JP2016054239A - Laminated variable varistor and manufacturing method thereof - Google Patents

Laminated variable varistor and manufacturing method thereof Download PDF

Info

Publication number
JP2016054239A
JP2016054239A JP2014179873A JP2014179873A JP2016054239A JP 2016054239 A JP2016054239 A JP 2016054239A JP 2014179873 A JP2014179873 A JP 2014179873A JP 2014179873 A JP2014179873 A JP 2014179873A JP 2016054239 A JP2016054239 A JP 2016054239A
Authority
JP
Japan
Prior art keywords
powder
surface layer
layer portion
content
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014179873A
Other languages
Japanese (ja)
Other versions
JP6511635B2 (en
Inventor
佳子 東
Yoshiko Azuma
佳子 東
英一 古賀
Hidekazu Koga
英一 古賀
幹典 網沢
Mikinori Amisawa
幹典 網沢
裕司 山岸
Yuji Yamagishi
裕司 山岸
将之 鳳桐
Masayuki Hogiri
将之 鳳桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014179873A priority Critical patent/JP6511635B2/en
Publication of JP2016054239A publication Critical patent/JP2016054239A/en
Application granted granted Critical
Publication of JP6511635B2 publication Critical patent/JP6511635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reliable laminated variable varistor superior in ESD resistance capable of lowering the voltage.SOLUTION: The laminated variable varistor includes: a voltage nonlinear resistive element 11 which is constituted of plural ZnO crystal particles and an oxide containing Sr and Co among the ZnO crystal particles; plural internal electrodes 12 in the voltage nonlinear resistive element 11; and a surface layer 14 containing Zn smaller amount than a region between the internal electrodes 12. The region between the internal electrodes 12 contains no Bi or B, but the surface layer 14 contains Bi or B.SELECTED DRAWING: Figure 1

Description

本発明は、各種電子機器を異常電圧から保護するための積層バリスタおよびその製造方法に関するものである。   The present invention relates to a laminated varistor for protecting various electronic devices from abnormal voltage and a method for manufacturing the same.

近年、ICは高集積化に伴い、静電気(ESD:Electro−Static Discharge)に対してさらに脆弱になってきており、ESD対策の必要性が高まっている。このESD対策部品として、積層バリスタが広く用いられている。   In recent years, ICs have become more vulnerable to static electricity (ESD) with higher integration, and the need for ESD countermeasures has increased. As this ESD countermeasure component, a multilayer varistor is widely used.

バリスタにおける更なる保護性能向上のためには、動作電圧の低圧化、およびESDに自身が破壊されないようESD耐性に優れていることが不可欠である。そのようなバリスタは、ZnOに特性発現のためにBiもしくはPrを添加した2種類の系が主要であるが、これらの系は動作電圧が高く、ESD耐性も不十分である。そこで、新規添加物として検討されたのがSrCoO3である。SrCoO3は、ZnOと成す障壁が低く、融点が高いため、従来のBi系、Pr系に比べ低圧化、ESD耐性が向上している。 In order to further improve the protection performance of the varistor, it is essential that the operating voltage is reduced and that the ESD resistance is excellent so that the ESD is not destroyed. Such varistors are mainly composed of two types of systems in which Bi or Pr is added to ZnO for characteristic expression, but these systems have a high operating voltage and insufficient ESD resistance. Therefore, SrCoO 3 has been studied as a new additive. Since SrCoO 3 has a low barrier to ZnO and a high melting point, it has lower pressure and improved ESD resistance compared to conventional Bi and Pr systems.

一方耐湿性等の信頼性に関する要望も強くなってきている。   On the other hand, there is an increasing demand for reliability such as moisture resistance.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2011−216877号公報JP 2011-216877 A

しかしながら、アルカリ土類金属は一般に水と反応性が高いという特徴があり、SrCoO3も、水により分解し、SrOを生じる。この結果、粒界酸化物の分解により絶縁抵抗が低下することに加え、SrOと水の反応によるSr(OH)2水和物の生成に伴い、粒界部の体積膨張が起こり、クラックが生じやすくなり、内部まで水が浸入し、特性が劣化する可能性がある。 However, alkaline earth metals are generally characterized by high reactivity with water, and SrCoO 3 is also decomposed by water to produce SrO. As a result, in addition to the decrease in the insulation resistance due to the decomposition of the grain boundary oxide, the volume expansion of the grain boundary portion occurs due to the generation of Sr (OH) 2 hydrate due to the reaction of SrO and water, resulting in cracks. There is a possibility that water will penetrate into the interior and the characteristics will deteriorate.

本発明は上記従来の課題を解決するものであり、低圧化が可能で、ESD耐性、信頼性に優れた積層バリスタを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a multilayer varistor that can be reduced in pressure and is excellent in ESD resistance and reliability.

本発明は上記課題を解決するために、複数個のZnO結晶粒子と、このZnO結晶粒子間にSrおよびCoを含む酸化物と、からなる電圧非直線抵抗体と、この電圧非直線抵抗体の内部に複数個の内部電極と、内部電極に挟まれた領域よりもZn含有量が低い表層部と、を備えた積層バリスタであって、内部電極に挟まれた領域にはBiおよびBは含まれず、この表層部にはBiまたはBが含まれているように構成したものである。   In order to solve the above problems, the present invention provides a voltage non-linear resistor comprising a plurality of ZnO crystal particles and an oxide containing Sr and Co between the ZnO crystal particles, and the voltage non-linear resistor. A laminated varistor including a plurality of internal electrodes and a surface layer portion having a lower Zn content than a region sandwiched between the internal electrodes, wherein Bi and B are included in the region sandwiched between the internal electrodes However, this surface layer portion is configured to contain Bi or B.

電圧非直線抵抗体の外周部におけるSrをBiまたはBと反応させて水に不溶な反応性生物を生成することにより、水による粒界添加物の分解を防ぎ、耐湿性の向上した積層バリスタを得ることができる。素子の表層部を、Zn含有量の少ない多孔質化することで、SrをBiまたはBと反応させる深さを深くすることができ、拡散が促進され、より耐湿性が向上する。   By reacting Sr at the outer periphery of the voltage non-linear resistor with Bi or B to produce reactive organisms that are insoluble in water, the multilayer varistor with improved moisture resistance is prevented by preventing decomposition of grain boundary additives by water. Can be obtained. By making the surface layer portion of the element porous with a small Zn content, the depth of reaction of Sr with Bi or B can be increased, diffusion is promoted, and moisture resistance is further improved.

本発明の一実施の形態における積層バリスタの断面図Sectional drawing of the lamination | stacking varistor in one embodiment of this invention 本発明の一実施の形態における積層バリスタの元素分布測定点を示す断面図Sectional drawing which shows the element distribution measurement point of the lamination | stacking varistor in one embodiment of this invention

以下、本発明の一実施の形態における積層バリスタについて、図面を参照しながら説明する。   Hereinafter, a laminated varistor according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態における積層バリスタの断面図であり、電圧非直線抵抗体11の間に複数個の内部電極12が設けられ、両端部には内部電極12と電気的に接続された外部電極13が設けられ、外部電極13の上にはメッキ層15が形成されている。電圧非直線抵抗体11は、複数個のZnO結晶粒子と、このZnO結晶粒子間に析出したSrCoO3と、からなる焼結体であり、このように構成することによりバリスタ特性が発現するようにしたものである。SrCoO3は、ZnOと成す障壁が低く、融点が高いため、従来のBi系、Pr系に比べ低圧化することができ、またESD耐性も向上させることができる。また、電圧非直線抵抗体11による素子は、その外周部分が内部電極に挟まれた領域よりもZn含有量が低い表層部14となっている。表層部14におけるZn含有量は、内部電極に挟まれた領域のZn含有量の90%以下となっており、表層部14はその低下分相当の気孔を有している。 FIG. 1 is a cross-sectional view of a multilayer varistor according to an embodiment of the present invention, in which a plurality of internal electrodes 12 are provided between voltage nonlinear resistors 11, and the internal electrodes 12 are electrically connected to both ends. A connected external electrode 13 is provided, and a plating layer 15 is formed on the external electrode 13. The voltage non-linear resistor 11 is a sintered body composed of a plurality of ZnO crystal particles and SrCoO 3 precipitated between the ZnO crystal particles, and the varistor characteristics are expressed by configuring in this way. It is a thing. Since SrCoO 3 has a low barrier to ZnO and a high melting point, it can be made to have a lower pressure than conventional Bi-based and Pr-based materials and can also improve ESD resistance. In addition, the element using the voltage non-linear resistor 11 has a surface layer portion 14 having a lower Zn content than the region where the outer peripheral portion is sandwiched between the internal electrodes. The Zn content in the surface layer portion 14 is 90% or less of the Zn content in the region sandwiched between the internal electrodes, and the surface layer portion 14 has pores corresponding to the reduced amount.

しかしながら、アルカリ土類金属は一般に水と反応性が高いという特徴があり、SrCoO3も、水により分解し、SrOを生じる。この結果、粒界酸化物の分解により絶縁抵抗が低下することに加え、SrOと水との反応によるSr(OH)2水和物の生成に伴い、粒界部の体積膨張が起こり、クラックが生じやすくなり、内部まで水が浸入し、特性が劣化する可能性がある。 However, alkaline earth metals are generally characterized by high reactivity with water, and SrCoO 3 is also decomposed by water to produce SrO. As a result, in addition to the decrease in the insulation resistance due to the decomposition of the grain boundary oxide, the volume expansion of the grain boundary portion occurs due to the generation of Sr (OH) 2 hydrate by the reaction of SrO and water, and cracks occur. This is likely to occur, and water may penetrate into the interior, resulting in deterioration of properties.

これに対し本実施の形態では、電圧非直線抵抗体の外周部をZn含有量の少ない多孔質化した表層部14とし、Bi23またはB23を含んだガラスを拡散する。表層部14では多孔質状態となっているためSrをBiまたはBと反応させる面積が増大し、拡散が促進される。この表層部14の中ではSrとBiあるいはSrとBの反応生成物が形成されており、この反応生成物が水に対して溶けにくいものとなり、耐湿性が向上したものとなっている。したがって、表層部14の気孔表面は、不溶化された反応生成物となっており、多孔質状態であっても耐湿性は保証されることとなる。一方内部電極12で挟まれた領域には、BiおよびBは含まれないようにしている。これはSrに加えてBiまたはBが含まれていると、BiまたはBがSrCoO3と化合し、障壁が消失するため、バリスタ特性が損なわれるためである。ここでBiおよびBが含まれないとは、バリスタ特性を維持するため、原子%で0.01%以下にしていることを意味する。 On the other hand, in the present embodiment, the outer peripheral portion of the voltage nonlinear resistor is made a porous surface layer portion 14 having a small Zn content, and glass containing Bi 2 O 3 or B 2 O 3 is diffused. Since the surface layer portion 14 is in a porous state, the area where Sr reacts with Bi or B increases, and diffusion is promoted. In this surface layer portion 14, a reaction product of Sr and Bi or Sr and B is formed. This reaction product is hardly soluble in water, and the moisture resistance is improved. Therefore, the pore surface of the surface layer portion 14 is an insolubilized reaction product, and moisture resistance is guaranteed even in a porous state. On the other hand, Bi and B are not included in the region sandwiched between the internal electrodes 12. This is because when Bi or B is contained in addition to Sr, Bi or B combines with SrCoO 3 and the barrier disappears, so that the varistor characteristics are impaired. Here, Bi and B are not included, which means that the atomic percentage is 0.01% or less in order to maintain the varistor characteristics.

表層部14はバリスタ特性を消失し、低抵抗化している。そのため表層部14を介して内部電極12と外部電極13の間で最悪の場合導通する。バリスタとしての機能を損なわないため、表層部14と内部電極12との間の抵抗値を、内部電極12間の抵抗値以上にする必要がある。即ち、表層部14と内部電極12間は、内部電極間の抵抗値以上の値が得られる距離を確保して形成する。また、表層部14は10μm以上の厚みで、バリスタ特性を損なわない限りは、素子内部へ深く分布していることが好ましい。   The surface layer portion 14 loses the varistor characteristics and has a low resistance. Therefore, in the worst case, conduction occurs between the internal electrode 12 and the external electrode 13 via the surface layer portion 14. In order not to impair the function as a varistor, the resistance value between the surface layer portion 14 and the internal electrode 12 needs to be greater than or equal to the resistance value between the internal electrodes 12. That is, the distance between the surface layer portion 14 and the internal electrode 12 is ensured so that a distance greater than the resistance value between the internal electrodes can be obtained. Further, it is preferable that the surface layer portion 14 has a thickness of 10 μm or more and is deeply distributed inside the element as long as the varistor characteristics are not impaired.

また、表層部14の中に含まれるSrの含有量を、内部電極に挟まれた領域におけるSr含有量よりも低くしている。内部電極12に挟まれた領域は所定のバリスタ特性を得るために、所定のSr含有量が必要となるが、表層部14はバリスタ特性を保持し、外部からの水分等が浸入しないようにするためのものであり、Srが必要なわけではない。そこで表層部14の中に含まれるSrの含有量を低くし、残ったSrはBiあるいはBとの反応生成物を作ることにより、水に対して強い積層バリスタを得ることができる。   In addition, the Sr content contained in the surface layer portion 14 is set lower than the Sr content in the region sandwiched between the internal electrodes. The region sandwiched between the internal electrodes 12 needs a predetermined Sr content in order to obtain a predetermined varistor characteristic, but the surface layer portion 14 maintains the varistor characteristic and prevents moisture from the outside from entering. Therefore, Sr is not necessary. Therefore, by reducing the content of Sr contained in the surface layer portion 14 and making the remaining Sr a reaction product with Bi or B, a laminated varistor that is strong against water can be obtained.

次に本発明の一実施の形態における積層バリスタの製造方法について説明する。   Next, the manufacturing method of the laminated varistor in one embodiment of the present invention will be described.

まず、出発原料として、主成分であるZnO粉末と、副成分としてアルカリ土類金属を含むSrCO3粉末およびCo23粉末とさらに高純度なAl23を準備し、所望の組成に秤量する。SrCO3粉末とCo23粉末は粒界層を形成するものである。 First, as starting materials, ZnO powder as a main component, SrCO 3 powder and Co 2 O 3 powder containing alkaline earth metal as subcomponents, and higher purity Al 2 O 3 are prepared and weighed to a desired composition To do. SrCO 3 powder and Co 2 O 3 powder form a grain boundary layer.

次に秤量したこれらの出発原料粉末をポリエチレン製ボールミルに入れ、φ5mmの安定化ジルコニア製の玉石および純水を加え、約20時間混合し、脱水乾燥した。この乾燥粉末を解砕し、有機バインダー等を混合してφ10mmの安定化ジルコニア製の玉石を加え混合することで均一に分散されたスラリーとした。このスラリーを用い、セラミックシートを作製する。   Next, these starting raw material powders weighed were put into a polyethylene ball mill, φ5 mm stabilized zirconia cobblestone and pure water were added, mixed for about 20 hours, and dehydrated and dried. The dried powder was pulverized, mixed with an organic binder and the like, and a stabilized zirconia cobblestone having a diameter of 10 mm was added and mixed to obtain a uniformly dispersed slurry. A ceramic sheet is produced using this slurry.

このセラミックシート上に内部電極用のCuペーストをスクリーン印刷法で印刷し、所定数の導体層を形成した。これらと内部電極用導電ペーストを印刷していないセラミックシートとを所定の形状になるように積層、加圧することで積層体ブロックを作製した。これを所望の寸法に切断・分離して得た素子を、酸素分圧が10‐5Paから10‐1Paの低酸素雰囲気下で1000〜1100℃で焼成することでセラミック焼結体を作製した。このように酸素分圧が低い雰囲気で焼成することにより、素子表面付近のZnが蒸発しやすくなり、外周部に内部電極に挟まれた領域よりもZn含有量が低い表層部14が形成される。 A Cu paste for internal electrodes was printed on the ceramic sheet by a screen printing method to form a predetermined number of conductor layers. These and a ceramic sheet on which the internal electrode conductive paste was not printed were laminated and pressed so as to have a predetermined shape, thereby producing a laminate block. Form a ceramic sintered body by the elements obtained by cutting and separating the desired dimensions which the oxygen partial pressure is sintered at 1000 to 1100 ° C. under a low oxygen atmosphere of 10- 1 Pa from 10- 5 Pa did. By firing in an atmosphere having a low oxygen partial pressure in this manner, Zn near the surface of the element is easily evaporated, and the surface layer portion 14 having a lower Zn content than the region sandwiched between the internal electrodes is formed in the outer peripheral portion. .

次にBi、Bの少なくとも1種類を含むガラス粉体とAl23粉体を重量比で1:9になるよう混合して得た混合粉をセラミック焼結体素子の重量の2倍使用し、素子を混合粉にマッフルし、約800℃、酸素分圧4.24×101Pa未満でガラス拡散熱処理を行った。 Next, a mixed powder obtained by mixing glass powder containing at least one of Bi and B and Al 2 O 3 powder at a weight ratio of 1: 9 is used twice the weight of the ceramic sintered body element. Then, the device was muffled with the mixed powder, and glass diffusion heat treatment was performed at about 800 ° C. and an oxygen partial pressure of less than 4.24 × 10 1 Pa.

ここでAl23粉体は平均粒径約50μmのものを用い、ガラス粉体は平均粒径約7μmのものを用いた。このようにガラス粉体の粒径がAl23粉体よりも小さいものを用い、平均粒径10μm以下のものを用いることにより、ガラス粉体の中のBiまたはBをセラミック焼結体素子の表面に拡散を迅速に進めることが出来る。拡散されたBiまたはBは、Srと反応し、水に不溶な反応生成物を形成する。このようにすることにより同時にセラミック焼結体素子の表面付近に存在するSrが表面付近のガラス粉体の中のBiまたはBと反応して、セラミック焼結体素子の外に排出される。より望ましくは、ガラス粉体の平均粒径を、Al23粉体の平均粒径の1/3以下にすることが好ましい。このようにすることにより、さらにBiまたはBおよびSrの移動を促進することができる。 Here, Al 2 O 3 powder having an average particle diameter of about 50 μm was used, and glass powder having an average particle diameter of about 7 μm was used. Thus, by using a glass powder having a particle size smaller than that of Al 2 O 3 powder and using an average particle size of 10 μm or less, Bi or B in the glass powder is converted into a ceramic sintered body element. Can rapidly diffuse to the surface of the substrate. The diffused Bi or B reacts with Sr to form a reaction product insoluble in water. By doing so, Sr existing near the surface of the ceramic sintered body element reacts with Bi or B in the glass powder near the surface and is discharged out of the ceramic sintered body element. More desirably, the average particle size of the glass powder is preferably 1/3 or less of the average particle size of the Al 2 O 3 powder. By doing so, the movement of Bi or B and Sr can be further promoted.

さらにこの混合粉のうち、Al23粉体の割合を重量比で80%以上95%以下とすることが望ましい。Al23粉体の割合が80%よりも少なくなると、ガラス粉体がセラミック焼結体素子と接する割合が多くなりすぎ、表面に固まりとなって付着しやすくなる。一方Al23粉体の割合が95%よりも多くなると、セラミック焼結体素子の表面付近のSrと反応しにくくなるためである。 Furthermore, it is desirable that the ratio of the Al 2 O 3 powder in the mixed powder is 80% or more and 95% or less by weight. When the proportion of Al 2 O 3 powder is less than 80%, the proportion of the glass powder in contact with the ceramic sintered body element becomes too large, and it becomes hard to adhere to the surface. On the other hand, when the proportion of Al 2 O 3 powder exceeds 95%, it becomes difficult to react with Sr near the surface of the ceramic sintered body element.

以上のようにすることにより、ガラス拡散熱処理時に素子の表層部14に含まれるSrを外に排出するとともに、残ったSrとガラスの中のBiあるいはBとを反応させ、反応生成物を形成することができる。   By doing so, Sr contained in the surface layer part 14 of the element is discharged outside during the glass diffusion heat treatment, and the remaining Sr and Bi or B in the glass are reacted to form a reaction product. be able to.

その後、酸素分圧4.24×101Pa以上、500〜750℃で熱処理することにより、バリスタ特性を発現させる。この際、雰囲気は大気雰囲気に近いほうが好ましい。熱処理時に生じた内部電極12の端面のCu酸化物を除去しCu内部電極を露出させた後、外部電極用ペーストを塗布後に乾燥させ700〜1100℃で外部電極を焼付け処理し、電圧非直線性抵抗体を素体とする積層バリスタを得た。 Thereafter, heat treatment is performed at an oxygen partial pressure of 4.24 × 10 1 Pa or more and 500 to 750 ° C., thereby exhibiting varistor characteristics. At this time, the atmosphere is preferably close to the air atmosphere. After removing Cu oxide on the end face of the internal electrode 12 generated during the heat treatment to expose the Cu internal electrode, the external electrode paste is applied and then dried, and the external electrode is baked at 700 to 1100 ° C., and voltage nonlinearity A laminated varistor having a resistor as an element was obtained.

ガラス拡散熱処理時に、上記混合粉とセラミック焼結体素子をサヤに入れ、回転炉にて1.5rpmで回転させながら熱処理した。このようにすることにより、ガラス拡散処理が均一になるようにした。この素子について、電子線マイクロアナライザ(EPMA)を用いて、測定箇所一部分あたり約10μm口径で測定を行ったところ、表層から10μm以上のガラス拡散が確認された。以上のように作成した素子に湿中課電試験(60℃、RH95%、3.5V印加、500H)を行った結果、N=25で全ての素子がΔV1mA<±10%の特性変動幅内に納まった。一方Zn含有量の低い表層部14を設けずに同様の方法で作製した素子の場合、ガラス拡散層は表層から3μm以下の浅いものとなり、同様の試験を行ったところ、試験に用いた20個の素子全てにおいてV1mAが40%以上低下した。この処理を行った素子で耐湿性能が向上していることからも、表層を多孔質化することにより、ガラスの拡散が促進されたことと共に、このガラス拡散処理により、SrOが不溶化されたということがいえる。また、回転炉にてガラス拡散熱処理を行うことで、素子間でのバラつきなく耐湿性を向上させられる。 During the glass diffusion heat treatment, the mixed powder and the ceramic sintered body element were put in a sheath and heat-treated while being rotated at 1.5 rpm in a rotary furnace. By doing so, the glass diffusion treatment was made uniform. When this element was measured with an electron beam microanalyzer (EPMA) at a diameter of about 10 μm per part of the measurement site, glass diffusion of 10 μm or more was confirmed from the surface layer. As a result of conducting a voltage application test in the humidity (60 ° C., RH 95%, 3.5 V applied, 500 H) on the elements prepared as described above, the characteristic fluctuation range of all elements is ΔV 1 mA <± 10% at N = 25. Settled in. On the other hand, in the case of an element manufactured by the same method without providing the surface layer portion 14 having a low Zn content, the glass diffusion layer is shallower than the surface layer by 3 μm or less. In all of the devices, V 1 mA decreased by 40% or more. Since the moisture resistance performance of the element subjected to this treatment is improved, the diffusion of glass is promoted by making the surface layer porous, and the SrO is insolubilized by this glass diffusion treatment. I can say. Further, by performing glass diffusion heat treatment in a rotary furnace, moisture resistance can be improved without variation between elements.

800℃−15分の条件でBiを含むガラス粉体を用いてガラス拡散熱処理を行った素子について、ガラスの成分中では重元素のBiの拡散状態を、EPMAで、測定箇所一部分あたり約10μm口径で測定を行った。元素マッピングの結果によって、大気中で熱処理を行った場合、Biは素子表層から約50μmの深さまで分布していることがわかった。また、このガラスに含まれる成分が湿中劣化の原因であるSrと同位置に分布しており、選択的に反応していることが分かった。さらにSrの含有量を調べると、ガラスが拡散している部分では、内部電極に挟まれた部分よりも含有量が低くなっていることがわかった。素子数N=3について、図2に示すように、ガラスが拡散している表層部14における素子上面から下方に向けた順にあたる位置1、2、3と、内部電極12に挟まれた領域である素子内部の位置4、5、6におけるZn、Sr、Co、Biの含有量をEPMAにより解析した。各ポイントの位置は1から順に素子上面から10μm、30μm、50μm、495μm、500μm、505μmである。   About the element which performed glass diffusion heat processing using the glass powder containing Bi on condition of 800 degreeC-15 minutes, in the component of glass, the diffusion state of Bi of a heavy element in EPMA is about 10 micrometers aperture diameter per part of measurement location. The measurement was performed. From the result of element mapping, it was found that Bi was distributed from the device surface layer to a depth of about 50 μm when heat treatment was performed in the atmosphere. In addition, it was found that the components contained in this glass are distributed at the same position as Sr, which is the cause of the deterioration in moisture, and react selectively. Further, when the Sr content was examined, it was found that the content of the glass diffused was lower than that of the portion sandwiched between the internal electrodes. For the number of elements N = 3, as shown in FIG. 2, positions 1, 2, and 3 corresponding to the order from the upper surface of the element toward the lower side in the surface layer portion 14 where the glass diffuses, and the region sandwiched between the internal electrodes 12 The contents of Zn, Sr, Co and Bi at positions 4, 5, and 6 inside a certain element were analyzed by EPMA. The positions of the points are 10 μm, 30 μm, 50 μm, 495 μm, 500 μm, and 505 μm from the top of the element in order from 1.

(表1)に各測定ポイントにおけるZn、Sr、Co、Biの検出強度を記載する。(表2)は測定ポイント毎の各元素の検出強度の3素子平均である。   (Table 1) describes the detected intensities of Zn, Sr, Co, and Bi at each measurement point. (Table 2) is an average of the three elements of the detection intensity of each element at each measurement point.

Figure 2016054239
Figure 2016054239

Figure 2016054239
Figure 2016054239

測定ポイント1〜3では、素子内部の測定ポイント4〜6よりも10〜40%Znの検出強度が減少していることが分かる。Zn強度の減少は、焼成過程でZnOが蒸発したためであり、強度減少相当の開気孔が生成された多孔質組織となっている。Coについては測定ポイントで変化がないのに対し、Srでは1〜3で4〜6よりも検出強度が減少しており、その低下量は38%(N=3平均)である。そして、1〜3はガラス成分であるBiを含有しており、Biの存在と共にSr検出強度が減少している。Srとガラス成分が選択的に反応していることに加え、ガラス成分の拡散と共にSrが排出されたことは、明確である。また、Bを含むガラス粉体を用いた場合についても同様の結果が得られた。   It can be seen that at the measurement points 1 to 3, the detection intensity of 10 to 40% Zn is lower than the measurement points 4 to 6 inside the element. The decrease in Zn strength is due to evaporation of ZnO during the firing process, and a porous structure in which open pores corresponding to the decrease in strength are generated. For Co, there is no change at the measurement point, whereas for Sr, the detected intensity is reduced from 1 to 3 compared to 4 to 6, and the amount of reduction is 38% (N = 3 average). And 1-3 contain Bi which is a glass component, and Sr detection intensity | strength is reducing with the presence of Bi. In addition to the selective reaction of Sr and the glass component, it is clear that Sr was discharged as the glass component diffused. Similar results were obtained when glass powder containing B was used.

また、ガラス拡散の熱処理時の雰囲気により、ガラス層の形成状態が変化する。酸素分圧2.02Pa、750℃〜900℃で処理すると、EPMA元素マッピングで確認される拡散層厚みは10μmとなる。同熱処理プロファイルで酸素分圧を4.24×101Paとしたところ、ガラス拡散が20μmとなった。また、内部電極の酸化が起きるため、バリスタ特性は保持できないが、大気中(酸素分圧1.01×105Pa)で熱処理した素子のガラス拡散層が50μmであったことから、処理雰囲気中のO2濃度が高くなると拡散が進みやすくなることがわかる。拡散処理時の雰囲気によっても表層部14の厚みは制御可能である。また、熱処理の雰囲気が不活性に近付いていっても、ガラス拡散層が形成されるので、大気中で熱処理すると酸化されるような卑金属電極を形成した素子についても処理が可能である。また、大気中で焼成した素子については、大気中でガラス拡散処理を行っても、表層から10μmの深さまでしか拡散しなかった。素子表層のZnを蒸発させ、表層を多孔質化させることで、表面積が大きくなったため、ガラスの拡散をより容易にすることが出来ることが分かる。 Moreover, the formation state of a glass layer changes with the atmosphere at the time of heat processing of glass diffusion. When the treatment is performed at an oxygen partial pressure of 2.02 Pa and 750 ° C. to 900 ° C., the diffusion layer thickness confirmed by EPMA element mapping is 10 μm. When the oxygen partial pressure was 4.24 × 10 1 Pa in the same heat treatment profile, the glass diffusion was 20 μm. In addition, since the internal electrode is oxidized, the varistor characteristics cannot be maintained. However, the glass diffusion layer of the element heat-treated in the atmosphere (oxygen partial pressure 1.01 × 10 5 Pa) was 50 μm. It can be seen that the diffusion tends to proceed as the O 2 concentration increases. The thickness of the surface layer portion 14 can also be controlled by the atmosphere during the diffusion treatment. Further, even when the atmosphere of the heat treatment is close to inert, the glass diffusion layer is formed, so that it is possible to treat even an element having a base metal electrode that is oxidized when heat-treated in the atmosphere. Moreover, about the element baked in air | atmosphere, even if it performed the glass diffusion process in air | atmosphere, it diffused only to the depth of 10 micrometers from the surface layer. It can be seen that by diffusing Zn on the device surface layer and making the surface layer porous, the surface area is increased, and thus the glass can be more easily diffused.

本発明に係る積層バリスタは、低圧化が可能で、ESD耐性、信頼性に優れたものを得ることができ、産業上有用である。   The laminated varistor according to the present invention is industrially useful because it can reduce the pressure, obtain an ESD resistance and excellent reliability.

11 電圧非直線抵抗体
12 内部電極
13 外部電極
14 表層部
15 メッキ層
11 Voltage Nonlinear Resistor 12 Internal Electrode 13 External Electrode 14 Surface Layer 15 Plated Layer

Claims (8)

複数個のZnO結晶粒子と、このZnO結晶粒子間にSrおよびCoを含む酸化物と、からなる電圧非直線抵抗体と、この電圧非直線抵抗体の内部に複数個の内部電極と、前記内部電極に挟まれた領域よりもZn含有量が低い表層部と、を備えた積層バリスタであって、前記内部電極に挟まれた領域にはBiおよびBは含まれず、前記表層部にはBiまたはBが含まれていることを特徴とする積層バリスタ。 A voltage non-linear resistor comprising a plurality of ZnO crystal particles, an oxide containing Sr and Co between the ZnO crystal particles, a plurality of internal electrodes inside the voltage non-linear resistor, and the internal A multilayer varistor including a surface layer portion having a lower Zn content than a region sandwiched between electrodes, wherein Bi and B are not included in the region sandwiched between the internal electrodes, and Bi or B is included in the surface layer portion. A multilayer varistor comprising B. 前記表層部におけるSr含有量は、前記内部電極に挟まれた領域におけるSr含有量よりも低くなっていることを特徴とする請求項1記載の積層バリスタ。 The multilayer varistor according to claim 1, wherein the Sr content in the surface layer portion is lower than the Sr content in a region sandwiched between the internal electrodes. 前記表層部の中のSrは、BiまたはBとの反応生成物を形成していることを特徴とする請求項1記載の積層バリスタ。 The multilayer varistor according to claim 1, wherein Sr in the surface layer part forms a reaction product with Bi or B. 主成分であるZnO粉末と、副成分としてSrCO3粉末およびCo23粉末とを混合してセラミックシートを作成する工程と、前記セラミックシートに内部電極を形成する工程と、前記内部電極を形成したセラミックシートと前記内部電極を形成していない前記セラミックシートを積層、加圧、切断した素子を低酸素雰囲気で焼成して、前記内部電極に挟まれた領域よりもZn含有量が低い表層部を設けたセラミック焼結体を得る工程と、Bi、Bの少なくとも1種類を含む粉体とAl23粉体との混合粉を前記セラミック焼結体にマッフルして熱処理することによりBiまたはBを前記セラミック焼結体の表層部に拡散させる工程とを備えた積層バリスタの製造方法。 A step of forming a ceramic sheet by mixing ZnO powder as a main component and SrCO 3 powder and Co 2 O 3 powder as subcomponents, a step of forming an internal electrode on the ceramic sheet, and forming the internal electrode The surface layer portion having a lower Zn content than the region sandwiched between the internal electrodes by firing the laminated ceramic sheet and the ceramic sheet not forming the internal electrode, pressurizing and cutting the element in a low oxygen atmosphere And a mixed powder of a powder containing at least one of Bi and B and an Al 2 O 3 powder is muffled on the ceramic sintered body and heat-treated to obtain Bi or And a step of diffusing B into a surface layer portion of the ceramic sintered body. 前記表層部におけるSr含有量は、前記内部電極に挟まれた領域におけるSr含有量よりも低くなっていることを特徴とする請求項4記載の積層バリスタの製造方法。 The method for producing a laminated varistor according to claim 4, wherein the Sr content in the surface layer portion is lower than the Sr content in a region sandwiched between the internal electrodes. 前記表層部の中のSrは、BiまたはBとの反応生成物を形成していることを特徴とする請求項4記載の積層バリスタの製造方法。 5. The method of manufacturing a laminated varistor according to claim 4, wherein Sr in the surface layer portion forms a reaction product with Bi or B. 前記混合粉のうち、前記Al23粉体の割合を重量比で80%以上95%以下としたことを特徴とする請求項4記載の積層バリスタの製造方法。 The method for producing a laminated varistor according to claim 4, wherein a ratio of the Al 2 O 3 powder in the mixed powder is 80% or more and 95% or less by weight. 前記Bi、Bの少なくとも1種類を含む粉体はガラス粉を用い、前記ガラス粉の平均粒径を、前記Al23粉体の平均粒径よりも小さくしたことを特徴とする請求項4記載の積層バリスタの製造方法。 5. The powder containing at least one of Bi and B uses glass powder, and the average particle diameter of the glass powder is smaller than the average particle diameter of the Al 2 O 3 powder. The manufacturing method of the lamination varistor of description.
JP2014179873A 2014-09-04 2014-09-04 Method of manufacturing laminated varistor Active JP6511635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179873A JP6511635B2 (en) 2014-09-04 2014-09-04 Method of manufacturing laminated varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179873A JP6511635B2 (en) 2014-09-04 2014-09-04 Method of manufacturing laminated varistor

Publications (2)

Publication Number Publication Date
JP2016054239A true JP2016054239A (en) 2016-04-14
JP6511635B2 JP6511635B2 (en) 2019-05-15

Family

ID=55744535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179873A Active JP6511635B2 (en) 2014-09-04 2014-09-04 Method of manufacturing laminated varistor

Country Status (1)

Country Link
JP (1) JP6511635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093073A (en) * 2016-12-05 2018-06-14 パナソニックIpマネジメント株式会社 Varistor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536503A (en) * 1991-07-25 1993-02-12 Murata Mfg Co Ltd Laminated varistor
JPH11176613A (en) * 1997-12-15 1999-07-02 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic part
JP2013197447A (en) * 2012-03-22 2013-09-30 Panasonic Corp Manufacturing method of multilayer varistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536503A (en) * 1991-07-25 1993-02-12 Murata Mfg Co Ltd Laminated varistor
JPH11176613A (en) * 1997-12-15 1999-07-02 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic part
JP2013197447A (en) * 2012-03-22 2013-09-30 Panasonic Corp Manufacturing method of multilayer varistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093073A (en) * 2016-12-05 2018-06-14 パナソニックIpマネジメント株式会社 Varistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP6511635B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
KR102498100B1 (en) Multilayer ceramic capacitor
CN108231414B (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5472667B2 (en) Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof
US10074466B2 (en) NTC component and method for the production thereof
US9530547B2 (en) Laminated PTC thermistor element
KR20180125875A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20180027358A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP6394702B2 (en) Chip ceramic semiconductor electronic components
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JPH06302403A (en) Lamination type semiconductor ceramic element
JP6766510B2 (en) Dielectric composition and electronic components
KR100481741B1 (en) Ceramic multilayer capacitors
JP5830715B2 (en) Multilayer varistor and manufacturing method thereof
JP6511635B2 (en) Method of manufacturing laminated varistor
JP2013197447A (en) Manufacturing method of multilayer varistor
US8471673B2 (en) Varistor and method for manufacturing varistor
JP2008100856A (en) Method for producing zinc oxide laminated chip varistor
CN112955980B (en) Ni paste and multilayer ceramic capacitor
JP2018002498A (en) Dielectric composition and electronic component
KR100834307B1 (en) A method of producing a laminated type chip varistor
JP2008210907A (en) Laminated type thermistor and its manufacturing method
JP6673466B2 (en) Ceramic electronic component and method of manufacturing ceramic electronic component
JP6665711B2 (en) Dielectric composition and electronic component
JP2016146380A (en) Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same
JP2023111630A (en) Manufacturing method of multilayer varistor, and multilayer varistor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6511635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151