JP2016051850A - Stationary induction apparatus - Google Patents

Stationary induction apparatus Download PDF

Info

Publication number
JP2016051850A
JP2016051850A JP2014177062A JP2014177062A JP2016051850A JP 2016051850 A JP2016051850 A JP 2016051850A JP 2014177062 A JP2014177062 A JP 2014177062A JP 2014177062 A JP2014177062 A JP 2014177062A JP 2016051850 A JP2016051850 A JP 2016051850A
Authority
JP
Japan
Prior art keywords
installation
installation surface
transformer
vibration
induction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014177062A
Other languages
Japanese (ja)
Inventor
典明 瀧北
Noriaki Takikita
典明 瀧北
健太 老邑
Kenta Oimura
健太 老邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2014177062A priority Critical patent/JP2016051850A/en
Publication of JP2016051850A publication Critical patent/JP2016051850A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stationary induction apparatus which can reduce a shaking transmitted from the installation surface to the stationary induction apparatus at the time of earthquake.SOLUTION: A transformer 1 is secured to an installation base 101 via an anti-vibration member 104, and further connected with the installation surface 2 via the elastic member 1051 of a regulation member 105. The installation base 101 has a plurality of rollers 103, and movable for the installation surface 2. By a vibration moderating structure including the installation base 101 and regulation member 105, transmission of the shaking of an installation surface 2 due to earthquake is suppressed, and transmission of an excitation vibration, occurring in the transformer 1 during normal operation, to the installation surface 2 is also suppressed, thus preventing impairment or short circuit fault of the transformer 1 due to earthquake, and generation of vibration sound due to excitation vibration.SELECTED DRAWING: Figure 1

Description

本発明は、減震構造を備えた静止誘導機器に関するものである。   The present invention relates to a stationary guidance device having a seismic reduction structure.

従来、防振構造を備えた静止誘導機器が知られている。例えば、特許文献1には、キュービクル式受電装置において、変圧器を収容する外箱の下部に設けられた脚部とキュービクル本体のベースとの間を防振ゴムで固定した防振構造が開示されている(特許文献1、段落[0002]および図7〜図9参照)。   Conventionally, a stationary induction device having a vibration isolation structure is known. For example, Patent Document 1 discloses a vibration isolating structure in a cubicle-type power receiving device in which a leg portion provided at a lower portion of an outer box that houses a transformer and a base of a cubicle body are fixed with a vibration isolating rubber. (See Patent Document 1, paragraph [0002] and FIGS. 7 to 9).

特許文献1に記載の防振構造は、変圧器が励磁振動により振動した場合、その振動を防振ゴムで吸収し、キュービクル本体に伝達される振動を低減する構造である。   The anti-vibration structure described in Patent Document 1 is a structure in which when a transformer vibrates due to excitation vibration, the vibration is absorbed by an anti-vibration rubber and vibration transmitted to the cubicle body is reduced.

特開平11−219828号公報Japanese Patent Laid-Open No. 11-21828

従来の静止誘導機器に設けられた防振構造は、励磁振動による微小な揺れの筐体やキュービクルへの伝達を防止するものであって、地震のような大きな揺れに対しては抑制効果を有しないので、地震による地面の大きな揺れの静止誘導機器への伝達を有効に防止することは困難であった。   The anti-vibration structure provided in conventional static induction devices prevents the transmission of minute vibrations due to excitation vibration to the housing and cubicle, and has the effect of suppressing large vibrations such as earthquakes. Therefore, it is difficult to effectively prevent transmission of a large ground shaking due to an earthquake to a stationary induction device.

このため、地震が発生した際に静止誘導機器が大きく揺れ、例えば、変圧器の場合、据付ボルト等の損傷や変圧器の転倒、端子の盤壁接触による地絡事故などが発生するという問題があった。   For this reason, stationary induction equipment shakes greatly when an earthquake occurs.For example, in the case of a transformer, there are problems such as damage to installation bolts, overturning of the transformer, ground faults due to contact with the terminal wall of the terminal, etc. there were.

従って、従来、地震発生時に地面から静止誘導機器に伝達される加振力を低減して静止誘導機器の損傷や地絡事故などを防止することができる減震構造を備えた静止誘導機器が要望されていた。   Therefore, there has been a demand for a static induction device having a seismic reduction structure that can reduce the excitation force transmitted from the ground to the static induction device when an earthquake occurs and prevent damage to the static induction device or a ground fault. It had been.

本第一の発明の静止誘導機器は、設置台を介して設置面に設置される静止誘導機器であって、設置台は、設置面に対して相対移動可能になされ、設置面の設置台よりも外側の所定の位置に、設置台の移動を規制する弾性変形可能な規制部材が設けられていることを特徴とする、静止誘導機器である。   The stationary induction device according to the first aspect of the present invention is a stationary induction device installed on an installation surface via an installation table, and the installation table is movable relative to the installation surface, Further, the stationary induction device is characterized in that an elastically deformable restricting member for restricting movement of the installation base is provided at a predetermined position outside.

かかる構成により、地震による設置面の揺れの静止誘導機器への伝達を抑制することができる。   With this configuration, it is possible to suppress transmission of the shaking of the installation surface due to the earthquake to the stationary induction device.

また、本第二の発明の静止誘導機器は、第一の発明に対して、設置台は、誘導機器本体が搭載される台本体と、台本体と設置面との間に回転可能に設けられた転動体と、を含む静止誘導機器である。   Further, in the static induction device according to the second aspect of the present invention, in contrast to the first aspect, the installation base is rotatably provided between the base body on which the induction device main body is mounted and the base body and the installation surface. A stationary induction device including rolling elements.

かかる構成により、地震発生時は設置台が設置面に対して容易に相対移動し、設置面の揺れの静止誘導機器への伝達を適切に抑制することができる。   With such a configuration, when an earthquake occurs, the installation base can easily move relative to the installation surface, and transmission of shaking of the installation surface to the stationary induction device can be appropriately suppressed.

また、本第三の発明の静止誘導機器は、第二の発明に対して、転動体は、台本体若しくは設置面に設けられた支持部材によって回転可能に支持されている、静止誘導機器である。   The static induction device according to the third aspect of the present invention is a static induction device in which the rolling element is rotatably supported by a support member provided on the base body or the installation surface. .

また、本第四の発明の静止誘導機器は、第二または第三の発明に対して、転動体は、コロである、静止誘導機器である。   The stationary induction device according to the fourth aspect of the present invention is a stationary induction device in which the rolling element is a roller compared to the second or third aspect of the invention.

また、本第五の発明の静止誘導機器は、第二または第三の発明に対して、転動体は、ボールである、静止誘導機器である。   The stationary induction device according to the fifth aspect of the present invention is a stationary induction device in which the rolling element is a ball as opposed to the second or third aspect of the invention.

かかる構成により、本第三から本第五のいずれか1つの発明の静止誘導機器は、地震発生時に設置台がコロ若しくはボールの回転によって設置面に対して相対移動し、これにより設置面の揺れの静止誘導機器への伝達を適切に抑制することができる。   With such a configuration, the stationary induction device according to any one of the third to fifth aspects of the present invention causes the installation table to move relative to the installation surface by the rotation of the roller or the ball when an earthquake occurs, thereby causing the installation surface to shake. Can be appropriately suppressed from being transmitted to the stationary induction device.

また、本第六の発明の静止誘導機器は、第一から第五のいずれか1つの発明に対して、規制部材は、設置台との間に所定の隙間を設けて配置されている、静止誘導機器である。   The stationary induction device according to the sixth aspect of the present invention is the stationary guidance device according to any one of the first to fifth aspects, wherein the regulating member is disposed with a predetermined gap between the stationary member and the installation base. It is an induction device.

また、本第七の発明の静止誘導機器は、第一から第五のいずれか1つの発明に対して、規制部材は、設置台との間に隙間が生じないように配置されている、静止誘導機器である。   Further, in the static induction device according to the seventh aspect of the present invention, with respect to any one of the first to fifth aspects, the restricting member is disposed so that no gap is formed between the stationary guide device and the installation base. It is an induction device.

かかる構成により、本第六または本第七の発明の誘導機器は、地震発生時に設置台に発生する加振力が弾性部材の弾性変形により吸収されるので、設置面の揺れの静止誘導機器への伝達を適切に抑制することができる。   With this configuration, in the induction device according to the sixth or seventh invention, the excitation force generated in the installation base at the time of the earthquake is absorbed by the elastic deformation of the elastic member. Can be appropriately suppressed.

また、本第八の発明の静止誘導機器は、第一から第六のいずれか1つの発明に対して、規制部材は、ゴムである、誘導機器である。   The stationary induction device according to the eighth aspect of the invention is an induction device in which the restricting member is rubber relative to any one of the first to sixth aspects.

かかる構成により、地震発生時に設置台に発生する加振力が規制部材であるゴムの弾性変形により吸収されるので、設置面の揺れの静止誘導機器への伝達を適切に抑制することができる。   With this configuration, the excitation force generated in the installation table when an earthquake occurs is absorbed by the elastic deformation of the rubber that is the restricting member, so that the transmission of the shaking of the installation surface to the stationary induction device can be appropriately suppressed.

また、本第九の発明の静止誘導機器は、第一から第八のいずれか1つの発明に対して、規制部材は、載置台に載置される誘導機器本体と設置面とに接続されている、静止誘導機器である。   Further, in the static induction device according to the ninth aspect of the invention, with respect to any one of the first to eighth aspects, the regulating member is connected to the induction device main body and the installation surface placed on the mounting table. It is a static induction device.

かかる構成により、地震によって設置面に生じる加振力と励磁振動により誘導機器本体に生じる加振力のいずれも規制部材の弾性変形によって低減され、地震の揺れの機器本体へ伝達と励磁振動の設置面への伝達を適切に抑制することができる。   With this configuration, both the excitation force generated on the installation surface due to an earthquake and the excitation force generated on the induction device main body due to excitation vibration are reduced by elastic deformation of the regulating member, and transmission of earthquake vibration to the device main body and installation of excitation vibration Transmission to the surface can be appropriately suppressed.

また、本第十の発明の静止誘導機器は、第一から第九のいずれか1つの発明に対して、誘導機器本体は、変圧器である、静止誘導機器である。   The static induction device according to the tenth aspect of the present invention is a static induction device in which the induction device main body is a transformer, as opposed to any one of the first to ninth aspects.

かかる構成により、変圧器で生じる励磁振動の設置面への伝達と、地震による設置面の揺れの変圧器への伝達とを抑制することができる。   With this configuration, it is possible to suppress transmission of excitation vibration generated in the transformer to the installation surface and transmission of shaking of the installation surface due to an earthquake to the transformer.

本発明による静止誘導機器によれば、地震発生時に設置面の揺れの静止誘導機器への伝達を抑制して当該静止誘導機器の損傷や地絡事故の発生を好適に防止することができる。   According to the static induction device according to the present invention, it is possible to suitably prevent the stationary induction device from being damaged and the occurrence of a ground fault by suppressing the transmission of the shaking of the installation surface to the static induction device when an earthquake occurs.

実施の形態1における変圧器を横から見た側面図Side view of transformer in embodiment 1 seen from the side 同変圧器を図1のX−X線から下側を見た図The figure which looked at the lower side from the XX line of FIG. 地震によって設置面が横方向に変位した場合の同変圧器の減震構造の動作の一例を示す図Diagram showing an example of the operation of the seismic reduction structure of the transformer when the installation surface is displaced laterally due to an earthquake 励磁振動によって変圧器が横方向に変位した場合の同変圧器の減震構造の動作の一例を示す図The figure which shows an example of the operation of the seismic-reduction structure of the transformer when the transformer is displaced laterally by the excitation vibration 同変圧器の減震構造の変形例を示す図The figure which shows the modification of the seismic reduction structure of the same transformer 同変圧器の設置台の構造の変形例を示す図The figure which shows the modification of the structure of the installation stand of the transformer

以下、本発明に係る静止誘導機器の実施の形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。   Hereinafter, embodiments of a stationary induction device according to the present invention will be described with reference to the drawings. In addition, since the component which attached | subjected the same code | symbol in embodiment performs the same operation | movement, description may be abbreviate | omitted again.

(実施の形態1)
本実施の形態1においては、地面に設置される変圧器を例に説明する。
(Embodiment 1)
In the first embodiment, a transformer installed on the ground will be described as an example.

図1は、実施の形態1の変圧器1を横から見た側面図である。また、図2は、同変圧器1の、図1のX−X線から下側を見た図である。   FIG. 1 is a side view of the transformer 1 according to the first embodiment as viewed from the side. Moreover, FIG. 2 is the figure which looked at the lower side from the XX line | wire of FIG.

図1に示す変圧器1は、油入自冷式の三相変圧器である。本実施の形態1の変圧器1は、減震の構造に特徴があるので、図1には、簡略化した変圧器1の外観形状と内部構造を示している。従って、以下の説明では、変圧器1の減震の構造について詳細に説明し、変圧器1のその他の構成については説明を省略若しくは簡単にする。   A transformer 1 shown in FIG. 1 is an oil-filled self-cooling three-phase transformer. Since the transformer 1 of the first embodiment has a feature in the structure of vibration reduction, FIG. 1 shows a simplified external shape and internal structure of the transformer 1. Therefore, in the following description, the structure of vibration reduction of the transformer 1 will be described in detail, and the description of other configurations of the transformer 1 will be omitted or simplified.

図1に示す変圧器1は、三相変圧器である。変圧器1は、主として、直方体形状のタンク110と、タンク110に充填される冷却用および絶縁用の絶縁油111と、タンク110内に絶縁油111に浸漬させて配設される変圧器本体112とを含む。タンク110の側面には多数の放熱フィン(図示省略)が設けられている。変圧器本体112は変圧器1の電気回路を構成する部分である。変圧器本体112は、例えば、鉄心1121と、その鉄心1121のリムに巻回される3個のコイル1122A,1122B,1122Cと、接続部1123とを備えている。   A transformer 1 shown in FIG. 1 is a three-phase transformer. The transformer 1 mainly includes a rectangular parallelepiped tank 110, a cooling and insulating insulating oil 111 filled in the tank 110, and a transformer main body 112 disposed in the tank 110 soaked in the insulating oil 111. Including. A large number of heat radiating fins (not shown) are provided on the side surface of the tank 110. The transformer main body 112 is a part constituting the electric circuit of the transformer 1. The transformer main body 112 includes, for example, an iron core 1121, three coils 1122A, 1122B, and 1122C wound around the rim of the iron core 1121, and a connection portion 1123.

コイル1122Aは、リムに巻回された低圧コイル(二次巻線)と、低圧コイルの外側に同心状に巻回された高圧コイル(一次巻線)を含む。コイル1122B,1122Cもコイル1122Aと同様の構成である。コイル1122A,1122B,1122Cの各高圧コイルに、例えば、6600ボルトの高電圧を入力する入力端子が設けられている。コイル1122A,1122B,1122Cの各低圧コイルに、例えば、100ボルト若しくは200ボルトの低電圧を出力する出力端子が設けられている。   The coil 1122A includes a low voltage coil (secondary winding) wound around the rim and a high voltage coil (primary winding) wound concentrically around the outside of the low voltage coil. The coils 1122B and 1122C have the same configuration as the coil 1122A. Each high voltage coil of coils 1122A, 1122B, 1122C is provided with an input terminal for inputting a high voltage of 6600 volts, for example. Each low voltage coil of the coils 1122A, 1122B, and 1122C is provided with an output terminal that outputs a low voltage of, for example, 100 volts or 200 volts.

変圧器本体112は、フレーム113に固定され、そのフレーム113はタンク10の底面に固定されている。   The transformer body 112 is fixed to the frame 113, and the frame 113 is fixed to the bottom surface of the tank 10.

タンク110の上面には、3個の高圧ブッシング114A,114B,114Cと3個の低圧ブッシング115A,115B,115Cが設けられている。コイル1122A,1122B,1122Cにそれぞれ設けられた入力端子は、接続部1123を介して高圧ブッシング114A,114B,114Cにそれぞれ接続され、コイル1122A,1122B,1122Cにそれぞれ設けられた出力端子は、接続部1123を介して低圧ブッシング115A,115B,115Cにそれぞれ接続されている。   On the upper surface of the tank 110, three high pressure bushings 114A, 114B, 114C and three low pressure bushings 115A, 115B, 115C are provided. The input terminals provided in the coils 1122A, 1122B, and 1122C are connected to the high voltage bushings 114A, 114B, and 114C through the connection portion 1123, respectively, and the output terminals provided in the coils 1122A, 1122B, and 1122C are connected to the connection portion. The low pressure bushings 115A, 115B, and 115C are connected to the low pressure bushings 1123, respectively.

タンク110の下面は、減震構造によって地面G上に設けられた設置面2に対して水平方向に変位可能に設置されている。本実施の形態1では、設置面2を地上面としているが、変圧器1がキュービクルに収納される場合は、そのキュービクルの底面が設置面2となる。   The lower surface of the tank 110 is installed so as to be displaceable in the horizontal direction with respect to the installation surface 2 provided on the ground G by a vibration reducing structure. In the first embodiment, the installation surface 2 is the ground surface. However, when the transformer 1 is stored in a cubicle, the bottom surface of the cubicle becomes the installation surface 2.

変圧器1の減震構造は、設置面2に対して水平方向に移動可能な設置台101と、その設置台101の移動を所定の範囲内に規制する2個の規制部材105とを含む。設置台101は、上面視で長方形状の台本体102と、その台本体102に回転自在に支持された複数本(図1では3本)のコロ103とで構成される。台本体102には、長手方向(図1では横方向)の両端部を同一方向(図1では下方向)にL字状に屈曲させて、後述する弾性部材1051に当接させるための当接部1021が形成されている。   The seismic reduction structure of the transformer 1 includes an installation table 101 that can move in the horizontal direction with respect to the installation surface 2, and two regulating members 105 that regulate the movement of the installation table 101 within a predetermined range. The installation base 101 includes a rectangular base body 102 in a top view and a plurality of (three in FIG. 1) rollers 103 rotatably supported by the base body 102. Abutment for bending the both ends of the longitudinal direction (lateral direction in FIG. 1) in an L shape in the same direction (downward direction in FIG. 1) and contacting an elastic member 1051, which will be described later, on the base body 102 A portion 1021 is formed.

また、台本体102の両側部(図2の台本体102の上辺と下辺の側部参照)には、両端部と中央部の3箇所にコロ103を支持するための支持部1022が形成されている。支持部1022は、台本体102の両側部に突出して延設された支持片を下方向に折り曲げて形成されている。本実施の形態1では、設置台101に3本のコロ103を設けているが、コロ103は、2本以上の任意の本数を設けることができる。   Further, on both side portions of the base body 102 (see the side portions of the top and bottom sides of the base body 102 in FIG. 2), support portions 1022 for supporting the rollers 103 are formed at three positions, both end portions and the central portion. Yes. The support portion 1022 is formed by bending downward a support piece that protrudes from both sides of the base body 102. In the first embodiment, the three rollers 103 are provided on the installation table 101. However, the rollers 103 can be provided with an arbitrary number of two or more.

各支持部1022の先端部には軸受(図示省略)が設けられ、台本体102の両側部の互いに対向する対関係の支持部1022に、各コロ103の軸1031(図2参照)の両端部が軸受によって回転自在に支持されている。従って、設置台101は、3個のコロ103が回転することによって、図1,図2において、横方向(左右方向)に移動可能になっている。なお、横方向(左右方向)は、変圧器1が設置される場所の地震発生時の設置面2の横揺れ方向に対応し、変圧器1は、地震発生時に設置台101が設置面2の横揺れ方向に移動できるように設置されている。   Bearings (not shown) are provided at the front end portions of the respective support portions 1022, and opposite ends of the shaft 1031 (see FIG. 2) of each roller 103 are connected to the opposite support portions 1022 on both sides of the base body 102. Is rotatably supported by a bearing. Accordingly, the installation table 101 can be moved in the horizontal direction (left-right direction) in FIGS. 1 and 2 as the three rollers 103 rotate. The horizontal direction (left-right direction) corresponds to the roll direction of the installation surface 2 at the time of occurrence of the earthquake at the place where the transformer 1 is installed. It is installed so that it can move in the rolling direction.

変圧器1の下面(タンク110の下面)の四隅には弾性体からなる防振部材104が設けられ、変圧器1は、4個の防振部材104を介して設置台101の上面に固定されている。防振部材104は、通常運転時に変圧器1に生じる励磁振動の設置面2への伝達を低減するためのものである。本実施の形態1では、防振部材104として、所定の防振周波数を有するゴムが用いられている。   Anti-vibration members 104 made of an elastic material are provided at the four corners of the lower surface of the transformer 1 (the lower surface of the tank 110), and the transformer 1 is fixed to the upper surface of the installation table 101 via the four anti-vibration members 104. ing. The anti-vibration member 104 is for reducing transmission of excitation vibration generated in the transformer 1 to the installation surface 2 during normal operation. In the first embodiment, rubber having a predetermined vibration isolation frequency is used as the vibration isolation member 104.

2個の規制部材105は、横方向において、設置面2の設置台101よりも外側の所定の位置に固定されている。規制部材105は、弾性変形可能な板状の弾性部材1051と、その弾性部材1051を設置面2に固定する固定部材1052とを含む。本実施の形態1では、弾性部材1051としてゴムが用いられている。弾性部材1051は、地震により設置台101が設置面2に対して左右に相対移動して台本体102の当接部1021が弾性部材1051に当接した際、弾性変形して設置台101の移動力を吸収する機能を果たす。   The two regulating members 105 are fixed in a predetermined position outside the installation table 101 on the installation surface 2 in the lateral direction. The regulating member 105 includes a plate-like elastic member 1051 that can be elastically deformed, and a fixing member 1052 that fixes the elastic member 1051 to the installation surface 2. In the first embodiment, rubber is used as the elastic member 1051. The elastic member 1051 is elastically deformed when the installation table 101 relatively moves left and right with respect to the installation surface 2 due to an earthquake, and the contact portion 1021 of the table main body 102 contacts the elastic member 1051, and the installation table 101 moves. It plays a function of absorbing power.

固定部材1052は、板面を長手方向に沿ってL字形に折り曲げた板部材からなるL字金具である。固定部材1052は、折り曲げた一方の板面が設置面2から垂直に起立するように、他方の板面が複数個の固着部材1053(例えば、ネジやアンカーボルト)によって設置面2に固定されている。また、各固定部材1052の設置面2から起立した板面には弾性部材1052が固着されている。また、本実施の形態1では、各弾性部材1051の上面がタンク110の下面に固定されている。すなわち、タンク110の下面は、弾性部材1051によって設置面2に接続されている。   The fixing member 1052 is an L-shaped bracket made of a plate member whose plate surface is bent in an L shape along the longitudinal direction. The fixing member 1052 is fixed to the installation surface 2 by a plurality of fixing members 1053 (for example, screws and anchor bolts) so that the bent one plate surface stands vertically from the installation surface 2. Yes. In addition, an elastic member 1052 is fixed to the plate surface erected from the installation surface 2 of each fixing member 1052. In the first embodiment, the upper surface of each elastic member 1051 is fixed to the lower surface of the tank 110. That is, the lower surface of the tank 110 is connected to the installation surface 2 by the elastic member 1051.

2個の固定部材1052は、設置面2から起立した板面を対向させ、かつ,両板面の間隔が所定の間隔Lとなるように調整されている。所定の間隔Lは、台本体102と固定部材1052との間に弾性部材1051が隙間なく配置される間隔である。すなわち、台本体102の両当接部1021を2個の弾性部材1051で挟んだ状態にする間隔である。従って、台本体102の長手方向の長さをL、弾性部材1052の厚みをdとすると、間隔Lは、L≒L+2×dを満たすサイズとなっている(図2参照)。 The two fixing members 1052 are adjusted so that the plate surfaces erected from the installation surface 2 are opposed to each other, and the interval between the two plate surfaces is a predetermined interval L. The predetermined interval L is an interval at which the elastic member 1051 is arranged between the base body 102 and the fixing member 1052 without a gap. In other words, the interval is such that the two contact portions 1021 of the base body 102 are sandwiched between the two elastic members 1051. Therefore, when the length of the base body 102 in the longitudinal direction is L D and the thickness of the elastic member 1052 is d, the distance L is a size satisfying L≈L D + 2 × d (see FIG. 2).

設置台101は2個の弾性部材1051で挟まれているので、設置台101に弾性部材1051が弾性変形を開始する力よりも大きな横方向の力が作用しなければ、設置台101の設置面2に対する横方向の相対移動は、2個の弾性部材1051により阻止される。一方、設置台101に弾性部材1051が弾性変形を開始する力よりも大きな横方向の力が作用した場合は、その力が弾性部材1051の弾性変形により吸収されながら設置台101が設置面2に対して横方向に相対移動し、弾性部材1051の弾性変形が限界に達すると、設置台101の相対移動は固定部材1052によって阻止される。従って、設置台101の設置面2に対する横方向の相対移動は、2個の規制部材によって間隔Lの範囲に制限される。   Since the installation table 101 is sandwiched between two elastic members 1051, the installation surface of the installation table 101 is not subjected to any lateral force greater than the force with which the elastic member 1051 starts elastic deformation. The relative movement in the lateral direction with respect to 2 is prevented by the two elastic members 1051. On the other hand, when a lateral force larger than the force at which the elastic member 1051 starts elastic deformation acts on the installation table 101, the installation table 101 is applied to the installation surface 2 while the force is absorbed by the elastic deformation of the elastic member 1051. On the other hand, when the elastic member 1051 reaches the limit in the lateral direction, the fixing member 1052 prevents the relative movement of the installation base 101. Accordingly, the relative movement of the installation base 101 in the lateral direction with respect to the installation surface 2 is limited to the range of the interval L by the two regulating members.

本実施の形態1の減震構造は、横移動可能な設置台101を2個の弾性変形可能な規制部材105で挟んだ状態で設置面2に設置し、その設置台101に防振部材104を介して変圧器1を固定する構成としているので、地震発生時に設置面2が大きく横方向に揺れた場合、設置台101が設置面2に対して横方向に相対移動することにより、変圧器1に伝達される設置面2の揺れを低減する機能を果たす。また、通常運転時に変圧器1に励磁振動が発生する場合も、規制部材105の弾性部材1051が弾性変位することにより、設置面2に伝達される励磁振動を低減する機能を果たす。   In the seismic reduction structure of the first embodiment, the laterally movable installation base 101 is installed on the installation surface 2 with the two elastically deformable regulating members 105 sandwiched therebetween, and the vibration isolation member 104 is mounted on the installation base 101. Therefore, when the installation surface 2 is greatly shaken in the horizontal direction when an earthquake occurs, the installation table 101 moves relative to the installation surface 2 in the horizontal direction. The function of reducing the shaking of the installation surface 2 transmitted to 1 is achieved. Further, even when excitation vibration is generated in the transformer 1 during normal operation, the elastic member 1051 of the regulating member 105 is elastically displaced, so that the function of reducing excitation vibration transmitted to the installation surface 2 is achieved.

次に、変圧器1の設置台101および規制部材105からなる減震構造の作用と効果について説明する。   Next, the operation and effect of the seismic reduction structure including the installation base 101 of the transformer 1 and the restriction member 105 will be described.

図1に示す減震構造は、主として、地震発生時に設置面2の揺れの変圧器1への伝達を低減する減震機能を有するが、通常運転時に変圧器1に生じる励磁振動の設置面2への伝達を低減する防振機能も有する。   The seismic-reduction structure shown in FIG. 1 mainly has a seismic-reduction function that reduces the transmission of shaking of the installation surface 2 to the transformer 1 when an earthquake occurs, but the installation surface 2 of the excitation vibration that occurs in the transformer 1 during normal operation. It also has an anti-vibration function that reduces transmission to the camera.

まず、地震による設置面2の揺れに対する減震について説明する。   First, the vibration reduction for the shaking of the installation surface 2 due to an earthquake will be described.

図3は、地震によって設置面2が横方向に大きく振動した場合の減震構造の動作の一例を示す図である。図3は、設置面2が地震によって図1の状態から距離Eだけ右方向に変位した状態を示した図である。   FIG. 3 is a diagram illustrating an example of the operation of the seismic reduction structure when the installation surface 2 greatly vibrates in the lateral direction due to an earthquake. FIG. 3 is a diagram showing a state in which the installation surface 2 is displaced rightward by a distance E from the state of FIG. 1 due to an earthquake.

図3において、Mは、設置台101の横方向における中央の位置を示し、Nは、変圧器1の横方向における中央の位置を示している。図1の状態は、地震が発生していない状態であるので、変圧器1の中央位置Nと設置台101の中央位置Mは一致している。一方、図3の状態は、設置面2が右方向に距離Eだけ瞬間的に変位した状態であるので、設置台101の実線で示す中央位置Mは、変圧器1の中央位置N(点線で示す中央位置M)に対して右側に距離Eだけずれている。   In FIG. 3, M indicates the central position in the horizontal direction of the installation table 101, and N indicates the central position in the horizontal direction of the transformer 1. Since the state of FIG. 1 is a state in which no earthquake has occurred, the center position N of the transformer 1 and the center position M of the installation base 101 coincide. On the other hand, the state of FIG. 3 is a state in which the installation surface 2 is instantaneously displaced in the right direction by the distance E. Therefore, the center position M indicated by the solid line of the installation table 101 is the center position N (dotted line) of the transformer 1. The center position M) shown is shifted to the right by a distance E.

地震の発生によって設置面2に加振力F1が生じた場合、その加振力F1の変圧器1への伝達経路には、2個の規制部材105の弾性部材1051によって変圧器1に直接伝達される第1の伝達経路と、2個の規制部材105が交互に設置台101に当接し、当該設置台101と防振部材104を介して変圧器1に伝達される第2の伝達経路とが考えられる。   When an excitation force F1 is generated on the installation surface 2 due to an earthquake, the transmission force of the excitation force F1 to the transformer 1 is directly transmitted to the transformer 1 by the elastic members 1051 of the two regulating members 105. The first transmission path to be transmitted and the two restriction members 105 alternately abut against the installation table 101, and the second transmission path is transmitted to the transformer 1 through the installation table 101 and the vibration isolation member 104. Can be considered.

第1の伝達経路では、例えば、図3に示すように、設置面2が右方向に瞬間的に変位した場合、2個の規制部材105の弾性部材1051がそれぞれ弾性変形(図3の2個の弾性部材1051の上部が左側に撓んだ変形状態を参照)し、その弾性変形によって設置面2の加振力F1の大部分が吸収されるので、変圧器1に伝達される加振力は加振力F1よりも非常に小さい。従って、変圧器1は、第1の伝達経路で伝達される加振力では殆ど横方向には変位せず、主として第2の伝達経路で伝達される加振力によって横方向に変位する。   In the first transmission path, for example, as shown in FIG. 3, when the installation surface 2 is instantaneously displaced rightward, the elastic members 1051 of the two restricting members 105 are elastically deformed (two pieces in FIG. 3). The elastic member 1051 is deformed such that the upper part of the elastic member 1051 is bent to the left), and most of the excitation force F1 of the installation surface 2 is absorbed by the elastic deformation, so the excitation force transmitted to the transformer 1 Is much smaller than the excitation force F1. Therefore, the transformer 1 is hardly displaced in the lateral direction by the excitation force transmitted through the first transmission path, but is displaced in the lateral direction mainly by the excitation force transmitted through the second transmission path.

第2の伝達経路では、例えば、図3に示すように、設置面2が右方向に瞬間的に変位した場合、設置台101は設置面2に対して移動可能であるので、変圧器1は、設置面2に対して左方向に相対移動をする。設置面2の右方向変位では、設置台101を挟んでいる2個の弾性部材1051は、左側の弾性部材1051が設置台101に近接し、右側の弾性部材1051が設置台101から離間するように変位するので、設置面2の加振力F1(右方向の加振力)は、左側の弾性部材1051を介して設置台101に伝達されることになるが、その加振力F1の一部は、図3に示すように、左側の弾性部材1051の弾性変形(横方向の収縮変形)によって吸収されるので、設置台101には加振力F1よりも小さい加振力F2が伝達される。   In the second transmission path, for example, as shown in FIG. 3, when the installation surface 2 is instantaneously displaced in the right direction, the installation table 101 can move with respect to the installation surface 2, so that the transformer 1 Then, it moves relative to the installation surface 2 in the left direction. When the installation surface 2 is displaced in the right direction, the two elastic members 1051 sandwiching the installation table 101 are arranged such that the left elastic member 1051 is close to the installation table 101 and the right elastic member 1051 is separated from the installation table 101. Therefore, the excitation force F1 (rightward excitation force) of the installation surface 2 is transmitted to the installation table 101 via the left elastic member 1051, and one of the excitation forces F1 is transmitted. As shown in FIG. 3, the portion is absorbed by the elastic deformation (lateral contraction deformation) of the left elastic member 1051, and therefore the excitation force F 2 smaller than the excitation force F 1 is transmitted to the installation base 101. The

左側の弾性部材1051が弾性変形の限界を超えると、設置台101は加振力F2によって左側の規制部材105に押される形で右側に変位するようになる。すなわち、設置台101に防振部材104を介して固定された変圧器1に地震による設置面2の右方向の揺れが伝達され、当該変圧器1が右側に変位するようになる。   When the left elastic member 1051 exceeds the limit of elastic deformation, the installation base 101 is displaced to the right while being pushed by the left regulating member 105 by the excitation force F2. That is, the rightward shaking of the installation surface 2 due to the earthquake is transmitted to the transformer 1 fixed to the installation table 101 via the vibration isolation member 104, and the transformer 1 is displaced to the right side.

その後、地震の揺れの方向が反転し、設置面2の変位方向が左側に反転すると(2個の規制部材105の変位方向が左側に反転すると)、設置面2に対して相対的に右側に変位している設置台101は右側の規制部材105に当接し、設置面2の加振力F1’(左方向の加振力。図示省略)は、左側の弾性部材1051を介して設置台101に伝達されるようになる。   After that, when the direction of shaking of the earthquake is reversed and the displacement direction of the installation surface 2 is reversed to the left side (when the displacement direction of the two restricting members 105 is reversed to the left side), The displaced installation base 101 abuts on the right regulating member 105, and the excitation force F 1 ′ (left excitation force, not shown) of the installation surface 2 is provided via the left elastic member 1051. Will be transmitted to.

設置台101が左側の弾性部材1051に衝突すると、当該弾性部材1051の弾性変形(横方向の収縮変形)によって設置台101の右方向の移動力(加振力F2)が吸収され、右側の弾性部材1051が弾性変形の限界を超えると、設置台101は右側の弾性部材1051を介して伝達される加振力F2’(左方向の加振力。図示省略)によって右側の規制部材105に押される形で左側に変位するようになる。すなわち、変圧器1に地震による設置面2の左方向の揺れが伝達され、当該変圧器1が左側に変位するようになる。   When the installation table 101 collides with the left elastic member 1051, the rightward moving force (excitation force F2) of the installation table 101 is absorbed by the elastic deformation (lateral contraction deformation) of the elastic member 1051, and the right elasticity. When the member 1051 exceeds the elastic deformation limit, the installation base 101 is pushed by the right regulating member 105 by the exciting force F2 ′ (left exciting force, not shown) transmitted through the right elastic member 1051. Will be displaced to the left. That is, the leftward shaking of the installation surface 2 due to the earthquake is transmitted to the transformer 1, and the transformer 1 is displaced to the left side.

以下、設置面2の変位方向が反転するのに応じて、設置台101が上記の弾性部材1051への衝突動作を交互に繰り返し、各衝突時の弾性部材1051の弾性変形と設置台101の設置面2に対する相対的な変位とによって設置面2の加振力F1,F1’が吸収されながら変圧器1に伝達される。   Hereinafter, as the displacement direction of the installation surface 2 is reversed, the installation table 101 alternately repeats the collision operation with the elastic member 1051, and the elastic deformation of the elastic member 1051 and the installation of the installation table 101 at the time of each collision. The excitation forces F1, F1 ′ of the installation surface 2 are absorbed by the relative displacement with respect to the surface 2 and transmitted to the transformer 1.

以上のように、図1に示す減震構造によれば、設置台101の設置面2に対する相対的に変位と、その変位に基づく設置台101の弾性部材1051への衝突時の弾性部材1051の弾性変形とによって地震による設置面2の加振力F1,F1’の変圧器1への伝達を低減することができる。   As described above, according to the vibration reducing structure shown in FIG. 1, the displacement of the installation table 101 relative to the installation surface 2 and the elastic member 1051 at the time of collision with the elastic member 1051 of the installation table 101 based on the displacement. Due to the elastic deformation, the transmission of the excitation forces F1, F1 ′ of the installation surface 2 due to the earthquake to the transformer 1 can be reduced.

次に、励磁振動に対する防振について説明する。   Next, vibration isolation against excitation vibration will be described.

図4は、通常運転時に励磁振動によって変圧器1が横方向に微小振動した場合の減震構造の動作の一例を示す図である。図4は、変圧器1が励磁振動によって図1の状態から微小距離eだけ右方向に変位した状態を示した図である。図4の状態は、変圧器1が励磁振動によって右方向に距離eだけ瞬間的に変位した状態であるので、変圧器1の実線で示す中央位置Nは、設置台101の中央位置M(点線で示す中央位置N)に対して右側に距離eだけずれている。なお、図4では、作図の便宜上、距離eを実際の場合よりも誇張して描いている。   FIG. 4 is a diagram illustrating an example of the operation of the seismic reduction structure when the transformer 1 slightly vibrates in the lateral direction due to excitation vibration during normal operation. FIG. 4 is a diagram showing a state in which the transformer 1 is displaced rightward by a minute distance e from the state of FIG. 1 due to excitation vibration. 4 is a state in which the transformer 1 is instantaneously displaced to the right by a distance e due to excitation vibration, the central position N indicated by the solid line of the transformer 1 is the central position M (dotted line of the installation base 101). Is shifted to the right by a distance e with respect to the center position N). In FIG. 4, the distance e is exaggerated from the actual case for the convenience of drawing.

通常運転時に変圧器本体112で励磁振動が発生し、その励磁振動によって変圧器1に横方向の加振力F3が生じた場合、その加振力F3の設置面2への伝達経路にも第1の伝達経路と第2の伝達経路とが考えられる。   When excitation vibration is generated in the transformer body 112 during normal operation and a lateral excitation force F3 is generated in the transformer 1 due to the excitation vibration, the transmission path of the excitation force F3 to the installation surface 2 is also changed. One transmission path and a second transmission path are conceivable.

第1の伝達経路では、タンク110が弾性部材(ゴム)1051を介して設置面2に固定されているので、弾性部材1051が弾性変形することにより(図3の2個の弾性部材1051の上部が右側に撓んだ変形状態を参照)、変圧器1に作用する加振力F3が吸収され、設置面2には加振力F3を十分に低減した加振力F4(<F3)が伝達される。   In the first transmission path, the tank 110 is fixed to the installation surface 2 via an elastic member (rubber) 1051, so that the elastic member 1051 is elastically deformed (the upper portions of the two elastic members 1051 in FIG. 3). The vibration force F3 acting on the transformer 1 is absorbed and the vibration force F4 (<F3) with the vibration force F3 sufficiently reduced is transmitted to the installation surface 2. Is done.

第2の伝達経路では、設置台101の両端が2個の弾性部材1051で挟まれているので、加振力F3の伝達経路には、防振部材104から設置台101を通って設置面2に伝達される場合(以下、「伝達経路A」という。)と、防振部材104から設置台101と弾性部材1051を通って設置面2に伝達される場合(以下、「伝達経路B」という。)が生じる。   In the second transmission path, both ends of the installation table 101 are sandwiched between the two elastic members 1051, so that the installation surface 2 passes through the installation table 101 from the vibration isolation member 104 to the transmission path of the excitation force F 3. (Hereinafter referred to as “transmission path A”) and when transmitted from the vibration isolation member 104 to the installation surface 2 through the installation table 101 and the elastic member 1051 (hereinafter referred to as “transmission path B”). .) Occurs.

加振力F3は、防振部材(ゴム)104が弾性変形をすることによって(図4の2個の防振部材104の上部が右側に横ずれした弾性変形を参照)、その一部が吸収されて設置台101に伝達されるが、設置台101は設置面2に固定されていないので、防振部材104による加振力F3の低減量は、設置台101が設置面2に固定されている場合よりも小さくなる。   A part of the vibration force F3 is absorbed when the vibration isolation member (rubber) 104 is elastically deformed (see the elastic deformation in which the upper parts of the two vibration isolation members 104 in FIG. 4 are shifted to the right). However, since the installation table 101 is not fixed to the installation surface 2, the reduction amount of the excitation force F <b> 3 by the vibration isolation member 104 is fixed to the installation surface 2. Smaller than the case.

しかしながら、本実施の形態1では、設置台101の両端部を2個の弾性部材1051で挟み込み、設置台101が横方向に変位した場合、弾性部材1051の弾性変形(図4の右側の弾性部材1051が横方向に収縮した弾性変形を参照))によって設置台101の横方向の移動力を吸収するようにしているので、設置台101の横方向の変位量を可級的に小さくすることができ、これにより設置台101の変位による防振部材104での防振効果の低下を防止している。   However, in the first embodiment, when the both ends of the installation base 101 are sandwiched between two elastic members 1051 and the installation base 101 is displaced in the lateral direction, the elastic deformation of the elastic member 1051 (the elastic member on the right side in FIG. 4). Since the horizontal movement force of the installation table 101 is absorbed by the elastic deformation 1051 contracted in the horizontal direction)), the lateral displacement amount of the installation table 101 can be reduced to a grade. This prevents a reduction in the vibration isolation effect of the vibration isolation member 104 due to the displacement of the installation base 101.

従って、伝達経路Aでは、励磁振動によって変圧器1に生じる加振力F3が防振部材104の弾性変形により十分に低減されて設置台101に伝達され、更に設置台101に伝達された加振力F3がコロ103を介して設置面2に伝達される。   Therefore, in the transmission path A, the excitation force F3 generated in the transformer 1 due to the excitation vibration is sufficiently reduced by the elastic deformation of the vibration isolation member 104 and transmitted to the installation table 101, and further, the excitation force transmitted to the installation table 101 is transmitted. The force F3 is transmitted to the installation surface 2 through the rollers 103.

一方、伝達経路Bでは、設置台101から2個の弾性部材1051に伝達される加振力は、各弾性部材1051の弾性変形(図4の右側の弾性部材1051が横方向に収縮した弾性変形を参照)によって吸収されるので、各弾性部材1051から設置面2に伝達される加振力は十分に低減される。   On the other hand, in the transmission path B, the excitation force transmitted from the installation base 101 to the two elastic members 1051 is caused by elastic deformation of each elastic member 1051 (elastic deformation in which the right elastic member 1051 in FIG. 4 contracts in the lateral direction). Therefore, the excitation force transmitted from each elastic member 1051 to the installation surface 2 is sufficiently reduced.

以上より、通常運転時に変圧器1に発生する励磁振動は、設置面2への伝達経路に設けられた防振部材104と弾性部材1051の弾性変形によって低減され、励磁振動に起因する設置面2の振動を十分に抑制することができる。   As described above, the excitation vibration generated in the transformer 1 during normal operation is reduced by the elastic deformation of the vibration isolation member 104 and the elastic member 1051 provided in the transmission path to the installation surface 2, and the installation surface 2 caused by the excitation vibration. Can be sufficiently suppressed.

以上、本実施の形態1によれば、地震が発生した場合に設置面2から変圧器1への地震の揺れの伝達を移動可能な設置台101および規制部材105を含む減震構造によって好適に抑制することができる。これにより、変圧器1の転倒、損傷、および地絡などの各種の事故を好適に防止することができる。   As described above, according to the first embodiment, the earthquake-reducing structure including the installation base 101 and the regulating member 105 that can move the transmission of the earthquake vibration from the installation surface 2 to the transformer 1 when an earthquake occurs is preferable. Can be suppressed. Thereby, various accidents, such as the fall of the transformer 1, damage, and a ground fault, can be prevented suitably.

また、本実施の形態1によれば、通常運転時に励磁振動などによって変圧器1に発生する振動の設置面2への伝達も設置台101および規制部材105を含む減震構造によって好適に抑制することができる。これにより、不快な振動音が生じたり、設置面2を介して他の機器に悪影響を与えたりすることを好適に防止することができる。   Further, according to the first embodiment, transmission of vibration generated in the transformer 1 due to excitation vibration or the like during normal operation to the installation surface 2 is also suitably suppressed by the vibration reducing structure including the installation table 101 and the regulating member 105. be able to. Thereby, it is possible to suitably prevent an unpleasant vibration sound from being generated or adversely affecting other devices via the installation surface 2.

また、本実施の形態1によれば、従来の防振ゴムによる防振効果を低下させることなく、簡単な構造で防振機能と減震機能を備えた減震構造を提供することができる。   Further, according to the first embodiment, it is possible to provide an anti-vibration structure having an anti-vibration function and an anti-vibration function with a simple structure without reducing the anti-vibration effect of the conventional anti-vibration rubber.

ところで、図1では、台本体102の両当接部1021に2個の弾性部材1051を接触させて台本体102と弾性部材1051との間に隙間が生じないようにしているが、図5に示すように、当接部1021と弾性部材1051との間に隙間106を設けるようにしてもよい。すなわち、隙間106のサイズをkとすると、間隔Lを、L≒L+2×(d+k)を満たすサイズにしてもよい。 In FIG. 1, two elastic members 1051 are brought into contact with both contact portions 1021 of the base body 102 so that no gap is generated between the base body 102 and the elastic member 1051. As shown, a gap 106 may be provided between the contact portion 1021 and the elastic member 1051. That is, if the size of the gap 106 is k, the interval L may be set to a size satisfying L≈L D + 2 × (d + k).

この場合は、設置台101の両当接部1022がそれぞれ弾性部材1051に接触していないので、例えば、地震により設置面2が右方向に瞬間的に変位した場合、設置面2に生じた加振力F1は、直ちに左側の弾性部材1051を介して設置台101に伝達されず、左側の弾性部材1051が隙間kだけ右側に移動することによって設置台101の左側の当接部1021に当接してから設置台101に伝達されることになる。すなわち、左側の弾性部材1051は、距離kだけ右側に移動をした後に設置台101に衝突をすることになるので、その衝突力(設置面2の加振力F1)を当該弾性部材1051の弾性変形(収縮変形)により効果的に吸収することができる。その後に設置面2の変位方向が反転し、右側の弾性部材1051が設置台101に衝突する場合も、その衝突力(設置面2の加振力F1’)を当該弾性部材1051の弾性変形(収縮変形)により効果的に吸収することができる。   In this case, since both the abutting portions 1022 of the installation base 101 are not in contact with the elastic members 1051 respectively, for example, when the installation surface 2 is instantaneously displaced in the right direction due to an earthquake, the applied force generated on the installation surface 2 is increased. The vibration force F1 is not immediately transmitted to the installation table 101 via the left elastic member 1051, but comes into contact with the left contact portion 1021 of the installation table 101 by moving the left elastic member 1051 to the right side by the gap k. Then, it is transmitted to the installation table 101. That is, the elastic member 1051 on the left side collides with the installation base 101 after moving to the right side by the distance k, and therefore the collision force (excitation force F1 of the installation surface 2) is used as the elasticity of the elastic member 1051. It can be effectively absorbed by deformation (shrinkage deformation). Thereafter, when the displacement direction of the installation surface 2 is reversed and the elastic member 1051 on the right side collides with the installation table 101, the collision force (excitation force F1 ′ of the installation surface 2) is used as an elastic deformation of the elastic member 1051 ( (Shrinkage deformation) can be effectively absorbed.

従って、この場合でも、設置台101の設置面2に対する相対的に変位と、その変位に基づく設置台101の弾性部材1051への衝突時の弾性部材1051の弾性変形とによって地震による設置面2の加振力F1,F1’の変圧器1への伝達を好適に低減することができる。   Therefore, even in this case, the displacement of the installation surface 2 due to the earthquake is caused by the relative displacement of the installation table 101 with respect to the installation surface 2 and the elastic deformation of the elastic member 1051 when the installation table 101 collides with the elastic member 1051 based on the displacement. Transmission of the excitation forces F1, F1 ′ to the transformer 1 can be suitably reduced.

上記の実施の形態1では、台本体102に複数本のコロ103を回転自在に設け、変圧器1を横方向に移動可能な構成にしていたが、図6に示すように、台本体102に複数個のボール107を回転自在に設け、変圧器1を任意の方向に移動可能な構成にしてもよい。   In the first embodiment, a plurality of rollers 103 are rotatably provided on the base body 102 and the transformer 1 is configured to be movable in the lateral direction. However, as shown in FIG. A plurality of balls 107 may be rotatably provided, and the transformer 1 may be configured to be movable in an arbitrary direction.

図6は、図2と同じ方向から見た図であるが、作図の便宜上、防振部材104は省略している。図6に示す台本体102には、複数個のボール107が軸受け108によって台本体102の下面に回転自在に設けられている。台本体102の長手方向に沿う両側にも当接部1021が設けられ、台本体102の周囲を囲むように上下左右の各辺に4個の規制部材105が設けられている。4個の規制部材105は、各弾性部材1051がそれぞれ対向する台本体102の当接部1021に接触するように、設置面2の所定の位置に固定されている。   FIG. 6 is a view as seen from the same direction as FIG. 2, but the anti-vibration member 104 is omitted for convenience of drawing. A plurality of balls 107 are rotatably provided on the lower surface of the table main body 102 by bearings 108 in the table main body 102 shown in FIG. Abutting portions 1021 are also provided on both sides of the base body 102 along the longitudinal direction, and four restricting members 105 are provided on each of the upper, lower, left and right sides so as to surround the periphery of the base body 102. The four regulating members 105 are fixed at predetermined positions on the installation surface 2 so that the elastic members 1051 come into contact with the contact portions 1021 of the base body 102 facing each other.

なお、図6の構成においても、台本体102の4個の当接部1021と各当接部1021に対向する4個の弾性部材1051との間に隙間106を設けるようにしてもよい。   In the configuration of FIG. 6 as well, a gap 106 may be provided between the four contact portions 1021 of the base body 102 and the four elastic members 1051 facing the contact portions 1021.

図1,図2に示す変圧器1は、地震による変圧器1の揺れ方向が予め分かっている場合に、設置台101の移動方向をその揺れ方向に合わせるようにして設置面2に設置する構成であるが、図6に示す複数個のボール107を回転自在に設けた台本体102の変形例では、地震発生時に地震の揺れに応じて変圧器1がその揺れの方向に変位可能であるので、変圧器1の設置方向について、制約がなくなるという利点がある。   The transformer 1 shown in FIG. 1 and FIG. 2 is configured to be installed on the installation surface 2 so that the moving direction of the installation base 101 is matched with the shaking direction when the shaking direction of the transformer 1 due to the earthquake is known in advance. However, in the modified example of the base body 102 in which the plurality of balls 107 shown in FIG. 6 are rotatably provided, the transformer 1 can be displaced in the direction of the shaking according to the shaking of the earthquake when the earthquake occurs. There is an advantage that there is no restriction on the installation direction of the transformer 1.

なお、本実施の形態1では、弾性部材1051の上端をタンク110の下面に固定していたが、弾性部材1051の上端をタンク110の下面に固定しない構成であってもよい。この場合、弾性部材1051の上端をタンク110の下面に接触させていてもよく、離間させていてもよい。弾性部材1051の上端をタンク110の下面に接触させる構成では、地震により弾性部材1051が変位すると、弾性部材1051がタンク110の下面を摺りながら弾性変形をするので、弾性部材1051とタンク110との摩擦と弾性部材1051の弾性変形によって設置面2の揺れを減震させることができる。   In the first embodiment, the upper end of the elastic member 1051 is fixed to the lower surface of the tank 110, but the upper end of the elastic member 1051 may not be fixed to the lower surface of the tank 110. In this case, the upper end of the elastic member 1051 may be brought into contact with the lower surface of the tank 110 or may be separated. In the configuration in which the upper end of the elastic member 1051 is in contact with the lower surface of the tank 110, when the elastic member 1051 is displaced due to an earthquake, the elastic member 1051 is elastically deformed while sliding on the lower surface of the tank 110. The vibration of the installation surface 2 can be reduced by friction and elastic deformation of the elastic member 1051.

弾性部材1051の上端をタンク110の下面から離間させる構成では、上述したように、移動可能な設置台101とその設置台101を挟む2個の弾性部材1051とによって設置面2の揺れを減震させることができる。   In the configuration in which the upper end of the elastic member 1051 is separated from the lower surface of the tank 110, as described above, the vibration of the installation surface 2 is reduced by the movable installation table 101 and the two elastic members 1051 sandwiching the installation table 101. Can be made.

また、図1,図2若しくは図6では、複数個のコロ103若しくはボール107などの設置面2を転動することができる転動体を台本体102に回転可能に支持する構成であったが、複数個のコロ103若しくはボール107は、台本体102と設置面2との間で回転できる構成であればよく、例えば、複数個のコロ103若しくはボール107を設置面2に回転可能に支持してもよい。   In addition, in FIG. 1, FIG. 2, or FIG. 6, the rolling body capable of rolling the installation surface 2 such as a plurality of rollers 103 or balls 107 is rotatably supported on the base body 102. The plurality of rollers 103 or balls 107 may be configured to be rotatable between the base body 102 and the installation surface 2. For example, the plurality of rollers 103 or balls 107 are rotatably supported on the installation surface 2. Also good.

或いはまた、複数個のコロ103若しくはボール107を回転可能に支持する支持部材をなくして、複数個のコロ103若しくはボール107を台本体102と設置面2との間に回転自在に配置する構成であってもよい。この場合は、各コロ103若しくは各ボール107に対して移動範囲を規制する規制部材を設けるとよい。なお、転動体は、コロとボールに限定されるものではなく、設置面2を転動可能なその他の部材を用いることができる。   Alternatively, the support member for rotatably supporting the plurality of rollers 103 or the balls 107 is eliminated, and the plurality of rollers 103 or the balls 107 are rotatably disposed between the base body 102 and the installation surface 2. There may be. In this case, it is preferable to provide a regulating member that regulates the movement range for each roller 103 or each ball 107. In addition, a rolling element is not limited to a roller and a ball | bowl, The other member which can roll the installation surface 2 can be used.

上記の実施の形態1では、変圧器に設けられた減震構造について説明したが、変圧器以外の地上に配置される静止誘導機器にも適用することができる。   In the first embodiment described above, the seismic reduction structure provided in the transformer has been described. However, the present invention can also be applied to stationary induction devices arranged on the ground other than the transformer.

以上のように、本発明に係る静止誘導機器は、地震発生時は地面の揺れの静止誘導機器への伝達を抑制して当該静止誘導機器の損傷や地絡事故の発生を防止することができ、通常運転時にも静止誘導機器に発生する励磁振動の設置面への伝達を防止することができるという効果を有し、地上に設置される静止誘導機器等として有用である。   As described above, the stationary guidance device according to the present invention can prevent the ground guidance device from being damaged and the occurrence of a ground fault by suppressing the transmission of ground shaking to the stationary guidance device when an earthquake occurs. It has the effect of preventing transmission of excitation vibration generated in the stationary induction device to the installation surface even during normal operation, and is useful as a stationary induction device installed on the ground.

1 変圧器
101 設置台
102 台本体
1021 当接部
1022 支持部
103 コロ(転動体)
1031 軸
104 防振部材
105 規制部材
1051 弾性部材
1052 固定部材
1053 固着部材
106 隙間
107 ボール(転動体)
108 軸受
110 タンク
111 絶縁油
112 変圧器本体
1121 鉄心
1122 コイル
1123 接続部
112 三相変圧器本体
113 フレーム
114 高圧ブッシング
115 低圧ブッシング
2 設置面
DESCRIPTION OF SYMBOLS 1 Transformer 101 Installation stand 102 Stand main body 1021 Contact part 1022 Support part 103 Roller (rolling element)
1031 Shaft 104 Anti-vibration member 105 Restriction member 1051 Elastic member 1052 Fixing member 1053 Fixing member 106 Crevice 107 Ball (rolling element)
108 Bearing 110 Tank 111 Insulating oil 112 Transformer body 1121 Iron core 1122 Coil 1123 Connection section 112 Three-phase transformer body 113 Frame 114 High-pressure bushing 115 Low-pressure bushing 2 Installation surface

Claims (10)

設置台を介して設置面に設置される静止誘導機器であって、
前記設置台は、前記設置面に対して相対移動可能になされ、
前記設置面の前記設置台よりも外側の所定の位置に、前記設置台の移動を規制する弾性変形可能な規制部材が設けられていることを特徴とする静止誘導機器。
A stationary induction device installed on the installation surface via an installation table,
The installation table is movable relative to the installation surface,
A stationary induction device characterized in that an elastically deformable restricting member for restricting movement of the installation table is provided at a predetermined position outside the installation table on the installation surface.
前記設置台は、
前記機器本体が搭載される台本体と、
前記台本体と前記設置面との間に回転可能に設けられた転動体と、
を含む、請求項1記載の静止誘導機器。
The installation table is
A base body on which the device body is mounted;
A rolling element rotatably provided between the base body and the installation surface;
The stationary induction device according to claim 1, comprising:
前記転動体は、前記台本体若しくは前記設置面に設けられた支持部材によって回転可能に支持されている、請求項2記載の静止誘導機器。   The stationary guide device according to claim 2, wherein the rolling element is rotatably supported by a support member provided on the base body or the installation surface. 前記転動体は、複数本のコロである、請求項2または請求項3記載の静止誘導機器。   The static induction device according to claim 2 or 3, wherein the rolling element is a plurality of rollers. 前記転動体は、複数個のボールである、請求項2または請求項3記載の静止誘導機器。   The stationary guide device according to claim 2, wherein the rolling element is a plurality of balls. 前記規制部材は、前記設置台との間に所定の隙間を設けて配置されている、請求項1から請求項5のいずれか一項に記載の静止誘導機器。   The stationary guide device according to any one of claims 1 to 5, wherein the restriction member is disposed with a predetermined gap between the restriction member and the installation base. 前記規制部材は、前記設置台との間に隙間が生じないように配置されている、請求項1から請求項5のいずれか一項に記載の静止誘導機器。   The stationary guide device according to any one of claims 1 to 5, wherein the restricting member is disposed so that no gap is generated between the restricting member and the installation base. 前記規制部材は、ゴムである、請求項1から請求項7のいずれか一項に記載の静止誘導機器。   The stationary induction device according to any one of claims 1 to 7, wherein the restriction member is rubber. 前記規制部材は、前記設置台に載置される機器本体と前記設置面とに接続されている、請求項1から請求項8のいずれか一項に記載の静止誘導機器。   The stationary guide device according to any one of claims 1 to 8, wherein the regulating member is connected to a device main body placed on the installation base and the installation surface. 前記誘導機器本体は、変圧器である、請求項1から請求項9のいずれか一項に記載の静止誘導機器。   The stationary induction device according to any one of claims 1 to 9, wherein the induction device main body is a transformer.
JP2014177062A 2014-09-01 2014-09-01 Stationary induction apparatus Pending JP2016051850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177062A JP2016051850A (en) 2014-09-01 2014-09-01 Stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177062A JP2016051850A (en) 2014-09-01 2014-09-01 Stationary induction apparatus

Publications (1)

Publication Number Publication Date
JP2016051850A true JP2016051850A (en) 2016-04-11

Family

ID=55659127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177062A Pending JP2016051850A (en) 2014-09-01 2014-09-01 Stationary induction apparatus

Country Status (1)

Country Link
JP (1) JP2016051850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843721B1 (en) 2017-10-30 2018-03-30 조일성업전기 주식회사 Earthquake-proof mold transformer
CN109033612A (en) * 2018-07-20 2018-12-18 广西电网有限责任公司电力科学研究院 A kind of Diagnosis Method of Transformer Faults based on vibration noise and BP neural network
CN112635162A (en) * 2020-12-11 2021-04-09 赣州和信诚电子有限公司 Portable small-size transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843721B1 (en) 2017-10-30 2018-03-30 조일성업전기 주식회사 Earthquake-proof mold transformer
CN109033612A (en) * 2018-07-20 2018-12-18 广西电网有限责任公司电力科学研究院 A kind of Diagnosis Method of Transformer Faults based on vibration noise and BP neural network
CN109033612B (en) * 2018-07-20 2023-05-05 广西电网有限责任公司电力科学研究院 Transformer fault diagnosis method based on vibration noise and BP neural network
CN112635162A (en) * 2020-12-11 2021-04-09 赣州和信诚电子有限公司 Portable small-size transformer

Similar Documents

Publication Publication Date Title
KR101783370B1 (en) Earthquake-proof mold transformer
CN103093942B (en) Amorphous iron core transformer
US20180297061A1 (en) Vibration motor
KR101518810B1 (en) Switch gear having a earthquake resistant device
US20140132089A1 (en) Linear vibration motor
JP6597242B2 (en) Vibration control structure of static induction equipment
JP5745904B2 (en) Stator assembly for electromechanical converter, electromechanical converter, and windmill
JP2016051850A (en) Stationary induction apparatus
JP2014079118A (en) Power generator
US10376919B2 (en) Linear vibration motor
KR101478992B1 (en) Horizontality vibration motor
JP2014121264A (en) Linear actuator
KR101712571B1 (en) Vibration-proof type mold transformer
JP2008208859A (en) Vibration-proofing suspension
US10637339B2 (en) Linear vibration motor
JP2017119268A (en) Vibration motor
CN112696449A (en) Negative stiffness electromagnetic actuating mechanism suitable for low-frequency vibration reduction and isolation
KR101765539B1 (en) Molded Transformer
JP2013207156A (en) Mold transformer with earthquake-resistant structure
JP2007067109A (en) Iron core type reactor with gap
JP6086570B2 (en) Vibration generator
JP6396261B2 (en) Linear vibration motor
KR101857484B1 (en) A seismic system and apparatus for providing horizontality and verticality resistance earthquake to elecrtical panel
JP5637456B2 (en) Linear motor
KR101095155B1 (en) Horizontal linear vibrator