JP2016050797A - Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same - Google Patents

Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2016050797A
JP2016050797A JP2014175032A JP2014175032A JP2016050797A JP 2016050797 A JP2016050797 A JP 2016050797A JP 2014175032 A JP2014175032 A JP 2014175032A JP 2014175032 A JP2014175032 A JP 2014175032A JP 2016050797 A JP2016050797 A JP 2016050797A
Authority
JP
Japan
Prior art keywords
sample container
thermal analysis
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014175032A
Other languages
Japanese (ja)
Inventor
立 江崎
Tatsu Ezaki
立 江崎
勝哉 井之上
Katsuya Inoue
勝哉 井之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014175032A priority Critical patent/JP2016050797A/en
Publication of JP2016050797A publication Critical patent/JP2016050797A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a sample container for thermal analysis capable of thermal analysis of a positive electrode active material for a nonaqueous electrolyte secondary battery with high accuracy and high reliability, and also to provide an evaluation method of the positive electrode active material for a nonaqueous electrolyte secondary battery using the sample container.SOLUTION: A sample container for thermal analysis of a positive electrode active material for a nonaqueous electrolyte secondary battery is used, which is characterized in being a metal quality container which is composed of a pan 3 and a lid body 2 and has a structure from which inner pressure due to gas generated in the sample container during heating in the thermal analysis is released and a structure which suppresses inflow of atmosphere gas into the sample container.SELECTED DRAWING: Figure 1

Description

本発明は、熱分析用試料容器、および該試料容器を用いた非水系電解質二次電池用正極活物質の評価方法に関する。   The present invention relates to a thermal analysis sample container and a method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery using the sample container.

近年、非水系電解質二次電池、特にリチウム二次電池は、携帯電話、小型コンピューター等の携帯機器類用電源、電力貯蔵用電源、電気自動車用電源として注目されている。
非水系電解質二次電池は、一般に、正極活物質を主要構成成分とする正極と、負極活物質を主要構成成分とする負極と、非水系電解質とから構成され、それら構成材料を金属缶で外装したハードパック型やアルミラミネートフィルムで外装したソフトパック型(ラミネートセル)などがある。非水系電解質二次電池を構成する正極活物質としては、コバルト酸リチウムに代表されるリチウム含有遷移金属酸化物が、負極活物質としては、黒鉛(グラファイト)に代表される炭素質材料が、非水系電解質としては、六フッ化リン酸リチウム(LiPF)に代表される電解質塩をエチレンカーボネートに代表される高沸点溶媒とジエチルカーボネートに代表される低沸点溶媒を組み合わせた非水系溶媒に溶解したものが広く用いられている。
In recent years, non-aqueous electrolyte secondary batteries, in particular lithium secondary batteries, have attracted attention as power sources for portable devices such as mobile phones and small computers, power storage power sources, and electric vehicle power sources.
A nonaqueous electrolyte secondary battery is generally composed of a positive electrode having a positive electrode active material as a main constituent, a negative electrode having a negative electrode active material as a main constituent, and a nonaqueous electrolyte, and the constituent materials are packaged with a metal can. There are a hard pack type and a soft pack type (laminate cell) packaged with an aluminum laminate film. As the positive electrode active material constituting the non-aqueous electrolyte secondary battery, a lithium-containing transition metal oxide typified by lithium cobaltate is used, and as the negative electrode active material, a carbonaceous material typified by graphite (graphite) is used. As an aqueous electrolyte, an electrolyte salt typified by lithium hexafluorophosphate (LiPF 6 ) was dissolved in a non-aqueous solvent combining a high boiling point solvent typified by ethylene carbonate and a low boiling point solvent typified by diethyl carbonate. Things are widely used.

電池の研究を進めるにあたり、電池の充放電や発熱などのメカニズム解明が重要であり、そのための分析方法に関しても多くの検討がなされている。分析手法としては、例えば熱重量測定、示差走査熱量測定などの熱分析装置を用いた定量分析方法がある。特に、正極活物質からの発熱メカニズム解明のための分析方法としては、電池を分解し、正極の構成材料を取り出して示差走査熱量測定分析を行う方法が有用となる。
これらの分析方法は、正極の構成材料を試料とし、容器内において昇温速度5〜20°C/分で300〜400℃まで昇温し、試料中の金属酸化物を順次相転移させ、熱重量測定では各々の重量減少を、示差走査熱量測定では各々の発熱量を計量することにより、正極活物質の熱安定性を評価するものである。
ここで、上記熱分析装置に用いられる試料容器は、通常、内径が5〜7mm、高さが2.5〜5mmの金属質容器であり、この容器内に試料を容器容積の10〜30%程度充填して使用される。
In researching batteries, it is important to elucidate the mechanisms such as charging / discharging and heat generation of the batteries, and many studies have been conducted on analysis methods therefor. As an analysis technique, for example, there is a quantitative analysis method using a thermal analyzer such as thermogravimetry or differential scanning calorimetry. In particular, as an analysis method for elucidating the mechanism of heat generation from the positive electrode active material, a method in which a battery is disassembled, a constituent material of the positive electrode is taken out, and differential scanning calorimetry analysis is performed is useful.
In these analysis methods, the constituent material of the positive electrode is used as a sample, the temperature is increased to 300 to 400 ° C. at a temperature increase rate of 5 to 20 ° C./min in the container, and the metal oxide in the sample is sequentially phase-transduced. The weight stability of each positive electrode active material is evaluated by measuring each weight decrease in the weight measurement and measuring each calorific value in the differential scanning calorimetry.
Here, the sample container used in the thermal analyzer is usually a metallic container having an inner diameter of 5 to 7 mm and a height of 2.5 to 5 mm, and the sample is placed in this container at 10 to 30% of the container volume. Used to fill to the extent.

前記正極の構成材料には、正極活物質以外に有機溶媒が含まれることから、昇温中の有機溶媒の燃焼を防止するため、容器外の雰囲気と遮断する必要があり、容器を密閉する必要がった。しかしながら、密閉した容器内で昇温すると、測定試料から発生する各種ガスにより、昇温時における容器内の内圧が高く成り過ぎ、容器が破裂もしくは転倒する恐れがある。そのため、容器内に充填される量を少なくして発生するガス量を抑制することが行われていた。   Since the constituent material of the positive electrode contains an organic solvent in addition to the positive electrode active material, it is necessary to shut off the atmosphere outside the container and to seal the container in order to prevent burning of the organic solvent during temperature rise. I got it. However, when the temperature is raised in a sealed container, the various pressures generated from the measurement sample may cause the internal pressure in the container to become too high at the time of temperature rise, and the container may burst or fall over. Therefore, it has been performed to reduce the amount of gas generated by reducing the amount filled in the container.

熱分析中に容器内で発生するガスを外部に排出させる方法として、例えば特許文献1には、熱重量測定、或いは示差走査熱量測定などの熱分析に使用される熱分析用試料容器において、該容器を、その蓋体に径が5〜60μmの穴のみを有し、該穴以外は密封した状態となる金属質容器が提案されている。しかしながら、この熱分析用試料容器は、セメント粉末中の2水石こうと半水石こうのように近接した脱水反応温度を有する試料の熱分析に用いられるものであって、容器内の内圧を高めた状態で脱水反応を起させることを目的としており、多量にガスが発生する正極の構成材料の熱分析用としての用途には適したものではない。   As a method for exhausting the gas generated in the container during thermal analysis, for example, Patent Document 1 discloses that in a thermal analysis sample container used for thermal analysis such as thermogravimetry or differential scanning calorimetry, A metallic container has been proposed which has only a hole with a diameter of 5 to 60 μm in its lid and a sealed state other than the hole. However, this sample container for thermal analysis is used for thermal analysis of a sample having a dehydration reaction temperature close to each other such as dihydrate gypsum and hemihydrate gypsum in cement powder, and the internal pressure in the container is increased. It is intended to cause a dehydration reaction in a state, and is not suitable for use as a thermal analysis of a constituent material of a positive electrode that generates a large amount of gas.

正極活物質の発熱メカニズム解明するためには、密閉型の熱分析用試料容器を用いた電池の正極構成材料の分析が有効である。しかしながら、熱分析の際に電池を構成する正極の構成材料自体が多量の気体を放出し、上述のとおり密閉された試料容器を破壊したり、試料容器が倒れてしまうという事態が発生することがあり、安定した測定が困難であった。また、測定精度が悪く、電池の充放電や発熱などのメカニズム解明に十分な測定結果が得られないなどの問題があった。   In order to elucidate the heat generation mechanism of the positive electrode active material, it is effective to analyze the positive electrode constituent material of the battery using a sealed thermal analysis sample container. However, when the thermal analysis is performed, the constituent material of the positive electrode constituting the battery itself releases a large amount of gas, which may break the sealed sample container as described above or cause the sample container to collapse. And stable measurement was difficult. In addition, there is a problem that measurement accuracy is poor and measurement results sufficient for elucidating mechanisms such as charging / discharging and heat generation of the battery cannot be obtained.

特開平6−242035JP-A-6-242035

本発明は、上記問題点に鑑み、試料容器の破裂や転倒を防止しながら、高精度で信頼性が高い非水系電解質二次電池用正極活物質の熱分析が可能な熱分析用試料容器と該試料容器を用いた非水系電解質二次電池用正極活物質の評価方法を提供することを目的とする。   In view of the above problems, the present invention provides a thermal analysis sample container capable of thermal analysis of a highly accurate and reliable positive electrode active material for a non-aqueous electrolyte secondary battery while preventing the sample container from bursting or overturning. It aims at providing the evaluation method of the positive electrode active material for non-aqueous electrolyte secondary batteries using this sample container.

本発明者は、上記課題を解決するため、正極活物質の高い分析精度が得られる熱分析方法について鋭意検討した結果、熱分析に使用される熱分析用試料容器において、発生するガスによる内圧を開放する構造と、試料容器内への雰囲気ガスの流入を抑制する構造とを有する熱分析用試料容器を用いることにより、従来よりも多量の試料を試料容器内に充填することが可能となるとの知見を得た。さらに、試料容器内に充填する試料を増加させることで、熱分析曲線のピークが明瞭に観測され、その分析精度が向上するとの知見を得て、本発明を完成した。   In order to solve the above problems, the present inventor has intensively studied a thermal analysis method capable of obtaining high analysis accuracy of the positive electrode active material, and as a result, in the sample container for thermal analysis used for thermal analysis, the internal pressure due to the generated gas is reduced. By using a sample container for thermal analysis having a structure that opens and a structure that suppresses the inflow of atmospheric gas into the sample container, it is possible to fill a larger amount of sample into the sample container than before. Obtained knowledge. Furthermore, by increasing the number of samples filled in the sample container, the peak of the thermal analysis curve was clearly observed and the knowledge that the analysis accuracy was improved was obtained, and the present invention was completed.

すなわち、本発明の非水系電解質二次電池用正極活物質の熱分析用試料容器は、受け皿と蓋体からなる熱分析用試料容器であって、熱分析における加熱中に試料容器内で発生するガスによる内圧を開放する構造と、試料容器内への雰囲気ガスの流入を抑制する構造とを有する金属質容器であることを特徴とする。
前記熱分析用試料容器は、前記蓋体に直径が400〜700μmの穴を1個有し、受け皿と蓋体が圧着された構造を有することが好ましい。
また前記熱分析は、好ましくは示差走査熱量測定であり、非水系電解質二次電池用正極活物質の熱安定性の評価に好ましく用いられる。
That is, the sample container for thermal analysis of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a sample container for thermal analysis composed of a tray and a lid, and is generated in the sample container during heating in thermal analysis. It is a metallic container having a structure for releasing internal pressure due to gas and a structure for suppressing the inflow of atmospheric gas into the sample container.
The thermal analysis sample container preferably has a structure in which the lid has one hole having a diameter of 400 to 700 μm and the tray and the lid are pressure-bonded.
The thermal analysis is preferably differential scanning calorimetry, and is preferably used for evaluating the thermal stability of the positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の非水系電解質二次電池用正極活物質の評価方法は、上記熱分析用試料容器に測定試料を充填して熱分析を行うことを特徴とする。
前記熱分析は、好ましくは示差走査熱量測定分析である。
また、前記試料容器に、該試料容器の内容積の50〜90%の前記測定試料を充填して分析することが好ましく、前記測定試料は、充電後の電池を分解して取り出した正極の構成材料であることが好ましい。
The method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that a thermal analysis is performed by filling a measurement sample in the thermal analysis sample container.
The thermal analysis is preferably a differential scanning calorimetry analysis.
Moreover, it is preferable to fill the sample container with the measurement sample of 50 to 90% of the internal volume of the sample container for analysis, and the measurement sample has a configuration of a positive electrode taken out by disassembling the battery after charging. A material is preferred.

本発明によって、試料から発生するガスや水蒸気による試料容器の破裂や転倒を防止しながら、熱分析用試料容器に充填できる試料量を増加させることが可能となり、熱分析曲線のピークを明瞭に分離することができる。また、試料容器内への容器外雰囲気の流入を抑制して測定試料との反応を抑制することができる。これにより、高精度で信頼性が高い非水系電解質二次電池用正極活物質の熱分析を容易に可能とすることができ、工業的価値が極めて大きい。   The present invention makes it possible to increase the amount of sample that can be filled in the sample container for thermal analysis while preventing the sample container from being ruptured or overturned by gas or water vapor generated from the sample, and clearly separates the peaks of the thermal analysis curve. can do. In addition, the reaction with the measurement sample can be suppressed by suppressing the inflow of the atmosphere outside the container into the sample container. Thereby, it is possible to easily perform thermal analysis of the positive electrode active material for a non-aqueous electrolyte secondary battery with high accuracy and high reliability, and the industrial value is extremely large.

実施例で用いた試料容器の構造を示す概略図である。It is the schematic which shows the structure of the sample container used in the Example. 実施例における示差走査熱量測定分析で得られた発熱曲線を示した図である。It is the figure which showed the exothermic curve obtained by the differential scanning calorimetry analysis in an Example.

本発明の非水系電解質二次電池用正極活物質の熱分析用試料容器(以下、単に試料容器いう。)は、受け皿と蓋体からなる熱分析用試料容器であって、熱分析における加熱中に試料容器内で発生するガスによる内圧を開放する構造と、試料容器内への試料容器外の雰囲気ガスの流入を抑制する構造とを有する金属質容器であることを特徴とする。   A sample container for thermal analysis of a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention (hereinafter simply referred to as a sample container) is a sample container for thermal analysis composed of a tray and a lid, and is being heated in thermal analysis. And a metal container having a structure for releasing the internal pressure due to the gas generated in the sample container and a structure for suppressing the inflow of atmospheric gas outside the sample container into the sample container.

熱分析としての代表的な定量分析方法には、熱重量測定(以下、TGと略す)、示差走査熱量測定(以下、DSCと略す)がある。これらの熱分析装置を用いた定量分析方法は、試料容器内に測定試料を充填し、該容器を測定装置本体のヒーターにセットし昇温させながら試料の熱挙動を観測することで試料の熱特性を評価する分析方法である。   Typical quantitative analysis methods as thermal analysis include thermogravimetry (hereinafter abbreviated as TG) and differential scanning calorimetry (hereinafter abbreviated as DSC). The quantitative analysis method using these thermal analyzers is a method in which a sample container is filled with a measurement sample, the container is set in a heater of the measurement apparatus main body, and the thermal behavior of the sample is observed while the temperature is raised. This is an analysis method for evaluating characteristics.

前記分析方法に用いられる試料容器は、一般的にアルミニウムもしくはアルミナから構成される。また、試料容器の蓋は、通常、試料容器が晒される大気中の酸素ガスと測定試料との反応を防止するため、密閉して使用する。このため、前記分析方法においては、測定試料から発生するガス成分により試料容器の内圧が高まり、試料容器が破裂する可能性があった。また、解放型の試料容器では、通常、測定は大気雰囲気中で行われるため、大気雰囲気、特に酸素ガスと測定試料が反応して、測定ピークが不明瞭になる可能性があった。   The sample container used for the analysis method is generally composed of aluminum or alumina. Further, the lid of the sample container is normally used in a sealed state in order to prevent the reaction between the oxygen gas in the atmosphere to which the sample container is exposed and the measurement sample. For this reason, in the analysis method, the internal pressure of the sample container is increased by the gas component generated from the measurement sample, and the sample container may be ruptured. In an open sample container, since the measurement is usually performed in an air atmosphere, the measurement peak may be obscured by the reaction between the air atmosphere, particularly oxygen gas, and the measurement sample.

本発明の試料容器は、熱分析における加熱中に試料容器内で発生するガスによる内圧を開放する構造を有することによって、測定試料から発生するガス成分を測定容器外に放出し、試料容器の破裂や転倒を防止することができる。内圧を開放する構造としては、試料容器の蓋体に穴をあけることが簡易的で好ましい。試料容器の大きさにもよるが、精度の高い測定結果を得るために十分な量の試料を試料容器内に充填するためには、例えば、通常用いられる内径が5〜7mm、高さが2.5〜5mmの大きさの試料容器では、蓋体が有る穴を直径が400〜700μmで1個とすることが好ましく、600〜700μmがより好ましい。また、蓋体と受け皿を圧着して接合することが好ましい。圧着することにより、ガスの放出を蓋体に設けた穴のみから行うことができ、試料容器内への雰囲気ガスの流入を十分に抑制することができる。また、蓋体の厚みは穴開け加工精度を高めるため、10〜200μmとすることが好ましい。   The sample container of the present invention has a structure that releases the internal pressure due to the gas generated in the sample container during heating in thermal analysis, thereby releasing the gas component generated from the measurement sample to the outside of the measurement container and rupturing the sample container. And can prevent falls. As a structure for releasing the internal pressure, it is simple and preferable to make a hole in the lid of the sample container. Although depending on the size of the sample container, in order to fill the sample container with a sufficient amount of sample to obtain a highly accurate measurement result, for example, the commonly used inner diameter is 5 to 7 mm and the height is 2 In a sample container having a size of 5 to 5 mm, it is preferable that the number of holes having a lid is one with a diameter of 400 to 700 μm, and more preferably 600 to 700 μm. Moreover, it is preferable that the lid body and the tray are bonded by pressure bonding. By pressure bonding, gas can be released only from the hole provided in the lid, and the inflow of atmospheric gas into the sample container can be sufficiently suppressed. Further, the thickness of the lid is preferably 10 to 200 μm in order to increase the drilling accuracy.

これにより、加熱中に試料容器内で発生するガスをより十分に放出し、試料容器の破裂や転倒をさらに防止することができる。また、蓋体の穴の直径を前記範囲とすることにより、試料容器内で発生するガスの放出により、試料容器内への雰囲気ガスの流入を抑制することも可能である。
前記直径が400μm未満では、容器内の密封状態が高くなり過ぎ、昇温時に内圧が高くなり過ぎて容器が破裂する可能性がある。また、前記直径が700μmを越えると、容器内へ雰囲気ガスが流入し、発熱曲線のピークの分離が不明瞭になることがある。
Thereby, the gas generated in the sample container during heating can be released more sufficiently, and the sample container can be further prevented from being ruptured or toppled. In addition, by setting the diameter of the hole of the lid within the above range, it is possible to suppress the inflow of the atmospheric gas into the sample container due to the release of the gas generated in the sample container.
If the diameter is less than 400 μm, the sealed state in the container becomes too high, and the internal pressure becomes too high when the temperature rises, and the container may burst. On the other hand, if the diameter exceeds 700 μm, atmospheric gas flows into the container, and the separation of the peak of the exothermic curve may become unclear.

蓋体の穴は、前記直径の範囲のものを1個とすることが簡易的であるが、穴を複数個あけることも可能である。その際には、内圧の開放と雰囲気ガスの流入の抑制が可能となるように直径と個数を調整すればよい。   It is easy to make one hole in the range of the diameter of the lid, but it is also possible to make a plurality of holes. In that case, the diameter and the number may be adjusted so that the internal pressure can be released and the inflow of atmospheric gas can be suppressed.

試料容器の材質は、アルミナのようなセラミック質のものも用いることが可能であるが、測定精度を向上させるため、熱伝導が良い金属質のものとする。金属質容器は、蓋体への穴あけや蓋体と受け皿の圧着が容易である。さらに熱伝導や加工性に優れたアルミニウムであることが好ましい。   The material of the sample container may be a ceramic material such as alumina. However, in order to improve the measurement accuracy, the material of the sample container is a metal material having good heat conduction. The metal container is easy to make a hole in the lid and press the lid and the tray. Furthermore, it is preferable that it is aluminum excellent in heat conduction and workability.

本発明の非水系電解質二次電池用正極活物質の評価方法は、上記熱分析用試料容器に測定試料を充填して熱分析することを特徴とするものである。これにより、試料容器内に十分な量の測定試料を充填することが可能となり、試料容器の破裂や転倒を防止しながら、高い精度で分析を行うことが可能である。
熱分析としては、TG、DSCなどが挙げられるが、上述のように正極活物質からの発熱メカニズム解明、特に熱安定性に関する評価を行うための分析方法としては、DSC分析を行う方法が有用であり、好ましい。
The method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is characterized in that the measurement sample is filled in the sample container for thermal analysis and thermal analysis is performed. As a result, a sufficient amount of measurement sample can be filled in the sample container, and analysis can be performed with high accuracy while preventing the sample container from bursting or falling.
Examples of thermal analysis include TG and DSC. As described above, a method of performing DSC analysis is useful as an analysis method for elucidating the mechanism of heat generation from the positive electrode active material, particularly for evaluating thermal stability. Yes, it is preferable.

前記試料容器内への測定試料の充填量は、測定試料から発生するガスが容器外へ放出されればよいが、試料容器の内容積の50〜90%とすることが好ましい。これにより、高い測定精度を得るために十分な量の測定試料を試料容器内に充填するとともに、発生したガスの内圧の開放と雰囲気ガスの流入の抑制が可能となる。前記内容積の90%を超えて試料を充填すると、測定試料から発生したガスが容器外に放出されないことがある。特に、蓋体の穴によりガスを放出させる場合には、測定試料により穴が塞がれてガスが放出されないことが起こりやすくなる。一方、前記内容積の50%未満の試料を充填すると、測定ピークが不明瞭となり測定精度が低下することがある。   The filling amount of the measurement sample into the sample container may be that gas generated from the measurement sample is released to the outside of the container, but is preferably 50 to 90% of the internal volume of the sample container. This makes it possible to fill a sample container with a sufficient amount of measurement sample to obtain high measurement accuracy, and to release the internal pressure of the generated gas and suppress the inflow of atmospheric gas. If the sample is filled to exceed 90% of the internal volume, the gas generated from the measurement sample may not be released outside the container. In particular, when the gas is released through the hole in the lid, it is likely that the hole is blocked by the measurement sample and the gas is not released. On the other hand, if a sample with less than 50% of the internal volume is filled, the measurement peak may become unclear and the measurement accuracy may be lowered.

前記測定試料は、分析の目的に応じて選択されるが、熱安定性の評価を行う場合、充電後の電池を分解して取り出した正極の構成材料とすることが好ましい。これにより、熱安定性が低下する充電後の正極活物質に対する評価を行うことが可能となる。   The measurement sample is selected according to the purpose of analysis. However, when evaluating thermal stability, it is preferable to use a constituent material of the positive electrode taken out by disassembling the battery after charging. Thereby, it becomes possible to evaluate the positive electrode active material after the charge whose thermal stability is lowered.

以下に、実施例を用いて本発明の実施形態を詳細に説明するが、本発明は、実施例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail using examples, but the present invention is not limited to the examples.

(実施例)
図1に示される熱分析用試料容器を作製し、示差走査熱量計(NETZSCH JAPAN(株)社製(旧ブルカーAXS社製)、DSC3100SA)を用いてDSC分析を行った。試料容器は、その材質がアルミニウム製あり、受け皿は直径5mm、高さ2.5mmであり、蓋体は厚さが200μmで、蓋体中央に直径400μmの穴を1個有するものを用いた。試料受け皿内部に充電後の電池を分解して取り出した正極の構成材料を試料容器の内容積の50%充填し、蓋体の外周部を圧着して受け皿と密着させた。測定雰囲気は大気中とし、昇温を10℃/分とし、室温から400℃まで測定を行った。
さらに、正極の構成材料の充填量を50〜90%、蓋体の穴を直径400〜700μmで変化させたこと以外は、実施例1と同様にしてDSC分析を行った。DSC分析結果を表1に示す。また、図2に実施例で得られた発熱曲線の一例を示す。
(Example)
A sample container for thermal analysis shown in FIG. 1 was prepared and subjected to DSC analysis using a differential scanning calorimeter (NETZSCH JAPAN Co., Ltd. (formerly Bruker AXS), DSC3100SA). The sample container was made of aluminum, the pan was 5 mm in diameter and 2.5 mm in height, the lid was 200 μm thick, and had one hole with a diameter of 400 μm in the center of the lid. The positive electrode constituent material taken out by disassembling the charged battery inside the sample tray was filled with 50% of the internal volume of the sample container, and the outer peripheral portion of the lid was crimped to be in close contact with the tray. The measurement atmosphere was air, the temperature was raised at 10 ° C./min, and the measurement was performed from room temperature to 400 ° C.
Furthermore, DSC analysis was performed in the same manner as in Example 1 except that the filling amount of the constituent material of the positive electrode was changed from 50 to 90% and the hole of the lid body was changed at a diameter of 400 to 700 μm. The DSC analysis results are shown in Table 1. FIG. 2 shows an example of a heat generation curve obtained in the example.

(比較例)
正極の構成材料の充填量を40%または100%としたこと、、蓋体の穴を直径300μmまたは800μmとしたこと以外は、実施例1と同様にしてDSC分析を行った。DSC分析結果を表1に示す。また、図2に比較例で得られた発熱曲線の一例を示す。
(Comparative example)
DSC analysis was performed in the same manner as in Example 1 except that the filling amount of the constituent material of the positive electrode was 40% or 100% and that the hole of the lid was 300 μm or 800 μm in diameter. The DSC analysis results are shown in Table 1. FIG. 2 shows an example of a heat generation curve obtained in the comparative example.

Figure 2016050797
Figure 2016050797

(評価)
実施例では、試料容器内で発生したガスを放出するとともに、試料容器外の大気雰囲気の容器内への流入を抑制することができ、また、十分な量の測定試料を容器内に充填することが可能であったため、良好なDSC分析が可能であった。一方、比較例では、測定試料の充填量が多く、蓋体の穴を塞いだ、あるいは、蓋体の穴が小さすぎたため、試料容器内で発生したガスを放出することができず、試料容器が破裂した。また、測定試料の充填量が少なすぎるか、あるいは蓋体の穴が大きすぎて大気雰囲気の容器内への流入を抑制することができず、発熱ピークが不明瞭となった。
(Evaluation)
In the embodiment, the gas generated in the sample container is released, the inflow of the atmospheric atmosphere outside the sample container into the container can be suppressed, and a sufficient amount of the measurement sample is filled in the container. Therefore, good DSC analysis was possible. On the other hand, in the comparative example, the filling amount of the measurement sample was large and the hole of the lid was closed, or the hole of the lid was too small, so the gas generated in the sample container could not be released, and the sample container Burst. Moreover, the filling amount of the measurement sample was too small, or the hole in the lid was too large to suppress the inflow of the atmospheric atmosphere into the container, and the exothermic peak became unclear.

1 蓋体の穴
2 蓋体
3 受け皿
1 Lid hole 2 Lid 3 Saucepan

Claims (8)

受け皿と蓋体からなる熱分析用試料容器であって、熱分析における加熱中に試料容器内で発生するガスによる内圧を開放する構造と、試料容器内への雰囲気ガスの流入を抑制する構造とを有する金属質容器であることを特徴とする非水系電解質二次電池用正極活物質の熱分析用試料容器。   A sample container for thermal analysis comprising a saucer and a lid, wherein the internal pressure due to the gas generated in the sample container during heating in the thermal analysis is released, and the structure for suppressing the inflow of atmospheric gas into the sample container; A sample container for thermal analysis of a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the container is a metallic container. 前記蓋体に直径が400〜700μmの穴を1個有し、受け皿と蓋体が圧着された構造を有することを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の熱分析用試料容器。   2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lid body has one hole having a diameter of 400 to 700 μm, and the tray and the lid body are pressure-bonded. Sample container for thermal analysis. 前記熱分析は、示差走査熱量測定であることを特徴とする請求項1または2に記載の熱分析用試料容器。   The thermal analysis sample container according to claim 1, wherein the thermal analysis is differential scanning calorimetry. 前記熱分析を、非水系電解質二次電池用正極活物質の熱安定性の評価に用いることを特徴とする請求項1〜3のいずれかに記載の熱分析用試料容器。   The thermal analysis sample container according to any one of claims 1 to 3, wherein the thermal analysis is used for evaluation of thermal stability of a positive electrode active material for a non-aqueous electrolyte secondary battery. 請求項1または2に記載の熱分析用試料容器に測定試料を充填して熱分析することを特徴とする非水系電解質二次電池用正極活物質の評価方法。   A method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the thermal analysis sample container according to claim 1 is filled with a measurement sample and subjected to thermal analysis. 前記熱分析は、示差走査熱量測定分析であることを特徴とする請求項5に記載の非水系電解質二次電池用正極活物質の評価方法。   The said thermal analysis is differential scanning calorimetry analysis, The evaluation method of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 5 characterized by the above-mentioned. 前記試料容器に、該試料容器の内容積の50〜90%の前記測定試料を充填して分析を行うことを特徴とする請求項5または6に記載の非水系電解質二次電池用正極活物質の評価方法。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5 or 6, wherein analysis is performed by filling the sample container with the measurement sample of 50 to 90% of the internal volume of the sample container. Evaluation method. 前記測定試料は、充電後の電池を分解して取り出した正極の構成材料であることを特徴とする請求項5〜7のいずれかに記載の非水系電解質二次電池用正極活物質の評価方法。   The method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the measurement sample is a constituent material of a positive electrode obtained by disassembling and removing a battery after charging. .
JP2014175032A 2014-08-29 2014-08-29 Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same Pending JP2016050797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175032A JP2016050797A (en) 2014-08-29 2014-08-29 Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175032A JP2016050797A (en) 2014-08-29 2014-08-29 Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2016050797A true JP2016050797A (en) 2016-04-11

Family

ID=55658412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175032A Pending JP2016050797A (en) 2014-08-29 2014-08-29 Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2016050797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077159A (en) * 2017-12-22 2019-07-03 삼성전자주식회사 Module for real time thermal behavior analysis of secondary cell battery and method of operating the same
CN111426724A (en) * 2019-10-23 2020-07-17 蜂巢能源科技有限公司 Method for testing safety performance of electrode material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077159A (en) * 2017-12-22 2019-07-03 삼성전자주식회사 Module for real time thermal behavior analysis of secondary cell battery and method of operating the same
US11038212B2 (en) 2017-12-22 2021-06-15 Samsung Electronics Co., Ltd. Module for real-time thermal behavior analysis of secondary cell battery and method of operating the same
KR102577275B1 (en) * 2017-12-22 2023-09-12 삼성전자주식회사 Module for real time thermal behavior analysis of secondary cell battery and method of operating the same
CN111426724A (en) * 2019-10-23 2020-07-17 蜂巢能源科技有限公司 Method for testing safety performance of electrode material
CN111426724B (en) * 2019-10-23 2022-08-19 蜂巢能源科技有限公司 Method for testing safety performance of electrode material

Similar Documents

Publication Publication Date Title
Peng et al. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study
Xia et al. Comparative study on prop-1-ene-1, 3-sultone and vinylene carbonate as electrolyte additives for Li (Ni1/3Mn13Co1/3) O2/graphite pouch cells
TWI299920B (en)
Sinha et al. Storage studies on Li/graphite cells and the impact of so-called SEI-forming electrolyte additives
JP6080284B1 (en) Nonaqueous electrolyte secondary battery
EP4318719A3 (en) Nonaqueous electrolyte secondary battery
WO2010058990A3 (en) Electrode active material for secondary battery and method for preparing the same
TW200805733A (en) Lithium secondary battery containing capsule for controlled-release of additives
TW201203675A (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
TW201136011A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2010003703A (en) Binder composition, slurry for battery electrode, electrode, and lithium secondary battery
JP2016513350A5 (en) Battery having internal phase change material and method of operating said battery
Song et al. Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator
CN204834789U (en) Lithium ion batteries cathode materials protection device
JP2016050797A (en) Sample container for thermal analysis, and evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery using the same
JP2006236653A (en) Nonaqueous electrolyte and nonaqueous electrochemical device using it
JP6798168B2 (en) battery
Mohsin et al. Comprehensive Electrochemical, Calorimetric Heat Generation and Safety Analysis of Na0. 53MnO2 Cathode Material in Coin Cells
JP6614196B2 (en) Positive electrode material for non-aqueous secondary battery and non-aqueous secondary battery
JP7015102B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017016796A (en) All-solid battery
JP2015216001A (en) Electricity storage element
JP2004127545A (en) Lithium battery
CN204348855U (en) A kind of against short-circuit overshoot lithium battery
CN207542340U (en) A kind of explosion-proof lithium battery