JP2016051616A - Luminaire - Google Patents

Luminaire Download PDF

Info

Publication number
JP2016051616A
JP2016051616A JP2014176632A JP2014176632A JP2016051616A JP 2016051616 A JP2016051616 A JP 2016051616A JP 2014176632 A JP2014176632 A JP 2014176632A JP 2014176632 A JP2014176632 A JP 2014176632A JP 2016051616 A JP2016051616 A JP 2016051616A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
light
light source
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014176632A
Other languages
Japanese (ja)
Other versions
JP6528377B2 (en
Inventor
圭一 五味
Keiichi Gomi
圭一 五味
照雄 渡邉
Teruo Watanabe
照雄 渡邉
渉 小椋
Wataru Ogura
渉 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014176632A priority Critical patent/JP6528377B2/en
Publication of JP2016051616A publication Critical patent/JP2016051616A/en
Application granted granted Critical
Publication of JP6528377B2 publication Critical patent/JP6528377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized and inexpensive luminaire capable of obtaining linear illumination light having even brightness.SOLUTION: A luminaire 1 includes a laser light source part 10, and a long member 30 irradiated with beam light emitted from the laser light source part. On a surface formed in the longitudinal direction of the long member, provided is a wavelength conversion member converting the beam light to light having a different wavelength. The laser light source part and the long member are set so that the optical axis of the beam light is inclined to a surface on which the wavelength conversion member 31 is provided, and so that the beam light is radiated to the wavelength conversion member.SELECTED DRAWING: Figure 1A

Description

本発明は、レーザビーム光を使用した照明装置に関する。   The present invention relates to an illumination device using laser beam light.

近年、レーザダイオード(LD:Laser Diode)を光源とした照明装置が開発されている。レーザビーム光(以下、ビーム光という)を照明用光源として使用する場合、指向性の高いビーム光をそのまま使うのではなく、拡散光に一旦変換することで広い範囲を照明できるよう工夫が行われている。   In recent years, illumination devices using a laser diode (LD) as a light source have been developed. When using laser beam light (hereinafter referred to as “beam light”) as a light source for illumination, it is devised to illuminate a wide range by once converting it into diffused light instead of using highly directional beam light as it is. ing.

例えば、特許文献1では、レーザ光源部から放射された光を拡散させる第1拡散部と、当該拡散した光を異なる波長の光に変換する第1波長変換部とを備え、第1拡散部の周囲に塗布された拡散体の分布密度を変化させることで、レーザ光源部からの位置によらず、光の強度を均一にすることができる照明装置が提案されている。   For example, Patent Document 1 includes a first diffusion unit that diffuses light emitted from a laser light source unit, and a first wavelength conversion unit that converts the diffused light into light having a different wavelength. There has been proposed an illumination device that can make the light intensity uniform regardless of the position from the laser light source unit by changing the distribution density of the diffuser applied around.

また、特許文献2では、ビーム光を反射させる反射部と、反射部により反射されたビーム光が照射されて励起される蛍光体を含む蛍光部とを備え、可動機構によって反射部を回転させることで、反射されたビーム光によって蛍光部を走査する線状の照明装置が提案されている。   Further, in Patent Document 2, a reflection unit that reflects beam light and a fluorescent unit including a phosphor that is excited by irradiation with the beam light reflected by the reflection unit are provided, and the reflection unit is rotated by a movable mechanism. Thus, a linear illumination device that scans a fluorescent portion with reflected beam light has been proposed.

特開2010−056003号公報JP 2010-056003 A 特開2010−015902号公報JP 2010-015902 A

しかしながら、特許文献1で提案された照明装置は、第1拡散部の拡散強度を位置に応じて変える際に、拡散体の分布密度を制御することが難しく、製造コストが高くなるという問題がある。また、特許文献1の照明装置は、第1拡散部への入射効率が低いという問題もある。さらに、特許文献2で提案された照明装置についても、光線を走査するための装置が複雑かつ大型となり、製造コストが高いという問題がある。   However, the illumination device proposed in Patent Document 1 has a problem that it is difficult to control the distribution density of the diffuser when the diffusion intensity of the first diffusion portion is changed depending on the position, and the manufacturing cost is increased. . In addition, the illumination device of Patent Document 1 has a problem that the incident efficiency to the first diffusion portion is low. Furthermore, the illumination device proposed in Patent Document 2 also has a problem that the device for scanning the light beam is complicated and large in size, and the manufacturing cost is high.

本発明は、前記の点に鑑みてなされたものであり、小型かつ安価で、明るさが均一な線形照明光を得ることができる照明装置を提供する。   The present invention has been made in view of the above points, and provides a lighting device that can obtain linear illumination light that is small, inexpensive, and uniform in brightness.

前記課題を解決するために本発明の実施形態に係る照明装置は、レーザ光源部と、前記レーザ光源部から出射されたビーム光が照射される長尺部材とを備え、前記長尺部材の長手方向に形成される面に、前記ビーム光を異なる波長の光に変換する波長変換部材が設けられ、前記レーザ光源部及び前記長尺部材は、前記ビーム光の光軸を前記波長変換部材が設けられた面に対して傾斜するように設定されるとともに、前記ビーム光が前記波長変換部材に照射されるように設定される構成である。   In order to solve the above-described problem, an illumination device according to an embodiment of the present invention includes a laser light source unit and a long member to which the beam light emitted from the laser light source unit is irradiated. A wavelength conversion member that converts the light beam into light of a different wavelength is provided on a surface formed in a direction, and the laser light source unit and the elongated member are provided with an optical axis of the light beam. It is set so that it inclines with respect to the given surface, and it is set so that the said beam light may be irradiated to the said wavelength conversion member.

本発明の実施形態に係る照明装置によれば、波長変換部材が設けられた面に対してビーム光を斜めに照射することで、波長変換部材の長手方向全体にビーム光を照射し、波長を変換して照明光を得ることができる。これにより、照明装置は、レーザ光源部と波長変換部材を設けた長尺部材からなる簡易、小型かつ安価な構成で、明るさが均一な線形照明光を得ることができる。   According to the illumination device according to the embodiment of the present invention, by irradiating the light beam obliquely to the surface on which the wavelength conversion member is provided, the light beam is irradiated to the entire longitudinal direction of the wavelength conversion member, and the wavelength is changed. The illumination light can be obtained by conversion. Thereby, the illuminating device can obtain linear illumination light with uniform brightness with a simple, small, and inexpensive configuration including a long member provided with a laser light source section and a wavelength conversion member.

本発明の第1実施形態に係る照明装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the illuminating device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る照明装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the illuminating device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る照明装置の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る照明装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る照明装置のレーザ光源部から波長変換部材に対して直接照射されたビーム光のビーム形状を模式的に示した平面図である。It is the top view which showed typically the beam shape of the beam light directly irradiated with respect to the wavelength conversion member from the laser light source part of the illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る照明装置の反射部材から波長変換部材に対して反射されたビーム光のビーム形状を模式的に示した平面図である。It is the top view which showed typically the beam shape of the beam light reflected with respect to the wavelength conversion member from the reflection member of the illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る照明装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the illuminating device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る照明装置のレーザ光源部から波長変換部材に対して直接照射されたビーム光のビーム形状を示した平面図である。It is the top view which showed the beam shape of the beam light directly irradiated with respect to the wavelength conversion member from the laser light source part of the illuminating device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る照明装置の反射部材から波長変換部材に対して反射されたビーム光のビーム形状を示した平面図である。It is the top view which showed the beam shape of the beam light reflected with respect to the wavelength conversion member from the reflection member of the illuminating device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る照明装置の構成を示す側面図である。It is a side view which shows the structure of the illuminating device which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る照明装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the illuminating device which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る照明装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the illuminating device which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る照明装置の構成の一部を省略しかつ断面にして模式的に示す斜視図である。It is a perspective view which abbreviate | omits a part of structure of the illuminating device which concerns on 6th Embodiment of this invention, and is shown typically in a cross section. 本発明の第6実施形態に係る照明装置の構成の一部を省略して模式的に示す端面図である。It is an end elevation which omits a part of composition of an illuminating device concerning a 6th embodiment of the present invention, and shows typically.

以下、本発明に係る実施の形態について、図面を参照して説明する。なお、以下に示す実施の形態は、本発明の技術思想を具体化するための照明装置を例示するものである。したがって、本発明は、以下に示す実施の形態において照明装置を以下のものに特定しない。特に、実施の形態に記載されている各部材の寸法、材質、形状、その相対的配置などは特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。また、以下の説明において参照する図面は、本発明を概略的に示したものであるため、各部材のスケールや間隔、位置関係などが誇張、あるいは、部材の一部の図示が省略されている場合がある。また、以下の説明では、同一の名称及び符号については原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略することとする。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, embodiment shown below illustrates the illuminating device for actualizing the technical idea of this invention. Therefore, the present invention does not specify the lighting device as described below in the embodiment described below. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the members described in the embodiments are not intended to limit the scope of the present invention only to those unless otherwise specified. It is just an example. In addition, the drawings referred to in the following description schematically show the present invention, and therefore the scale, spacing, positional relationship, etc. of each member are exaggerated, or some of the members are not shown. There is a case. Moreover, in the following description, the same name and code | symbol indicate the same or the same member in principle, and detailed description is abbreviate | omitted suitably.

<第1実施形態>
図1A及び図1Bに示すように、照明装置1は、線形の照明光を生成するためのものである。照明装置1は、レーザ光源部10と、コリメートレンズ20と、長尺部材30と、を備えている。
<First Embodiment>
As shown in FIGS. 1A and 1B, the illumination device 1 is for generating linear illumination light. The illumination device 1 includes a laser light source unit 10, a collimating lens 20, and a long member 30.

レーザ光源部10は、後記する長尺部材30の長手方向に向けてビーム光BLを照射するものである。レーザ光源部10の具体的構成は、ビーム光BLを照射できるものであれば特に限定されないが、例えば基板と、当該基板上に固定されたレーザダイオードと、当該レーザダイオードの駆動時における熱を放熱するためのヒートシンクなどから構成することができる。なお、レーザ光源部10は、ビーム径を制御するスリットから照射されるように構成しても構わない。また、本発明の実施形態によれば、レーザ光は、ビーム光と同義であり、ビーム光との表現に置き換えることができる。   The laser light source unit 10 irradiates the beam light BL in the longitudinal direction of the long member 30 described later. The specific configuration of the laser light source unit 10 is not particularly limited as long as it can irradiate the beam light BL. For example, the substrate, the laser diode fixed on the substrate, and the heat radiated when the laser diode is driven are dissipated. It can be composed of a heat sink or the like. In addition, you may comprise the laser light source part 10 so that it may irradiate from the slit which controls a beam diameter. In addition, according to the embodiment of the present invention, laser light is synonymous with beam light, and can be replaced with an expression of beam light.

レーザ光源部10は、図1Aに示すように、出射したビーム光BLの光軸が、長尺部材30の波長変換部材31が設けられた面に対して所定角度傾斜するように配置されている。これにより、レーザ光源部10から出射されたビーム光BLは、波長変換部材31に対して所定角度傾斜した状態で照射される。ここで、ビーム光BLの光軸と波長変換部材31が設けられた面との具体的な配置関係については後記する。   As shown in FIG. 1A, the laser light source unit 10 is arranged such that the optical axis of the emitted light beam BL is inclined at a predetermined angle with respect to the surface of the long member 30 on which the wavelength conversion member 31 is provided. . Thereby, the beam light BL emitted from the laser light source unit 10 is irradiated in a state inclined at a predetermined angle with respect to the wavelength conversion member 31. Here, a specific arrangement relationship between the optical axis of the light beam BL and the surface on which the wavelength conversion member 31 is provided will be described later.

コリメートレンズ20は、レーザ光源部10から出射されたビーム光BLを平行光にするものである。コリメートレンズ20の具体的構成は、ビーム光BLを平行化(コリメート)できるものであれば特に限定されないが、例えば平凸レンズなどを用いることができる。なお、コリメートレンズ20は、ここでは、図1A及び図1Bに示すように、レーザ光源部10の内部に設けたものを一例として図示したが、コリメートレンズ20の具体的な配置位置は特に限定されず、レーザ光源部10の外部(例えばレーザ光源部10と長尺部材30の間)に設けても構わない。また、ビーム径を制御するスリット13を、コリメートレンズ20と長尺部材30との間に設けてもかまわない。   The collimating lens 20 converts the beam light BL emitted from the laser light source unit 10 into parallel light. The specific configuration of the collimating lens 20 is not particularly limited as long as it can collimate the beam light BL. For example, a plano-convex lens can be used. Here, as shown in FIGS. 1A and 1B, the collimating lens 20 is illustrated as an example provided inside the laser light source unit 10, but the specific arrangement position of the collimating lens 20 is particularly limited. Instead, it may be provided outside the laser light source unit 10 (for example, between the laser light source unit 10 and the long member 30). Further, the slit 13 for controlling the beam diameter may be provided between the collimating lens 20 and the long member 30.

コリメートレンズ20は、ビーム光BLを平行化することで、図1Bに示すように、ビーム光BLの幅を抑制し所定幅となるように狭くできるため、より細く長い線形照明光を得ることができる。   As shown in FIG. 1B, the collimating lens 20 can reduce the width of the beam light BL to be a predetermined width by collimating the beam light BL, so that a narrower and longer linear illumination light can be obtained. it can.

長尺部材30は、レーザ光源部10から出射されたビーム光BLが照射されるものである。長尺部材30は、図1Bに示すように、ビーム光BLの直径と等しいか広い幅の長尺平板状に形成されており、図1Aに示すように、表面が平面状の薄い板状部材で構成されている。そして、この長尺部材30の長手方向に形成された一方の面(ここでは上面の全面)には、波長変換部材31が設けられている。   The long member 30 is irradiated with the beam light BL emitted from the laser light source unit 10. The long member 30 is formed in a long flat plate shape having a width equal to or wider than the diameter of the beam light BL as shown in FIG. 1B, and a thin plate-like member having a flat surface as shown in FIG. 1A. It consists of A wavelength conversion member 31 is provided on one surface (here, the entire upper surface) formed in the longitudinal direction of the long member 30.

波長変換部材31は、ビーム光BLを異なる波長の光に変換するものである。波長変換部材31は、具体的には蛍光体であり、長尺部材30の表面、すなわちビーム光BLが照射される側の面に塗布されている。なお、波長変換部材31は、ここでは、図1Bに示すように、長尺部材30の表面の全面に設けたものを一例として図示したが、少なくともビーム光BLが照射される範囲に設けられていればよく、長尺部材30の表面の一部に設けても構わない。このような波長変換部材31に対してビーム光BLが照射されることで、ビーム光BLの一部が当該ビーム光と同じ波長でランバーシャン配光の光に変わるとともに、ビーム光BLの一部が波長変換部材31により励起された光に変わる。そして、波長変換部材31によりビーム光BLから変わった両光により照明光を得ることができる。なお、一例として、前記したレーザ光源部10として青色のレーザダイオードを用い、波長変換部材31として黄色の蛍光体を用いることで、白色照明光を得ることができる。また、ビーム光BLの一部が波長変換されずに長尺部材30の表面で反射するように、波長変換部材31の量を調整するようにしてもよい。   The wavelength conversion member 31 converts the beam light BL into light having a different wavelength. The wavelength conversion member 31 is specifically a phosphor, and is applied to the surface of the long member 30, that is, the surface to which the beam light BL is irradiated. Here, as shown in FIG. 1B, the wavelength conversion member 31 is illustrated as an example provided on the entire surface of the long member 30, but is provided at least in a range where the beam light BL is irradiated. What is necessary is just to be provided in a part of surface of the elongate member 30. By irradiating such a wavelength conversion member 31 with the beam light BL, a part of the beam light BL is changed to light of Lambertian light distribution at the same wavelength as the beam light, and a part of the beam light BL. Changes to light excited by the wavelength conversion member 31. Then, the illumination light can be obtained by the light converted from the beam light BL by the wavelength conversion member 31. As an example, white illumination light can be obtained by using a blue laser diode as the laser light source unit 10 and using a yellow phosphor as the wavelength conversion member 31. Further, the amount of the wavelength conversion member 31 may be adjusted so that a part of the beam light BL is reflected on the surface of the long member 30 without being subjected to wavelength conversion.

ここで、波長変換部材31が設けられた面は、図1Aに示すように、ビーム光BLの光軸に対して所定角度(例えば2度程度)傾斜した状態となっている。具体的には、波長変換部材31が設けられた面は、レーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における下端に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における上端に配置されている。なお、前記した「上下方向」とは、波長変換部材31が設けられた面に略垂直な方向であり、その内の「上方向」とは、波長変換部材31が設けられた面から離れる方向のことを意味している。   Here, as shown in FIG. 1A, the surface on which the wavelength conversion member 31 is provided is in a state of being inclined at a predetermined angle (for example, about 2 degrees) with respect to the optical axis of the beam light BL. Specifically, the surface on which the wavelength conversion member 31 is provided is arranged such that one end side in the longitudinal direction close to the laser light source unit 10 is disposed at the lower end in the vertical direction of the diameter of the beam light BL and the long side far from the laser light source unit 10. The other end side in the direction is arranged at the upper end in the vertical direction of the diameter of the light beam BL. The “up and down direction” is a direction substantially perpendicular to the surface on which the wavelength conversion member 31 is provided, and the “upward direction” is a direction away from the surface on which the wavelength conversion member 31 is provided. It means that.

波長変換部材31が設けられた面とビーム光BLの光軸とを上記したような配置関係とすることで、図1Bに示すように、レーザ光源部10から出射されたビーム光BLが波長変換部材31の範囲内に照射されることになる。具体的には図1Aに示すように、波長変換部材31において、レーザ光源部10に近い長手方向の一端側にビーム光BLの下端が照射され、レーザ光源部10から遠い長手方向の他端側にビーム光BLの上端が照射される。そして、波長変換部材31に照射されるビーム光BLのビーム形状BPは、長手方向の一端側及び他端側の幅が細く、長手方向の中央の幅が太い、細長い楕円形状となる。これにより、波長変換部材31に照射されるビーム光BLの輝度分布は、長手方向の一端側及び他端側で光強度が最小となり、長手方向の中央で光強度が最大となる。   By arranging the surface on which the wavelength conversion member 31 is provided and the optical axis of the light beam BL as described above, the light beam BL emitted from the laser light source unit 10 is converted in wavelength as shown in FIG. 1B. Irradiation is within the range of the member 31. Specifically, as shown in FIG. 1A, in the wavelength conversion member 31, one end in the longitudinal direction near the laser light source unit 10 is irradiated with the lower end of the beam light BL, and the other end in the longitudinal direction far from the laser light source unit 10. Is irradiated with the upper end of the light beam BL. The beam shape BP of the light beam BL irradiated to the wavelength conversion member 31 has an elongated elliptical shape in which the width on one end side and the other end side in the longitudinal direction is narrow and the center width in the longitudinal direction is thick. Thereby, the luminance distribution of the beam light BL irradiated to the wavelength conversion member 31 has the minimum light intensity at one end side and the other end side in the longitudinal direction, and the maximum light intensity at the center in the longitudinal direction.

以上の構成を備える照明装置1によれば、波長変換部材31が設けられた面に対してビーム光BLを斜めに照射することで、波長変換部材31の長手方向全体にわたってビーム光BLを照射し、少なくとも一部または全部の波長を変換した照明光を得ることができる。これにより、照明装置1は、レーザ光源部10と波長変換部材31を設けた長尺部材30からなる簡易、小型かつ安価な簡易な構成で、明るさが均一な線形照明光を得ることができる。   According to the illuminating device 1 having the above configuration, the light beam BL is irradiated over the entire longitudinal direction of the wavelength conversion member 31 by irradiating the light beam BL obliquely to the surface on which the wavelength conversion member 31 is provided. It is possible to obtain illumination light obtained by converting at least a part or all of the wavelengths. Thereby, the illuminating device 1 can obtain linear illumination light with uniform brightness with a simple, small, and inexpensive configuration including the long member 30 provided with the laser light source unit 10 and the wavelength conversion member 31. .

<第2実施形態>
本発明の第2実施形態に係る照明装置1Aは、前記した照明装置1(図1B参照)の輝度分布をより均一化するための改良例である。第2実施形態に係る照明装置1Aは、輝度分布をより均一化するために、図2A及び図2Bに示すように、長尺部材30の波長変換部材31が設けられた面を照明装置1(図1参照)とは異なる角度で配置するとともに、照明装置1の構成に加え、反射部材40をさらに備える構成とした。以下、照明装置1Aの具体的構成について説明する。
Second Embodiment
An illuminating device 1A according to the second embodiment of the present invention is an improved example for making the luminance distribution of the illuminating device 1 (see FIG. 1B) more uniform. As shown in FIGS. 2A and 2B, the lighting device 1 </ b> A according to the second embodiment illuminates the surface of the long member 30 on which the wavelength conversion member 31 is provided, as shown in FIGS. 2A and 2B. In addition to the configuration of the illumination device 1, the reflection member 40 is further provided at an angle different from that shown in FIG. Hereinafter, a specific configuration of the lighting device 1A will be described.

照明装置1Aは、長尺部材30の一端側にレーザ光源部10を設けると共に、長尺部材30の他端側に反射部材40を設けている。そして、照明装置1Aにおいて、波長変換部材31が設けられた面は、図2Bに示すように、照明装置1における波長変換部材31が設けられた面(図1B参照)と比較して、ビーム光BLの光軸に対する傾斜角度が浅くなっている。これにより、照明装置1Aは、レーザ光源部10が波長変換部材31及び反射部材40にビーム光BLを照射するように設けられている。具体的には、照明装置1Aは、レーザ光源部10からのビーム光BLの光軸より下方となる光を波長変換部材31に照射し、レーザ光源部10からのビーム光BLの光軸より上方となる光を反射部材40に照射するように構成されている。   1 A of illuminating devices provide the laser light source part 10 in the one end side of the elongate member 30, and provide the reflection member 40 in the other end side of the elongate member 30. As shown in FIG. In the illumination device 1A, the surface on which the wavelength conversion member 31 is provided is a beam light as shown in FIG. 2B, compared to the surface in the illumination device 1 on which the wavelength conversion member 31 is provided (see FIG. 1B). The inclination angle of BL with respect to the optical axis is shallow. Thereby, 1 A of illuminating devices are provided so that the laser light source part 10 may irradiate the wavelength conversion member 31 and the reflection member 40 with the beam light BL. Specifically, the illumination device 1A irradiates the wavelength conversion member 31 with light that is below the optical axis of the beam light BL from the laser light source unit 10, and is above the optical axis of the beam light BL from the laser light source unit 10. It is comprised so that the light which becomes may be irradiated to the reflection member 40. FIG.

つまり、波長変換部材31が設けられた面は、レーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における下端に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における中央に配置されている。なお、ビーム光BLの光軸に対する波長変換部材31が設けられた面の傾斜角度は、例えば照明装置1(図1A参照)とビーム光BLの直径及びビーム光の出射方向から見た波長変換部材31の長さが同じ場合は、当該照明装置1の半分の傾斜角度(例えば1度程度)とすることができる。   That is, the surface on which the wavelength conversion member 31 is provided is arranged such that one end side in the longitudinal direction near the laser light source unit 10 is disposed at the lower end in the vertical direction of the diameter of the beam light BL and the other in the longitudinal direction far from the laser light source unit 10. The end side is disposed at the center in the vertical direction of the diameter of the beam light BL. Note that the inclination angle of the surface on which the wavelength conversion member 31 is provided with respect to the optical axis of the light beam BL is, for example, the illumination device 1 (see FIG. 1A), the diameter of the light beam BL, and the wavelength conversion member viewed from the emission direction of the light beam. When the length of 31 is the same, it can be set as the half inclination angle (for example, about 1 degree) of the said illuminating device 1. FIG.

波長変換部材31が設けられた面とビーム光BLの光軸とを上記したような配置関係とすることで、レーザ光源部10から出射されたビーム光BLの光軸から下半分が波長変換部材31の範囲内に照射されることになる。具体的には図2Bに示すように、波長変換部材31において、レーザ光源部10に近い長手方向の一端側にビーム光BLの下端が照射され、レーザ光源部10から遠い長手方向の他端側にビーム光BLの中央が照射される。
そして、波長変換部材31に照射されるビーム形状BP1は、図2Cに示すように、長手方向の一端側の幅が細く、他端側の幅が太い形状となる。これにより、波長変換部材31に照射されるビーム光BLの輝度分布は、長手方向の一端側で光強度が最小となり、長手方向の他端側で光強度が最大となる。なお、図2Cに示したビーム形状BP1は、レーザ光源部10から波長変換部材31に直接照射されたビーム光BLの下半分の成分のみを示し、反射部材40によって反射されたビーム光BLの成分の図示は省略している。
By arranging the surface on which the wavelength conversion member 31 is provided and the optical axis of the beam light BL as described above, the lower half of the optical axis of the beam light BL emitted from the laser light source unit 10 is the wavelength conversion member. Irradiation is within the range of 31. Specifically, as shown in FIG. 2B, in the wavelength conversion member 31, the lower end of the light beam BL is irradiated to one end side in the longitudinal direction near the laser light source unit 10, and the other end side in the longitudinal direction far from the laser light source unit 10. Is irradiated with the center of the light beam BL.
The beam shape BP1 irradiated to the wavelength conversion member 31 has a shape in which the width on one end side in the longitudinal direction is narrow and the width on the other end side is thick, as shown in FIG. 2C. As a result, the luminance distribution of the beam light BL irradiated to the wavelength conversion member 31 has the minimum light intensity on one end side in the longitudinal direction and the maximum light intensity on the other end side in the longitudinal direction. The beam shape BP1 shown in FIG. 2C shows only the lower half component of the light beam BL directly irradiated on the wavelength conversion member 31 from the laser light source unit 10, and the component of the light beam BL reflected by the reflecting member 40. Is not shown.

反射部材40は、レーザ光源部10から出射された後、長尺部材30の波長変換部材31が設けられた面に照射されなかったビーム光BLを波長変換部材31が設けられた面に向けて反射するためのものである。反射部材40は、図2A及び図2Bに示すように、長尺部材30の長手方向の他端側に配置され、ここでは第1反射部材41と第2反射部材42の2つから構成されている。   After the reflection member 40 is emitted from the laser light source unit 10, the light beam BL that has not been irradiated on the surface of the long member 30 on which the wavelength conversion member 31 is provided is directed toward the surface on which the wavelength conversion member 31 is provided. It is for reflection. As shown in FIGS. 2A and 2B, the reflecting member 40 is disposed on the other end side in the longitudinal direction of the long member 30, and here, the reflecting member 40 includes two members, a first reflecting member 41 and a second reflecting member 42. Yes.

第1反射部材41は、ビーム光BLの直径と等しいか広い幅の平板状の部材で形成されている。そして、この第1反射部材41は、反射性を有する材料で形成されるか、または表面(ここでは上面の全面)に反射性を有する材料を設けることで反射面が形成されている。例えば、具体的には、アルミニウムなどの金属板や、あるいは、ガラス板にアルミニウムなどの金属膜を形成したものを用いることができる。   The first reflecting member 41 is formed of a flat plate member having a width equal to or wider than the diameter of the beam light BL. And this 1st reflection member 41 is formed with the material which has reflectivity, or the reflective surface is formed by providing the material which has reflectivity on the surface (here the whole upper surface). For example, specifically, a metal plate such as aluminum or a glass plate formed with a metal film such as aluminum can be used.

第1反射部材41は、長尺部材30の長手方向の他端側に設けられている。また、第1反射部材41の反射面は、具体的には図2Bに示すように、長尺部材30に近い一端側がビーム光BLの直径の上下方向における中央(光軸)側に配置されるとともに、当該反射面の他端側がビーム光BLの直径の上下方向における上端側に配置されている。これにより、第1反射部材41は、レーザ光源部10から出射された後、長尺部材30の波長変換部材31が設けられた面に照射されなかったビーム光BLの上半分を第2反射部材42に反射する。   The first reflecting member 41 is provided on the other end side in the longitudinal direction of the long member 30. In addition, as shown in FIG. 2B, the reflecting surface of the first reflecting member 41 is arranged such that one end side close to the long member 30 is located on the center (optical axis) side in the vertical direction of the diameter of the beam light BL. In addition, the other end side of the reflecting surface is disposed on the upper end side in the vertical direction of the diameter of the beam light BL. Thereby, after the 1st reflection member 41 is radiate | emitted from the laser light source part 10, the upper half of the beam light BL which was not irradiated to the surface in which the wavelength conversion member 31 of the elongate member 30 was provided is 2nd reflection member. 42 is reflected.

第2反射部材42は、図2A及び図2Bに示すように、第1反射部材41の他端側に並んで設けられている。第2反射部材42は、ビーム光BLの直径と等しいか広い幅で形成されており、表面が凸曲面状の反射面に構成されている。そして、この第2反射部材42は、反射性を有する材料で形成されるか、または表面(ここでは右面となる凸面の全面)に反射性を有する材料が設けられることで反射面が形成されている。例えば、具体的には、アルミニウムなどの金属板や、あるいは、ガラス板にアルミニウムなどの金属膜を形成したものを用いることができる。   The 2nd reflection member 42 is provided along with the other end side of the 1st reflection member 41, as shown to FIG. 2A and 2B. The second reflecting member 42 is formed to have a width equal to or wider than the diameter of the beam light BL, and the surface is configured as a convex curved reflecting surface. The second reflecting member 42 is formed of a reflective material, or a reflective surface is formed by providing a reflective material on the surface (here, the entire convex surface which is the right surface). Yes. For example, specifically, a metal plate such as aluminum or a glass plate formed with a metal film such as aluminum can be used.

ここで、第2反射部材42の形状は、図2Bに示すように、円筒の一部に相当する円筒曲面状に形成されている。さらに、第2反射部材42の反射面は、円筒軸線方向(母線方向)と波長変換部材31が設けられた面とが平行になるように配置されている。つまり、第2反射部材42は、波長変換部材31が設けられた面に対して傾いて配置されておらず、その円筒軸線方向と波長変換部材31が設けられた面とが平行に揃った状態となるように配置されている。なお、第2反射部材42の形状は円筒曲線に限らず、楕円曲線、放物線、双曲線に相当する円筒曲面状などに形成されていてもよい。   Here, as shown in FIG. 2B, the shape of the second reflecting member 42 is formed in a cylindrical curved surface corresponding to a part of the cylinder. Further, the reflection surface of the second reflection member 42 is arranged so that the cylindrical axis direction (bus line direction) and the surface on which the wavelength conversion member 31 is provided are parallel to each other. That is, the second reflecting member 42 is not arranged to be inclined with respect to the surface on which the wavelength conversion member 31 is provided, and the cylindrical axis direction and the surface on which the wavelength conversion member 31 are provided are aligned in parallel. It is arranged to become. The shape of the second reflecting member 42 is not limited to the cylindrical curve, and may be formed in a cylindrical curved surface corresponding to an elliptic curve, a parabola, or a hyperbola.

照明装置1Aは、このような反射部材40を設けることで、図2Bに示すように、波長変換部材31に照射されなかったビーム光BLの光軸より上半分を波長変換部材31に反射する。また、この反射部材40による反射(ここでは合計2回の反射)を経ることで、ビーム光BLのビーム形状BP2が図2Cに示す状態から反転する。そのため、反射部材40を介した反射光は、図2Dに示すように、波長変換部材31に直接照射された場合のビーム形状BP1とは反対のビーム形状BP2となる。   The illumination device 1 </ b> A provides such a reflection member 40 to reflect the upper half of the optical axis of the light beam BL not irradiated on the wavelength conversion member 31 to the wavelength conversion member 31 as shown in FIG. 2B. Moreover, the beam shape BP2 of the light beam BL is reversed from the state shown in FIG. 2C by being reflected by the reflecting member 40 (here, a total of two reflections). Therefore, the reflected light through the reflecting member 40 has a beam shape BP2 opposite to the beam shape BP1 when the wavelength converting member 31 is directly irradiated, as shown in FIG. 2D.

したがって、反射部材40によって波長変換部材31に反射されるビーム形状BP2は、レーザ光源部10側の幅が太く、反射部材40側の幅が細い形状となる。これにより、波長変換部材31に反射されるビーム光BLの輝度分布は、長手方向の一端側で光強度が最大となり、長手方向の他端側で光強度が最小となる。したがって、輝度分布もビーム形状BP1とは反対となる。なお、図2Dに示したビーム形状BP2は、反射部材40によって反射されたビーム光BLの成分のみを示しており、レーザ光源部10から波長変換部材31に直接照射されたビーム光BLの成分の図示は省略している。   Therefore, the beam shape BP2 reflected by the reflection member 40 to the wavelength conversion member 31 has a shape with a large width on the laser light source unit 10 side and a narrow width on the reflection member 40 side. As a result, the luminance distribution of the beam light BL reflected by the wavelength conversion member 31 has the maximum light intensity at one end in the longitudinal direction and the minimum light intensity at the other end in the longitudinal direction. Therefore, the luminance distribution is also opposite to the beam shape BP1. The beam shape BP2 shown in FIG. 2D shows only the component of the beam light BL reflected by the reflecting member 40, and the component of the beam light BL directly irradiated on the wavelength conversion member 31 from the laser light source unit 10 is shown. Illustration is omitted.

このように、照明装置1Aは、波長変換部材31にビーム光BLの光軸から下半分を直接照射し、長尺部材30の長手方向の他端側に配置した反射部材40によって、ビーム光BLの残りの光軸から上半分を反射して波長変換部材31に照射させている。すなわち、照明装置1Aは、波長変換部材31に照射されたビーム光BLのビーム形状BP1(図2C参照)を考慮して、反射部材40によるビーム光BLのビーム形状BP2を形成している。そして、照明装置1Aは、波長変換部材31への直接照射のビーム光BLと反射部材40で反射したビーム光BLとを重畳(図2A参照)させることで、ビーム形状BPとして波長変換部材31の全体に均一な照射を行う。これによって、明るさの均一な線形照明光を得るように構成している。   Thus, the illuminating device 1A directly irradiates the wavelength conversion member 31 with the lower half from the optical axis of the beam light BL, and the reflection member 40 disposed on the other end side in the longitudinal direction of the long member 30 causes the beam light BL. The wavelength conversion member 31 is irradiated by reflecting the upper half from the remaining optical axis. That is, the illumination device 1A forms the beam shape BP2 of the beam light BL by the reflecting member 40 in consideration of the beam shape BP1 (see FIG. 2C) of the beam light BL irradiated to the wavelength conversion member 31. Then, the illuminating device 1A superimposes the beam light BL directly irradiated on the wavelength conversion member 31 and the beam light BL reflected by the reflection member 40 (see FIG. 2A), thereby forming the beam shape BP of the wavelength conversion member 31. Uniform irradiation is performed throughout. Thus, linear illumination light with uniform brightness is obtained.

<第3実施形態>
なお、照明装置1Aでは、第2反射部材42の反射面を円筒曲面として説明したが、図3A〜図3Cに示すように、平面状の反射面を有する第2反射部材42Aを用いた照明装置1Bのような構成としても構わない。なお、照明装置1Bでは、第2反射部材42A以外は前記した照明装置1A(図2A参照)と同様の構成を備えている。
<Third Embodiment>
In the illumination device 1A, the reflection surface of the second reflection member 42 has been described as a cylindrical curved surface. However, as shown in FIGS. 3A to 3C, the illumination device using the second reflection member 42A having a planar reflection surface. A configuration like 1B may be used. The lighting device 1B has the same configuration as the lighting device 1A (see FIG. 2A) except for the second reflecting member 42A.

図3Aに示すように、照明装置1Bは、平面状の反射面を有する第2反射部材42Aを用いている。この第2反射部材42Aは、図3Cに示すように、反射したビーム光の光強度が最大となる位置を波長変換部材31の長手方向の一端側となるように傾斜させて設置される。したがって、曲面状の反射面を有する第2反射部材42を用いた照明装置1A(図2D参照)よりも、第2反射部材42から波長変換部材31に反射されるビーム光BLの領域は小さくなるものの、直接、波長変換部材31に照射されない、もしくは照射されにくい範囲をカバーするように反射光を波長変換部材31に反射することができる。   As shown in FIG. 3A, the lighting device 1B uses a second reflecting member 42A having a planar reflecting surface. As shown in FIG. 3C, the second reflecting member 42 </ b> A is installed so as to be inclined so that the position where the light intensity of the reflected beam light becomes maximum is one end side in the longitudinal direction of the wavelength conversion member 31. Therefore, the region of the beam light BL reflected from the second reflecting member 42 to the wavelength conversion member 31 is smaller than that of the lighting device 1A using the second reflecting member 42 having a curved reflecting surface (see FIG. 2D). However, it is possible to reflect the reflected light to the wavelength conversion member 31 so as to cover a range where the wavelength conversion member 31 is not directly irradiated or difficult to be irradiated.

したがって、照明装置1Bは、図3Bに示すように、波長変換部材31に直接照射されるビーム光と、図3Cに示すように、反射して波長変換部材31に照射されるビーム光とが、波長変換部材31全体に均一に照射して、十分に均一な明るさの線形照明光を得ることができる。なお、 波長変換部材31に直接照射されるビーム光は、ビーム形状BP1として、反射して波長変換部材31に照射されるビーム光は、ビーム形状BP2として、波長変換部材31に照射される。また、照明装置1Bは、平板状の第2反射部材42Aを用いるため、照明装置1Aと比較してより製造コストを低減できるとともに反射部材40Aの設置領域をより小型化することができる。なお、図3Bではビーム形状BP1のみを示し、図3Cではビーム形状BP1,BP2を示している。   Therefore, as shown in FIG. 3B, the illumination device 1B has the beam light directly irradiated on the wavelength conversion member 31 and the beam light reflected and irradiated on the wavelength conversion member 31 as shown in FIG. 3C. It is possible to irradiate the entire wavelength conversion member 31 uniformly and obtain linear illumination light with sufficiently uniform brightness. The beam light directly irradiated on the wavelength conversion member 31 is irradiated as the beam shape BP1, and the beam light reflected and irradiated on the wavelength conversion member 31 is irradiated on the wavelength conversion member 31 as the beam shape BP2. Moreover, since the illuminating device 1B uses the flat plate-like second reflecting member 42A, the manufacturing cost can be further reduced as compared with the illuminating device 1A, and the installation area of the reflecting member 40A can be further reduced. 3B shows only the beam shape BP1, and FIG. 3C shows the beam shapes BP1 and BP2.

<第4実施形態>
本発明の第4実施形態に係る照明装置1Cは、前記した照明装置1(図1A参照)の輝度分布を均一化するための更なる改良例である。照明装置1Cは、図4に示すように、平板状の長尺部材30の代わりに湾曲状の長尺部材30Aを用いること以外は前記した照明装置1(図1B参照)と同様の構成を備えている。
<Fourth embodiment>
An illuminating device 1C according to the fourth embodiment of the present invention is a further improvement example for making the luminance distribution of the illuminating device 1 (see FIG. 1A) uniform. As shown in FIG. 4, the lighting device 1 </ b> C has the same configuration as the lighting device 1 described above (see FIG. 1B) except that a curved long member 30 </ b> A is used instead of the flat plate-like long member 30. ing.

長尺部材30Aは、図4に示すように、長手方向の中央よりも一端及び他端におけるビーム光BLの入射角が小さくなるように湾曲して形成されている。また、長尺部材30Aの波長変換部材31が設けられた面は、具体的にはレーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における下端に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における上端に配置されている。   As shown in FIG. 4, the long member 30 </ b> A is formed to be curved so that the incident angle of the beam light BL at one end and the other end is smaller than the center in the longitudinal direction. In addition, the surface of the long member 30A on which the wavelength conversion member 31 is provided is specifically arranged such that one end side in the longitudinal direction near the laser light source unit 10 is arranged at the lower end in the vertical direction of the diameter of the beam BL. The other end side in the longitudinal direction far from the light source unit 10 is arranged at the upper end in the vertical direction of the diameter of the beam light BL.

照明装置1Cは、このような湾曲状の長尺部材30Aを用いることで、前記した照明装置1(図1B参照)と比較して、波長変換部材31の両端のビーム光BLの照射面積を大きくし、波長変換部材31の中央のビーム光BLの照射面積を、図1Bで示す大きさのままで維持することができる。これにより、照明装置1Cは、波長変換部材31の両端の輝度の低下を軽減し、波長変換部材31の長手方向にわたって輝度分布をより均一にすることができる。   The illumination device 1C uses such a curved long member 30A, so that the irradiation area of the beam light BL at both ends of the wavelength conversion member 31 is larger than that of the illumination device 1 (see FIG. 1B). In addition, the irradiation area of the light beam BL at the center of the wavelength conversion member 31 can be maintained with the size shown in FIG. 1B. Thereby, 1 C of illuminating devices can reduce the fall of the brightness | luminance of the both ends of the wavelength conversion member 31, and can make luminance distribution more uniform over the longitudinal direction of the wavelength conversion member 31. FIG.

<第5実施形態>
本発明の第5実施形態に係る照明装置1Dは、図5A及び図5Bに示すように、1枚からなる長尺部材30の代わりに3枚からなる分割された長尺部材30Bを用いること以外は前記した照明装置1(図1B参照)と同様の構成を備えている。
<Fifth Embodiment>
As shown in FIGS. 5A and 5B, the lighting device 1D according to the fifth embodiment of the present invention uses a divided long member 30B composed of three pieces instead of the single long member 30. Has the same configuration as the illumination device 1 (see FIG. 1B).

長尺部材30Bは、図5A及び図5Bに示すように、波長変換部材31が設けられた面が、短手方向についてビーム光BLの光軸に沿って二分割され、かつ、短手方向に二分割された一方が長手方向についてさらに二分割されている。長尺部材30Bの波長変換部材31が設けられた面は、具体的には短手方向に二分割された他方側である第1面30Baと、短手方向に二分割された一方側がさらに長手方向に二分割された、一方側の第2面30Bbと、他方側の第3面30Bcと、からなる。   As shown in FIGS. 5A and 5B, the long member 30B has a surface on which the wavelength conversion member 31 is provided, which is divided into two along the optical axis of the light beam BL in the short direction, and in the short direction. One of the two parts is further divided into two in the longitudinal direction. Specifically, the surface of the long member 30B on which the wavelength conversion member 31 is provided has a first surface 30Ba that is the other side divided into two in the short-side direction, and one side that is divided into two in the short-side direction is further long. It consists of a second surface 30Bb on one side and a third surface 30Bc on the other side, which are divided into two in the direction.

第1面30Ba、第2面30Bb及び第3面30Bcは、図5Aに示すように、ビーム光BLの直径の上下方向の範囲内でそれぞれ異なる高さに配置されている。すなわち、第1面30Baは、レーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における下端に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における上端に配置されている。また、第2面30Bbは、レーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における中央に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における上端に配置されている。そして、第3面30Bcは、レーザ光源部10に近い長手方向の一端側がビーム光BLの直径の上下方向における下端に配置されるとともに、レーザ光源部10から遠い長手方向の他端側がビーム光BLの直径の上下方向における中央に配置されている。   As shown in FIG. 5A, the first surface 30Ba, the second surface 30Bb, and the third surface 30Bc are arranged at different heights within the range of the diameter of the beam light BL in the vertical direction. That is, the first surface 30Ba has one end side in the longitudinal direction close to the laser light source unit 10 disposed at the lower end in the vertical direction of the diameter of the beam light BL, and the other end side in the longitudinal direction far from the laser light source unit 10 has the beam light BL. It is arrange | positioned at the upper end in the up-down direction of the diameter of. The second surface 30Bb is arranged such that one end side in the longitudinal direction close to the laser light source unit 10 is arranged at the center in the vertical direction of the diameter of the beam light BL, and the other end side in the longitudinal direction far from the laser light source unit 10 is the beam light BL. It is arrange | positioned at the upper end in the up-down direction of the diameter of. The third surface 30Bc is arranged such that one end side in the longitudinal direction near the laser light source unit 10 is disposed at the lower end in the vertical direction of the diameter of the beam light BL, and the other end side in the longitudinal direction far from the laser light source unit 10 is the beam light BL. It is arrange | positioned in the center in the up-down direction of the diameter of.

ここで、第1面30Baは、図5A及び図5Bに示すように、第1実施形態に係る照明装置1(図1B参照)の長尺部材30に対して、照射面積が半分になる。すなわち、前記短手方向に二分割された他方である第1面30Baは、ビーム光BLの直径の下端から上端までの範囲が、当該第1面30Baの長手方向の一端から他端まで照射されるように設置される。また、レーザ光源部10に近い第2面30Bbはビーム光BLの光軸から上半分が照射される。すなわち、前記長手方向に二分割された一方である第2面30Bbは、ビーム光BLの光軸から半分となる一方の光が照射されるように設置される。そして、レーザ光源部10から遠い第3面30Bcはビーム光BLの光軸から下半分が照射されるように配置される。すなわち、前記長手方向に二分割された他方である第3面30Bcは、ビーム光BLの光軸から半分となる他方の光が照射されるように設置される。したがって、第1面Baでは、ビーム光BLの照射面積の半分(2/4)の光が照射され、第2面Bb及び第3面Bcでは、ビーム光BLの照射面積の1/4の光をそれぞれが照射されるように設置される。照明装置1Dは、上記のように第1面30Ba、第2面30Bb及び第3面30Bcを配置することで、図5Bに示すようにそれぞれの面の輝度分布が補完し合い、全体として図1Bに示すものよりも、均一な輝度分布を得ることができる。   Here, as shown in FIGS. 5A and 5B, the first surface 30Ba has an irradiation area that is halved with respect to the long member 30 of the illumination device 1 (see FIG. 1B) according to the first embodiment. That is, the first surface 30Ba, which is the other divided in the short direction, is irradiated from the lower end to the upper end of the diameter of the light beam BL from one end to the other end in the longitudinal direction of the first surface 30Ba. Installed. The second surface 30Bb close to the laser light source unit 10 is irradiated with the upper half from the optical axis of the beam light BL. That is, the second surface 30Bb, which is one of the two divided in the longitudinal direction, is installed so that one light that is half of the optical axis of the light beam BL is irradiated. And 3rd surface 30Bc far from the laser light source part 10 is arrange | positioned so that a lower half may be irradiated from the optical axis of the beam light BL. That is, the other third surface 30Bc divided into two in the longitudinal direction is installed so that the other light that is half of the optical axis of the light beam BL is irradiated. Accordingly, the first surface Ba is irradiated with light that is half (2/4) the irradiation area of the light beam BL, and the second surface Bb and the third surface Bc are light that is 1/4 of the irradiation area of the light beam BL. Each is installed to be irradiated. As shown in FIG. 5B, the illumination device 1D has the first surface 30Ba, the second surface 30Bb, and the third surface 30Bc arranged as described above, so that the luminance distributions of the respective surfaces are complemented as shown in FIG. A more uniform luminance distribution can be obtained than shown in FIG.

<第6実施形態>
本発明の第6実施形態に係る照明装置1Eは、本発明を円筒状の発光管に適用した例である。照明装置1Eは、図6A及び図6Bに示すように、長尺部材30の代わりに円筒曲面の長尺部材30Cを用い、さらにカバー部材50を有している。また、図示しないレーザ光源部10(図1A参照)は、光軸が長尺部材30Cに設けた波長変換部材31の円筒曲面の幅方向の中央における母線に対して傾斜するように設置されている。したがって、図示を省略したレーザ光源部10は、前記した照明装置1と同様に、ビーム光BLの光軸が、波長変換部材31が設けられた面に対して傾斜するような配置関係となっている。
<Sixth Embodiment>
An illuminating device 1E according to the sixth embodiment of the present invention is an example in which the present invention is applied to a cylindrical arc tube. As illustrated in FIGS. 6A and 6B, the lighting device 1 </ b> E uses a long cylindrical member 30 </ b> C instead of the long member 30, and further includes a cover member 50. Further, the laser light source unit 10 (see FIG. 1A) (not shown) is installed so that the optical axis is inclined with respect to the generatrix at the center in the width direction of the cylindrical curved surface of the wavelength conversion member 31 provided on the long member 30C. . Therefore, the laser light source unit 10 (not shown) has an arrangement relationship in which the optical axis of the light beam BL is inclined with respect to the surface on which the wavelength conversion member 31 is provided, as in the case of the illumination device 1 described above. Yes.

長尺部材30Cは、図6A及び図6Bに示すように、長尺状に形成されるとともに、長手方向に垂直な面による断面が円筒の一部を構成する円弧状に形成されている。また、この長尺部材30Cは、後記するカバー部材50と一体となることで、1本の円管を構成している。そして、この長尺部材30Cの長手方向に形成した円弧の内面には、波長変換部材31が設けられており、この波長変換部材31に対してビーム光BLが照射されることで、波長を変換して照明光が得られる。なお、ここでは断面視で長尺部材30Cの円弧の内面の一部に波長変換部材31が設けられているが、当該円弧の全面に波長変換部材31を設けても構わない。   As shown in FIGS. 6A and 6B, the long member 30 </ b> C is formed in a long shape, and a cross section by a surface perpendicular to the longitudinal direction is formed in an arc shape that forms a part of the cylinder. Further, the long member 30C is integrated with a cover member 50 described later to constitute one circular tube. A wavelength conversion member 31 is provided on the inner surface of the arc formed in the longitudinal direction of the long member 30C, and the wavelength conversion is performed by irradiating the wavelength conversion member 31 with the beam light BL. Thus, illumination light can be obtained. Here, the wavelength conversion member 31 is provided on a part of the inner surface of the arc of the long member 30C in a cross-sectional view, but the wavelength conversion member 31 may be provided on the entire surface of the arc.

カバー部材50は、図6A及び図6Bに示すように、長尺状に形成されるとともに、断面が円筒の一部を構成する円弧状に形成されている。また、このカバー部材50は、長尺部材30Cの波長変換部材31が設けられた面側を覆い、長尺部材30Cとは別体に形成されている。カバー部材50は、例えば透光性を有する材料で構成されている。一例としての具体的な材料は、透明アクリル、透明ポリエチレン、透明ABSなどの樹脂、あるいは透明ガラスなどが挙げられる。なお、カバー部材50は、その一端あるいは内部に図示しないレーザ光源部10を設ける構成とする場合には、光拡散性を有する材料で構成されることが好ましく、これによりビーム光BLが指向性の強いビーム光のまま漏光することを防止できる。例示される具体的な材料としては、乳半アクリル、白色ポリエチレン、白色ABSなどの樹脂、あるいは白色ガラスが挙げられる。   As shown in FIGS. 6A and 6B, the cover member 50 is formed in an elongated shape, and a cross section is formed in an arc shape constituting a part of a cylinder. The cover member 50 covers the surface of the long member 30C on which the wavelength conversion member 31 is provided, and is formed separately from the long member 30C. The cover member 50 is made of a material having translucency, for example. Specific examples of materials include resins such as transparent acrylic, transparent polyethylene, and transparent ABS, or transparent glass. In addition, when it is set as the structure which provides the laser light source part 10 which is not shown in figure in the one end or the inside, the cover member 50 is preferably comprised with the material which has a light diffusivity, and, thereby, the beam light BL has directivity. It is possible to prevent light leaking with strong light beams. Specific examples of the material include a resin such as milk semi-acrylic, white polyethylene, white ABS, or white glass.

照明装置1Eは、上記のようにカバー部材50を備え、一本の円筒状に構成されることと、ビーム光の光軸を波長変換部材31に対して傾斜させることで、線形照明光を発する小型かつ安価な発光管として利用することができる。   The illumination device 1E includes the cover member 50 as described above, and is configured as a single cylinder, and emits linear illumination light by inclining the optical axis of the beam light with respect to the wavelength conversion member 31. It can be used as a small and inexpensive arc tube.

以上、本発明に係る照明装置について、発明を実施するための形態により具体的に説明したが、例えば、以下に示す構成であってもよい。すなわち、前記した照明装置1A,1Bは、反射部材を2枚用いていたが、波長変換部材31に照射されなかったビーム光BLを再び波長変換部材31に反射できるものであれば、反射部材は1枚(曲折しても可)でも構わない。また、前記した照明装置1,1A,1B,1C,1D,1Eは、いずれもコリメートレンズ20を備えていることが好ましいが、ビーム光BLを波長変換部材31に照射できれば、なくてもよい。   The lighting device according to the present invention has been specifically described above by the mode for carrying out the invention. However, for example, the following configuration may be used. That is, the illumination devices 1A and 1B described above use two reflecting members, but if the light beam BL that has not been irradiated to the wavelength converting member 31 can be reflected again to the wavelength converting member 31, the reflecting member is It may be one (can be bent). Moreover, although it is preferable that all the above-described illumination devices 1, 1A, 1B, 1C, 1D, and 1E include the collimating lens 20, it is not necessary if the wavelength conversion member 31 can be irradiated with the light beam BL.

また、前記した照明装置1,1A,1B,1C,1Dは、照明装置1Eのようにカバー部材を備えていても構わない。この場合、例えば長尺部材30,30A,30Bの波長変換部材31が設けられた面側を覆い、当該長尺部材30,30A,30Bと一つの筒状物を構成するようなカバー部材を用いることができる。また、この場合のカバー部材の具体的形状としては、例えば長尺状に形成されるとともに、断面がU字状または円弧状に形成されたものを用いることができる。このようなカバー部材を前記した照明装置1A,1B,1C,1Dに設けることで、線形照明光を発する小型かつ安価な直管型の発光管として利用することができる。   Further, the illumination devices 1, 1A, 1B, 1C, and 1D described above may include a cover member like the illumination device 1E. In this case, for example, a cover member that covers the surface of the long members 30, 30 </ b> A, 30 </ b> B on which the wavelength conversion member 31 is provided and forms a single cylindrical object with the long members 30, 30 </ b> A, 30 </ b> B is used. be able to. Further, as a specific shape of the cover member in this case, for example, a cover member having a long shape and a U-shaped or arc-shaped cross section can be used. By providing such a cover member in the illumination devices 1A, 1B, 1C, and 1D, it can be used as a small and inexpensive straight tube type arc tube that emits linear illumination light.

また、前記した照明装置1,1A,1B,1C,1Dにカバー部材を設けるのではなく、例えば円筒状のカバー部材を用い、そのカバー部材の中に照明装置1A,1B,1C,1Dを挿入し、発光管として利用することもできる。この場合、円筒状のカバー部材の中に長尺部材30,30A,30Bを挿入し、当該長尺部材30,30A,30Bの波長変換部材31が設けられた面側のみならず、その反対面も全て覆うように構成する。   Further, instead of providing a cover member for the illumination devices 1, 1A, 1B, 1C, and 1D, for example, a cylindrical cover member is used, and the illumination devices 1A, 1B, 1C, and 1D are inserted into the cover member. However, it can also be used as an arc tube. In this case, the long members 30, 30A, 30B are inserted into the cylindrical cover member, and not only the surface side where the wavelength conversion member 31 of the long members 30, 30A, 30B is provided, but also the opposite surface. Is also configured to cover all.

なお、前記した円筒状のカバー部材と、反射部材40を備える照明装置1Aとを組み合わせ、あるいは、反射部材40Aを備える照明装置1Bとを組み合わせる場合、カバー部材の内部で長尺部材30を、角度を付けずに水平に配置する。そして、当該長尺部材30の波長変換部材31が設けられた面に対して、ビーム光BLの光軸が傾斜するようにレーザ光源部10を斜めに配置することが好ましい。これにより、カバー部材の内部で長尺部材30を斜めに配置する場合と比較して、長尺部材30及び反射部材40,40Aの設置領域を小さくすることができる。   In addition, when combining the above-described cylindrical cover member and the illuminating device 1A including the reflecting member 40, or when combining the illuminating device 1B including the reflecting member 40A, the long member 30 is set to the angle inside the cover member. Place horizontally without a mark. And it is preferable to arrange | position the laser light source part 10 diagonally so that the optical axis of beam light BL may incline with respect to the surface in which the wavelength conversion member 31 of the said elongate member 30 was provided. Thereby, compared with the case where the elongate member 30 is arrange | positioned diagonally inside a cover member, the installation area | region of the elongate member 30 and the reflection members 40 and 40A can be made small.

また、前記した照明装置1A,1B,1Cは、長尺平板状の長尺部材30,30Aを用いていたが、長尺平板状のみならず、例えば四角筒の一部が開口した断面の長尺部材を用いることもできる。この場合、当該開口とは反対側の底面に波長変換部材31を設け、さらに前記開口に沿って、波長変換部材31を覆うように長尺平板状のカバー部材を設けることで、四角筒状の照明装置とすることができる。   In addition, the lighting devices 1A, 1B, and 1C described above use the long flat plate-like long members 30 and 30A. However, the lighting devices 1A, 1B, and 1C are not limited to the long flat plate shape. A scale member can also be used. In this case, the wavelength conversion member 31 is provided on the bottom surface opposite to the opening, and a rectangular plate-like cover member is provided along the opening so as to cover the wavelength conversion member 31. It can be set as a lighting device.

さらに、照明装置1Eは、波長変換部材31を長尺部材30Cの上面に設ける構成として説明したが、波長変換部材31である蛍光体を長尺部材30Cに混入することで波長変換することができる長尺部材として形成しても構わない。なお、波長変換部材31と長尺部材30Cとを一体とすることで、製造工程を簡略化でき部材点数も少なくすることができる。   Furthermore, although the illuminating device 1E was demonstrated as a structure which provides the wavelength conversion member 31 on the upper surface of the elongate member 30C, wavelength conversion can be performed by mixing the phosphor which is the wavelength conversion member 31 in the elongate member 30C. It may be formed as a long member. In addition, by integrating the wavelength conversion member 31 and the long member 30C, the manufacturing process can be simplified and the number of members can be reduced.

1,1A,1B,1C,1D,1E 照明装置
10 レーザ光源部
20 コリメートレンズ
30,30A,30B,30C 長尺部材
30Ba 第1面
30Bb 第2面
30Bc 第3面
31 波長変換部材
40,40A 反射部材
41 第1反射部材
42,42A 第2反射部材
50 カバー部材
BL ビーム光
BP ビーム形状
1, 1A, 1B, 1C, 1D, 1E Illumination device 10 Laser light source 20 Collimating lens 30, 30A, 30B, 30C Long member 30Ba First surface 30Bb Second surface 30Bc Third surface 31 Wavelength converting member 40, 40A Reflection Member 41 First reflecting member 42, 42A Second reflecting member 50 Cover member BL Beam light BP Beam shape

Claims (8)

レーザ光源部と、前記レーザ光源部から出射されたビーム光が照射される長尺部材とを備え、
前記長尺部材の長手方向に形成される面に、前記ビーム光を異なる波長の光に変換する波長変換部材が設けられ、
前記レーザ光源部及び前記長尺部材は、前記ビーム光の光軸を前記波長変換部材が設けられた面に対して傾斜するように設定されるとともに、前記ビーム光が前記波長変換部材に照射されるように設定される照明装置。
A laser light source unit, and a long member irradiated with the beam light emitted from the laser light source unit,
On the surface formed in the longitudinal direction of the long member, a wavelength conversion member that converts the beam light into light of a different wavelength is provided,
The laser light source section and the long member are set so that an optical axis of the beam light is inclined with respect to a surface on which the wavelength conversion member is provided, and the wavelength conversion member is irradiated with the beam light. Lighting device set to
前記レーザ光源部から照射されたビーム光を平行光にするコリメートレンズを備え、前記平行光が前記波長変換部材に照射される請求項1に記載の照明装置。   The illuminating device according to claim 1, further comprising a collimating lens that collimates the beam light irradiated from the laser light source unit, and the wavelength conversion member is irradiated with the collimated light. 前記波長変換部材が設けられた面に垂直な方向を上下方向とし、前記波長変換部材が設けられた面から離れる方向を上方向とした場合において、
前記波長変換部材が設けられた面は、前記レーザ光源部に近い前記長手方向の一端側が前記ビーム光の直径の上下方向における下端に配置されるとともに、前記レーザ光源部から遠い前記長手方向の他端側が前記ビーム光の直径の上下方向における上端に配置される請求項1または請求項2に記載の照明装置。
In the case where the direction perpendicular to the surface provided with the wavelength conversion member is the vertical direction, and the direction away from the surface provided with the wavelength conversion member is the upward direction,
The surface on which the wavelength conversion member is provided is arranged such that one end side in the longitudinal direction close to the laser light source unit is disposed at the lower end in the vertical direction of the diameter of the beam light and the other in the longitudinal direction far from the laser light source unit. The lighting device according to claim 1, wherein an end side is disposed at an upper end in a vertical direction of a diameter of the beam light.
前記長尺部材の長手方向における一端側に設けた前記レーザ光源部と、前記長尺部材の長手方向における他端側に設けた反射部材とを備え、前記レーザ光源部は前記波長変換部材及び前記反射部材に前記ビーム光を照射するように設けられ、
前記反射部材が前記レーザ光源部から照射されるビーム光を前記波長変換部材に向けて反射するように設置された請求項1または請求項2に記載の照明装置。
The laser light source section provided on one end side in the longitudinal direction of the long member, and a reflection member provided on the other end side in the longitudinal direction of the long member, the laser light source section including the wavelength conversion member and the It is provided to irradiate the light beam to the reflecting member,
The lighting device according to claim 1, wherein the reflection member is installed so as to reflect the beam light emitted from the laser light source unit toward the wavelength conversion member.
前記波長変換部材が設けられた面に垂直な方向を上下方向とし、前記波長変換部材が設けられた面から離れる方向を上方向とした場合において、
前記波長変換部材が設けられた面は、前記レーザ光源部に近い前記長手方向の一端側が前記ビーム光の直径の上下方向における下端に配置され、前記レーザ光源部から遠い前記長手方向の他端側が前記ビーム光の直径の上下方向における上端に配置され、長手方向の中央よりも一端及び他端における前記ビーム光の入射角が小さくなるように湾曲した請求項1または請求項2に記載の照明装置。
In the case where the direction perpendicular to the surface provided with the wavelength conversion member is the vertical direction, and the direction away from the surface provided with the wavelength conversion member is the upward direction,
The surface on which the wavelength conversion member is provided is arranged such that one end side in the longitudinal direction close to the laser light source unit is arranged at the lower end in the vertical direction of the diameter of the beam light, and the other end side in the longitudinal direction far from the laser light source unit is The illumination device according to claim 1, wherein the illumination device is disposed at an upper end in a vertical direction of the diameter of the beam light and is curved so that an incident angle of the beam light at one end and the other end is smaller than a center in a longitudinal direction. .
前記波長変換部材が設けられる面は、短手方向について前記ビーム光の光軸に沿って二分割され、かつ、前記短手方向に二分割された一方が長手方向についてさらに二分割され、
前記短手方向に二分割された他方である第1面は、前記ビーム光の直径の下端から上端までの範囲が、長手方向の一端から他端までに照射されるように設置され、
前記長手方向に二分割された一方である第2面は、前記ビーム光の光軸から半分となる一方の光が照射されるように設置され、
前記長手方向に二分割された他方である第3面は、前記ビーム光の光軸から半分となる他方の光が照射されるように設置された請求項1または請求項2に記載の照明装置。
The surface on which the wavelength conversion member is provided is divided into two along the optical axis of the light beam in the short direction, and one divided into two in the short direction is further divided into two in the long direction,
The first surface which is the other of the two divided in the short direction is installed such that the range from the lower end to the upper end of the diameter of the beam light is irradiated from one end to the other end in the longitudinal direction,
The second surface, which is one of the two divided in the longitudinal direction, is installed so that one light that is half of the optical axis of the beam light is irradiated,
3. The illumination device according to claim 1, wherein the other third surface divided into two in the longitudinal direction is installed so as to be irradiated with the other light that is half of the optical axis of the beam light. .
前記長尺部材の前記波長変換部材が設けられた面側を覆う透光性のカバー部材を備える請求項1から請求項6のいずれか一項に記載の照明装置。   The illuminating device according to any one of claims 1 to 6, further comprising a translucent cover member that covers a surface side of the long member on which the wavelength conversion member is provided. 前記カバー部材は、光拡散性を有する材料で構成された請求項7に記載の照明装置。   The lighting device according to claim 7, wherein the cover member is made of a light diffusing material.
JP2014176632A 2014-08-29 2014-08-29 Lighting device Active JP6528377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176632A JP6528377B2 (en) 2014-08-29 2014-08-29 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176632A JP6528377B2 (en) 2014-08-29 2014-08-29 Lighting device

Publications (2)

Publication Number Publication Date
JP2016051616A true JP2016051616A (en) 2016-04-11
JP6528377B2 JP6528377B2 (en) 2019-06-12

Family

ID=55658980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176632A Active JP6528377B2 (en) 2014-08-29 2014-08-29 Lighting device

Country Status (1)

Country Link
JP (1) JP6528377B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251685A (en) * 2007-03-29 2008-10-16 Toshiba Corp Light-emitting device and light generating module
JP2010025732A (en) * 2008-07-18 2010-02-04 Mitsutoyo Corp Oblique incidence interferometer
JP2011138658A (en) * 2009-12-28 2011-07-14 Toshiba Corp Light emitting device
US8033706B1 (en) * 2004-09-09 2011-10-11 Fusion Optix, Inc. Lightguide comprising a low refractive index region
JP2012074309A (en) * 2010-09-29 2012-04-12 Asahi Kasei Corp Planar lighting device
JP2013531352A (en) * 2010-07-19 2013-08-01 ホエジョウ・ライト・エンジン・リミテッド Phosphor coating film and lighting device using the same
JP2015076279A (en) * 2013-10-09 2015-04-20 パナソニックIpマネジメント株式会社 Lighting fixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033706B1 (en) * 2004-09-09 2011-10-11 Fusion Optix, Inc. Lightguide comprising a low refractive index region
JP2008251685A (en) * 2007-03-29 2008-10-16 Toshiba Corp Light-emitting device and light generating module
JP2010025732A (en) * 2008-07-18 2010-02-04 Mitsutoyo Corp Oblique incidence interferometer
JP2011138658A (en) * 2009-12-28 2011-07-14 Toshiba Corp Light emitting device
JP2013531352A (en) * 2010-07-19 2013-08-01 ホエジョウ・ライト・エンジン・リミテッド Phosphor coating film and lighting device using the same
JP2012074309A (en) * 2010-09-29 2012-04-12 Asahi Kasei Corp Planar lighting device
JP2015076279A (en) * 2013-10-09 2015-04-20 パナソニックIpマネジメント株式会社 Lighting fixture

Also Published As

Publication number Publication date
JP6528377B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US8733957B2 (en) Light emitting device, vehicle headlamp, and illumination device
JP5779096B2 (en) Lighting system, lighting fixture, collimator, and display device
US8258532B2 (en) Collimating light emitting apparatus and method
US20210405275A1 (en) Luminaire module having a light guide with a redirecting end-face
JP2019061796A (en) Lighting fixture
JP6072785B2 (en) Optical waveguide
JP4799393B2 (en) Lighting device
WO2019198430A1 (en) Illumination device
JP6041082B2 (en) Lighting device
JP6528377B2 (en) Lighting device
JP5565775B2 (en) LED lighting device
JP2013061399A (en) Optical element, and illumination device
JP6162559B2 (en) License plate lighting device
CN107940268B (en) Laser module and laser illuminating lamp
US10690297B2 (en) Tubular light emitting device
JP5558619B1 (en) Lighting device
JP5728440B2 (en) LED lighting device
JP5901223B2 (en) Lighting device
JP2009259448A (en) Lighting module, light source unit, and luminaire
JP6179766B2 (en) lighting equipment
WO2017141658A1 (en) Light emitting device
JP5729859B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2018060742A (en) Wall washer type lighting device
JP2006196314A (en) Light emission unit
JP2014182982A (en) Lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R150 Certificate of patent or registration of utility model

Ref document number: 6528377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250