JP2016054736A - Metal extraction method using acidophilic thiobacillus ferrooxidans - Google Patents

Metal extraction method using acidophilic thiobacillus ferrooxidans Download PDF

Info

Publication number
JP2016054736A
JP2016054736A JP2015174284A JP2015174284A JP2016054736A JP 2016054736 A JP2016054736 A JP 2016054736A JP 2015174284 A JP2015174284 A JP 2015174284A JP 2015174284 A JP2015174284 A JP 2015174284A JP 2016054736 A JP2016054736 A JP 2016054736A
Authority
JP
Japan
Prior art keywords
metal
iron
sequence
acidophilic
base sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015174284A
Other languages
Japanese (ja)
Inventor
直幸 宮田
Naoyuki Miyata
直幸 宮田
ふゆみ 東條
Fuyumi Tojo
ふゆみ 東條
瑞録 梁
Ruilu Liang
瑞録 梁
淳 福島
Atsushi Fukushima
淳 福島
幸則 谷
Yukinori Tani
幸則 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
University of Shizuoka
Original Assignee
Akita Prefectural University
University of Shizuoka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University, University of Shizuoka filed Critical Akita Prefectural University
Publication of JP2016054736A publication Critical patent/JP2016054736A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient metal extraction method using organisms from a used electronic equipment part, such as a wasted electronic substrate.SOLUTION: An acidophilic thiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans NE106G strain, or a microbial mixture containing it is cultured with a dilute sulfuric acid culture medium, in which low concentration ferrous ion is added, and subsequently is brought into contact with a metal-containing electronic part, such as a wasted electronic substrate to extract and recover a valuable metal.SELECTED DRAWING: Figure 5

Description

本発明は、新規微生物である好酸性鉄酸化細菌、または好酸性細菌の混合培養体を用いて、廃電子基板などの金属含有廃棄物から、有用金属を浸出させる方法に関する。   The present invention relates to a method for leaching a useful metal from a metal-containing waste such as a waste electronic substrate using an acidophilic iron-oxidizing bacterium which is a novel microorganism or a mixed culture of acidophilic bacteria.

廃電子基板等の使用済電子機器部品には、金、銀、銅、亜鉛などベースメタルのほか、各種のレアメタル等多岐にわたる有価金属が含有されている。現状では、既存の製錬技術により金属の回収・再資源化が行われているが、鉱種が多岐にわたること、及び各金属の含有量が低いため、多様な鉱種を回収・再資源化することは、技術的にも経済的にも多くの課題が残されている。   Used electronic device parts such as waste electronic boards contain a wide variety of valuable metals such as various rare metals in addition to base metals such as gold, silver, copper, and zinc. At present, metals are recovered and recycled using existing smelting technology, but due to the wide variety of ore types and the low content of each metal, a variety of ore types are recovered and recycled. There are many technical and economic challenges to do.

微生物を用いた生物浸出(バイオリーチング)による、廃電子基板等の使用済電子機器部品からの金属回収方法が数多く提案されている。例えば、酸性鉄酸化細菌であるAcidithiobacillus ferrooxidans(非特許文献1、2)、またはAcidithiobacillus ferrooxidansと他の細菌との混合培養体(非特許文献3、4)による、廃電子基板からの銅や亜鉛、ニッケル、アルミニウムのバイオリーチングが提案されている。また、中程度高温性鉄酸化細菌Sulfobacillus thermosulfidooxidansと従属栄養細菌を用いた廃電子基板からの金属浸出も提案されている(非特許文献5)。また廃電子基板以外では、例えばSulfobacillus sp.と他の細菌との混合培養体を用いた亜鉛−マンガン二次電池等からの亜鉛、マンガンのバイオリーチングが提案されている(非特許文献6、7)。好酸性鉄酸化細菌以外では、例えば真菌類を用いた金属の浸出について開示されている(非特許文献8)   Many methods for recovering metals from used electronic equipment parts such as waste electronic substrates by bioleaching using microorganisms have been proposed. For example, Acidithiobacillus ferrooxidans (Non-patent Documents 1 and 2), which are acidic iron-oxidizing bacteria, or mixed cultures of Acidthiothiobacillus ferrooxidans and other bacteria (Non-patent Documents 3 and 4), copper and zinc from waste electronic substrates, Bioleaching of nickel and aluminum has been proposed. In addition, metal leaching from a waste electronic substrate using a moderately high temperature iron-oxidizing bacterium Sulfobacillus thermosulfidooxidans and heterotrophic bacteria has also been proposed (Non-Patent Document 5). In addition to waste electronic substrates, for example, zinc and manganese bioleaching from zinc-manganese secondary batteries using a mixed culture of Sulfobacillus sp. And other bacteria has been proposed (Non-Patent Documents 6 and 7). ). Other than acidophilic iron-oxidizing bacteria, for example, metal leaching using fungi is disclosed (Non-patent Document 8).

Yang, T., Xu, Z., Wen, J., Yang, L. 2009. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97, 29-32.Yang, T., Xu, Z., Wen, J., Yang, L. 2009. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97, 29-32. Yang, Y., Chen, S., Li, S., Chen, M., Chen, H., Liu, B. 2014. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.Journal of Biotechnology, 173, 24-30.Yang, Y., Chen, S., Li, S., Chen, M., Chen, H., Liu, B. 2014. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.Journal of Biotechnology, 173, 24-30. Wang, J., Bai, J., Xu, J., Liang, B. 2009. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 172, 1100-1105.Wang, J., Bai, J., Xu, J., Liang, B. 2009. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.Journal of Hazardous Materials, 172, 1100-1105. Liang, G., Mo, Y., Zhou, Q. 2010. Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme and Microbial Technology, 47, 322-326.Liang, G., Mo, Y., Zhou, Q. 2010. Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles.Enzyme and Microbial Technology, 47, 322-326. Ilyas, S., Anwar, M.A., Niazi, S.B., Ghauri, M.A. 2007. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88, 180-188.Ilyas, S., Anwar, M.A., Niazi, S.B., Ghauri, M.A. 2007. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88, 180-188. Xin, B., Chen, B., Duan, N., Zhou, C. 2011. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresource Technology, 102, 1683-1687.Xin, B., Chen, B., Duan, N., Zhou, C. 2011. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresource Technology, 102, 1683-1687. Xin, B., Jiang, W., Aslam, H., Zhang, K., Liu, C., Wang, R., Wang, Y. 2012. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration. Bioresource Technology, 106, 147-153.Xin, B., Jiang, W., Aslam, H., Zhang, K., Liu, C., Wang, R., Wang, Y. 2012. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration Bioresource Technology, 106, 147-153. Brandl, H., Bosshard, R., Wegmann, M. 2001. Computer-munching microbes: metal leaching from electro scrap by bacteria and fungi. Hydrometallurgy, 59, 319-326.Brandl, H., Bosshard, R., Wegmann, M. 2001.Computer-munching microbes: metal leaching from electro scrap by bacteria and fungi.Hydrometallurgy, 59, 319-326. Johnson, D.B., Macvicar, J.H.M., Rolfe, S. 1987. A new medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. Journal of Microbiological Methods, 7, 9-18.Johnson, D.B., Macvicar, J.H.M., Rolfe, S. 1987. A new medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. Journal of Microbiological Methods, 7, 9-18. Miyata, N., Tani, Y., Iwahori, K., Soma, M. 2004. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiology Ecology, 47, 101-109.Miyata, N., Tani, Y., Iwahori, K., Soma, M. 2004. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiology Ecology, 47, 101-109. Ghauri, M.A., Khalid, A.M., Grant, S., Heaphy, S., Grant W.D. 2003. Phylogenetic analysis of different isolates of Sulfobacillus spp. recovered from uranium rich environments and recovery of genes using integron specific primers. Extremophiles, 7, 341-345.Ghauri, MA, Khalid, AM, Grant, S., Heaphy, S., Grant WD 2003. Phylogenetic analysis of different isolates of Sulfobacillus spp.recovered from uranium rich environments and recovery of genes using integron specific primers.Extremophiles, 7, 341 -345. Ilyas, S., Ruan, C., Bhatti, H.N., Ghauri, M.A., Anwar, M.A. 2010. Column bioleaching of metals from electronic scrap. Hydrometallurgy, 101, 135-140.Ilyas, S., Ruan, C., Bhatti, H.N., Ghauri, M.A., Anwar, M.A. 2010. Column bioleaching of metals from electronic scrap.Hydrometallurgy, 101, 135-140. Simkins, S., Alexander, M. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density. Applied and Environmental Microbiology, 47, 1299-1306.Simkins, S., Alexander, M. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density.Applied and Environmental Microbiology, 47, 1299-1306.

上記の分類群に属する好酸性鉄酸化細菌により、希硫酸溶液中で第一鉄イオンを酸化して第二鉄イオンを生じさせ、この第二鉄イオンを酸化剤として、廃電子基板等の使用済み電子機器部品から有価金属を浸出する報告がなされている。しかし、従来の報告では、効率よく金属を浸出するために、数〜数十グラム/Lの第一鉄イオンを加えており、また、浸出反応中に第二鉄イオンが酸化鉄となって沈積することがしばしば報告されている。このため、好酸性鉄酸化細菌を用いた廃電子基板等の生物浸出に関して、より低濃度の鉄イオンで効率よく浸出し得るか、検討する余地がある。   By using acidophilic iron-oxidizing bacteria belonging to the above taxonomic group, ferrous ions are oxidized in dilute sulfuric acid solution to produce ferric ions. There have been reports of leaching valuable metals from used electronic equipment parts. However, in the conventional report, in order to leach metal efficiently, several to several tens of grams / L of ferrous ions are added, and during the leaching reaction, ferric ions are deposited as iron oxide and deposited. It has been reported often. For this reason, there is room for studying whether bioleaching of waste electronic substrates using acidophilic iron-oxidizing bacteria can be efficiently leached with a lower concentration of iron ions.

そこで本発明は、低濃度の第一鉄イオンの添加によって、廃電子基板等の使用済み電子機器部品から有価金属を生物浸出することができる新規な微生物及びこれを用いた生物浸出方法を提供することを目的とする。   Accordingly, the present invention provides a novel microorganism capable of biologically leaching valuable metals from used electronic equipment parts such as waste electronic substrates by adding a low concentration of ferrous ions, and a biological leaching method using the same. For the purpose.

上記目的を達成するため、本発明者らは、秋田県内の酸性河川流域内で採取した環境試料から、1g/L以下の第一鉄イオンを含む培地で最も速い増殖速度を示し、かつ、硫酸亜鉛、硫酸銅、硫酸ニッケル及び硫酸マンガンをそれぞれ0.1Mずつ含む培地でも増殖できる高い重金属耐性をもった好酸性鉄酸化細菌を取得した。この好酸性鉄酸化細菌の混合培養体及び純粋培養体を用いて、パーソナルコンピュータを由来とした廃電子基板の粉砕物から、銅、亜鉛、コバルト、マンガン、ニッケルを効率よく浸出することに成功した。   In order to achieve the above object, the present inventors show the fastest growth rate in a medium containing ferrous ions of 1 g / L or less from an environmental sample collected in an acidic river basin in Akita Prefecture, and sulfuric acid. An acidophilic iron-oxidizing bacterium having high heavy metal resistance capable of growing in a medium containing 0.1 M each of zinc, copper sulfate, nickel sulfate and manganese sulfate was obtained. Using this mixed culture of acidophilic iron-oxidizing bacteria and pure culture, copper, zinc, cobalt, manganese, and nickel were successfully leached from pulverized waste electronic substrates derived from personal computers. .

好酸性鉄酸化細菌の分離株は、その菌学的性質から上記文献に記載されているいずれの菌株とも一致せず、金属含有廃棄物を対象としたバイオリーチングに適用される新規な微生物であることが確認された。本株の混合培養体及び純粋培養体を用いて廃電子基板のバイオリーチングを実施し、従来の十分の一以下の鉄イオン濃度でも効率よく有価金属を浸出できることが確認されたので、本発明に至った。   Isolates of acidophilic iron-oxidizing bacteria do not match any of the strains described in the above literature due to their bacteriological properties, and are novel microorganisms applied to bioleaching for metal-containing wastes It was confirmed. Bioleaching of waste electronic substrates was carried out using the mixed culture and pure culture of this strain, and it was confirmed that valuable metals can be efficiently leached even with a conventional iron ion concentration of 1/10 or less. It came.

本発明は以下を提供する。
[1] 1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
[2] 配列表の配列番号1の38〜788番の塩基配列、又はそれと90.5%以上の配列同一性を有する塩基配列;
配列表の配列番号1の1〜873番の塩基配列、又はそれと88.7%以上の配列同一性を有する塩基配列;
配列表の配列番号1の1〜878番の塩基配列、又はそれと91.2%以上の配列同一性を有する塩基配列;又は
配列表の配列番号1の1〜888番の塩基配列、又はそれと92.8%以上の配列同一性を有する塩基配列
からなる16SrRNA遺伝子の一部を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
[3] 1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能である、2に記載 の好酸性鉄酸化細菌。
[4] 配列表の配列番号1の塩基配列、又はそれと99.9%以上 の配列同一性を有する塩基配列からなる、16SrRNA遺伝子を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
[5] Sulfobacillus thermosulfidooxidans NITE P-01909である、1〜4のいずれか1項に記載の好酸性鉄酸化細菌。
[6] 金属含有固体に、1.0g/L以下の第一鉄イオンを含む培地中で比増殖速度が最大となる好酸性鉄酸化細菌、又は1.0g/L以下の第一鉄イオンを含む培地中で比増殖速度0.15/時間以上で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を作用させ、金属を液体中に浸出させて金属溶液を得る工程を含む、金属溶液の製造方法。
[7] 1.0g/L以下の第一鉄イオンを含む培地中でスルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を増殖させ、培養物を得る工程;及び
培養物に金属含有固体を添加し、金属含有固体に好酸性鉄酸化細菌に作用させ、金属を液体中に浸出させて金属溶液を得る工程
を含む、金属溶液の製造方法。
[8] 金属が、銅、亜鉛、コバルト、ニッケル、マンガン、カドミウム及びタングステンからなる群より選択されるいずれかである、5〜7のいずれか1項に記載の製造方法。
[9] 好酸性鉄酸化細菌が、単離された形態または混合培養体の形態である、5〜8のいずれか1項に記載の製造方法。
[10] 開放系、及び/又は非滅菌の環境で実施される、5〜9のいずれか1項に記載の生産方法。
[11] 金属含有固体が、廃電子基板又は使用済電子機器部品である、5〜10のいずれか1項に記載の生産方法。
[12] 5〜11のいずれか1項に定義された金属溶液の製造のための工程、及び金属溶液から金属を回収する工程、及び回収した金属を使用する工程を含む、金属使用製品の製造方法。
The present invention provides the following.
[1] Eosinophilic acid belonging to Sulfobacillus thermosulfidooxidans capable of growing at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less Iron oxidizing bacteria.
[2] A base sequence of Nos. 38 to 788 of SEQ ID No. 1 in the sequence listing, or a base sequence having 90.5% or more sequence identity with it;
The base sequence of No. 1 to 873 of SEQ ID NO: 1 in the sequence listing, or the base sequence having 88.7% or more sequence identity with it;
1-878 base sequence of SEQ ID NO: 1 in the sequence listing, or a base sequence having 91.2% or more sequence identity thereto; or 1-888 base sequence of SEQ ID NO: 1 in the sequence listing, or 92 An acidophilic iron-oxidizing bacterium belonging to Sulfobacillus thermosulfidooxidans having a part of a 16S rRNA gene consisting of a base sequence having a sequence identity of 8% or more.
[3] The acidophilic iron-oxidizing bacterium according to 2, capable of growing at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less.
[4] It belongs to Sulfobacillus thermosulfidooxidans having a 16S rRNA gene consisting of the base sequence of SEQ ID NO: 1 in the sequence listing or a base sequence having a sequence identity of 99.9% or more. Acidophilic iron-oxidizing bacteria.
[5] The acidophilic iron-oxidizing bacterium according to any one of 1 to 4, which is Sulfobacillus thermosulfidooxidans NITE P-01909.
[6] An acidophilic iron-oxidizing bacterium having a maximum specific growth rate in a medium containing ferrous ions of 1.0 g / L or less or ferrous ions of 1.0 g / L or less to a metal-containing solid. By allowing acidophilic iron-oxidizing bacteria belonging to Sulfobacillus thermosulfidooxidans, which can grow at a specific growth rate of 0.15 / hour or more in the medium, to act, the metal is leached into the liquid The manufacturing method of a metal solution including the process of obtaining a solution.
[7] A step of growing an acidophilic iron-oxidizing bacterium belonging to Sulfobacillus thermosulfidooxidans in a medium containing ferrous ions of 1.0 g / L or less to obtain a culture; and culturing A method for producing a metal solution, comprising: adding a metal-containing solid to a product, causing the metal-containing solid to act on acidophilic iron-oxidizing bacteria, and leaching the metal into a liquid to obtain a metal solution.
[8] The manufacturing method according to any one of 5 to 7, wherein the metal is any one selected from the group consisting of copper, zinc, cobalt, nickel, manganese, cadmium and tungsten.
[9] The production method according to any one of 5 to 8, wherein the acidophilic iron-oxidizing bacterium is in an isolated form or a mixed culture form.
[10] The production method according to any one of 5 to 9, which is carried out in an open system and / or a non-sterile environment.
[11] The production method according to any one of 5 to 10, wherein the metal-containing solid is a waste electronic substrate or a used electronic device part.
[12] Manufacture of a metal-use product including a step for manufacturing a metal solution defined in any one of 5 to 11, a step of recovering a metal from the metal solution, and a step of using the recovered metal Method.

本発明によれば、廃電子基板等の使用済み電子機器部品から、銅、亜鉛、コバルト、マンガン、ニッケル等の金属を低濃度の第一鉄イオン存在下で、効率よく生物浸出することができる。本発明の方法は、あらかじめ好酸性鉄酸化細菌を培養し、十分に第一鉄イオンを酸化させた後に廃電子基板試料を添加するため、試料の接触時間が短縮でき、さらに厳密なpH制御により第二鉄イオンの析出を抑制することができるため、効率的でかつ経済性に優れたプロセスを構築できるようになる。   According to the present invention, metals such as copper, zinc, cobalt, manganese, and nickel can be efficiently bioleached from used electronic device parts such as a waste electronic substrate in the presence of a low concentration of ferrous ions. . In the method of the present invention, since an acidophilic iron-oxidizing bacterium is cultured in advance and the ferrous ion is sufficiently oxidized, the waste electronic substrate sample is added, so that the contact time of the sample can be shortened, and more precise pH control is performed. Since precipitation of ferric ions can be suppressed, an efficient and economical process can be constructed.

好酸性鉄酸化細菌NE106G株(Sulfobacillus thermosulfidooxidans NITE P-01909)のグラム染色像である。It is a Gram-stained image of the acidophilic iron-oxidizing bacterium NE106G strain ( Sulfobacillus thermosulfidooxidans NITE P-01909). 16s rRNA遺伝子配列に基づく好酸性鉄酸化細菌NE106G株の系統分類を示す分子系統樹である。It is a molecular phylogenetic tree showing the phylogenetic classification of the acidophilic iron-oxidizing bacterium NE106G strain based on the 16s rRNA gene sequence. 好酸性鉄酸化細菌NE106G株の分離源となった好酸性鉄酸化細菌の混合培養体の細菌群集構造を示す分子系統樹である。16s rRNA遺伝子配列のクローンライブラリー法によって解析した結果である。It is a molecular phylogenetic tree showing the bacterial community structure of a mixed culture of acidophilic iron-oxidizing bacteria, which was the source of separation of the acidophilic iron-oxidizing bacteria NE106G. It is the result analyzed by the clone library method of 16s rRNA gene sequence. 好酸性鉄酸化細菌NE106G株を含む混合培養体の最大比増殖速度に与える第一鉄イオン濃度の影響を示すグラフである。It is a graph which shows the influence of the ferrous ion density | concentration which gives to the maximum specific growth rate of the mixed culture body containing the acidophilic iron oxidation bacterium NE106G strain. 好酸性鉄酸化細菌NE106G株を含む混合培養体を用いたバイオリーチングの結果である。廃電子基板試料は粒径0.25mm以下に粉砕。It is the result of the bioleaching using the mixed culture body containing the acidophilic iron-oxidizing bacterium NE106G strain. Waste electronic board samples were pulverized to a particle size of 0.25 mm or less. 好酸性鉄酸化細菌NE106G株を含む混合培養体を用いたバイオリーチングに及ぼす第一鉄イオン濃度の影響を示す結果である。廃電子基板試料は粒径0.25mm以下に粉砕。It is a result which shows the influence of the ferrous ion density | concentration on bioleaching using the mixed culture body containing the acidophilic iron-oxidizing bacterium NE106G strain. Waste electronic board samples were pulverized to a particle size of 0.25 mm or less. 好酸性鉄酸化細菌NE106G株の純粋培養体を用いたバイオリーチングの結果である。廃電子基板試料は粒径0.25mm以下に粉砕。It is the result of the bioleaching using the pure culture body of the acidophilic iron-oxidizing bacterium NE106G strain. Waste electronic board samples were pulverized to a particle size of 0.25 mm or less. 好酸性鉄酸化細菌NE106G株の16s rRNA遺伝子の塩基配列。網掛した範囲が、S. thermosulfidooxidans クローンMT−13の部分配列に対応する箇所である(873塩基長)。アスタリスクがついている箇所で、NE106GとクローンMT−13とは塩基が異なる(99箇所)。The base sequence of the 16s rRNA gene of the acidophilic iron-oxidizing bacterium NE106G strain. The shaded range is the location corresponding to the partial sequence of S. thermosulfidooxidans clone MT-13 (873 base length). NE106G and clone MT-13 have different bases at the places marked with asterisks (99 places). 好酸性鉄酸化細菌NE106G株の16s rRNA遺伝子の塩基配列。網掛した範囲が、S. thermosulfidooxidans クローンMT−16の部分配列に対応する箇所である(878塩基長)。アスタリスクがついている箇所で、NE106GとクローンMT−16とは塩基が異なる(77箇所)。The base sequence of the 16s rRNA gene of the acidophilic iron-oxidizing bacterium NE106G strain. The shaded area corresponds to the partial sequence of S. thermosulfidooxidans clone MT-16 (878 base length). NE106G and clone MT-16 have different bases at the locations marked with an asterisk (77 locations). 好酸性鉄酸化細菌NE106G株の16s rRNA遺伝子の塩基配列。網掛した範囲が、S. thermosulfidooxidans クローンMT−17の部分配列に対応する箇所である(888塩基長)。アスタリスクがついている箇所で、NE106GとクローンMT−17とは塩基が異なる(64箇所)。The base sequence of the 16s rRNA gene of the acidophilic iron-oxidizing bacterium NE106G strain. The shaded area corresponds to the partial sequence of S. thermosulfidooxidans clone MT-17 (888 base length). NE106G and clone MT-17 have different bases at the locations marked with an asterisk (64 locations). 好酸性鉄酸化細菌NE106G株の16s rRNA遺伝子の塩基配列。網掛した範囲が、S. thermosulfidooxidans RDB株の部分配列に対応する箇所である(751塩基長)。アスタリスクがついている箇所で、NE106GとRDB株とは塩基が異なる(73箇所)。The base sequence of the 16s rRNA gene of the acidophilic iron-oxidizing bacterium NE106G strain. The shaded range corresponds to the partial sequence of S. thermosulfidooxidans RDB strain (751 base length). The bases of NE106G and RDB strains are different from each other at the places marked with an asterisk (73 places). 好酸性鉄酸化細菌NE106G株を含む混合培養体を用いたバイオリーチングの反復回分培養の結果である。廃電子基板試料は粒径0.25 mm以下に粉砕。It is the result of repeated batch culture of bioleaching using a mixed culture containing the acidophilic iron-oxidizing bacterium NE106G. Waste electronic board samples were pulverized to a particle size of 0.25 mm or less.

本発明の方法は、1g/L以下の第一鉄イオンを含有する希硫酸培地で、培養温度を28℃以上55℃、pHを1.8〜2.0で一定に制御しながら、分離株または分離株を含む混合培養体を増殖させた後、培養液に廃電子基板試料を接触させ、銅、亜鉛、コバルト、マンガン、ニッケル等の浸出を行うことを特徴とする。   The method of the present invention is a dilute sulfuric acid medium containing ferrous ions of 1 g / L or less, and while maintaining the culture temperature at 28 ° C. or higher and 55 ° C. and the pH at 1.8-2.0, the isolate Or after growing the mixed culture body containing an isolate, a waste electronic board | substrate sample is made to contact a culture solution and copper, zinc, cobalt, manganese, nickel, etc. are leached.

本発明により、好酸性鉄酸化細菌を用いた廃棄物等からの有用金属の効率的な浸出・回収方法が提供される。   The present invention provides an efficient leaching / recovering method for useful metals from wastes using acidophilic iron-oxidizing bacteria.

[好酸性鉄酸化細菌]
好酸性鉄酸化細菌とは、特に記載した場合を除き、二酸化炭素を同化し、二価鉄又は還元型無機硫黄化合物を酸化してエネルギーを獲得する好酸性の化学合成独立栄養細菌をいう。本発明に用いることのできる好酸性鉄酸化細菌は、浸出させようとする銅や亜鉛等の金属に対する耐性を有し、鉄を酸化する能力を有する細菌であれば特に限定されないが、例えば、アシディチオバチルス(Acidithiobacillus)属に属する細菌、またはスルフォバチルス(Sulfobacillus)属に属する細菌が挙げられる。アシディチオバチルス(Acidithiobacillus)属に属する細菌の例は、アシディチオバチルス・フェロオキシダンス(Acidithiobacillus ferrooxidans)に属する細菌であり、スルフォバチルス(Sulfobacillus)属に属する細菌の例は、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)、又はスルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する細菌が挙げられる。
[Eosinophilic iron-oxidizing bacteria]
An acidophilic iron-oxidizing bacterium refers to an acidophilic chemically synthesized autotrophic bacterium that assimilate carbon dioxide and oxidize divalent iron or a reduced inorganic sulfur compound to acquire energy unless otherwise specified. The acidophilic iron-oxidizing bacterium that can be used in the present invention is not particularly limited as long as it is resistant to metals such as copper and zinc to be leached and has the ability to oxidize iron. Examples include bacteria belonging to the genus Acidithiobacillus or bacteria belonging to the genus Sulfobacillus. Examples of bacteria belonging to the genus Acidithiobacillus (Acidithiobacillus) are bacteria belonging to Acidithiobacillus ferrooxidans, and examples of bacteria belonging to the genus Sulfobacillus are -The bacteria which belong to thermosulfide oxydans (Sulfobacillus thermosulfidooxidans) or Sulfobacillus thermosulfidooxidans (Sulfobacillus thermosulfidooxidans) are mentioned.

本発明に用いるのに適した好酸性鉄酸化細菌は、天然源から得た試料から、次のようにスクリーニングすることにより、得ることができる:
環境から得た候補細菌を含む試料を、Fe−TSB培地に第一鉄イオンを添加したもの(pH2.0)を用い、必要に応じ、硫酸亜鉛、硫酸銅、硫酸ニッケル、硫酸マンガン及び塩化アルミニウム等を添加し、45℃、100rpmで振とう培養する。得られた細菌の混合培養体を適宜希釈後、0.3%ゲランガムをゲル化剤として添加した同組成の平板培地に播種し、45℃で2週間培養する。その後、鉄酸化物を沈積して赤褐色を呈した鉄酸化細菌のコロニーを分離する。
Acidophilic iron-oxidizing bacteria suitable for use in the present invention can be obtained by screening from a sample obtained from a natural source as follows:
Samples containing candidate bacteria obtained from the environment were prepared using Fe-TSB medium supplemented with ferrous ions (pH 2.0), and if necessary, zinc sulfate, copper sulfate, nickel sulfate, manganese sulfate and aluminum chloride Etc. are added and cultured with shaking at 45 ° C. and 100 rpm. The obtained mixed culture of bacteria is appropriately diluted and then seeded on a plate medium having the same composition to which 0.3% gellan gum is added as a gelling agent and cultured at 45 ° C. for 2 weeks. Thereafter, iron oxide is deposited to isolate a colony of iron-oxidizing bacteria having a reddish brown color.

本発明に用いることのできる好酸性鉄酸化細菌の特に好ましい例の一つは、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する細菌である。本発明には特に、Sulfobacillus thermosulfidooxidans NITE P-01909を好適に用いることができる。この菌株は、本発明者らが、日本国秋田県の酸性河川流域内から分離したものであり、独立行政法人製品評価技術基盤機構(NITE)特許微生物寄託センター(NPMD)(千葉県木更津市かずさ鎌足2-5-8 122号室、TEL:0438-20-5580、FAX:0438-20-5581)に2014年8月1日付けで、受託番号NITE P-01909で寄託されている。本明細書では、この菌株をNE106G株と称することがある。この菌株の有する16S rRNA遺伝子の塩基配列を、配列表の配列番号1に示した。 One particularly preferred example of an acidophilic iron-oxidizing bacterium that can be used in the present invention is a bacterium belonging to Sulfobacillus thermosulfidooxidans . In particular, Sulfobacillus thermosulfidooxidans NITE P-01909 can be preferably used in the present invention. This strain was isolated from the acid river basin of Akita Prefecture, Japan by the present inventors, and is incorporated by the National Institute of Technology and Evaluation (NITE) Patent Microorganism Depositary Center (NPMD) (Kazusa Kisarazu, Chiba Prefecture) It has been deposited with the accession number NITE P-01909 on August 1, 2014 in Room 2-5-8, Kamaashi, Room 122, TEL: 0438-20-5580, FAX: 0438-20-5581). In this specification, this strain may be referred to as NE106G strain. The base sequence of 16S rRNA gene possessed by this strain is shown in SEQ ID NO: 1 in the sequence listing.

〔科学的性質〕
Sulfobacillus thermosulfidooxidans NITE P-01909(NE106G株)は、下記の科学的性質(菌学的性質ということもある。)を有する。
細胞形態:桿菌、0.8〜0.9×1.5〜2.0μm
グラム染色:+(不定あり)
増殖可能な培養条件
・pH 1.8〜2.5
・32〜55℃
・それぞれ100mMの、CuSO4、MnSO4、NiSO4,ZnSO4が混在する培地で増殖可能
・トリプチックソイ培地、ペプトン等の有機物を、250mg/L程度要求
[Scientific properties]
Sulfobacillus thermosulfidooxidans NITE P-01909 (NE106G strain) has the following scientific properties (sometimes referred to as mycological properties).
Cell morphology: Neisseria gonorrhoeae, 0.8-0.9 × 1.5-2.0 μm
Gram staining: + (undefined)
Culture conditions that allow growth, pH 1.8-2.5
・ 32-55 ℃
・ Can grow on a medium containing 100 mM CuSO 4 , MnSO 4 , NiSO 4 , ZnSO 4 each. ・ Requires about 250 mg / L of organic substances such as tryptic soy medium and peptone.

〔培養条件〕
・培地:硫酸含TSB培地を用いることができる。
・培地の組成:硫酸含有TBS培地(pH2)
溶液I
硫酸アンモニウム 1250mg
硫酸マグネシウム七水和物 500mg
トリプチックソイ培地(TSB、Difco) 250mg
微量金属塩溶液 2mL
蒸留水 1L
溶液II
硫酸第一鉄七水和物 1940mg
250mM硫酸 20mL
溶液III
リン酸水素二カリウム 5mg
蒸留水 1mL
溶液Iをオートクレーブ滅菌後、フィルターで濾過滅菌した溶液IIを20mLと溶液IIIを1mLを添加する。培地のpHは、溶液IIの硫酸濃度を変えることにより、適宜調整する。
[Culture conditions]
Medium: A sulfuric acid-containing TSB medium can be used.
Medium composition: sulfuric acid-containing TBS medium (pH 2)
Solution I
Ammonium sulfate 1250mg
Magnesium sulfate heptahydrate 500mg
Tryptic Soy Medium (TSB, Difco) 250mg
Trace metal salt solution 2mL
1L of distilled water
Solution II
Ferrous sulfate heptahydrate 1940mg
250 mM sulfuric acid 20 mL
Solution III
Dipotassium hydrogen phosphate 5mg
1mL distilled water
After the solution I is sterilized by autoclave, 20 mL of the solution II sterilized by filtration through a filter and 1 mL of the solution III are added. The pH of the medium is appropriately adjusted by changing the sulfuric acid concentration of the solution II.

微量金属塩溶液
塩化カルシウム二水和物 3.7g
ホウ酸 2.5g
塩化マンガン四水和物 0.87g
塩化鉄六水和物 1.0g
硫酸亜鉛七水和物 0.44g
モリブデン酸ナトリウム二水和物 0.29g
硫酸銅五水和物 5.0mg
蒸留水 1L
Trace metal salt solution Calcium chloride dihydrate 3.7g
Boric acid 2.5g
Manganese chloride tetrahydrate 0.87g
Iron chloride hexahydrate 1.0g
Zinc sulfate heptahydrate 0.44g
Sodium molybdate dihydrate 0.29g
Copper sulfate pentahydrate 5.0mg
1L of distilled water

〔増殖特性〕
NE106G株は、増殖に関し、下記の性質の少なくとも一方を有する:
(1)1.0g/L以下の、好ましくは0.1〜0.8g/Lの、第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上、好ましくは0.17/時間以上で増殖可能である。
(2)最大比増殖速度が、0.1〜0.8g/Lの範囲内の第一鉄イオン濃度において、より詳細には0.4g/L付近の第一鉄イオン濃度のとき、最も大きくなる。
なお、従来廃電子基板等の金属含有廃棄物を対象としたバイオリーチングで標準的に用いられてきたような第一鉄イオン濃度(数〜数十g/L)では、NE106G株の比増殖速度は低下することが分かっている。
[Proliferation characteristics]
The NE106G strain has at least one of the following properties regarding growth:
(1) In a medium containing ferrous ions of 1.0 g / L or less, preferably 0.1 to 0.8 g / L, a specific growth rate of 0.15 / hour or more, preferably 0.17 / Can proliferate over time.
(2) The largest specific growth rate is highest when the ferrous ion concentration is in the range of 0.1 to 0.8 g / L, more specifically when the ferrous ion concentration is around 0.4 g / L. Become.
At the ferrous ion concentration (several to several tens of g / L) conventionally used in bioleaching for metal-containing waste such as waste electronic substrates, the specific growth rate of NE106G strain Is known to decline.

そのため、本発明は、下記の製造方法として実施することができる:
金属含有固体に、1.0g/L以下(例えば、0.1〜0.8g/L)の第一鉄イオンを含む培地中で比増殖速度が最大となる好酸性鉄酸化細菌、又は1.0g/L以下(例えば、0.2〜0.8g/L)の第一鉄イオンを含む培地中で比増殖速度0.15/時間、好ましくは0.17/時間で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を作用させ、金属を液体中に浸出させて金属溶液を得る工程を含む、金属溶液の製造方法。
Therefore, the present invention can be implemented as the following production method:
An acidophilic iron-oxidizing bacterium having a maximum specific growth rate in a medium containing 1.0 g / L or less (for example, 0.1 to 0.8 g / L) of ferrous ions in a metal-containing solid; A sulfone capable of growing at a specific growth rate of 0.15 / hour, preferably 0.17 / hour in a medium containing ferrous ions of 0 g / L or less (for example, 0.2 to 0.8 g / L). A method for producing a metal solution, comprising a step of allowing an acidophilic iron-oxidizing bacterium belonging to Bacillus thermosulfidooxidans to act and leaching the metal into a liquid to obtain a metal solution.

あるいは、下記の製造方法として実施することもできる:
1.0g/L以下(例えば、0.1〜0.8g/L)の第一鉄イオンを含む培地中でスルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を増殖させ、培養物を得る工程;及び
培養物に金属含有固体を添加し、金属含有固体に好酸性鉄酸化細菌に作用させ、金属を液体中に浸出させて金属溶液を得る工程
を含む、金属溶液の製造方法。
Alternatively, it can be carried out as the following production method:
Propagating acidophilic iron-oxidizing bacteria belonging to Sulfobacillus thermosulfidooxidans in a medium containing ferrous ions of 1.0 g / L or less (for example, 0.1 to 0.8 g / L) A metal solution comprising: adding a metal-containing solid to the culture, allowing the metal-containing solid to act on acidophilic iron-oxidizing bacteria, and leaching the metal into a liquid to obtain a metal solution. Manufacturing method.

なお、ある比増殖速度で「増殖可能」とは、特に記載した場合を除き、特定の条件であることが規定された条件項目(例えば、第一鉄イオン濃度)については、その条件で、また特定されていない条件項目(例えば、温度、pH、攪拌速度、通気の有無・程度)については増殖に適する条件とした場合に、その比増殖速度で増殖できることをいう。比増殖速度は、単位時間あたりの細胞量の増加として定義される。   Note that “proliferative” at a specific growth rate means that a condition item (for example, ferrous ion concentration) specified to be a specific condition, unless otherwise specified, under that condition, Condition items that are not specified (for example, temperature, pH, stirring speed, presence / absence / aeration of aeration) indicate that growth can be performed at a specific growth rate when the conditions are suitable for growth. Specific growth rate is defined as the increase in cell mass per unit time.

〔均等な微生物、混合培養体〕
本願は、NE106G株のみならず、それと均等な微生物、具体的にはNE106G株と同じ科学的性質を有する株、又は同じ増殖特性を有する株、ならびに下記の株も、好適に用いることができる。
(1)1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
(2)配列表の配列番号1の38〜788番の塩基配列、又はそれと90.5%以上の配列同一性を有する塩基配列からなる、16SrRNA遺伝子の一部を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌、好ましくは1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能である、好酸性鉄酸化細菌。
(3)配列表の配列番号1の塩基配列、又はそれと99.9%以上 の配列同一性を有する塩基配列からなる、16SrRNA遺伝子を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
[Equivalent microorganisms, mixed cultures]
In the present application, not only the NE106G strain, but also microorganisms equivalent thereto, specifically, strains having the same scientific properties as the NE106G strain, or strains having the same growth characteristics, and the following strains can be preferably used.
(1) Eosinophilic acid belonging to Sulfobacillus thermosulfidooxidans that can grow at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less. Iron oxidizing bacteria.
(2) Sulfobacillus thermosulfide having a part of the 16S rRNA gene consisting of the base sequence of No. 38 to 788 of SEQ ID No. 1 in the sequence listing, or the base sequence having 90.5% sequence identity with it Acidophilic iron-oxidizing bacteria belonging to oxydans (Sulfobacillus thermosulfidooxidans), preferably acidophilic, capable of growing at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less Iron oxidizing bacteria.
(3) It belongs to Sulfobacillus thermosulfidooxidans having a 16S rRNA gene consisting of the base sequence of SEQ ID NO: 1 in the sequence listing or a base sequence having a sequence identity of 99.9% or more. Acidophilic iron-oxidizing bacteria.

また、NE106G株及びそれと均等な微生物は、それ含む混合培養体としても好適に用いることができる。なお、本明細書においては、本発明をNE106G株を用いた場合を例に説明することがあるが、特に記載した場合を除き、その説明は、NE106G株と均等な微生物を含む他の好適な好酸性鉄酸化細菌を用いた場合、およびそのような微生物のいずれかを混合培養体として用いた場合にも当てはまる。混合培養体は、意図した微生物とそれ以外の微生物とを含む。それ以外の微生物は、意図した微生物と異なる株、異なる種、または異なる属に属する微生物であり得る。   In addition, the NE106G strain and microorganisms equivalent thereto can also be suitably used as a mixed culture containing the strain. In the present specification, the present invention may be described using the NE106G strain as an example. However, unless otherwise specified, the description is not limited to other suitable microorganisms including the NE106G strain. This is also true when acidophilic iron-oxidizing bacteria are used, and when any such microorganism is used as a mixed culture. The mixed culture contains the intended microorganism and other microorganisms. Other microorganisms can be microorganisms belonging to different strains, different species, or different genera than the intended microorganism.

〔温度の影響〕
NE106G株は、バイオリーチングにおいて30〜47℃の広い温度範囲にわたって良好な生物活性を保ちうる。特に、32〜45℃において好ましい作用を発揮しうる。
[Influence of temperature]
The NE106G strain can maintain good biological activity over a wide temperature range of 30 to 47 ° C. in bioleaching. In particular, a preferable effect can be exhibited at 32 to 45 ° C.

したがって、効率的にバイオリーチングを行うとの観点からは、本発明においては、温度は、32℃以上、より好ましくは35℃以上、さらに好ましくは40℃以上であることが好ましい。温度の上限値は、いずれの場合も、47℃未満であることが好ましいであろう。至適な温度の一例は、45℃である。   Therefore, from the viewpoint of efficiently performing bioleaching, in the present invention, the temperature is preferably 32 ° C. or higher, more preferably 35 ° C. or higher, and further preferably 40 ° C. or higher. In any case, it will be preferred that the upper temperature limit be less than 47 ° C. An example of the optimum temperature is 45 ° C.

なお本発明において、培地等の成分の濃度又は比について値を示す場合は、特に記載した場合を除き、その値は重量に基づく値である。また環境中の濃度又は比について示した値は、特に記載した場合を除き、初発(増殖開始時)の、又は増殖期間を通じての値である。   In addition, in this invention, when showing a value about the density | concentration or ratio of components, such as a culture medium, the value is a value based on a weight except the case where it describes. Moreover, the value shown about the density | concentration or ratio in an environment is a value of the first time (at the time of a proliferation start) or through a proliferation period except the case where it describes especially.

〔その他〕
本発明による生産は、開放系として、又は非滅菌条件下で、実施することができる。「開放系」又は「非滅菌」は、生産のために用いる培地を滅菌しないこと、回分式で行う場合に、ある回分培養から次の回分培養への引き継ぎの無菌条件下での実施を要しないことを含む。本発明によるバイオリーチングは、回分式又は反復回分式で、実施することができる。
[Others]
The production according to the invention can be carried out as an open system or under non-sterile conditions. "Open system" or "non-sterile" means that the medium used for production is not sterilized, and when performing batch-type, the transfer from one batch culture to the next is not required under aseptic conditions. Including that. The bioleaching according to the present invention can be carried out batchwise or repeated batchwise.

[金属含有固体(廃棄物)原料]
本発明の方法の対象である廃電子基板は、特にその由来に制限はなく、パーソナルコンピュータ、テレビ、洗濯機、電子レンジ、冷蔵庫、産業機器などの廃棄処分品から回収されたものが挙げられる。本発明では、廃電子基板を対象としているが、銅、亜鉛、ニッケル、マンガン、クロム、アルミニウム等を含む金属製品や電子機器部品も使用することができる。
[Metal-containing solid (waste) raw material]
The waste electronic substrate which is the subject of the method of the present invention is not particularly limited in its origin, and examples include those recovered from waste products such as personal computers, televisions, washing machines, microwave ovens, refrigerators, and industrial equipment. In the present invention, waste electronic substrates are targeted, but metal products and electronic device parts containing copper, zinc, nickel, manganese, chromium, aluminum, and the like can also be used.

[用途]
本発明を用いて製造した金属溶液から金属を回収することができる。本発明を適用可能な製品には特に制限はなく、各種の製品の製造のために、本発明は有用である。
[Usage]
The metal can be recovered from the metal solution produced using the present invention. The product to which the present invention can be applied is not particularly limited, and the present invention is useful for producing various products.

[混合培養体の取得、菌株の単離]
秋田県の酸性河川流域内の環境試料を植種源として、2g/L硫酸第一鉄・七水和物(0.4g/L第一鉄イオン)及び0.01Mの硫酸亜鉛、硫酸銅、硫酸ニッケル、硫酸マンガン、塩化アルミニウムを添加したFe−TSB培地(pH2)(非特許文献9)を用いて、好酸性鉄酸化細菌を集積培養した。培養温度は45℃とし、100rpmで振とう培養した。Fe−TSB培地(pH2)の1L当たりの組成は、硫酸アンモニウム1250mg、硫酸マグネシウム七水和物0.5g、微量金属塩溶液2mL(非特許文献10)、トリプチックソイ培地(Difco製)0.25g、硫酸0.005molである。この培養操作で得られた集積培養物を好酸性鉄酸化細菌の混合培養体として、以降の実験に用いた。
[Acquisition of mixed culture, isolation of strain]
Using environmental samples in acid river basins in Akita Prefecture as a seeding source, 2g / L ferrous sulfate heptahydrate (0.4g / L ferrous ion) and 0.01M zinc sulfate, copper sulfate, Eosinophilic iron-oxidizing bacteria were accumulated and cultured using Fe-TSB medium (pH 2) (Non-patent Document 9) supplemented with nickel sulfate, manganese sulfate, and aluminum chloride. The culture temperature was 45 ° C., and the culture was shaken at 100 rpm. The composition per liter of the Fe-TSB medium (pH 2) is 1250 mg of ammonium sulfate, 0.5 g of magnesium sulfate heptahydrate, 2 mL of trace metal salt solution (Non-patent Document 10), 0.25 g of tryptic soy medium (manufactured by Difco). , 0.005 mol of sulfuric acid. The enrichment culture obtained by this culturing operation was used as a mixed culture of acidophilic iron-oxidizing bacteria in subsequent experiments.

好酸性鉄酸化細菌の混合培養体を適宜希釈後、0.3%ゲランガム(和光純薬工業)をゲル化剤として添加した同組成の平板培地に播種し、45℃で2週間培養した。その後、鉄酸化物を沈積して赤褐色を呈した鉄酸化細菌のコロニーを4株分離した。得られた分離株について、表1のオリゴヌクレオチドプライマーを用いて16S rRNA遺伝子のPCR増幅、塩基配列決定を行い、分子系統解析により分類同定を試みた結果、4菌株は同一の塩基配列を有していた。このことから、その内の一つをNE106G株として以後の試験に使用した。また、既知のスルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)の株と約99%以上の塩基配列で一致し、NE106G株は本種に帰属されると推察された(図1)。しかし、既知株とは塩基配列が完全には一致せず、新規の株である(下表参照)。   A mixed culture of acidophilic iron-oxidizing bacteria was appropriately diluted and then seeded on a plate medium having the same composition to which 0.3% gellan gum (Wako Pure Chemical Industries) was added as a gelling agent and cultured at 45 ° C. for 2 weeks. Thereafter, four iron-oxidizing colonies of iron-oxidizing bacteria that were deposited with iron oxide and had a reddish brown color were isolated. The obtained isolates were subjected to PCR amplification and base sequence determination of 16S rRNA gene using the oligonucleotide primers shown in Table 1, and as a result of molecular identification analysis, 4 strains had the same base sequence. It was. For this reason, one of them was used as a NE106G strain in subsequent tests. Moreover, it was in agreement with the known strain of Sulfobacillus thermosulfidooxidans in about 99% or more of the base sequence, and it was speculated that the NE106G strain belongs to this species (FIG. 1). However, the nucleotide sequence does not completely match that of the known strain, and is a new strain (see the table below).

また、廃電子基板のバイオリーチングで用いられてきたスルフォバチルス・サーモスルフィドオキシダンスの混合培養体(クローンMT−13、MT−16及びMT−17、非特許文献5、11)とは、図8〜10に示されるように、16S rRNAの部分配列でMT−13とは873bpで99カ所(11.3%)、MT−16とは878bpで77カ所(8.8%)、MT−17とは888bpで64カ所(7.2%)異なる。また、金属含有廃棄物のバイオリーチングで用いられてきたスルフォバチルス・サーモスルフィドオキシダンス(RDB株、非特許文献12)とは、図11に示されるように、(751bp)で73カ所(9.7%)異なる。さらに、金属含有廃棄物のバイオリーチングで用いられてきた別のスルフォバチラス属株(Sulfobacillus sp.)はスルフォバチルス・アシドフィルス(Sulfobacillus acidophilus)に最も近縁であることから(非特許文献6、7)、NE106G株とは異なる種である。NE106G株はグラム陽性であり、芽胞を形成した(図2)。これらの結果から、本菌株をSulfobacillus thermosulfidoxidans NE106G株と命名し、独立行政法人製品評価技術基盤機構(NITE)特許微生物寄託センター(NPMD)(千葉県木更津市かずさ鎌足2-5-8 122号室、TEL:0438-20-5580、FAX:0438-20-5581)に2014年8月1日付けで、受託番号NITE P-01909で寄託した。   The mixed culture of sulfobacillus thermosulfide oxydans (clone MT-13, MT-16 and MT-17, Non-Patent Documents 5 and 11) used for bioleaching of waste electronic substrates is a figure. As shown in 8 to 10, in the partial sequence of 16S rRNA, MT-13 is 99 sites at 873 bp (11.3%), MT-16 is 878 bp at 77 sites (8.8%), MT-17. Is 888 bp and 64 places (7.2%) are different. In addition, as shown in FIG. 11, the Sulfobacillus thermosulfide oxydans (RDB strain, Non-Patent Document 12) that has been used for bioleaching of metal-containing wastes is 73 locations (9 .7%) different. Furthermore, another Sulfobacillus sp. That has been used in bioleaching of metal-containing wastes is most closely related to Sulfobacillus acidophilus (Non-Patent Document 6, 7) It is a different species from the NE106G strain. The NE106G strain was Gram positive and formed spores (FIG. 2). From these results, this strain was named Sulfobacillus thermosulfidoxidans NE106G strain, and was incorporated by the National Institute of Technology and Evaluation (NITE) Patent Microorganism Depositary Center (NPMD) (Kazusa Kamashizu, Kisarazu City, Chiba Prefecture Room 2-5-8 122, TEL: 0438-20-5580, FAX: 0438-20-5581), deposited on August 1, 2014 with accession number NITE P-01909.

本発明では、上記のNE106G株の分離源となった混合培養体についてもバイオリーチングの効果を持つことを示した。この混合培養体よりDNAを抽出し、オリゴヌクレオチドプライマー27fと1492r(表2)を用いて16S rRNA遺伝子領域を増幅して、クローンライブラリー法により細菌群集構造を解析した。   In the present invention, it was shown that the mixed culture used as the separation source of the NE106G strain has a bioleaching effect. DNA was extracted from this mixed culture, 16S rRNA gene region was amplified using oligonucleotide primers 27f and 1492r (Table 2), and the bacterial community structure was analyzed by the clone library method.

その結果、本混合培養体は、Sulfobacillus thermosulfidooxidans NE106G株を含有し、そのほかには、少なくとも好酸性従属栄養細菌であるアシディカルダス属(Acidicaldus)に近縁の細菌種で構成されることが示された(図3)。   As a result, it was shown that this mixed culture contains Sulfobacillus thermosulfidooxidans NE106G strain, and in addition, it is composed of bacterial species closely related to Acidicdus genus which is at least an acidophilic heterotrophic bacterium. (FIG. 3).

[混合培養体による有用金属浸出]
好酸性鉄酸化細菌NE106G株を含む混合培養体の増殖に及ぼす第一鉄イオン濃度の影響を調べるため、0.06〜2.8g/Lの第一鉄イオンを添加したFe−TSB培地(pH1.9)で培養し、培地中の第一鉄イオンの減少をO-フェナントロリンを用いた比色法で経時的に測定した。培地中の第一鉄イオン濃度の経時変化を次式(非特許論文13)を用いて解析し、最大比増殖速度を算出して比較した。
[Useful metal leaching with mixed cultures]
In order to examine the effect of ferrous ion concentration on the growth of the mixed culture containing the acidophilic iron-oxidizing bacterium NE106G, Fe-TSB medium (pH 1) supplemented with 0.06 to 2.8 g / L of ferrous ions was used. 9), and the decrease in ferrous ion in the medium was measured over time by a colorimetric method using O-phenanthroline. The time course of ferrous ion concentration in the medium was analyzed using the following formula (Non-Patent Document 13), and the maximum specific growth rate was calculated and compared.

但し、S:基質濃度(mM)、S0:初期基質濃度(mM)、X0:初期の細胞密度を維持するのに必要な基質濃度(mM)、μmax:最大比増殖速度(h-1)、t:時間(h)。 However, S: Substrate concentration (mM), S 0 : Initial substrate concentration (mM), X 0 : Substrate concentration (mM) necessary to maintain the initial cell density, μ max : Maximum specific growth rate (h − 1 ), t: time (h).

本混合培養体の最大比増殖速度は、0.4g/L付近の第一鉄イオン濃度のとき、最も大きくなることが示された(図4)。廃電子基板等の金属含有廃棄物を対象としたバイオリーチングで標準的に用いられてきたような第一鉄イオン濃度(数〜数十g/L)では、比増殖速度は低下することが示された(図4)。   The maximum specific growth rate of this mixed culture was shown to be greatest when the ferrous ion concentration was around 0.4 g / L (FIG. 4). It is shown that the specific growth rate decreases at the ferrous ion concentration (several to several tens of g / L) that has been used in bioleaching for metal-containing wastes such as waste electronic substrates. (FIG. 4).

廃パーソナルコンピューターより回収され、20mm程度に裁断された廃電子基板を、さらにカッティングミル(SM200、Retsch社)と超遠心粉砕機(ZM200、Retsch社)で粉砕し、粒径0.50mm以下、または0.25mm以下に篩い分けしたものを供試試料として試験に用いた。これらの粉砕試料は、バイオリーチングを行う前に105℃で1時間乾熱滅菌した。   The waste electronic substrate recovered from the waste personal computer and cut to about 20 mm is further pulverized by a cutting mill (SM200, Retsch) and an ultracentrifugal pulverizer (ZM200, Retsch), and the particle size is 0.50 mm or less, or What was sieved to 0.25 mm or less was used for the test as a test sample. These ground samples were sterilized by dry heat at 105 ° C. for 1 hour before bioleaching.

バイオリーチング試験は、pHと温度制御が可能な2L容ジャーファーメンター装置を用いて実施した。0.4g/Lの第一鉄イオンを添加した滅菌Fe−TSB培地に好酸性鉄酸化細菌NE106G株、またはNE106G株を含む混合培養体を植種し、pH1.9で保持しながら、45℃で増殖が定常期に達するまで3日間通気撹拌培養した。この後、10g/Lとなるように廃電子基板の粉砕試料を添加し、同じ培養条件でバイオリーチングを開始した。浸出液中の金属イオン濃度は、0.1%硝酸で適宜希釈してから、ICP発光分析法により定量した。廃電子基板中の金属濃度は、10%硝酸と王水で逐次抽出してから、ICP発光分析法で定量した。
NE106G株を含む混合培養体でバイオリーチングを実施した結果、基板粉砕試料サイズ<0.25mmの系では、24時間の接触時間において銅で48%、亜鉛で68%、コバルトで82%、マンガンで70%、ニッケルで55%の浸出率が、72時間の接触時間において銅で88%、亜鉛で81%、コバルトで82%、マンガンで73%、ニッケルで69%の浸出率が得られることが示された(図5)。なお、廃基板粉砕試料10g/L中に含まれる各金属の濃度を100%とした。各金属の濃度は、10%硝酸と王水で逐次抽出してから、ICP発光分析法で定量した。また、未植菌の場合、24時間では銅で8%、亜鉛で41%、コバルトで69%、マンガンで82%、ニッケルで44%の浸出率、72時間では銅で19%、亜鉛で80%、コバルトで91%、マンガンで89%、ニッケルで65%の浸出率であった。
The bioleaching test was conducted using a 2 L jar fermenter apparatus capable of controlling pH and temperature. While inoculating an acidophilic iron-oxidizing bacterium NE106G strain or a mixed culture containing the NE106G strain in a sterile Fe-TSB medium supplemented with 0.4 g / L of ferrous ions, while maintaining the pH at 1.9, 45 ° C The culture was aerated and stirred for 3 days until the growth reached a stationary phase. Thereafter, a ground sample of the waste electronic substrate was added so as to be 10 g / L, and bioleaching was started under the same culture conditions. The metal ion concentration in the leachate was appropriately diluted with 0.1% nitric acid and then quantified by ICP emission spectrometry. The metal concentration in the waste electronic substrate was sequentially extracted with 10% nitric acid and aqua regia and then quantified by ICP emission spectrometry.
As a result of bioleaching in a mixed culture containing NE106G strain, 48% copper, 68% zinc, 82% cobalt, and manganese in a 24-hour contact time in a system with a substrate grinding sample size <0.25 mm A leaching rate of 70%, 55% with nickel, and a leaching rate of 88% with copper, 81% with zinc, 82% with cobalt, 73% with manganese, and 69% with nickel at a contact time of 72 hours. (Figure 5). In addition, the density | concentration of each metal contained in the waste substrate grinding | pulverization sample 10g / L was 100%. The concentration of each metal was sequentially extracted with 10% nitric acid and aqua regia and then quantified by ICP emission spectrometry. In the case of uninoculated bacteria, the leach rate was 8% copper, 41% zinc, 69% cobalt, 82% manganese, 82% manganese, 44% nickel for 24 hours, 19% copper for 72 hours, 80% zinc. %, Cobalt 91%, manganese 89% and nickel 65%.

同様のバイオリーチング試験において同程度の金属浸出率を得るために、既往の研究(非特許文献1〜6)では、3g/L以上の第一鉄イオンを添加していること、またほとんどで1週間以上の期間を要していることから、NE106G株を含む混合培養体を用いたバイオリーチングを実施することにより、従来技術より効率的に各種金属を浸出できるようになったことが示された。   In previous studies (Non-Patent Documents 1 to 6), in order to obtain a comparable metal leaching rate in the same bioleaching test, 3 g / L or more of ferrous ions was added, and almost 1 Since a period of more than a week is required, it was shown that various metals can be leached more efficiently than the prior art by performing bioleaching using a mixed culture containing NE106G strain. .

NE106G株を含む混合培養体によるバイオリーチングにおいて、添加する第一鉄イオン濃度を0.2〜2g/Lに変化させて上記と同じ培養条件で試験した結果、1g/L以下の第一鉄イオン濃度で十分に効果があることが示された(図6)。   In bioleaching using a mixed culture containing the NE106G strain, the concentration of ferrous ion added was changed to 0.2-2 g / L and tested under the same culture conditions as described above. The concentration was shown to be sufficiently effective (FIG. 6).

バイオリーチング前後の廃基板中の金属含有率を比較すると、リーチング後の残渣で上記の銅、亜鉛、コバルト、マンガン、ニッケルが大きく減少していたほか、カドミウムとタングステンで顕著に減少していることが示された。この結果から、これらの金属がバイオリーチングにより浸出したことがわかる(表3)。   Comparing the metal content in the waste substrate before and after bioleaching, the residue after leaching showed a significant decrease in the above copper, zinc, cobalt, manganese and nickel, and a significant decrease in cadmium and tungsten. It has been shown. This result shows that these metals were leached by bioleaching (Table 3).

[単離株による有用金属浸出]
0.4g/Lの第一鉄イオンを添加した滅菌Fe−TSB培地に好酸性鉄酸化細菌NE106G株(単離株)を植種し、pH1.9で保持しながら、45℃で増殖が定常期に達するまで3日間通気撹拌培養した。この後、10g/Lとなるように廃電子基板の粉砕試料を添加し、同じ培養条件でバイオリーチングを開始した。その結果、基板粉砕試料サイズ<0.25mmの系では、24時間の接触時間において銅で28%、亜鉛で63%、コバルトで95%、マンガンで90%、ニッケルで53%の浸出率が、72時間の接触時間において、銅で81%、亜鉛で93%、コバルトで98%、マンガンで97%、ニッケルで73%の浸出率が得られ(図7)、NE106G株の混合培養体と同程度の浸出率を得ることができた。従って、NE106G株を単独で用いても同様の効果があるといえる。
[Useful metal leaching by isolates]
Stable Fe-TSB medium supplemented with 0.4 g / L ferrous ion is inoculated with the acidophilic iron-oxidizing bacterium NE106G strain (isolated strain), and the growth is steady at 45 ° C. while maintaining at pH 1.9. The culture was aerated and stirred for 3 days until reaching the stage. Thereafter, a ground sample of the waste electronic substrate was added so as to be 10 g / L, and bioleaching was started under the same culture conditions. As a result, in the system with the substrate pulverized sample size <0.25 mm, the leaching rate was 28% for copper, 63% for zinc, 95% for cobalt, 90% for manganese, and 53% for nickel at a contact time of 24 hours. With a contact time of 72 hours, leaching rates of 81% for copper, 93% for zinc, 98% for cobalt, 97% for manganese, and 73% for nickel were obtained (Fig. 7), the same as the mixed culture of NE106G strain. A degree of leaching could be obtained. Therefore, it can be said that the same effect is obtained even when the NE106G strain is used alone.

混合培養体の場合、基板粉砕試料サイズ<0.25mmの系では、24時間の接触時間で銅で48%、亜鉛で68%、コバルトで82%、マンガンで70%、ニッケルで55%の浸出率が、72時間の接触時間では銅で88%、亜鉛で81%、コバルトで82%、マンガンで73%、ニッケルで69%の浸出率であった。したがって、単離株を単独で使用したほうが、高効率で有用金属浸出が行えた。   In the case of mixed cultures, for pulverized substrate size <0.25 mm, leaching 48% copper, 68% zinc, 82% cobalt, 70% manganese, 55% nickel and 24 hours contact time The rate of contact for 72 hours was 88% copper, 81% zinc, 82% cobalt, 73% manganese, and 69% nickel. Therefore, the use of the isolated strain alone could perform useful metal leaching with high efficiency.

一方、混合培養体は、共存する従属栄養細菌との養分の競合や優占種の変化が生じうるという懸念があるが、コンタミネーション等の影響が低く抑えられ、扱いが容易という利点がある。NE106G株を含む混合培養体によるバイオリーチング(45℃、pH1.9、第一鉄イオン濃度0.4g/L)において、5−8日ごとに培養溶液の五分の一量を引き抜き、新鮮なFe−TSB培地と10g/L廃電子基板(<0.25mmに粉砕)を添加して、回分培養を繰り返した結果、銅、亜鉛、ニッケルの浸出量は低下しなかった(図12)。このことから、本培養体は繰り返しの使用ができることが示された。   On the other hand, mixed cultures have concerns that nutrient competition with coexisting heterotrophic bacteria and changes in dominant species may occur, but there is an advantage that the influence of contamination and the like is kept low and handling is easy. In bioleaching (45 ° C., pH 1.9, ferrous ion concentration 0.4 g / L) with a mixed culture containing the NE106G strain, a fifth of the culture solution is drawn every 5-8 days and fresh. Fe-TSB medium and 10 g / L waste electronic substrate (pulverized to <0.25 mm) were added and batch culture was repeated. As a result, the leaching amounts of copper, zinc and nickel did not decrease (FIG. 12). From this, it was shown that this culture body can be used repeatedly.

本発明は、廃電子基板等の使用済電子機器部品から多様な鉱種を経済的かつ効率的に回収可能とする。また廃電子基板等の使用済電子機器部品から有害金属を除去できるため、本発明の適用により、使用済製品の適正かつ安全な廃棄・管理が可能となる。   The present invention makes it possible to recover various mineral species economically and efficiently from used electronic equipment parts such as waste electronic substrates. In addition, since harmful metals can be removed from used electronic device parts such as waste electronic substrates, the application of the present invention enables appropriate and safe disposal and management of used products.

NITE P−01909 NITE P-01909

Claims (12)

1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。   Acidophilic iron-oxidizing bacteria belonging to Sulfobacillus thermosulfidooxidans that can grow at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less . 配列表の配列番号1の38〜788番の塩基配列、又はそれと90.5%以上の配列同一性を有する塩基配列;
配列表の配列番号1の1〜873番の塩基配列、又はそれと88.7%以上の配列同一性を有する塩基配列;
配列表の配列番号1の1〜878番の塩基配列、又はそれと91.2%以上の配列同一性を有する塩基配列;又は
配列表の配列番号1の1〜888番の塩基配列、又はそれと92.8%以上の配列同一性を有する塩基配列
からなる16SrRNA遺伝子の一部を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。
38-788th nucleotide sequence of SEQ ID NO: 1 in the sequence listing, or a nucleotide sequence having 90.5% or more sequence identity with it;
The base sequence of No. 1 to 873 of SEQ ID NO: 1 in the sequence listing, or the base sequence having 88.7% or more sequence identity with it;
1-878 base sequence of SEQ ID NO: 1 in the sequence listing, or a base sequence having 91.2% or more sequence identity thereto; or 1-888 base sequence of SEQ ID NO: 1 in the sequence listing, or 92 An acidophilic iron-oxidizing bacterium belonging to Sulfobacillus thermosulfidooxidans having a part of a 16S rRNA gene consisting of a base sequence having a sequence identity of 8% or more.
1.0g/L以下の第一鉄イオンを含む培地中で、比増殖速度0.15/時間以上で増殖可能である、請求項2に記載の好酸性鉄酸化細菌。   The acidophilic iron-oxidizing bacterium according to claim 2, which can grow at a specific growth rate of 0.15 / hour or more in a medium containing ferrous ions of 1.0 g / L or less. 配列表の配列番号1の塩基配列、又はそれと99.9%以上の配列同一性を有する塩基配列からなる、16SrRNA遺伝子を有する、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌。   Eosinophilic iron belonging to Sulfobacillus thermosulfidooxidans having a 16S rRNA gene consisting of the base sequence of SEQ ID NO: 1 in the sequence listing or a base sequence having a sequence identity of 99.9% or more. Oxidizing bacteria. Sulfobacillus thermosulfidooxidans NITE P-01909である、請求項1〜4のいずれか1項に記載の好酸性鉄酸化細菌。 The acidophilic iron-oxidizing bacterium according to any one of claims 1 to 4, which is Sulfobacillus thermosulfidooxidans NITE P-01909. 金属含有固体に、1.0g/L以下の第一鉄イオンを含む培地中で比増殖速度が最大となる好酸性鉄酸化細菌、又は1.0g/L以下の第一鉄イオンを含む培地中で比増殖速度0.15/時間以上で増殖可能な、スルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を作用させ、金属を液体中に浸出させて金属溶液を得る工程を含む、金属溶液の製造方法。   In an acidophilic iron-oxidizing bacterium having a maximum specific growth rate in a medium containing ferrous ions of 1.0 g / L or less on a metal-containing solid, or in a medium containing ferrous ions of 1.0 g / L or less In this way, an acidophilic iron-oxidizing bacterium belonging to Sulfobacillus thermosulfidooxidans that can grow at a specific growth rate of 0.15 / hour or more is allowed to act, and the metal is leached into the liquid to obtain a metal solution. The manufacturing method of a metal solution including a process. 1.0g/L以下の第一鉄イオンを含む培地中でスルフォバチルス・サーモスルフィドオキシダンス(Sulfobacillus thermosulfidooxidans)に属する好酸性鉄酸化細菌を増殖させ、培養物を得る工程;及び
培養物に金属含有固体を添加し、金属含有固体に好酸性鉄酸化細菌に作用させ、金属を液体中に浸出させて金属溶液を得る工程
を含む、金属溶液の製造方法。
Proliferating acidophilic iron-oxidizing bacteria belonging to Sulfobacillus thermosulfidooxidans in a medium containing ferrous ions of 1.0 g / L or less to obtain a culture; and metal in the culture A method for producing a metal solution, comprising a step of adding a contained solid, allowing the metal-containing solid to act on acidophilic iron-oxidizing bacteria, and leaching the metal into the liquid to obtain a metal solution.
金属が、銅、亜鉛、コバルト、ニッケル、マンガン、カドミウム及びタングステンからなる群より選択されるいずれかである、請求項5〜7のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 5 to 7, wherein the metal is any one selected from the group consisting of copper, zinc, cobalt, nickel, manganese, cadmium and tungsten. 好酸性鉄酸化細菌が、単離された形態または混合培養体の形態である、請求項5〜8のいずれか1項に記載の製造方法。   The production method according to any one of claims 5 to 8, wherein the acidophilic iron-oxidizing bacterium is in an isolated form or a mixed culture form. 開放系、及び/又は非滅菌の環境で実施される、請求項5〜9のいずれか1項に記載の生産方法。 The production method according to any one of claims 5 to 9, which is carried out in an open system and / or a non-sterile environment. 金属含有固体が、廃電子基板又は使用済電子機器部品である、請求項5〜10のいずれか1項に記載の生産方法。   The production method according to any one of claims 5 to 10, wherein the metal-containing solid is a waste electronic substrate or a used electronic device part. 請求項5〜11のいずれか1項に定義された金属溶液の製造のための工程、及び金属溶液から金属を回収する工程、及び回収した金属を使用する工程を含む、金属使用製品の製造方法。   A method for producing a metal-use product, comprising a step for producing a metal solution as defined in any one of claims 5 to 11, a step of recovering a metal from the metal solution, and a step of using the recovered metal. .
JP2015174284A 2014-09-05 2015-09-04 Metal extraction method using acidophilic thiobacillus ferrooxidans Pending JP2016054736A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181771 2014-09-05
JP2014181771 2014-09-05

Publications (1)

Publication Number Publication Date
JP2016054736A true JP2016054736A (en) 2016-04-21

Family

ID=55756191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174284A Pending JP2016054736A (en) 2014-09-05 2015-09-04 Metal extraction method using acidophilic thiobacillus ferrooxidans

Country Status (1)

Country Link
JP (1) JP2016054736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231453A (en) * 2021-12-17 2022-03-25 黑龙江八一农垦大学 Thiobacillus ferrooxidans from volcanic ash and method for leaching metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231453A (en) * 2021-12-17 2022-03-25 黑龙江八一农垦大学 Thiobacillus ferrooxidans from volcanic ash and method for leaching metals
CN114231453B (en) * 2021-12-17 2023-06-27 黑龙江八一农垦大学 Thiobacillus ferrooxidans derived from volcanic ash and method for leaching metals

Similar Documents

Publication Publication Date Title
Wang et al. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar
Yahya et al. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria
Adekola et al. Bioleaching of Zn (II) and Pb (II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria
Falco et al. A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans
Zhang et al. Isolation and characterization of Acidithiobacillus ferrooxidans strain QXS-1 capable of unusual ferrous iron and sulfur utilization
Feng et al. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching
Yan et al. Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China
Liu et al. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution
Zhang et al. Synergetic effects of Ferroplasma thermophilum in enhancement of copper concentrate bioleaching by Acidithiobacillus caldus and Leptospirillum ferriphilum
JP6278475B2 (en) Microorganism having ability to elute rare earth elements, method for eluting rare earth elements, microorganism having ability to solidify rare earth elements, and method for solidifying rare earth elements
Li et al. Influence of Ni2+ and Mg2+ on the growth and activity of Cu2+-adapted Thiobacillus ferrooxidans
Han et al. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process
Feng et al. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching
US5030426A (en) Biomining of gallium and germanium containing ores
Huang et al. Chalcopyrite bioleaching of an in situ leaching system by introducing different functional oxidizers
Lavalle et al. Isolation and characterization of acidophilic bacteria from Patagonia, Argentina
Roshani et al. Bioleaching of molybdenum by two new thermophilic strains isolated and characterized
Figueroa-Estrada et al. Bioleaching for the extraction of metals from sulfide ores using a new chemolithoautotrophic bacterium
Patel et al. Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy-and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2
XU et al. Bioleaching of chalcopyrite by UV-induced mutagenized Acidiphilium cryptum and Acidithiobacillus ferrooxidans
JP2016054736A (en) Metal extraction method using acidophilic thiobacillus ferrooxidans
Deshpande et al. A delve into the exploration of potential bacterial extremophiles used for metal recovery
JP4417366B2 (en) Sulfur-oxidizing bacteria resistant to chloride ions
CN105132319A (en) Complex acidophilic microbial agent as well as preparation method and application thereof in treating waste copper-clad plate flotation residue
Peng et al. Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224