JP2016054711A - Methods for producing tomato seedlings using a dark septate endophytic fungi (des) veronaeopsis simplex - Google Patents

Methods for producing tomato seedlings using a dark septate endophytic fungi (des) veronaeopsis simplex Download PDF

Info

Publication number
JP2016054711A
JP2016054711A JP2014185444A JP2014185444A JP2016054711A JP 2016054711 A JP2016054711 A JP 2016054711A JP 2014185444 A JP2014185444 A JP 2014185444A JP 2014185444 A JP2014185444 A JP 2014185444A JP 2016054711 A JP2016054711 A JP 2016054711A
Authority
JP
Japan
Prior art keywords
cesium
veronaeopsis
tomato
simplex
seedlings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014185444A
Other languages
Japanese (ja)
Other versions
JP6315195B2 (en
Inventor
一彦 成澤
Kazuhiko Narisawa
一彦 成澤
達夫 竹下
Tatsuo Takeshita
達夫 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Pioneer EcoScience Co Ltd
Original Assignee
Ibaraki University NUC
Pioneer EcoScience Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC, Pioneer EcoScience Co Ltd filed Critical Ibaraki University NUC
Priority to JP2014185444A priority Critical patent/JP6315195B2/en
Publication of JP2016054711A publication Critical patent/JP2016054711A/en
Application granted granted Critical
Publication of JP6315195B2 publication Critical patent/JP6315195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing tomato seedlings of which radioactive cesium concentration is reduced than ever before, even when the tomato seedlings are grown in a field contaminated with radioactive cesium without large scale decontamination.SOLUTION: Provided is a method for producing tomato seedlings with reduced radioactive cesium concentration, where the tomato seedlings are inoculated with a strain of Veronaeopsis simplex (Accession Number: NITE AP-01933).SELECTED DRAWING: None

Description

本発明は、放射性セシウムのトマト苗への吸収を抑制し得るエンドファイト(Dark septate endophytic fungi:DSE)に、及び当該エンドファイトを使用した放射性セシウム濃度が低減されたトマト苗の生産方法に関する。   The present invention relates to an endophyte (DSE) that can suppress the absorption of radioactive cesium into tomato seedlings, and a method for producing a tomato seedling with reduced radioactive cesium concentration using the endophyte.

農作物に対する土壌病原菌による病害を防止するため、又は農作物の生育を促進させるため、化学物質の使用の他、微生物を使用した病害防除手段又は生育促進手段が種々提案されている。
例えば特許文献1に記載の技術は、トマトのフザリウム病防除に有効なフザリウム・オキシスポラム(Fusarium oxysporum)JTF−108菌株の使用を提案している。
また、特許文献2に記載の技術は、トマトの養液栽培において安定して生育促進させるために、アゾスピリラム属菌の使用を提案している。
また、特許文献3に記載の技術は、トマト根腐萎ちょう病の発病を抑止するためにジュードモナス・プチダ(Pseudomonas putida)AP−1菌株の使用を提案している。
さらにまた、特許文献4に記載の技術は、抗青枯病又は抗かいよう病活性を有する細菌エンドファイトを提案している。
In order to prevent diseases caused by soil pathogenic bacteria on crops or to promote the growth of crops, various disease control means or growth promotion means using microorganisms have been proposed in addition to the use of chemical substances.
For example, the technique described in Patent Document 1 proposes the use of Fusarium oxysporum JTF-108 strain which is effective in controlling Fusarium disease of tomato.
In addition, the technique described in Patent Document 2 proposes the use of Azospirillum spp. In order to stably promote growth in hydroponic cultivation of tomatoes.
In addition, the technique described in Patent Document 3 proposes the use of a Pseudomonas putida AP-1 strain to suppress the onset of tomato root rot wilt.
Furthermore, the technique described in Patent Document 4 proposes bacterial endophyte having anti-wilt disease or anti-pruritic activity.

ところが、東日本における巨大地震及び津波を原因とした原子力発電所の損壊、そしてそれによる放射性物質の飛散によって、一部の地域の土壌が汚染されるに至って以来、土壌がそのように汚染された地域においては、農作物の病害防除や生育促進よりも、農作地の土壌の除染が最優先の課題に代わっている。
そして、汚染された農作地においては、そこで栽培された野菜や果物などの農作物も土壌の水分や栄養成分とともに放射性物質を吸収してしまい、それら農作物を摂取した人体への悪影響も指摘されている。
However, since the destruction of nuclear power plants caused by large earthquakes and tsunamis in East Japan and the resulting scattering of radioactive materials, soil in such areas has been contaminated. In soil, decontamination of soil on farmland has replaced the top priority rather than disease control and growth promotion of crops.
And in contaminated farmland, crops such as vegetables and fruits cultivated there absorb radioactive substances along with soil moisture and nutrients, and it has been pointed out that there are adverse effects on the human body that ingested these crops .

本発明者等の調査の結果、土壌中の放射性物質は、その殆どが半減期の長い放射性セシウム134Csや137Csであって、さらにその大半が土壌の地表部分およそ5cm以内の部分に分布していることが既に分かっている。
しかしながら、広大な農作地の除染には、排水のための地下排水溝の施工や排水設備を整備するための膨大な手間やコスト高という問題が存在する。
As a result of the investigation by the present inventors, most of the radioactive substances in the soil are radioactive cesium 134 Cs and 137 Cs having a long half-life, and most of them are distributed within a portion of the soil surface within about 5 cm. I already know that.
However, decontamination of vast agricultural land has problems such as construction of underground drainage for drainage and enormous labor and cost for maintaining drainage facilities.

このような状況下、放射性物質で汚染された土壌の除染手段として、多孔質粘土類、例えば、ゼオライト又は珪藻土を使用した技術が提案されている。
例えば、特許文献5は、汚染土壌、電解質及び水からなる溶液と、珪藻土、プルシアンブルー及びナノカーボンからなる捕集体とを接触させることにより、前記溶液中の放射性物質を前記捕集体に吸着することによって、もって土壌を除染する方法を提案している。
また、特許文献6は、汚染土壌と洗浄水とを混合してスラリーを得る工程、当該スラリーにゼオライトを共存させる工程、当該ゼオライトに放射性元素を吸着させ、そして除染された処理済み水とともに処理済み土壌を得る工程、及び、処理済みゼオライトと、除染された処理水及び土壌とを分離する工程を含む、汚染土壌の除染方法を提案している。
Under such circumstances, a technique using porous clays such as zeolite or diatomaceous earth has been proposed as a means for decontaminating soil contaminated with radioactive substances.
For example, Patent Document 5 adsorbs radioactive substances in the solution to the collector by bringing a solution made of contaminated soil, an electrolyte, and water into contact with a collector made of diatomaceous earth, Prussian blue, and nanocarbon. Therefore, we propose a method for decontamination of soil.
Patent Document 6 discloses a step of mixing a contaminated soil and washing water to obtain a slurry, a step of causing zeolite to coexist in the slurry, a radioactive element adsorbed on the zeolite, and a treatment with decontaminated treated water. The present invention proposes a method for decontamination of contaminated soil, including a step of obtaining a soil, and a step of separating the treated zeolite from the decontaminated treated water and soil.

特開平6−256126号公報JP-A-6-256126 特開平6−311826号公報JP-A-6-31826 特開平10−191967号公報JP-A-10-191967 特開2002−223747号公報JP 2002-223747 A 特開2013−57575号公報JP2013-57575A 特開2013−79846号公報JP 2013-79846 A

上記特許文献1ないし特許文献4に記載の技術は、農作物に対する土壌病原菌の防除を課題とするにとどまり、放射性セシウムの除染について問題提起しているわけではない。
また、特許文献5及び特許文献6に記載される、多孔質粘土類を利用する技術は、結局のところ、汚染された大量の土壌を、除染のために一旦回収し、除染を行うという作業が必要であること、及び、除染後に、放射性セシウムが吸着した大量の多孔質粘土類を回収し、それを廃棄物として保管する必要があるという課題が残る。
The techniques described in Patent Literature 1 to Patent Literature 4 described above are limited to the control of soil pathogens on agricultural crops, and do not pose a problem regarding the decontamination of radioactive cesium.
In addition, the technology using porous clays described in Patent Document 5 and Patent Document 6 eventually collects a large amount of contaminated soil for decontamination and performs decontamination. There remains a problem that it is necessary to work, and after decontamination, it is necessary to collect a large amount of porous clay adsorbed with radioactive cesium and store it as waste.

以上の観点から、本発明者等は、汚染された土壌それ自体を除染することが必ずしも効率的でも実用的でもなく、そのため発想の転換が必要であると考えた。そして、農作地全体の土壌を除染するための新たな技術を開発するよりもむしろ、放射性セシウムにより汚染された農作地であってもそこで栽培する農作物に放射性セシウムを吸収させない技術開発が、より必要ではないかと確信した。それと同時に、農作物の生育をより促進させることをも可能とすることができれば、農作物の生産効率の向上にも繋がる。
そこで本発明者等は、エンドファイトを使用した農作物の生長促進に関する研究をすすめる中で、エンドファイトの中にも農作物への放射性セシウムの吸収を抑制するものが存在するのではないかと考えるに至った。
仮にそのようなエンドファイトのスクリーニングに成功することができれば、従来技術のように膨大なコストや手間をかけて農作地の土壌を除染することなく、放射性セシウムの農作物への吸収を抑制し、それによって放射性セシウム濃度のより低い農作物を生産することが可能となる。
From the above viewpoint, the present inventors considered that decontamination of the contaminated soil itself was not always efficient or practical, and therefore a change in concept was necessary. Rather than developing new technology to decontaminate the soil of the entire farmland, even if it is a farmland contaminated with radioactive cesium, technology development that does not absorb radioactive cesium in the crops cultivated there will be more I was convinced that it was necessary. At the same time, if it is possible to further promote the growth of crops, it will lead to an improvement in crop production efficiency.
Therefore, the present inventors proceeded with research on the promotion of crop growth using endophyte, and came to consider that some endophytes may suppress the absorption of radioactive cesium into crops. It was.
If we can succeed in screening such endfights, we can suppress the absorption of radioactive cesium into agricultural crops without decontaminating the soil of the farmland with a huge amount of cost and effort as in the prior art. This makes it possible to produce crops with lower radioactive cesium concentrations.

そこで本発明者等は、エンドファイトのうちVeronaeopsis simplex属の菌株をキャベツ苗の根部に接種し、これを塩化セシウムを含有する培地にて所定期間、栽培した。
しかしながら、セシウムのキャベツへの吸収は、抑制するどころか、過去の多くの報告にあるようにむしろ促進されてしまう傾向であった。
Therefore, the present inventors inoculated the root of a cabbage seedling with a strain belonging to the genus Veronaeopsis among endophytes and cultivated it in a medium containing cesium chloride for a predetermined period.
However, rather than suppressing the absorption of cesium into cabbage, it tended to be rather promoted as shown in many previous reports.

そこで本発明者等は、さらに種々研究をすすめた。その結果、Veronaeopsis simplex属の菌株のうち特定の菌株が、トマト苗へのセシウムの吸収を抑制し得、なお且つ苗の生育を促進せしめることを見出し、その菌株のスクリーニングに成功した。
従来、Veronaeopsis simplex属の菌株の中には、トマト又はハクサイに対して、高温ストレス耐性を付与し、又は酸性土壌での生育を可能とせしめる効果を付与するものが存在することが分かっていたが、トマト苗へのセシウムの吸収を抑制し得るものは知られていなかったため、驚くべきことであった。
Accordingly, the present inventors have conducted various studies. As a result, it was found that a specific strain among the strains of the genus Veronaeopsis simplex can suppress the absorption of cesium into tomato seedlings and promote the growth of seedlings, and succeeded in screening the strains.
Conventionally, it has been known that some strains of the genus Veronaeopsis simplex impart an effect of imparting high-temperature stress tolerance to tomatoes or Chinese cabbages, or enabling the growth in acidic soil. It was surprising because nothing was known that could inhibit the absorption of cesium into tomato seedlings.

即ち本発明は、放射性セシウム濃度が低減されたトマト苗の生産方法であって、NITE AP−01933の受領番号を有するVeronaeopsis simplexに属する菌株をトマト苗に接種することを特徴とする、前記トマト苗の生産方法に関する。
また本発明は、前記方法により生産されたトマト苗にも関する。
さらにまた、本発明は、トマト苗への放射性セシウムの吸収を抑制し得る資材であって、前記資材は、NITE AP−01933の受領番号を有するVeronaeopsis simplexに属する菌株を含有することを特徴とする資材にも関する。
That is, the present invention relates to a method for producing a tomato seedling having a reduced radioactive cesium concentration, wherein the tomato seedling is inoculated with a strain belonging to Veronaeopsis simplex having a receipt number of NITE AP-01933. Relates to the production method.
The present invention also relates to a tomato seedling produced by the method.
Furthermore, the present invention is a material capable of suppressing the absorption of radioactive cesium into tomato seedlings, characterized in that the material contains a strain belonging to Veronaeopsis simplex having a receipt number of NITE AP-01933. Also related to materials.

なお、他に特に示されない限り、本願明細書において、単に「セシウム」又は「Cs」とは、安定同位体であるCs133を指し、「放射性セシウム」とは、放射性同位体であるCs134及び/又はCs137を指すものとする。 Unless otherwise indicated, in this specification, “cesium” or “Cs” simply refers to stable isotope Cs 133 , and “radioactive cesium” refers to Cs 134 and radioisotope. And / or Cs 137 .

近年、農作物に対する病害防除手段として、農薬を使用した化学的防除の他、微生物を利用した生物学的防除法も提案されており、微生物として特にエンドファイトを利用した生物学的防除法が本発明者等によって提案されている。
例えば、エンドファイトの一つであるPhialocephala fortiniiが本発明者等によって分離・選抜され、アスパラガス苗に対する病原菌F.oxysporumの防除に効果を発揮するという知見が得られている(特開2013−42695号公報)。
これに対して今般、本発明者等によって新たに分離・選抜されたエンドファイトの1つであるVeronaeopsis simplex Y34菌株(受領番号 NITE AP−01933 2014年9月5日付 独立行政法人製品評価技術基盤機構 特許微生物寄託センターに受領)は、Veronaeopsis simplex菌株の中でも、トマト苗へのセシウムの吸収が効果的に抑制され得るものである。
その反面、このVeronaeopsis simplex Y34菌株は、同様の条件下でもキャベツ及びハクサイへのセシウムの吸収を抑制する効果を殆ど有しないことが明らかとなった。この事実から、単に培地中のセシウムを菌体が吸着することによってセシウム濃度を低下させ、その結果としてトマトへのセシウムの吸収を低下させるという作用効果を奏するものではないと考えられる。
In recent years, biological control methods using microorganisms in addition to chemical control using agricultural chemicals have been proposed as disease control means for agricultural crops, and biological control methods using endophytes as microorganisms in particular have been proposed. Have been proposed.
For example, Phialocephala fortini, which is one of endophytes, was isolated and selected by the present inventors, and the pathogenic fungus F. asparagus seedlings. The knowledge that it exhibits an effect in controlling oxysporum has been obtained (Japanese Patent Laid-Open No. 2013-42695).
On the other hand, Veronaeopsis simplex Y34 strain (Receipt number NITE AP-01933, dated September 5, 2014) is one of the endophytes newly isolated and selected by the present inventors. Among the Veronaeopsis simplex strains, the absorption of cesium to tomato seedlings can be effectively suppressed among the Veronaeopsis simplex strains.
On the other hand, it has been clarified that this Veronaeopsis simplex Y34 strain has almost no effect of suppressing the absorption of cesium into cabbage and Chinese cabbage even under similar conditions. From this fact, it is considered that the effect of reducing the cesium concentration by simply adsorbing cesium in the culture medium and consequently reducing the absorption of cesium into tomatoes is not exhibited.

Veronaeopsis simplex菌株は、例えば、九州南部地域の森林土壌から単離することができる。かかる土壌よりVeronaeopsis simplex菌株を採取し、セシウムを含有する人工培地上で2ないし3週間インキュベートすることにより、コロニーを生育させる。そして、それぞれのコロニー上に、トマトの発芽種子を播種し、2週間インキュベートした後、トマト苗を生育させる。そしてその後、当該トマト苗の地上部に含まれるセシウム濃度を測定する。このとき、セシウム濃度が低いほど、土壌に含まれるセシウムのトマトへの吸収をより抑制し得るものということができる。こうして、セシウムの吸収をより効果的に抑制し得た菌株をスクリーニングしたことによって、Veronaeopsis simplex Y34株が見出された。   The Veronaeopsis simplex strain can be isolated from forest soil in the southern region of Kyushu, for example. A Veronaeopsis simplex strain is collected from the soil and incubated on an artificial medium containing cesium for 2 to 3 weeks to grow colonies. Then, seeds of germinated tomato are sown on each colony, incubated for 2 weeks, and then a tomato seedling is grown. Thereafter, the concentration of cesium contained in the above-ground part of the tomato seedling is measured. At this time, it can be said that the lower the cesium concentration, the more the absorption of cesium contained in the soil into the tomato can be suppressed. Thus, Veronaeopsis simplex Y34 strain was found by screening a strain that could more effectively suppress cesium absorption.

トマト苗の生育を促進する効果は、苗のバイオマスを測定することによって、認識し得る。ここで、バイオマスは、一定条件下で育苗したトマト苗の地上部について灰化するに際して、その灰化前後の質量を秤量することによって、測定し得る。そして、対照区の苗の地上部のバイオマスと比較して、より大きな数値を示していれば、苗の生育を促進したものといえる。   The effect of promoting the growth of tomato seedlings can be recognized by measuring the biomass of the seedlings. Here, biomass can be measured by weighing the mass before and after ashing when the above-ground part of tomato seedlings grown under certain conditions is incinerated. And if it has shown a bigger numerical value compared with the biomass of the above-ground part of the seedling of a control section, it can be said that it has promoted the growth of the seedling.

また、本発明において使用される資材は、単独で使用することもできるが、適当な固体担体、特に穀物粒やおが屑などを用いて、粒剤、粉剤等の任意の形状で使用できる。また、この当該資材を有機肥料、土壌等と共に使用し、肥料、土壌改良資材、育苗用培土等とすることができる。
このとき、単独の資材又は他の原料と混合され得られた製品中には、本発明に係るNITE AP−01933株が、セシウムのトマトへの吸収を有意に抑制し得るに足りる菌数があればよい。例えば、土壌中に5質量%の資材混和でトマト根部に十分に定着できる。
トマト苗の育苗については、例えば、Veronaeopsis simplex Y34株を含有する資材を混合した培土上でトマト種子を播種し、発芽させ、その後さらに一定期間生育させて、当該菌株をトマト苗の根部に定着させた頃合を見計らって、放射性セシウムで汚染された土壌に移し、さらに生育させる。
又は、放射性セシウムで汚染された土壌に対して、当該菌株を含有する資材を混合した培土を一定量撒き、その培土上で播種、発芽、その後の育苗を行うこともできる。
Moreover, although the material used in this invention can also be used independently, it can be used in arbitrary shapes, such as a granule and a powder agent, using a suitable solid support | carrier, especially grain grain, sawdust, etc. Moreover, this material can be used together with organic fertilizer, soil, etc., and can be used as fertilizer, soil improvement material, seedling cultivation soil, and the like.
At this time, in the product obtained by mixing with a single material or other raw materials, the NITE AP-01933 strain according to the present invention has a sufficient number of bacteria that can significantly suppress the absorption of cesium into tomatoes. That's fine. For example, it can be sufficiently fixed on the tomato root by mixing 5% by mass of material in the soil.
Regarding tomato seedling raising, for example, tomato seeds are sown on a soil mixed with materials containing Veronaeopsis simplex Y34, germinated, and further grown for a certain period of time, so that the strain is fixed at the root of tomato seedlings. At the same time, it is transferred to soil contaminated with radioactive cesium and further grown.
Alternatively, a certain amount of culture soil mixed with a material containing the strain can be seeded on soil contaminated with radioactive cesium, and seeding, germination, and subsequent seedling raising can be performed on the soil.

本発明においては、トマト苗の根部にVeronaeopsis simplex Y34菌株を接種することによって、培地中のセシウムのトマト苗への吸収を、当該菌株を接種しない場合と比較して、およそ1/2以下に抑制することができる。そのため、放射性セシウムに対しても同様にその吸収を抑制できる効果が期待される。従って、従来技術のように膨大な汚染土壌を回収し、吸着剤などの除染技術を用いて除染するといった手間やコストをかけることもなく、放射性セシウムによる汚染が低く抑えられたトマトを収穫することが出来る。さらにまた、そのような放射性セシウムを含有する土壌においても、当該菌株を接種しない場合と比較して、トマト苗の生育をより促進させ得るという重複的な効果をも奏する。   In the present invention, by inoculating the root of a tomato seedling with Veronaeopsis simplex Y34 strain, the absorption of cesium in the medium to the tomato seedling is suppressed to about 1/2 or less compared to the case where the strain is not inoculated. can do. Therefore, the effect which can suppress the absorption similarly to radioactive cesium is anticipated. Therefore, harvesting a large amount of contaminated soil as in the prior art and harvesting tomatoes with low contamination by radioactive cesium without the hassle and cost of decontamination using adsorbents and other decontamination techniques I can do it. Furthermore, even in soil containing such radioactive cesium, there is an overlapping effect that the growth of tomato seedlings can be further promoted as compared with the case where the strain is not inoculated.

図1は、セシウム濃度5ppm及び10ppmの各々の培地において、実施例のトマト苗と比較例のトマト苗を育苗した後の、これらトマト苗の地上部の乾燥物中のセシウム濃度をそれぞれ示した図である。FIG. 1 is a diagram showing the cesium concentrations in dry matter of the above-ground parts of tomato seedlings after raising the tomato seedlings of the examples and the tomato seedlings of the comparative examples in the respective media having the cesium concentrations of 5 ppm and 10 ppm. It is. 図2は、セシウム濃度5ppm及び10ppmの各々の培地において、実施例のトマト苗と比較例のトマト苗を育苗したときの、これらトマト苗の地上部のバイオマスをそれぞれ示した図である。FIG. 2 is a diagram showing the above-ground biomass of the tomato seedlings of the examples and the comparative tomato seedlings in the respective media having a cesium concentration of 5 ppm and 10 ppm. 図3は、セシウム濃度5ppm及び10ppmの各々の培地において、参考例1のハクサイ苗と参考例2のハクサイ苗を育苗した後の、これらハクサイ苗の地上部の乾燥物中のセシウム濃度をそれぞれ示した図である。FIG. 3 shows the cesium concentrations in the above-ground dried parts of the Chinese cabbage seedlings after raising the Chinese cabbage seedling of Reference Example 1 and the Chinese cabbage seedling of Reference Example 2 in the respective media with cesium concentrations of 5 ppm and 10 ppm. It is a figure. 図4は、セシウム濃度5ppm及び10ppmの各々の培地において、参考例1のハクサイ苗と参考例2のハクサイ苗を育苗したときの、これらハクサイ苗の地上部のバイオマスをそれぞれ示した図である。FIG. 4 is a diagram showing the above-ground biomass of Chinese cabbage seedlings when the Chinese cabbage seedlings of Reference Example 1 and Japanese cabbage seedlings of Reference Example 2 were grown in the respective media having a cesium concentration of 5 ppm and 10 ppm.

ここで、放射性同位体と安定同位体とは、物理化学的性質や環境中における挙動に差がないことが知られている(例えば、「XANESを用いた水田土壌中のヨウ素の非破壊形態分析とその溶脱機構」,山口紀子,農環研ニュース,2006年10月,No.72,第9頁参照)。つまり、安定同位体セシウムCs133と放射性同位体セシウムCs134及びCs137とは、トマト苗への吸収挙動が実質的に同一であると考えてよいと認められる。従って、以下の試験例及び実施例においては、放射性セシウムCs134及びCs137に替えてセシウムCs133が使用された。 Here, it is known that the radioisotope and the stable isotope have no difference in physicochemical properties and behavior in the environment (for example, “nondestructive analysis of iodine in paddy field soil using XANES And the leaching mechanism thereof, ”Noriko Yamaguchi, Agricultural Research News, October 2006, No. 72, page 9). That is, it is recognized that the stable isotopes cesium Cs 133 and the radioisotopes cesium Cs 134 and Cs 137 may be considered to have substantially the same absorption behavior to tomato seedlings. Therefore, in the following test examples and examples, cesium Cs 133 was used instead of radioactive cesium Cs 134 and Cs 137 .

試験例:試料中のセシウムの濃度の測定及びバイオマスの測定
蓋付磁製るつぼに試料を入れて絶乾(105℃にて10時間)した後、350℃にて2時間、及び550℃にて5時間の加熱を行い、試料を灰化した。なお、昇温速度は100℃/2時間とした。灰化前後の試料の質量を超精密天秤により秤量し、灰分量を求めた。この灰分量をバイオマスとした。その後、灰化した試料を処理区ごと(1処理区当り7試料)に、サンプルチューブ内で混合し、エネルギー分散型蛍光X線元素分析装置による元素測定に供試した。
分析は、測定試料を微量粉体容器に入れ、マイラーフィルム(厚さ6μm)を通して行った。測定は、30pa以下の真空条件下、印加電圧50kV及び15kV(いずれも積算時間400秒)で行い、セシウムを含む構成元素の半定量値を得た。本分析においては、装置付属プログラムのファンダメンタル・パラメーター(FP)法により、各元素のピーク強度(kV×cps/μA)に対して予め設定された感度係数を掛け合わせることによって定量値を求めることができる。
Test example: Measurement of concentration of cesium in sample and measurement of biomass After placing the sample in a magnetic crucible with a lid and drying completely (at 105 ° C for 10 hours), at 350 ° C for 2 hours and at 550 ° C The sample was incinerated by heating for 5 hours. The temperature rising rate was 100 ° C./2 hours. The mass of the sample before and after ashing was weighed with an ultra-precision balance to determine the amount of ash. This ash content was defined as biomass. Thereafter, the incinerated samples were mixed in each processing section (7 samples per processing section) in a sample tube and used for elemental measurement by an energy dispersive fluorescent X-ray elemental analyzer.
The analysis was performed by putting the measurement sample in a microscopic powder container and passing through a mylar film (thickness: 6 μm). The measurement was performed under a vacuum condition of 30 pa or less at an applied voltage of 50 kV and 15 kV (both integration times of 400 seconds) to obtain semi-quantitative values of constituent elements including cesium. In this analysis, a quantitative value can be obtained by multiplying the peak intensity (kV × cps / μA) of each element by a preset sensitivity coefficient by the fundamental parameter (FP) method of the program attached to the apparatus. it can.

実施例:Veronaeopsis simplex Y34菌株を接種したトマト苗へのセシウム吸収及びトマト苗の生育促進
広口試験管(直径約3cm、高さ約12cm)に、ろ紙(ADVANTEC No.1)を弧を描くように入れた。続いてオートクレーブ滅菌し、セシウム濃度として5ppm及び10ppmとなるように塩化セシウム(133CsCl)でそれぞれ調整したOM液体培地(MgSO・7HO 1.0g、KHPO 1.5g、Oatomeal 10g、NA 5.5mL/L)を20mLずつ分注し、ろ紙上でVeronaeopsis simplex Y34菌株を1週間培養した。その後、表面殺菌し素寒天培地上で発根させておいたトマト苗(ハウス桃太郎;タキイ種苗株式会社)を1苗ずつ静置し、23℃にて16時間明期、60μmol/m/sの育苗棚で育苗した。21日後に、育苗したトマト苗を回収し、これを実施例とした。
Example: Cesium absorption to tomato seedlings inoculated with Veronaeopsis simplex Y34 strain and promotion of growth of tomato seedlings In a wide mouth test tube (diameter about 3 cm, height about 12 cm), filter paper (ADVANTEC No. 1) is drawn in an arc. I put it in. Subsequently, autoclaved and OM liquid medium (1.0 g of MgSO 4 .7H 2 O, 1.5 g of KH 2 PO 4 , 10 g of Otomal, adjusted with cesium chloride ( 133 CsCl) to a cesium concentration of 5 ppm and 10 ppm, respectively. NA 5.5 mL / L), and Veronaeopsis simplex Y34 strain was cultured on filter paper for 1 week. Thereafter, tomato seedlings (House Momotaro; Takii Seed Co., Ltd.) that had been surface sterilized and rooted on an elementary agar medium were allowed to stand one by one, and light-sealed at 23 ° C for 16 hours, 60 µmol / m 2 / s The seedlings were raised on a nursery shelf. After 21 days, the grown tomato seedlings were collected and used as examples.

比較例:Veronaeopsis simplex Y34菌株を接種しなかったトマト苗へのセシウム吸収及びトマト苗の生育促進
Veronaeopsis simplex Y34菌株を用いなかった他は上記実施例と同様に育苗したトマト苗を比較例とした。
Comparative Example: Cesium absorption to tomato seedlings not inoculated with Veronaeopsis simplex Y34 strain and promotion of growth of tomato seedlings Tomato seedlings grown in the same manner as in the above examples were used as comparative examples except that Veronaeopsis simplex Y34 strain was not used.

上記実施例及び比較例のトマト苗の地上部分のセシウム濃度及びバイオマスをそれぞれ測定した。結果を図1及び図2にそれぞれ示す。
なお、図1の縦軸はトマト苗の地上部の乾燥物中のセシウム濃度(ppm)を表し、横軸の「Ctrl」は比較例を表し、そして「Y34」は実施例を表す。また、図2の縦軸はトマト苗の地上部のバイオマスを表し、横軸の「Ctrl」は比較例を表し、そして「Y34」は実施例を表す。
The cesium density | concentration and biomass of the above-ground part of the tomato seedling of the said Example and comparative example were measured, respectively. The results are shown in FIGS. 1 and 2, respectively.
1 represents the cesium concentration (ppm) in the dried product of the above-ground part of the tomato seedling, “Ctrl” on the horizontal axis represents a comparative example, and “Y34” represents an example. Moreover, the vertical axis | shaft of FIG. 2 represents the biomass of the above-ground part of a tomato seedling, the horizontal axis "Ctrl" represents a comparative example, and "Y34" represents an Example.

図1の結果は、Cs[5ppm]においては、実施例のトマト苗は、比較例のトマト苗と比較して、およそ73%のCsの減少があったことを示しており、またCs[10ppm]においては、実施例のトマト苗は、比較例のトマト苗と比較して、およそ75%の減少があったことを示した。
他方、図2の結果は、Cs[5ppm]においては、比較例と比較しておよそ122%の生育促進効果があったことを示しており、またCs[10ppm]においては、実施例のトマト苗は、比較例のトマト苗と比較して、およそ70%の生育促進効果があったことを示した。
The results in FIG. 1 show that at Cs [5 ppm], the tomato seedlings of the examples had a reduction in Cs of approximately 73% compared to the tomato seedlings of the comparative examples, and Cs [10 ppm] ] Showed that the tomato seedling of the example had a reduction of approximately 75% compared to the tomato seedling of the comparative example.
On the other hand, the result of FIG. 2 shows that Cs [5 ppm] had a growth promoting effect of about 122% compared to the comparative example, and Cs [10 ppm] had a tomato seedling of the example. Showed that there was a growth promoting effect of about 70% compared to the tomato seedling of the comparative example.

参考例1:Veronaeopsis simplex Y34菌株を接種したハクサイ苗へのセシウム吸収及びハクサイ苗の生育促進
トマト苗をハクサイ苗(無双;タキイ種苗株式会社)に変えた他は、上記実施例と同様の方法により試験を行った。
Reference Example 1: Absorption of cesium to Chinese cabbage seedling inoculated with Veronaeopsis simplex Y34 strain and promotion of growth of Chinese cabbage seedling In the same manner as in the above example, except that the tomato seedling was changed to the Chinese cabbage seedling (Musou; Takii Seed Co., Ltd.) A test was conducted.

参考例2:Veronaeopsis simplex Y34菌株を接種しなかったハクサイ苗へのセシウム吸収及びハクサイ苗の生育促進
トマト苗をハクサイ苗(無双;タキイ種苗株式会社)に変えた他は、上記比較例と同様の方法により試験を行った。
Reference Example 2: Cesium absorption to Chinese cabbage seedlings not inoculated with Veronaeopsis simplex Y34 strain and growth promotion of Chinese cabbage seedlings The same as the above comparative example, except that the tomato seedlings were changed to Chinese cabbage seedlings (Musou; Takii Seed Co., Ltd.) The method was tested.

上記参考例1及び2のハクサイ苗の地上部分のセシウム濃度及びバイオマスをそれぞれ測定した。結果を図3及び図4にそれぞれ示す。
なお、図3の縦軸はハクサイ苗の地上部の乾燥物中のセシウム濃度(ppm)を表し、横軸の「Ctrl」は参考例2を表し、そして「Y34」は参考例1を表す。また、図4の縦軸はハクサイ苗の地上部のバイオマスを表し、横軸の「Ctrl」は参考例2を表し、そして「Y34」は参考例1を表す。
The cesium concentration and biomass of the above-ground portions of Chinese cabbage seedlings of Reference Examples 1 and 2 were measured. The results are shown in FIGS. 3 and 4, respectively.
3 represents the cesium concentration (ppm) in the dry matter of the ground part of Chinese cabbage seedling, “Ctrl” on the horizontal axis represents Reference Example 2, and “Y34” represents Reference Example 1. In addition, the vertical axis of FIG. 4 represents the above-ground biomass of Chinese cabbage seedling, the horizontal axis “Ctrl” represents Reference Example 2, and “Y34” represents Reference Example 1.

図3の結果は、Cs[5ppm]及びCs[10ppm]の双方において、参考例1のハクサイ苗は、参考例2のハクサイ苗と比較して、100%以上もCsが増加してしまったことを示した。
他方、図4の結果は、Cs[5ppm]においては、参考例1のハクサイ苗は、参考例2のそれと比較して82%の生育促進効果があったことを示したが、その反面、Cs[10ppm]においては、参考例1のハクサイ苗と参考例2のそれとの間で有意な差は見られなかった。
The results of FIG. 3 show that, in both Cs [5 ppm] and Cs [10 ppm], the Chinese cabbage seedling of Reference Example 1 increased Cs by 100% or more compared with the Chinese cabbage seedling of Reference Example 2. showed that.
On the other hand, the results of FIG. 4 showed that, in Cs [5 ppm], the Chinese cabbage seedling of Reference Example 1 had a growth promoting effect of 82% compared to that of Reference Example 2, but on the other hand, Cs In [10 ppm], no significant difference was found between Chinese cabbage seedlings of Reference Example 1 and those of Reference Example 2.

図1及び図3の結果から、Veronaeopsis simplex Y34菌株は、トマト苗に対してセシウムの吸収を抑制する効果を付与する一方で、同一条件下であってもハクサイ苗に対してはそのような効果を付与しなかった。また、図2及び図4の結果から、当該菌株は、トマト苗だけでなくハクサイ苗に対しても一応の生育促進効果を付与したことが明らかである。
このため、Veronaeopsis simplex Y34菌株が単に培地中のセシウムを吸着することによって培地中のセシウム濃度を低下させ、それによりトマト苗のセシウム濃度の低下をもたらしたという可能性は低く、当該菌株がトマト苗へのセシウムの吸収を何らかの作用機構によって抑制したという可能性のほうが高いと考えられる。
以上の結果より、本発明に係るVeronaeopsis simplex Y34菌株を含有する培地でトマト苗を生育させることによって、放射性セシウムで汚染された土壌においても、放射性セシウムのトマト苗への吸収を抑制するという効果が期待される。このため、そのような放射性セシウムで汚染された土壌においても、トマトを栽培することができることが期待される。
From the results of FIG. 1 and FIG. 3, the Veronaeopsis simplex Y34 strain imparts an effect of suppressing cesium absorption to tomato seedlings, while such an effect on Chinese cabbage seedlings even under the same conditions. Was not granted. Moreover, it is clear from the result of FIG.2 and FIG.4 that the said strain | stump | stock provided the temporary growth promotion effect not only to a tomato seedling but to a Chinese cabbage seedling.
For this reason, it is unlikely that Veronaeopsis simplex Y34 strain simply reduced the cesium concentration in the medium by adsorbing cesium in the medium, thereby reducing the cesium concentration in the tomato seedling. It is considered more likely that the absorption of cesium into the body was suppressed by some mechanism of action.
From the above results, by growing tomato seedlings in a medium containing Veronaeopsis simplex Y34 strain according to the present invention, the effect of suppressing the absorption of radioactive cesium into tomato seedlings even in soil contaminated with radioactive cesium is obtained. Be expected. For this reason, it is expected that tomato can be cultivated even in soil contaminated with such radioactive cesium.

受領番号 NITE AP−01933
2014年9月5日付けで、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに受領されている。
Receipt Number NITE AP-01933
As of September 5, 2014, it has been received by the Patent Microorganism Depositary Center for Product Evaluation Technology.

Claims (3)

放射性セシウム濃度が低減されたトマト苗の生産方法であって、NITE AP−01933の受領番号を有するVeronaeopsis simplexに属する菌株をトマト苗に接種することを特徴とする、前記トマト苗の生産方法。 A method for producing a tomato seedling having reduced radioactive cesium concentration, wherein the tomato seedling is inoculated with a strain belonging to Veronaeopsis simplex having an accession number of NITE AP-01933. 請求項1に記載の方法により生産されたトマト苗。 A tomato seedling produced by the method according to claim 1. トマト苗への放射性セシウムの吸収を抑制し得る資材であって、前記資材は、NITE AP−01933の受領番号を有するVeronaeopsis simplexに属する菌株を含有することを特徴とする、資材。 A material capable of suppressing the absorption of radioactive cesium to tomato seedlings, wherein the material contains a strain belonging to Veronaeopsis simplex having a receipt number of NITE AP-01933.
JP2014185444A 2014-09-11 2014-09-11 Tomato seedling production method using root endfight (DSE) Veronaeopsis simplex Active JP6315195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014185444A JP6315195B2 (en) 2014-09-11 2014-09-11 Tomato seedling production method using root endfight (DSE) Veronaeopsis simplex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185444A JP6315195B2 (en) 2014-09-11 2014-09-11 Tomato seedling production method using root endfight (DSE) Veronaeopsis simplex

Publications (2)

Publication Number Publication Date
JP2016054711A true JP2016054711A (en) 2016-04-21
JP6315195B2 JP6315195B2 (en) 2018-04-25

Family

ID=55756139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185444A Active JP6315195B2 (en) 2014-09-11 2014-09-11 Tomato seedling production method using root endfight (DSE) Veronaeopsis simplex

Country Status (1)

Country Link
JP (1) JP6315195B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145074A1 (en) * 2008-05-29 2009-12-03 日本たばこ産業株式会社 Bacterium capable of reducing heavy metal content in plant
JP2013130574A (en) * 2011-11-22 2013-07-04 Kunio Goto Radioactive decontamination method and decontamination agent therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145074A1 (en) * 2008-05-29 2009-12-03 日本たばこ産業株式会社 Bacterium capable of reducing heavy metal content in plant
JP2013130574A (en) * 2011-11-22 2013-07-04 Kunio Goto Radioactive decontamination method and decontamination agent therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIDA O. KHASTINI: "The Role of Dark Septate Endophytic Fungus, Veronaeopsis simplex Y34, in Fusarium Disease suppressio", THE JOURNAL OF MICROBIOLOGY, vol. 50, no. 4, JPN6018001201, 2012, pages 618 - 624, ISSN: 0003722000 *

Also Published As

Publication number Publication date
JP6315195B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
Mishra et al. Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays)
Tao et al. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement
CN103952333B (en) A kind of method of cadmium patience bacterium and suppression rice absorbing heavy metal cadmium thereof
Padda et al. Plant growth promotion and nitrogen fixation in canola (Brassica napus) by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study
Djedidi et al. Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil
Abdel-Gawad et al. Distribution and elimination of 14C-ethion insecticide in chamomile flowers and oil
JP2009232721A (en) Plant cultivation method using enterobacter bacterium
Eizenberg et al. Non-chemical control of root parasitic weeds with biochar
CN110055303A (en) A kind of method that high flux screening is used to prevent and treat plant silborne fungal diseases microorganism
CN107094557A (en) A kind of method for reducing rice grain heavy metal cadmium content
Chou et al. Screening plant species native to Taiwan for remediation of 137Cs-contaminated soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants
CN108753638B (en) Nitrogen-fixing blue algae for producing salicylic acid in rice field and application of nitrogen-fixing blue algae in rice field
Gouthu et al. Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil
Duborská et al. Aging and substrate type effects on iodide and iodate accumulation by barley (Hordeum vulgare L.)
JP6315195B2 (en) Tomato seedling production method using root endfight (DSE) Veronaeopsis simplex
JP2013212083A (en) Promotion method of field crop using radioactive substance, and promotion apparatus of field crop
CN105961441B (en) The application of bacillus JC65 and its volatile materials in plant growth-promoting
CN107173009A (en) A kind of implantation methods of the continuous cropping ginger based on wormcast and AMF
CN111893061A (en) Pyrethrin insecticide degradation strain, fungicide and degradation process thereof
Horník et al. Bioaccumulation of 137Cs and 60Co by Helianthus annuus
Sandoval et al. Reduction of imidacloprid and tebuconazole in Oryza sativa plantation applying strains of Trichoderma spp.
KR20060006993A (en) Effective pre-treatment of livestock manure using the irradiation technology for development of environmental friendly bed soil
CN105754878A (en) Lead-and-cadmium-resistant fungus Gongronellabutleri Q7
JOSEPH et al. Long-term adoption of bed planted conservation agriculture based maize/cotton-wheat system enhances soil organic carbon stabilization within aggregates in the Indo-Gangetic Plains
Wang et al. Plant-microbial remediation of chlorpyrifos contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6315195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350