JP2016054342A - 通信装置、通信方法及びプログラム - Google Patents

通信装置、通信方法及びプログラム Download PDF

Info

Publication number
JP2016054342A
JP2016054342A JP2014178429A JP2014178429A JP2016054342A JP 2016054342 A JP2016054342 A JP 2016054342A JP 2014178429 A JP2014178429 A JP 2014178429A JP 2014178429 A JP2014178429 A JP 2014178429A JP 2016054342 A JP2016054342 A JP 2016054342A
Authority
JP
Japan
Prior art keywords
link
traffic configuration
network
route
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014178429A
Other languages
English (en)
Inventor
遼真 安永
Ryoma Yasunaga
遼真 安永
謙一 鈴木
Kenichi Suzuki
謙一 鈴木
康隆 木村
Yasutaka Kimura
康隆 木村
武明 持田
Takeaki Mochida
武明 持田
悠 中山
Yu Nakayama
悠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014178429A priority Critical patent/JP2016054342A/ja
Publication of JP2016054342A publication Critical patent/JP2016054342A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】特定のリンクへのトラヒック集中という輻輳の発生を防ぎ、帯域利用効率を向上させることができる通信装置、通信方法及びプログラムを提供することを目的とする。【解決手段】本発明に係る通信装置は、SPB網において、「全リンクの帯域使用率の最大値」を、最小化するトラヒック構成を算出する「トラヒック構成算出手段」と、「トラヒック構成算出手段」の出力結果から該トラヒック構成と整合する最短経路構成を持つような通信装置間のリンクメトリック及び経路選択確率値を算出する「リンクメトリック及び経路選択確率算出手段」を備え、「リンクメトリック及び経路選択確率算出手段」の出力するリンクメトリック値及び経路選択確率値を各リンクに割り当てし、該リンクメトリック及び経路選択確率値に基づき経路を決定する。【選択図】図7

Description

本発明は、通信ネットワークを利用する全ユーザの帯域要求を鑑みてリンクメトリック設定と経路選択を行い、スループットおよび帯域利用効率を向上させ、輻輳の発生を防止する通信装置に関するものである。
一般に、アクセスネットワークにおいて、データの転送制御を行う通信装置は、ユーザから転送されたトラヒックの集線を行い、ユーザトラヒックを多重化した上で、エッジルータ(ER)を通じコアネットワーク(通信事業者間を接続する大容量の基幹通信ネットワーク)に転送する。各通信装置は、フレームに記載されたCOS(Class of Service)などの値を用いて優先度を識別し、VLAN(Virtual LAN)IDなどのユーザ識別子を用いて送信元ユーザを識別する。特に、広域に分布するユーザの集線を効率的に行うためには、通信装置を多段接続した上で、コアネットワークに接続する構成が必要となる。キャリアネットワークにおいては、信頼性向上の観点から装置や経路の冗長化が重要であり、従来ERP(Ethernet(登録商標) Ring Protection)等を適用したレイヤ2リングトポロジが広く採用されている。通信装置を多段接続する場合にも、複数のエッジルータ(ER)を接続したリングトポロジを構成することは重要である。
一方で近年、データセンタにおけるサーバ仮想化技術の進展に伴い、データセンタ内ネットワークの効率化、管理容易化のためにSPB(Shortest Path Bridging)、TRILL(Transparent Interconnection of Lots of Links)といったイーサネット(登録商標)ファブリック(EF)技術の標準化が進んでいる。EFでは、IS−IS(Intermediate System to Intermediate System)を利用しノード間で経路情報を交換して転送経路を決定することで、最短経路転送、マルチパス転送を実現する。またループ回避のために従来必須であったブロッキングポートを不要とし、リソースの有効利用および経路管理の容易化を図っている。
今後、アクセスネットワークにおける集線区間へのEF網の利用が考えられる。EF網では、任意のネットワーク構成においてブロッキングポートが無くなり、最短経路転送が実現される。各リンクにはリンクメトリックが付与され、リンクメトリック和が最小となる経路が最短経路として使用される。
最短経路が複数存在する場合には、自律的にマルチパスを設定し、負荷分散が実行される。そのため、リソースの有効利用および経路管理の容易化が期待される。さらにリングトポロジにとどまらず、需要に応じて柔軟にネットワークを構成することが可能となる。特にSPBでは、エッジノードにおいて、I−SID(拡張サービスインスタンス識別子)等に基づいて複数の転送経路のうちから一つの転送経路が選択され、選択された転送経路に対応したB−VID(バックボーンVLAN識別子)が付与され、フレームが転送される。
RPFC(Revearse Path Forwarding Check)によるループ回避を利用できるようにするため、及びEthernet(登録商標) OAM(Operations,Administration,Maintenance)を既存のEthernet(登録商標)網と同様の環境で利用できるようにするため、SPBは全ての2ノード間において往復経路の一致を保証する。SPBは、往復経路の一致を保障するため、各リンクについて往復対象なリンクメトリックを保持する。非特許文献3では、往復経路の一致を保障するため、SPBが各リンクについて往復対象なリンクメトリックを最短経路計算に用いることを規定している。すなわち、最短経路計算時、ノードiからノードjへのリンクメトリックmi,jと、ノードjからノードiへのリンクメトリックmj,iは等しい。もしmi,jとmj,iが異なって設定された場合は、最短経路計算時にmi,jとmj,iの大きい値をノードiとノードj間のリンクメトリックとして採用する。
以降、この処理を「リンクメトリック対称化処理」と呼ぶ。
しかし、複数の転送経路から各フローの転送経路を単純に選択した場合、適切に負荷分散が行われないことがある。すなわちSPBでは通常、各フローに関しI−SID等に基づいて転送経路が選択される。そのため各フローが利用する経路に偏りがある場合には、一部のリンクに高レートのフローが集中することがある。このため、帯域の有効活用が図れず、特定フローのスループット低下や遅延増大等の転送品質低下が発生することがある。
特定フローのスループット低下を防ぎ公平性を実現するための関連技術として、非特許文献1に示される経路選択確率最適化がある。非特許文献1の技術は、各リンクの伝送容量、ユーザの帯域使用要求、各転送経路の経由リンク情報を基に、リンクの帯域使用率のEF網内の最大値を最小化するような、すなわちEF網内のリンクの帯域使用率を平均化するような、転送経路へのフロー選択確率を算出し、その確率に基づき転送経路にフローを割り振る。
非特許文献1の技術を用いることで、EF網全体にフローを分散し、特定フローのスループット低下や遅延増大等の転送品質低下を防ぎ、公平性を改善することができる。
しかし、非特許文献1の技術では、不適切なリンクメトリック設計により、そもそも最短経路が経由するリンクに偏りがある場合に、そのリンクへのフロー集中を防ぐことができず、帯域利用効率を向上させることができないという課題があった。例えば、非特許文献1の技術を用いた場合、最短経路に属するリンク群aとどの最短経路も経由しないリンク群bが存在する時、各最短経路へのフロー選択確率を変更することでリンク群aに属するリンク同士で負荷分散は可能であるが、そもそも転送経路に属さないリンク群bに対してフローを載せ替えることはできない。そのため、全体としての帯域利用効率が低いにも関わらずフレームの廃棄が発生してしまい、ネットワーク全体として帯域の有効活用が測れず、各フレームのスループット低下や遅延の増大等が発生してしまうことがあった。
最短経路の偏りに起因する、特定フレームのスループット低下や遅延の増大を解決するための関連技術として、非特許文献2に示されるリンクメトリック最適化がある。非特許文献2の技術は、各リンクの伝送容量、EF網トポロジ、ユーザの帯域要求を基に、リンクの帯域使用率のEF網内の最大値を最小化するような、すなわちEF網内のリンクの帯域使用率を平均化するような、最短経路構成を持つリンクメトリックを算出する。
非特許文献2の技術を用いることで、特定のリンクに最短経路が集中することを防ぐようなリンクメトリックを算出することができる。したがって、非特許文献1の技術と非特許文献2の技術を合わせて用いることで、非特許文献1の技術のみを用いた場合の課題であった、最短経路の偏りに対処することができる。すなわち、非特許文献1の技術のみを用いた場合、最短経路に属するリンク群aとどの最短経路も経由しないリンク群bが存在する時、各最短経路へのフロー選択確率を変更することでリンク群aに属するリンク同士で負荷分散は可能であるが、そもそも転送経路に属さないリンク群bに対してフローを載せ替えることはできなかった。一方で、非特許文献1の技術と非特許文献2の技術を併用した場合、非特許文献2の技術がリンクメトリックを適切に変更することで、もともとリンク群bに所属していたリンクlをリンク群aに所属変更し、その上で非特許文献1の技術が各最短経路へのフロー選択確率を変更することで、リンクlも含めた負荷分散が可能である。
Optimization of ECT selection probability in SPBM networks, Yu Nakayama, ieice communications express, vol. 3, no. 1, pp. 33−38, 2014 Internet traffic engineering without full mesh overlaying、Yufei Wang, et al., INFOCOM 2001, proceedings, vol.1, pp. 565−571, 2002 IS−IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging, IETF REC 6329, 2012
しかし、非特許文献2の技術には、次のようなケースが発生することがあった。非特許文献2の技術はもともとOSPF等の有向リンクメトリックを持つプロトコル向けの技術であるため、往復非対称なリンクメトリックを出力する場合があった。すなわち、一本のリンクに対し往復方向にそれぞれ異なるリンクメトリック値を解として算出する場合があるため、前記したリンクメトリック対称化処理によりリンクメトリックが往復方向で同一値となるよう変換され、最短経路の形状が歪み、結果的に特定のリンクに最短経路が集中する場合があった。
このため、非特許文献1の技術と非特許文献2の技術を併用した場合、意図せぬ形状に最短経路が歪み、特定のリンクにトラヒックが集中し、各フレームのスループット低下や遅延の増大、及び帯域利用効率の低下等が発生することがあり、これらの回避が課題であった。
そこで、本発明は、上記課題を解決すべく、特定のリンクへのトラヒック集中という輻輳の発生を防ぎ、帯域利用効率を向上させることができる通信装置、通信方法及びプログラムを提供することを目的とする。
本発明は、特定のリンクにトラヒックが集中しないようなトラヒック構成をあらかじめ計算し、そのトラヒック構成に対応する往復対称なリンクメトリックと、経路選択確率を逆算することで、特定のリンクにトラヒックが偏ることを防ぎ、帯域利用効率を向上させることとした。
具体的には、本発明に係る通信装置は、SPB(Shortest Path Bridging)ネットワークを形成する通信装置であって、
SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手段、
前記情報取得手段が取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手段、
前記トラヒック構成算出手段が算出した前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手段、及び
前記トラヒック構成算出手段が算出した前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手段、
を有する計算部と、
前記リンクメトリック算出手段が算出した前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手段が算出した前記経路選択確率を前記トラヒック構成上の転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手段を有する転送経路判断部と、
を備える。
また、本発明に係る通信方法は、
SPB(Shortest Path Bridging)ネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手順と、
前記情報取得手順で取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手順と、
前記リンクメトリック算出手順で算出された前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手順で算出された前記経路選択確率を前記トラヒック構成で使用されるそれぞれの転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手順と、
を備える。
一方、本発明に係るプログラムは、コンピュータをSPB(Shortest Path Bridging)ネットワークを形成する通信装置として機能させるためのプログラムであって、
前記コンピュータに、
SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手順と、
前記情報取得手順で取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手順と、
前記リンクメトリック算出手順で算出された前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手順で算出された前記経路選択確率を前記トラヒック構成で使用されるそれぞれの転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手順と、
を実行させることを特徴とする。
本発明は、特定のリンクにトラヒックが集中しないようなトラヒック構成をあらかじめ計算し、そのトラヒック構成に対応する往復対称なリンクメトリックと、経路選択確率を逆算することで、特定のリンクにトラヒックが偏ることを防ぎ、帯域利用効率を向上させることができる通信装置を提供することができる。つまり、本発明は、非特許文献2の技術の課題であった往復非対称なリンクメトリック解を算出する場合がある、という点を克服し、必ず往復対称なリンクメトリックを算出することで、リンクメトリック対称化処理により最短経路が歪むことを防ぐことができる。
従って、本発明は、特定のリンクへのトラヒック集中という輻輳の発生を防ぎ、帯域利用効率を向上させることができる通信装置、通信方法及びプログラムを提供することができる。
本発明は、特定のリンクへのトラヒック集中という輻輳の発生を防ぎ、帯域利用効率を向上させることができる通信装置、通信方法及びプログラムを提供することができる。
本発明に係る通信装置のネットワーク内における位置を説明する図である。 本発明に係る通信装置の構成を説明する図である。 先行技術での通信方法を説明する図である。user−ER間で2.0Gbps双方向の帯域要求があるものとする。 先行技術での通信方法を説明する図である。user−ER間で2.0Gbps双方向の帯域要求があるものとする。 本発明に係る通信方法を説明する図である。トラヒック構成算出手順後の状態である。user−ER間で2.0Gbps双方向の帯域要求があるものとする。 本発明に係る通信方法を説明する図である。リンクメトリック算出手順後の状態であり、最短経路とリンクメトリックを示している。user−ER間で2.0Gbps双方向の帯域要求があるものとする。 本発明に係る通信方法を説明する図である。経路選択確率算出手順後の状態である。user−ER間で2.0Gbps双方向の帯域要求があるものとする。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
図1、2、3、4、5、6、及び7を用いて実施形態1の通信装置を説明する。各図面のSWが本実施形態の通信装置である。
<実施形態1>
図1は、ネットワーク内における本実施形態の通信装置の位置を説明する図である。SW間は、SPBを用いて接続され、EF網200を形成している。EF網200内のトポロジは何でも良い。各SWにはそれぞれ、アクセスネットワークを通じてユーザ端末Uが接続される。さらに、いずれかのSWに対しエッジルータERが接続され、さらにコアネットワーク100に接続されている。なお、ユーザ端末UとエッジルータERの接続する形態は例であり、ユーザ端末UとエッジルータERのいずれか一方または双方を接続する必要はない。
図2は、本実施形態の通信装置SWを説明する図である。通信装置SWは、EF網のトポロジ、EF網内の全ての2ノード間の帯域要求、及び各リンクの伝送容量からリンクメトリックと転送経路選択確率を算出する計算部11と、前記リンクメトリックをIS−ISの経路情報に格納し、他スイッチと交換する経路情報交換部12と、他スイッチから受信した前記経路情報から最短経路を計算し、フレームを宛先に転送する一つ以上の最短経路を保持する転送テーブル13と、転送経路判断部14と、を備える。なお、計算部11と転送経路判断部14の少なくとも一方を一部の通信装置SWまたは通信装置SWの外部に備え、その計算結果および判断結果を計算部11と転送経路判断部14の少なくとも一方を備えない通信装置SWに通知するとしてもよい。
詳細には、計算部11は、
SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手段、
前記情報取得手段が取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手段、
前記トラヒック構成算出手段が算出した前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手段、及び
前記トラヒック構成算出手段が算出した前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手段、
を有する。
また、転送経路判断部14は、
前記リンクメトリック算出手段が算出した前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手段が算出した前記経路選択確率を前記トラヒック構成上の転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手段を有する。
なお、転送経路判断部14は、コンピュータにSPBネットワークを形成する通信装置として機能させるためのプログラムを実行させ、実現することができる。
当該プログラムは、コンピュータに、
SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手順と、
前記情報取得手順で取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手順と、
前記トラヒック構成算出手順で算出された前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手順と、
前記リンクメトリック算出手順で算出された前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手順で算出された前記経路選択確率を前記トラヒック構成で使用されるそれぞれの転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手順と、
を実行させることを特徴とするプログラムである。
通信装置SWは、フレームを受信するとフレームのフローを識別する。具体的には、通信装置SWは、フレームの送信元MACアドレス、宛先MACアドレス、VID、およびその組み合わせのいずれかを用いてフローを識別する。
[情報取得手段、情報取得手順]
計算部11は、EF網のトポロジ、EF網内の全ての2ノード間の帯域要求、及び各リンクの伝送容量からリンクメトリックと転送経路選択確率を算出する。通信装置SWはEF網のトポロジ、EF網内の全ての2ノード間の帯域要求、及び各リンクの伝送容量を、EF情報を集中的に管理するサーバに問い合わせることで取得してもよいし、オペレータに直接入力させることで取得してもよい。
経路情報交換部12は、計算部11で計算されたリンクメトリックをIS−ISの経路情報に格納し、他SWに広告する。
転送経路判断部14は、転送テーブル13を参照し、フレームの送信元MACアドレスと宛先MACアドレスとに基づいて、宛先SW、I−SID及びB−VIDを定めてPBB(Provider Backbone Bridging)ヘッダ、すなわちアウターMACヘッダを付与する。このとき、転送経路判断部14は、等コストの転送経路(Equal Cost Tree)が存在する場合には、計算部11で算出された転送経路選択確率を参照して経路選択を行い、与えるB−VIDを定める。
[トラヒック構成算出手段、トラヒック構成算出手順]
まず、計算部11は、EF網のトポロジ、EF網内全ての2ノード間の帯域要求、及び各リンクの伝送容量から、特定のリンクに負荷が集中しないようなトラヒック構成を算出する。計算部11が、トラヒック構成を計算する手法は複数存在する。当該手法の一例として、最適化問題1(数1)を解くことで算出することができる。
Figure 2016054342
最適化問題1は、網内のリンク使用率の最大値αを最小化するようなトラヒック構成Xi,j を計算する問題である。網内のリンク使用率の最大値αを最小化することで、特定のリンクにトラヒックが集中することを防ぎ、負荷分散性能を最大化する。
以下で各変数の定義を述べる。Eはリンクの集合を、Xi,j はノードiからノードjに流れる帯域要求lに属するトラヒック量を、ci,jはノードiからノードjの向きのリンクの伝送容量を、Lは帯域要求の集合を、dは帯域要求lの要求帯域量を、sは帯域要求lの送信元ノードを、tは帯域要求lの送信先ノードを、αはEF網中の全リンクのうち最大となるリンク使用率を、表す。制約条件1、2及び3はトラヒック量保存の法則を表している。
次に、各制約条件について述べる。制約条件1は、帯域要求lの送信元ノードsから流出するトラヒックの総量は、帯域要求lの要求帯域量dと等しくなることを表している。制約条件2は、帯域要求lの送信先ノードtへ流入するトラヒックの総量は、帯域要求2の要求帯域量dと等しくなることを表している。制約条件3は、s、t以外のノードに流入するトラヒックと、流出トラヒックの総量は等しくなることを表している。制約条件5は、各リンクに流れるトラヒックの総量は、リンクの伝送容量と、EF網中の全リンクのうち最大となるリンク使用率の積より小さくなることを表している。制約条件5はXi,j の定義域を表している。
計算部11は、最適化問題1の代わりに下記の最適化問題2(数2)を解くことで、トラヒック構成を算出しても良い。
Figure 2016054342
最適化問題1と最適化問題2は、目的関数が異なる。最適化問題2では、EF網内の最大リンク使用率αに、経路の迂回に対するペナルティ項rΣΣXi,j を加えたものを目的関数とする。rは調整可能なパラメータである。ΣΣXi,j はEF網内を流れるトラヒック量の総量を表し、より多くのトラヒックがより多くのリンクを経由する程大きな値を取る。つまりΣΣXi,j を小さくすることで、フローが経由するホップ数が少なくなり、迂回経路利用による通信遅延を抑制することができる。つまり、最適化問題2ではEF網内のリンク使用率の平均化と、迂回経路の回避を同時に考慮する。パラメータrによりリンク使用率の平均化と、迂回経路の回避の間の、優先度を調整することができる。
[リンクメトリック算出手段、リンクメトリック算出手順]
計算部11は、前記のトラヒック構成で使用される転送経路が最小リンクメトリック和経路となるような、リンクメトリックを逆算する。計算部11がリンクメトリックを算出する手法は複数存在する。当該手法の一例として、下記の最適化問題3(数3)を解くことで算出することができる。
Figure 2016054342
最適化問題3は、最適化問題1の双対問題として導出されるものであり、目的関数ΣdUを最小化する変数Uiとmi,jを求める。最適化問題3の解であるmi,jを、ノードiとノードj間のリンクメトリックとして設定した時の最短経路が、最適化問題1の解となるトラヒックが通る経路を全て含む。この事実は、非特許文献2によって証明されている。ただし、非特許文献2は、往復非対称なリンクメトリックに対して証明されているため、最適化問題1と最適化問題3に証明を適用する際は、往復対称なリンクメトリックに条件を変更する必要がある。
以下では最適化問題3で用いられる変数の定義を行う。ただし、最適化問題3は最適化問題1から機械的に導出される数式であるため、一部の変数について物理的な意味付けを与えるのが困難であることに注意されたい。Eはリンクの集合を、mi,jはノードiからノードjの向きのリンクメトリックを、ci,jはノードiからノードjの向きのリンクの伝送容量を、Lは帯域要求の集合を、dは帯域要求lの要求帯域量を、sは帯域要求lの送信元ノードを、tは帯域要求lの送信先ノードを、表す。
以下では最適化問題3で用いられる制約条件について述べる。ただし、最適化問題3は最適化問題1から機械的に導出される数式であるため、一部の制約条件について物理的な解釈を与えるのが困難であることに注意されたい。制約条件2はmi,jの大きさを制限する式である。制約条件4はリンクメトリックmi,jの定義域を定める。制約条件5はリンクメトリックの対称性を定める。
計算部11は、最適化問題3の代わりに下記の最適化問題4(数4)を解くことで、リンクメトリックを算出しても良い。
Figure 2016054342
最適化問題4と最適化問題2の関係は、最適化問題3と最適化問題1の関係と同様である。つまり、最適化問題4の解mi,jとパラメータrの和mi,j+rを、ノードiとノードj間のリンクメトリックとして設定した時の最短経路が、最適化問題2の解となるトラヒックが通る経路を全て含む。
また計算部11は、考えうる全てのリンクメトリックを網羅的に試行することで、前記のトラヒック構成で使用される転送経路が最小リンクメトリック和経路となるような、リンクメトリックを逆算しても良い。しかし、リンク数が増えるに伴って爆発的に計算量が増加するため、計算アルゴリズムに工夫が必要となる。
[経路選択確率算出手段、経路選択確率算出手順]
次に、計算部11は、前記のトラヒック構成を実現するような経路選択確率を逆算する。具体的には、実現したいトラヒック構成Xi,jと各帯域要求dより連立方程式5(数5)を立式し、経路選択確率p を逆算することができる。
Figure 2016054342
連立方程式5は、ノードiとノードj間のリンクを流れる帯域要求lに属するトラヒック量Xi,j を実現するような、経路nの選択確率pを算出する。
以下では、連立方程式5で用いられる変数を定義する。Lは帯域要求の集合を、dは帯域要求lの要求帯域量を、Nは帯域要求lが利用する転送経路の候補集合を、nは転送経路を、Xi,j はノードiからノードjに流れる帯域要求lに属するトラヒック量を、zi,j はノードi―ノードj間のリンクが転送経路nに含まれるか否かを、表す。転送経路nがノードi―ノードj間のリンクを含むときzi,j =1であり、含まないときzi,j =0である。
連立方程式5を構成する式1、2について述べる。式1は、各転送経路のトラヒックのうちノードi−ノードj間を流れるものの総和が、Xi,j と等しくならなければならないことを表している。式2は、pが確率値であることから、帯域要求lが利用する転送経路集合Nについてpを足し合わせた結果が1にならなければならないことを表している。
[経路構築手段、経路構築手順]
転送経路判断部14は、算出されたリンクメトリックをそれぞれの前記リンクに割り当て、算出された経路選択確率をトラヒック構成で使用されるそれぞれの転送経路に割り当て、トラヒック構成をSPBネットワークに構築する。そして、転送経路判断部14は、等コストの転送経路(Equal Cost Tree)が存在する場合には、計算部11で算出された転送経路選択確率を参照して経路選択を行い、フレームに与えるB−VIDを定める。
(先行技術と本実施形態との違い)
図3及び図4は、非特許文献1の技術と非特許文献2の技術を併用した場合を表す。図3及び図4は、EF網200の具体例の一つを表している。SW0からSW4の5つの通信装置と、ERが接続されている。各SWは、ここには図示されていない他の通信装置と接続されていても良い。いずれのリンクもブロックされておらず、トラヒックが疎通可能な状態となっている。説明の単純化のため、SW0に複数のユーザが収容され、各ユーザ端末とER間で合計2Gbpsの帯域要求があるものとする。非特許文献2の技術は、図3のように非対称メトリックを算出する場合がある。このとき、リンクメトリックの対称化処理により図4のようにリンクメトリックが変更される。図4中の点線はSW0とSW4間の最短経路を表し、これを経路0とする。
非特許文献1の技術は、フローを最短経路に割り振る確率を設計することができるが、図4に示すEF網200の具体例の場合は、最短経路は経路0のみのため、全てのフローを経路0に割り振る。よって、トラヒックはSW0−SW1間のリンクと、SW1−SW3間のリンクと、SW3−SW4間のリンクとに集中してしまう。
図5、図6及び図7は、同様のEF網200に本実施形態のSWを適用した場合を表す。本実施形態のSWは、「トラヒック構成算出手段」で、まず図5に示されるような、最終的に実現したいトラヒック構成を算出する。次に、本実施形態のSWは、「リンクメトリック算出手段」で、図6に示すように、トラヒック構成を実現するリンクメトリックを逆算する。ここで算出されるリンクメトリックは、非特許文献2の技術と異なり、必ず往復対称なものとなり、SPBのリンクメトリック対称化処理によって最短経路形状が変更されることはない。最後に、本実施形態のSWは、「経路選択確率算出手段」で、図7に示すように、トラヒック構成を実現する経路選択確率を逆算する。
以上に示すように、本発明は、特定のリンクにトラヒックが集中しないようなトラヒック構成をあらかじめ計算し、そのトラヒック構成に対応する往復対称なリンクメトリックと、経路選択を逆算することで、特定のリンクにトラヒックが偏ることを防ぎ、帯域利用効率を向上させることができる。
11:計算部
12:経路情報交換部
13:転送テーブル
14:転送経路判断部
100:コアネットワーク
200:EFネットワーク

Claims (3)

  1. SPB(Shortest Path Bridging)ネットワークを形成する通信装置であって、
    SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手段、
    前記情報取得手段が取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手段、
    前記トラヒック構成算出手段が算出した前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手段、及び
    前記トラヒック構成算出手段が算出した前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手段、
    を有する計算部と、
    前記リンクメトリック算出手段が算出した前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手段が算出した前記経路選択確率を前記トラヒック構成上の転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手段を有する転送経路判断部と、
    を備える通信装置。
  2. SPB(Shortest Path Bridging)ネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手順と、
    前記情報取得手順で取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手順と、
    前記トラヒック構成算出手順で算出された前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手順と、
    前記トラヒック構成算出手順で算出された前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手順と、
    前記リンクメトリック算出手順で算出された前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手順で算出された前記経路選択確率を前記トラヒック構成で使用されるそれぞれの転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手順と、
    を備える通信方法。
  3. コンピュータをSPB(Shortest Path Bridging)ネットワークを形成する通信装置として機能させるためのプログラムであって、
    前記コンピュータに、
    SPBネットワークのトポロジ、SPBネットワーク内の全ての2ノード間の帯域要求、及びSPBネットワークに形成される全てのリンクの伝送容量のネットワーク情報を取得する情報取得手順と、
    前記情報取得手順で取得した前記ネットワーク情報に基づいて、前記リンク全ての帯域使用率の最大値αを最小化するトラヒック構成を算出するトラヒック構成算出手順と、
    前記トラヒック構成算出手順で算出された前記トラヒック構成で使用される転送経路のリンクメトリックの和が最小となるように、前記トラヒック構成で使用される転送経路のそれぞれの前記リンクのリンクメトリックを算出するリンクメトリック算出手順と、
    前記トラヒック構成算出手順で算出された前記トラヒック構成上の転送経路を選択する確率である経路選択確率を算出する経路選択確率算出手順と、
    前記リンクメトリック算出手順で算出された前記リンクメトリックをそれぞれの前記リンクに割り当て、前記経路選択確率算出手順で算出された前記経路選択確率を前記トラヒック構成で使用されるそれぞれの転送経路に割り当て、前記トラヒック構成をSPBネットワークに構築する経路構築手順と、
    を実行させることを特徴とするプログラム。
JP2014178429A 2014-09-02 2014-09-02 通信装置、通信方法及びプログラム Pending JP2016054342A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178429A JP2016054342A (ja) 2014-09-02 2014-09-02 通信装置、通信方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178429A JP2016054342A (ja) 2014-09-02 2014-09-02 通信装置、通信方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2016054342A true JP2016054342A (ja) 2016-04-14

Family

ID=55744305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178429A Pending JP2016054342A (ja) 2014-09-02 2014-09-02 通信装置、通信方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2016054342A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499306B2 (en) 2017-05-24 2019-12-03 Cisco Technology, Inc. Methods and apparatus for selecting a network route for data communications for IoT devices
US10805178B2 (en) 2017-11-27 2020-10-13 Cisco Technology, Inc. Subscription-based event notification techniques for reducing data buffering in mobile networks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499306B2 (en) 2017-05-24 2019-12-03 Cisco Technology, Inc. Methods and apparatus for selecting a network route for data communications for IoT devices
US11240728B2 (en) 2017-05-24 2022-02-01 Cisco Technology, Inc. Methods and apparatus for selecting a network route for data communications for IoT devices
US11751118B2 (en) 2017-05-24 2023-09-05 Cisco Technology, Inc. Methods and apparatus for selecting a network route for data communications for IoT devices
US10805178B2 (en) 2017-11-27 2020-10-13 Cisco Technology, Inc. Subscription-based event notification techniques for reducing data buffering in mobile networks

Similar Documents

Publication Publication Date Title
US11588733B2 (en) Slice-based routing
EP2783480B1 (en) Method for multicast flow routing selection
US8989049B2 (en) System and method for virtual portchannel load balancing in a trill network
EP2911348B1 (en) Control device discovery in networks having separate control and forwarding devices
US9160651B2 (en) Metric biasing for bandwidth aware tie breaking
EP2842278B1 (en) Three stage folded clos optimization for 802.1aq
EP2839614B1 (en) Selecting between equal cost shortest paths in a 802.1aq network using split tiebreakers
US9503360B2 (en) Method and apparatus for traffic engineering in shortest path bridged networks
US20150032871A1 (en) Automated traffic engineering based upon the use of bandwidth and unequal cost path utilization
US10581723B2 (en) PCEP extension for PCECC support of distributed computing, multiple services, and inter-domain routing
EP2614615B1 (en) Automated traffic engineering for 802.1aq based upon the use of link utilization as feedback into the tie-breaking mechanism
US8902794B2 (en) System and method for providing N-way link-state routing redundancy without peer links in a network environment
US11290394B2 (en) Traffic control in hybrid networks containing both software defined networking domains and non-SDN IP domains
JP2016054342A (ja) 通信装置、通信方法及びプログラム
JP5931019B2 (ja) 通信装置
Nakayama Rate-based path selection for shortest path bridging in access networks
WO2016078347A1 (zh) 一种trill网络分发树选择方法和trill网络节点
Nakayama Optimization of ECT selection probability in SPBM networks
JP2015156589A (ja) 通信装置及び通信プログラム
JP2016042670A (ja) 通信装置及び転送方法
WO2015011648A1 (en) Automated traffic engineering based upon the use of bandwidth and unequal cost path utilization
JP2015095735A (ja) 通信装置及び通信方法
Nakayama et al. Rate-based path selection based on link metric optimization in SPBM
Nakayama Load Balancing with Rate-Based Path Selection for End-to-End Multipath Networks
JP2015156590A (ja) 通信装置及び通信プログラム