 Dust collector 5 Desulfurization device 21 Coal 26 Absorption liquid circulation pump 27 Spray nozzle 28 Desulfurization absorption liquid 29 Drain line 36 Combustion air 38 Main header 39 Branch header 40 Liquid film 41 Droplet 42 Connection pipe

Claims (1)

脱硫装置の吸収塔内に設けた排ガス流路内に脱硫液を噴霧する複数の脱硫用スプレノズルを設けた分岐ヘッダと該分岐ヘッダを接続した主ヘッダを上下方向に複数段設置し、排ガス中の硫黄酸化物を吸収除去する排煙処理装置において、
各段の分岐ヘッダに設けたスプレノズルにおける隣接するスプレノズル同士の間隔dに対して、鉛直方向で0.2d以上、0.5d以下の間隔となるようにスプレノズルを設置したことを特徴とする排煙処理装置。
A branch header provided with a plurality of desulfurization spray nozzles for spraying a desulfurization liquid in an exhaust gas passage provided in an absorption tower of a desulfurization apparatus, and a main header connected to the branch header are installed in a plurality of stages in the vertical direction. In flue gas treatment equipment that absorbs and removes sulfur oxides,
The spray nozzle is characterized in that the spray nozzle is installed so that the distance d between the adjacent spray nozzles in the spray nozzle provided in the branch header of each stage is 0.2 d or more and 0.5 d or less in the vertical direction. Processing equipment.
JP2014182958A 2014-09-09 2014-09-09 Flue gas treatment apparatus Pending JP2016055244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182958A JP2016055244A (en) 2014-09-09 2014-09-09 Flue gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182958A JP2016055244A (en) 2014-09-09 2014-09-09 Flue gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2016055244A true JP2016055244A (en) 2016-04-21

Family

ID=55756852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182958A Pending JP2016055244A (en) 2014-09-09 2014-09-09 Flue gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2016055244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200942A1 (en) * 2020-03-31 2021-10-07
CN113663501A (en) * 2021-07-16 2021-11-19 国能龙源环保南京有限公司 Spray layer and desulfurizing tower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200942A1 (en) * 2020-03-31 2021-10-07
JP7524308B2 (en) 2020-03-31 2024-07-29 三菱重工業株式会社 Absorption tower of desulfurization equipment
CN113663501A (en) * 2021-07-16 2021-11-19 国能龙源环保南京有限公司 Spray layer and desulfurizing tower

Similar Documents

Publication Publication Date Title
JP5705443B2 (en) Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same
JP4845568B2 (en) Wet flue gas desulfurization equipment
TWI651122B (en) Electric mist eliminator for flue gas purification
JP5725725B2 (en) Wet flue gas desulfurization equipment
JP2008212846A (en) Water flow mechanism of wet electrostatic dust precipitator
JP2014217809A (en) Flue gas desulfurization apparatus
CN103706237A (en) Flue gas desulfurization system
JP2013006125A (en) Wet flue gas desulfurization apparatus, and wet flue gas desulfurization method
JP4923460B2 (en) Axial exhaust steam turbine equipment
JP2016055244A (en) Flue gas treatment apparatus
JP2012030168A (en) Gas-liquid contact device and co2 recovery apparatus
JP2013111527A (en) Wet-type flue gas desulfurization apparatus
JP2015042389A (en) Exhaust gas desulfurizer
KR101277569B1 (en) Wet scrubber with multi-stage spray structure
CN103191612A (en) High-efficiency dust removal device for boiler
JP5721303B2 (en) Flue gas desulfurization equipment
JP2013000631A (en) Wet process flue gas desulfurization apparatus and method
CN202590581U (en) Defogger adapted to changes in gas flow
JPH119956A (en) Absorption tower of wet flue gas desulfurizer
CN103861402A (en) Water-spray-type tubular dust collector
JP6983706B2 (en) Mist remover
JP2009052867A (en) Multistage pressure condenser
JP2012196611A (en) Flue gas desulfurization apparatus and flue gas desulfurization method
CN205517040U (en) Boiler desulfurization dust collector
CN106246250B (en) Steam dump device for nuclear power plant