JP2016050156A - Method for producing lithium titanate and method for producing lithium ion secondary battery using the same - Google Patents

Method for producing lithium titanate and method for producing lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2016050156A
JP2016050156A JP2014177231A JP2014177231A JP2016050156A JP 2016050156 A JP2016050156 A JP 2016050156A JP 2014177231 A JP2014177231 A JP 2014177231A JP 2014177231 A JP2014177231 A JP 2014177231A JP 2016050156 A JP2016050156 A JP 2016050156A
Authority
JP
Japan
Prior art keywords
lithium titanate
lithium
secondary battery
ion secondary
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014177231A
Other languages
Japanese (ja)
Other versions
JP6329034B2 (en
Inventor
大輔 瀧
Daisuke Taki
大輔 瀧
新井 良幸
Yoshiyuki Arai
良幸 新井
英樹 堺
Hideki Sakai
英樹 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2014177231A priority Critical patent/JP6329034B2/en
Publication of JP2016050156A publication Critical patent/JP2016050156A/en
Application granted granted Critical
Publication of JP6329034B2 publication Critical patent/JP6329034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for producing lithium titanate having a stable crystal structure, having almost no loss of electric capacitance during high-speed charging and discharging of a lithium ion secondary battery, having a high discharge capacity and excellent charge and discharge cycle characteristics and having excellent safety; and a method for producing a lithium ion secondary battery using the lithium titanate produced by the new production method.SOLUTION: There is provided a method for producing lithium titanate by subjecting lithium titanate having oxygen deficiency to heat treatment at 400 to 600°C in an atmosphere containing an oxidative gas, in which the lithium titanate having oxygen deficiency is preferably calcined in an inert gas atmosphere.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池の電極用として好適なチタン酸リチウムの製造方法およびこれを用いたリチウムイオン二次電池の製造方法に関する。   The present invention relates to a method for producing lithium titanate suitable as an electrode for a lithium ion secondary battery and a method for producing a lithium ion secondary battery using the same.

リチウム二次電池は、サイクル特性に優れていることから、近年急速に普及している。リチウム二次電池の電極活物質、特に負極活物質には、放電電位が高く、安全性に優れたチタン酸アルカリ金属化合物、例えば、スピネル型構造を有するリチウムチタン化合物や、ラムスデライト型構造を有するチタン化合物等が注目されている。特に、スピネル型チタン酸リチウムは、理論容量が175mAh/gであり、また、充放電時の体積変化が小さいため、サイクル特性に優れている。
スピネル型チタン酸リチウムの製造方法として、炭酸リチウム、水酸化リチウム、硝酸リチウムおよび酸化リチウムのうち1種または2種以上のリチウム化合物と酸化チタンとの混合物を670℃以上かつ800℃未満で仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後、本焼成する方法、あるいは前記仮焼後に、酸素ガス分圧が1Pa以下の雰囲気で800℃〜950℃で本焼成する方法が提案されている(特許文献1、2)。
このような方法で得られるチタン酸リチウムはリチウムイオン二次電池の電極活物質として用いた場合、放電容量が高くて、充放電サイクル特性に優れているが、さらに、より放電容量が高く、かつ充放電サイクル特性に優れたチタン酸リチウムが求められている。
Lithium secondary batteries have been rapidly spreading in recent years because of their excellent cycle characteristics. Electrode active materials of lithium secondary batteries, particularly negative electrode active materials, have a high discharge potential and are highly safe, such as an alkali metal titanate compound, for example, a lithium titanium compound having a spinel structure or a ramsdellite structure. Titanium compounds are attracting attention. In particular, spinel type lithium titanate has a theoretical capacity of 175 mAh / g and a small volume change during charge / discharge, and thus has excellent cycle characteristics.
As a method for producing spinel type lithium titanate, a mixture of one or more of lithium carbonate, lithium hydroxide, lithium nitrate and lithium oxide and titanium oxide is calcined at 670 ° C. or higher and lower than 800 ° C. Preparing a composition composed of TiO 2 and Li 2 TiO 3 or a composition composed of TiO 2 , Li 2 TiO 3 and Li 4 Ti 5 O 12 , and then subjecting to the main firing, or the above There has been proposed a method of performing main firing at 800 ° C. to 950 ° C. in an atmosphere having an oxygen gas partial pressure of 1 Pa or less after calcination (Patent Documents 1 and 2).
Lithium titanate obtained by such a method has a high discharge capacity and excellent charge / discharge cycle characteristics when used as an electrode active material of a lithium ion secondary battery, and further has a higher discharge capacity, and There is a demand for lithium titanate having excellent charge / discharge cycle characteristics.

一方、LiTi12の合成に際して、本焼成の段階で、還元剤を含む雰囲気で焼成し、LiTi12の酸素不足状態であるLiTi12−Xの形態から成るチタン酸リチウムを電池材料の活物質として用いることが提案されている(特許文献3、4)。
しかしながら、このチタン酸リチウムは、本来安定であるスピネル構造から酸素欠陥を作っており、そのため結晶構造が不安定になっている。また、このチタン酸リチウムを得る手法は、還元雰囲気を作り出すために、水素、炭化水素、一酸化炭素の還元剤を用いて焼成を行なっており、爆発などに関して細心の注意を払う必要があり、危険を伴う作業でもある。
On the other hand, in the synthesis of the Li 4 Ti 5 O 12, at the stage of the firing, and firing in an atmosphere containing a reducing agent, the form of an oxygen deficient state of the Li 4 Ti 5 O 12 Li 4 Ti 5 O 12-X It has been proposed to use lithium titanate as an active material for battery materials (Patent Documents 3 and 4).
However, this lithium titanate creates an oxygen defect from a spinel structure that is inherently stable, and therefore the crystal structure is unstable. In addition, this technique for obtaining lithium titanate uses a reducing agent of hydrogen, hydrocarbons, and carbon monoxide in order to create a reducing atmosphere, and it is necessary to pay close attention to explosions. It is also a dangerous task.

特許公開2000−302547号公報Japanese Patent Publication No. 2000-302547 特許公開2001−213623号公報Japanese Patent Publication No. 2001-213623 特許公表2011−520752号公報Japanese Patent Publication No. 2011-520552 特許公表2010−517223号公報Patent publication 2010-517223

本発明は、結晶構造が安定しており、リチウムイオン二次電池の高速充放電に際して電気容量の損失がほとんどなく、より放電容量が高くかつ充放電サイクル特性に優れ、しかも、安全性に優れるチタン酸リチウムの製造方法及びこの新規な製造方法を用いて製造されたチタン酸リチウムを用いたリチウムイオン二次電池の製造方法を提供することを目的とする。   The present invention provides titanium having stable crystal structure, little loss of electric capacity during high-speed charge / discharge of lithium ion secondary battery, higher discharge capacity, excellent charge / discharge cycle characteristics, and excellent safety. It aims at providing the manufacturing method of a lithium ion secondary battery using the manufacturing method of lithium acid, and the lithium titanate manufactured using this novel manufacturing method.

上記課題を解決すべく、本発明者等が鋭意検討を行ったところ、驚くべきことに、一旦酸素欠損を有するチタン酸リチウムであるLiTi12−Xを生成させ、これを大気中などの酸化性ガスを含む雰囲気で熱処理を行い、酸素欠損をなくすことにより、負極材としたときの電池の充放電速度、高速充放電が優れ、結晶構造が安定したチタン酸リチウムが得られること、さらに、本焼成を不活性ガス雰囲気で行うことにより、酸素欠損を有するチタン酸リチウムが容易に生成することを見出した。 As a result of intensive studies by the present inventors to solve the above-mentioned problems, surprisingly, Li 4 Ti 5 O 12-X , which is lithium titanate having oxygen vacancies, was once generated, and this was generated in the atmosphere. By performing heat treatment in an atmosphere containing an oxidizing gas such as oxygen and eliminating oxygen vacancies, it is possible to obtain lithium titanate with excellent battery charge / discharge rate and high-speed charge / discharge when used as a negative electrode material, and a stable crystal structure Furthermore, it has been found that lithium titanate having oxygen vacancies is easily generated by carrying out the main firing in an inert gas atmosphere.

本発明は、かかる知見に基づき得られたもので、次の通りである。
(1)酸素欠損を有するチタン酸リチウムを、酸化性ガスを含む雰囲気で400℃〜600℃で熱処理するチタン酸リチウムの製造方法。
(2)酸素欠損を有するチタン酸リチウムが不活性ガス雰囲気で焼成されたものである上記(1)に記載のチタン酸リチウムの製造方法。
(3)上記(1)または(2)の製造方法により得られたチタン酸リチウムと、バインダーと、導電材とを含むペーストを集電体上に塗布して、前記集電体と前記集電体上に蓄積されたチタン酸リチウム層とを有する電極を作製する工程を含むリチウムイオン二次電池の製造方法。
The present invention has been obtained based on such knowledge and is as follows.
(1) A method for producing lithium titanate, in which lithium titanate having oxygen vacancies is heat-treated at 400 ° C. to 600 ° C. in an atmosphere containing an oxidizing gas.
(2) The method for producing lithium titanate according to the above (1), wherein the lithium titanate having oxygen deficiency is fired in an inert gas atmosphere.
(3) A paste containing lithium titanate obtained by the manufacturing method of (1) or (2), a binder, and a conductive material is applied onto a current collector, and the current collector and the current collector are applied. The manufacturing method of a lithium ion secondary battery including the process of producing the electrode which has a lithium titanate layer accumulate | stored on the body.

本発明の方法により得られるチタン酸リチウムを、リチウムイオン二次電池の電極活物質として用いた場合、リチウムイオン二次電池の高速充放電に際して、電気容量の損失が少ない。そのため、従来のリチウムイオン二次電池に比べて、高速充放電による充電不備などが少なく、安定した高速充放電ができ、放電容量が高くかつ充放電サイクル特性に優れている。   When the lithium titanate obtained by the method of the present invention is used as an electrode active material of a lithium ion secondary battery, there is little loss of electric capacity during high-speed charge / discharge of the lithium ion secondary battery. Therefore, compared to conventional lithium ion secondary batteries, charging defects due to high-speed charge / discharge are few, stable high-speed charge / discharge is possible, discharge capacity is high, and charge / discharge cycle characteristics are excellent.

本発明のチタン酸リチウムの製造方法は、酸素欠損を有するチタン酸リチウムを、酸化性ガスを含む雰囲気で400℃〜600℃で熱処理するもので、得られたチタン酸リチウムを、リチウムイオン二次電池の電極の活物質に用いた場合、高速充放電に際して、電気容量の損失が少ないリチウムイオン二次電池とすることができる。
本発明のチタン酸リチウムは、一般式LiTi12で表わされ、例えばスピネル構造を有するLi4+xTi12(0≦x≦3)や、ラムステライド構造を有するLi2+yTi(0≦y≦3)が挙げられる。特にスピネル構造を有するものが好ましい。
According to the method for producing lithium titanate of the present invention, lithium titanate having oxygen vacancies is heat-treated at 400 ° C. to 600 ° C. in an atmosphere containing an oxidizing gas. When used as an active material of a battery electrode, a lithium ion secondary battery with little loss of electric capacity can be obtained during high-speed charge / discharge.
The lithium titanate of the present invention is represented by the general formula Li x Ti y O 12 , for example, Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) having a spinel structure, or Li 2 + y Ti 3 having a ramsteride structure. O 7 (0 ≦ y ≦ 3) may be mentioned. Those having a spinel structure are particularly preferred.

本発明の酸素欠損を有するチタン酸リチウムは、リチウム原料として水酸化リチウム、炭酸リチウム、あるいはこれらの混合物、チタン原料として酸化チタン、メタチタン酸、オルトチタン酸、あるいはこれらの混合物、さらには、リチウムチタン原料としてLiTiO、LiTi12、LiTi13、LiTi16あるいはこれらの混合物を用い、これらの混合粉を、特定の焼成条件で焼成することにより得ることができる。 The lithium titanate having an oxygen vacancy according to the present invention includes lithium hydroxide, lithium carbonate, or a mixture thereof as a lithium raw material, titanium oxide, metatitanic acid, orthotitanic acid, or a mixture thereof as a titanium raw material, and lithium titanium. Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 6 O 13 , Li 2 Ti 8 O 16 or a mixture thereof is used as a raw material, and these mixed powders are obtained by firing under specific firing conditions. be able to.

リチウム原料の水酸化リチウムまたは炭酸リチウムは高純度のものが好ましく、通常純度99.0質量%以上のものが好適である。また、水酸化リチウム及び炭酸リチウムに含まれる水分については十分除去したものが望ましく、その含有量は0.1質量%以下にすることが好ましい。さらに平均粒径(レーザー回折法による測定)0.01〜100μmのものが好ましく、特に、炭酸リチウムの場合は50μm以下が好ましく、より好ましくは5μm以下、さらに好ましくは0.5μm以下である。   The lithium raw material lithium hydroxide or lithium carbonate preferably has a high purity, and usually has a purity of 99.0% by mass or more. Further, it is desirable that water contained in lithium hydroxide and lithium carbonate is sufficiently removed, and the content is preferably 0.1% by mass or less. Further, those having an average particle diameter (measured by a laser diffraction method) of 0.01 to 100 μm are preferable. In particular, in the case of lithium carbonate, 50 μm or less is preferable, more preferably 5 μm or less, and still more preferably 0.5 μm or less.

チタン原料の酸化チタン、メタチタン酸、オルトチタン酸、あるいはこれらの混合物も高純度であることが望ましく、純度99.0質量%以上が好ましく、より好ましくは99.5質量%以上のものであり、不純物として含まれるFe、Al、SiおよびNaが各々20ppm未満であり、かつ、Clが500ppm未満のものが好ましい。より好ましくは、Fe、Al、SiおよびNaの含有量が各々10ppm未満であり、Clが100ppm未満、さらに好ましくは50ppm未満である。チタン原料として酸化チタンを用いる場合、その比表面積は5m/g以上が好ましく、より好ましくは10m/g以上、さらに好ましくは15m/g以上である。 It is desirable that the titanium raw material titanium oxide, metatitanic acid, orthotitanic acid, or a mixture thereof is also highly pure, preferably a purity of 99.0% by mass or more, more preferably 99.5% by mass or more, Fe, Al, Si and Na contained as impurities are each less than 20 ppm, and Cl is preferably less than 500 ppm. More preferably, the contents of Fe, Al, Si and Na are each less than 10 ppm, and Cl is less than 100 ppm, more preferably less than 50 ppm. When titanium oxide is used as the titanium raw material, the specific surface area is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and further preferably 15 m 2 / g or more.

リチウムチタン原料として用いるLiTiO、LiTi12、LiTi13、LiTi16、あるいはこれらの混合物も高純度であることが望ましく、純度99.0質量%以上が好ましく、より好ましくは99.5質量%以上で、不純物として含まれるFe、Al、SiおよびNaが各々20ppm未満であり、かつ、Clが500ppm未満であるものが好ましい。より好ましくは、Fe、Al、SiおよびNaが各々10ppm未満であり、Clが100ppm未満、さらに好ましくは50ppm未満である。 It is desirable that Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 6 O 13 , Li 2 Ti 8 O 16 , or a mixture thereof used as the lithium titanium raw material is also highly pure, and the purity is 99.0% by mass. The above is preferable, more preferably 99.5% by mass or more, and Fe, Al, Si and Na contained as impurities are each less than 20 ppm, and Cl is less than 500 ppm. More preferably, Fe, Al, Si and Na are each less than 10 ppm, and Cl is less than 100 ppm, more preferably less than 50 ppm.

酸素欠損を有するチタン酸リチウムの合成に当たっては、先ず上記リチウム化合物、チタン原料とリチウムチタン原料を、チタン酸リチウムのLi/Ti比(原子比)の目標値、例えば0.68〜0.82の範囲から選択される値に合わせて、両原料を計量後、水あるいは水系媒体10〜50質量%のスラリーにして十分混合した後、加熱あるいは噴霧乾燥によって乾燥させるとよい。
両原料の混合には、振動ミル、ボールミル等が適宜使用される。この混合粉は、バルク状のまま、あるいは0.5t/cm程度の圧力で圧縮して成形体として焼成に供されるか、あるいは、混合粉を水あるいは水系媒体等の媒液で10〜50質量%のスラリーにして十分混合した後、加熱あるいは噴霧乾燥によって乾燥させた後、バルク状のまま、あるいは同様に圧縮し、成形体にして、焼成に供される。
In synthesizing lithium titanate having oxygen vacancies, first, the lithium compound, titanium raw material and lithium titanium raw material are mixed with a target value of Li / Ti ratio (atomic ratio) of lithium titanate, for example, 0.68 to 0.82. In accordance with a value selected from the range, both raw materials are weighed and then mixed with water or an aqueous medium of 10 to 50% by mass slurry, and then dried by heating or spray drying.
For mixing the two raw materials, a vibration mill, a ball mill or the like is appropriately used. This mixed powder remains in a bulk state or is compressed at a pressure of about 0.5 t / cm 2 and used for firing as a molded body, or the mixed powder is mixed with a liquid such as water or an aqueous medium. A slurry of 50% by mass is sufficiently mixed, dried by heating or spray drying, and then compressed in the bulk or similarly to form a molded body, which is subjected to firing.

酸素欠損を有するチタン酸リチウムは、上記焼成を不活性ガス雰囲気または還元性ガス雰囲気で行うことにより得ることができる。不活性ガス雰囲気とは、アルゴン、ヘリウムといった希ガス雰囲気や、窒素などの雰囲気、これらのガスの混合雰囲気であり、酸素、オゾン等の酸化性ガスや水素、一酸化炭素、硫化水素などの還元性ガスが含まれていない雰囲気のことである。還元性ガス雰囲気とは、水素、一酸化炭素、硫化水素などといったガス雰囲気であり、不活性ガスを含んでも良い。環境安全上、好ましくは、不活性ガス雰囲気であり、より好ましくは、窒素ガス雰囲気である。   Lithium titanate having oxygen vacancies can be obtained by performing the firing in an inert gas atmosphere or a reducing gas atmosphere. An inert gas atmosphere is a rare gas atmosphere such as argon or helium, an atmosphere such as nitrogen, or a mixed atmosphere of these gases. Reduction of oxygen, ozone, or other oxidizing gases, hydrogen, carbon monoxide, hydrogen sulfide, etc. It is an atmosphere that does not contain sex gases. The reducing gas atmosphere is a gas atmosphere such as hydrogen, carbon monoxide, or hydrogen sulfide, and may contain an inert gas. In view of environmental safety, an inert gas atmosphere is preferable, and a nitrogen gas atmosphere is more preferable.

焼成温度は600〜800℃が好ましく、より好ましくは650〜800℃の温度である。この加熱焼成は、2段階に分けて行うことが、好ましい。例えば、第1段階では温度600〜700℃とやや低い温度で30分〜5時間程度仮焼し、次いで第2段階として温度を高めの700〜800℃の温度で焼成することが好ましい。また、焼成時の昇温速度は5℃/min以下が好ましく、より好ましくは1℃/min以下である。また、0.1℃/min以上が好ましい。この昇温速度は、焼成時間へ影響を及ぼすため、生産効率と特性のバランスを考慮して設定することが好ましい。焼成後、必要に応じてハンマミル、ピンミルなどを用いて解砕、粉砕してもよい。不活性ガス雰囲気下での焼成後に得られるチタン酸リチウムは、還元性ガス中または還元性ガス雰囲気で焼成したチタン酸リチウムと同様、青色〜灰色味がかったチタン酸リチウムとして得られる。   The firing temperature is preferably 600 to 800 ° C, more preferably 650 to 800 ° C. This heating and baking is preferably performed in two stages. For example, it is preferable that the first stage is calcined at a slightly low temperature of 600 to 700 ° C. for about 30 minutes to 5 hours, and then the second stage is fired at a higher temperature of 700 to 800 ° C. Further, the temperature rising rate during firing is preferably 5 ° C./min or less, more preferably 1 ° C./min or less. Moreover, 0.1 degreeC / min or more is preferable. Since this heating rate affects the firing time, it is preferable to set it in consideration of the balance between production efficiency and characteristics. After firing, if necessary, it may be crushed and pulverized using a hammer mill, a pin mill or the like. The lithium titanate obtained after firing in an inert gas atmosphere is obtained as blue to grayish lithium titanate, similar to lithium titanate fired in a reducing gas or in a reducing gas atmosphere.

なお、チタン酸リチウム中の酸素欠損は電子スピン共鳴(ESR)スペクトルによりTi3+濃度を測定することにより確認できる。ESRは、測定対象物の中の不対電子のスピンに由来するマイクロ波の吸収を観察するもので、チタン酸リチウム中のTiは、通常Ti4+で存在するが、チタン酸リチウム中に酸素欠損が生じた場合には、Ti4+はTi3+となり、チタン酸リチウム内で電子的に補償する。従って、Ti3+は不対電子を有する為、Ti3+の存在を測定することで、チタン酸リチウム中の酸素欠損の有無を測定することができる。
なお、本発明においては、チタン酸リチウム中の酸素欠損が、ESR測定法におけるTi3+濃度として、1.0×1014(個/g)以上のものが好ましく、1.0×1016(個/g)以上がより好ましい。また、1.0×1022(個/g)以下が好ましい。
Note that oxygen vacancies in lithium titanate can be confirmed by measuring the Ti 3+ concentration by electron spin resonance (ESR) spectrum. ESR observes the absorption of microwaves derived from the spin of unpaired electrons in an object to be measured. Ti in lithium titanate is usually present as Ti 4+ , but oxygen deficiency is present in lithium titanate. When Ti occurs, Ti 4+ becomes Ti 3+ and is compensated electronically in lithium titanate. Accordingly, since Ti 3+ has unpaired electrons, the presence or absence of oxygen deficiency in lithium titanate can be measured by measuring the presence of Ti 3+ .
In the present invention, the oxygen deficiency in the lithium titanate is preferably 1.0 × 10 14 (pieces / g) or more as the Ti 3+ concentration in the ESR measurement method, and preferably 1.0 × 10 16 (pieces). / G) or more is more preferable. Moreover, 1.0 × 10 22 (pieces / g) or less is preferable.

本発明は、上記のような方法で得られる酸素欠損を有するチタン酸リチウムを、酸化性ガスを含む雰囲気で400℃〜600℃で熱処理するものである。
ここで、酸化性ガスは、酸素、オゾン、亜酸化窒素、一酸化窒素、二酸化窒素、フッ素、塩素、二酸化塩素、三フッ化窒素、三フッ化塩素、二フッ化酸素、ペルクロリルフルオリドなどを挙げることができるが、酸素、オゾンを用いることが好ましい。
これらの酸化性ガスは、アルゴン、ヘリウムといった希ガスや、窒素、これらの混合ガス等の不活性ガスにより希釈されていてもよい。
この酸化性ガスを含む雰囲気中の酸化性ガスの含有量は、10〜50容量%が好ましく、より好ましくは、15〜35容量%である。
この酸化性ガスを含む雰囲気は、酸素と窒素の混合ガス雰囲気、もしくは大気雰囲気が好ましい。
This invention heat-processes the lithium titanate which has an oxygen deficiency obtained by the above methods at 400 to 600 degreeC in the atmosphere containing oxidizing gas.
Here, the oxidizing gas is oxygen, ozone, nitrous oxide, nitric oxide, nitrogen dioxide, fluorine, chlorine, chlorine dioxide, nitrogen trifluoride, chlorine trifluoride, oxygen difluoride, perchloryl fluoride. However, it is preferable to use oxygen or ozone.
These oxidizing gases may be diluted with a rare gas such as argon or helium, or an inert gas such as nitrogen or a mixed gas thereof.
The content of the oxidizing gas in the atmosphere containing the oxidizing gas is preferably 10 to 50% by volume, more preferably 15 to 35% by volume.
The atmosphere containing the oxidizing gas is preferably a mixed gas atmosphere of oxygen and nitrogen or an air atmosphere.

熱処理時間は、30分〜4時間が好ましい。酸化性ガスを含む雰囲気で熱処理焼成することで、青色〜灰色味がかったチタン酸リチウムは、わずかに灰色〜白色の酸素欠損のないチタン酸リチウムとなる。
熱処理されたチタン酸リチウムは、加熱焼成後、必要に応じてハンマミル、ピンミル等を用いて解砕、粉砕処理を行なうことが好ましい。
なお、酸化性ガスを含む雰囲気で熱処理した後のチタン酸リチウムは、ESRスペクトル測定を行うと、Ti3+に由来する信号は確認されず、酸素欠損がなくなっている。
The heat treatment time is preferably 30 minutes to 4 hours. By performing heat treatment baking in an atmosphere containing an oxidizing gas, the blue to grayish lithium titanate becomes a slightly gray to white lithium titanate having no oxygen deficiency.
The heat-treated lithium titanate is preferably subjected to pulverization and pulverization using a hammer mill, a pin mill or the like as necessary after heating and baking.
Note that, when the ESR spectrum measurement is performed on the lithium titanate after heat treatment in an atmosphere containing an oxidizing gas, a signal derived from Ti 3+ is not confirmed and oxygen deficiency is eliminated.

酸素欠損を有するチタン酸リチウムを得るための焼成や上記熱処理に際し使用する炉は、雰囲気の調整が可能な炉であればよい。一般的な箱型炉や、トンネル炉、コンベア炉、キルン炉などで行うことができる。   The furnace used for the firing or the heat treatment for obtaining lithium titanate having oxygen deficiency may be a furnace capable of adjusting the atmosphere. It can be carried out in a general box furnace, tunnel furnace, conveyor furnace, kiln furnace or the like.

本発明の方法で得られたチタン酸リチウムは、リチウムイオン二次電池の活物質として用いることができる。このリチウムイオン二次電池は、上述した方法により得られたリチウムチタン酸化物を負極活物質として含む負極、正極活物質として含む正極、および非水電解質を含むリチウムイオン二次電池、または負極活物質を含む負極、上述した方法により得られたリチウムチタン酸化物を正極活物質として含む正極、および非水電解質を含む。前記負極、正極は集電体およびこの集電体に形成された活物質層を含み、前記活物質層は本発明の一実施形態により製造される活物質、バインダー、および選択的に導電剤を含んでもよい。   The lithium titanate obtained by the method of the present invention can be used as an active material of a lithium ion secondary battery. The lithium ion secondary battery includes a negative electrode including the lithium titanium oxide obtained by the above-described method as a negative electrode active material, a positive electrode including a positive electrode active material, and a lithium ion secondary battery including a nonaqueous electrolyte, or a negative electrode active material A positive electrode containing lithium titanium oxide obtained by the above-described method as a positive electrode active material, and a non-aqueous electrolyte. The negative electrode and the positive electrode include a current collector and an active material layer formed on the current collector, and the active material layer includes an active material, a binder, and optionally a conductive agent manufactured according to an embodiment of the present invention. May be included.

集電体は、導電性材料で形成されたものであれば特に限定されないが、例えば、アルミニウム、銅、ステンレス鋼、ニッケルメッキ鋼、チタン、ニッケルなどの金属で形成されている箔、メッシュ、発泡体や伝導性金属がコーティングされたポリマー及びこれらの組み合わせからなるものを用いることができる。   The current collector is not particularly limited as long as it is formed of a conductive material. For example, foil, mesh, foam formed of metal such as aluminum, copper, stainless steel, nickel-plated steel, titanium, and nickel A body, a polymer coated with a conductive metal, and a combination thereof can be used.

バインダーは、活物質を互いに適切に付着させ、さらに活物質を集電体に適切に付着させる役割を行う。その代表的な例としては、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロライド、カルボキシル化されたポリビニルクロライド、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリエチレン、ポリプロピレン、スチレン‐ブタジエンラバー、アクリレート化スチレン‐ブタジエンラバー、エポキシ樹脂、ナイロンなどを用いてもよいが、これに限定されるものではない。   The binder plays a role of properly attaching the active materials to each other and further appropriately attaching the active materials to the current collector. Typical examples include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride. Ride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but are not limited thereto.

導電剤は電極に導電性を付与するために用いられるものであって、構成される電池において、化学変化を起こさない電子伝導性材料であればいずれのものでも使用が可能であるが、例えば、天然黒鉛、人造黒鉛などを用いてもよく、また、ポリフェニレン誘導体などの導電性材料を混合して用いてもよい。   The conductive agent is used to impart conductivity to the electrode, and in the battery that is configured, any electronic conductive material that does not cause a chemical change can be used. Natural graphite, artificial graphite, or the like may be used, and conductive materials such as polyphenylene derivatives may be mixed and used.

負極の活物質として、本発明の方法により得られたチタン酸リチウムを使用する場合、対極となる正極活物質としては、リチウムと遷移金属元素とを含む酸化物、又はポリアニオン系化合物等を用いることができる。具体的には、例えば、リチウムコバルト複合酸化物〔Li(1−n)CoOなど(0<n<1、以下同じ)〕、リチウムニッケル複合酸化物〔Li(1−n)NiOなど〕、リチウムマンガン複合酸化物〔Li(1−n)MnO、Li(1−n)Mnなど〕、リチウム鉄複合リン酸化物(LiFePOなど)、リチウムバナジウム複合酸化物(LiVなど)などが挙げられる。 When the lithium titanate obtained by the method of the present invention is used as the negative electrode active material, an oxide containing lithium and a transition metal element or a polyanionic compound is used as the positive electrode active material serving as a counter electrode. Can do. Specifically, for example, lithium cobalt composite oxide [Li (1-n) CoO 2 etc. (0 <n <1, the same applies hereinafter)], lithium nickel composite oxide [Li (1-n) NiO 2 etc.] , Lithium manganese composite oxide [Li (1-n) MnO 2 , Li (1-n) Mn 2 O 4 etc.], lithium iron composite phosphate (LiFePO 4 etc.), lithium vanadium composite oxide (LiV 2 O 3 ) and the like.

正極の活物質として、本発明の方法により得られたチタン酸リチウムを使用する場合、対極となる負極活物質としては、Li金属箔が挙げられる。Li金属箔を負極として使用する場合は、導電剤やバインダーを使用することなく、集電体に直接圧着させて使用することができる。   When the lithium titanate obtained by the method of the present invention is used as the positive electrode active material, the negative electrode active material serving as the counter electrode includes Li metal foil. When Li metal foil is used as the negative electrode, it can be used by directly crimping the current collector without using a conductive agent or a binder.

リチウムイオン二次電池のいずれかの電極活物質として、本発明の方法により得られたチタン酸リチウムを用いる。このリチウムイオン電池の電極は、例えば、粉末状チタン酸リチウムと導電材とバインダーとを混合し、適当な溶剤を加えてペースト状としたものを集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。該負極には導電剤や溶剤などを使用することなく、前記集電体に直接圧着させて使用することができる。   As any electrode active material of the lithium ion secondary battery, lithium titanate obtained by the method of the present invention is used. The electrode of this lithium ion battery is prepared by, for example, mixing powdered lithium titanate, a conductive material and a binder, adding a suitable solvent to form a paste, and applying and drying on the surface of the current collector. In order to increase the electrode density, it can be compressed and formed. The negative electrode can be used by directly pressing the current collector without using a conductive agent or a solvent.

また、本発明のリチウムイオン二次電池の製造方法においては、リチウム塩を非水性有機溶媒に溶かした非水電解液、ゲル電解質、固体電解質などを用いることができるが、非水電解液を用いることが好ましい。
非水性有機溶媒は、電池の電気化学的反応に関与するイオンが移動することができる媒質役割を行う。非水性有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ‐ブチロラクトン(γ‐BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)など従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。
In the method for producing a lithium ion secondary battery of the present invention, a non-aqueous electrolyte solution, a gel electrolyte, a solid electrolyte, or the like in which a lithium salt is dissolved in a non-aqueous organic solvent can be used, but a non-aqueous electrolyte solution is used. It is preferable.
The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Examples of the non-aqueous organic solvent include ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), dimethyl carbonate (DMC), butylene carbonate (BC), and ethyl methyl. Examples include organic solvents used in conventional secondary batteries and capacitors such as carbonate (EMC). These may be used alone or in combination.

リチウム塩は非水性有機溶媒に溶解し、電池内でリチウムイオンの供給源として作用し、基本的なリチウム二次電池の作動を可能にし、正極と負極の間のリチウムイオンの移動を促進する役割を行う物質である。例えば、LiPF、LiClO、LiAsF、LiBF、Li(CFSON、Li(CFSO)、LiN(CSOなどのリチウム塩を用いることができる。リチウム塩の濃度は、0.1〜2.0Mが好ましく、0.8〜1.2Mがより好ましい。 Lithium salt dissolves in non-aqueous organic solvent, acts as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and promotes the movement of lithium ions between the positive and negative electrodes It is a substance that performs. For example, a lithium salt such as LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 3 ), LiN (C 2 F 5 SO 2 ) 2 may be used. it can. The concentration of the lithium salt is preferably from 0.1 to 2.0M, more preferably from 0.8 to 1.2M.

リチウムイオン二次電池は、リチウムイオン二次電池の種類に応じて正極と負極の間にセパレータが存在してもよい。このセパレータとしては、リチウムイオン二次電池の使用範囲に耐えうる素材であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   In the lithium ion secondary battery, a separator may be present between the positive electrode and the negative electrode depending on the type of the lithium ion secondary battery. The separator is not particularly limited as long as it is a material that can withstand the range of use of the lithium ion secondary battery. A thin microporous membrane can be mentioned. These may be used alone or in combination.

以下に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
(実施例1)
リチウム源として水酸化リチウムを240.9g、チタン源として酸化チタン粉末を573.5g用意し、原料固形分の濃度が20質量%となるようにイオン交換水と混合してスラリーとし、これに添加剤として、水系分散剤のカオーセラ2100(花王株式会社製)を対固形分で2質量%添加した。
このスラリーを、ボールミルを用いて粉砕、混合し、その後スプレードライヤー(ヤマト科学(株)製、GB210‐B)を用いて、220℃の熱風により噴霧造粒し、平均粒径10μm程度の球状の造粒混合粉を得た。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
(Example 1)
Prepare 240.9 g of lithium hydroxide as the lithium source and 573.5 g of titanium oxide powder as the titanium source, mix with ion-exchanged water so that the concentration of the raw material solids is 20% by mass, and add to this slurry As an agent, 2% by mass of Causera 2100 (manufactured by Kao Corporation) as an aqueous dispersant was added in terms of solid content.
This slurry is pulverized and mixed using a ball mill, and then spray granulated with hot air at 220 ° C. using a spray dryer (manufactured by Yamato Kagaku Co., Ltd., GB210-B) to form spherical particles having an average particle size of about 10 μm. A granulated mixed powder was obtained.

この造粒混合粉を、窒素ガス雰囲気にて、650℃で4時間焼成し、次いで、800℃で4時間の焼成をし、青色の粉末状チタン酸リチウム得た。得られたチタン酸リチウムのESRスペクトル測定を行ったところ、Ti3+由来のピークが検出され、Ti3+が、1.1×1019[個/g]と定量された。なお、ESRスペクトルの測定条件は以下である。 This granulated mixed powder was fired at 650 ° C. for 4 hours in a nitrogen gas atmosphere, and then fired at 800 ° C. for 4 hours to obtain a blue powdery lithium titanate. When the ESR spectrum measurement of the obtained lithium titanate was performed, a peak derived from Ti 3+ was detected, and Ti 3+ was quantified as 1.1 × 10 19 [pieces / g]. The measurement conditions for the ESR spectrum are as follows.

装置名:Elexsys E580(BRUKER社製)
基本的な測定条件
測定温度:10K
中心磁場:3370G付近
磁場掃引範囲:1000G
変調:100kHz、10G
マイクロ波:4μWおよび1mW
掃引時間:167.77s×4times
時定数:327.68ms
キャピティー:TE011、円筒型
Device name: Elexsys E580 (manufactured by BRUKER)
Basic measurement conditions Measurement temperature: 10K
Central magnetic field: around 3370G Magnetic field sweep range: 1000G
Modulation: 100kHz, 10G
Microwave: 4μW and 1mW
Sweep time: 167.77s x 4times
Time constant: 327.68ms
Capacity: TE 011 , cylindrical

〔Ti3+の定量方法〕
定量には、スピン数既知の標準試料(イオン注入したポリエチレンフィルム)を、同じ条件で測定し、信号強度(g値)より比例計算にて算出した。
〔g値の計算〕
なお、g値は物質固有の値であり、実験より得られたマイクロ波周波数(ν)と共鳴磁場(H)から、次式より求められる。
g=0.71449×ν(MHz)/H(G)
[Ti 3+ determination method]
For quantification, a standard sample with known spin number (polyethylene film into which ions were implanted) was measured under the same conditions, and was calculated by proportional calculation from the signal intensity (g value).
[Calculation of g value]
In addition, g value is a value intrinsic | native to a substance, and is calculated | required by following Formula from the microwave frequency ((nu)) and resonance magnetic field (H) which were obtained from experiment.
g = 0.71449 × ν (MHz) / H (G)

上記で得られた粉末状チタン酸リチウムを、大気雰囲気にて、400℃で2時間の熱処理を行い、わずかに灰色の粉末状チタン酸リチウムを作製した。再度、同様にESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。
上記方法で作製されたチタン酸リチウムを1.8g分取し、N‐メチル‐2‐ピロリドン3.0mLへ分散させ、さらに、0.1gのポリフッ化ビニリデン、0.1gのケッチェンブラックEC600JD(ライオン株式会社製)を加え、自転・公転真空ミキサーを用いて混合し、ペースト状にした。
The powdered lithium titanate obtained above was heat-treated at 400 ° C. for 2 hours in an air atmosphere to produce a slightly gray powdered lithium titanate. When ESR spectrum measurement was performed again in the same manner, a peak derived from Ti 3+ was not detected, and oxygen deficiency could not be confirmed.
1.8 g of lithium titanate prepared by the above method was collected and dispersed in 3.0 mL of N-methyl-2-pyrrolidone, and further 0.1 g of polyvinylidene fluoride and 0.1 g of ketjen black EC600JD ( Lion Corporation) was added and mixed using a rotating / revolving vacuum mixer to make a paste.

その後、ドクターブレードを用いて、アルミ箔上にそのスラリーを80μmの厚みで塗布した。これを乾燥後、プレスし、直径14.15mmの円形になるように、アルミ箔ごと打ち抜き、電極を作製した。
得られた電極に対し、負極としてリチウム金属を、電解液としてエチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:1)にLiPFを1mol/Lの濃度で溶解した電解液を、また、セパレータとしてポリプロピレン不織布を用いて、コインセルを作製した。
Then, the slurry was apply | coated by the thickness of 80 micrometers on aluminum foil using the doctor blade. This was dried and then pressed and punched out together with the aluminum foil so as to form a circle having a diameter of 14.15 mm, thereby producing an electrode.
With respect to the obtained electrode, an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) as an anode, A coin cell was prepared using a polypropylene nonwoven fabric as a separator.

30℃の恒温槽内に設置したホルダーに、上記で作製したコインセルをセットし、充放電装置(北斗電工社製、HJ1001SD)を用いて、充放電特性を測定した。
初めに、正極中のチタン酸リチウム1g当たり17.5mAの電流(0.1C)を流して、電圧1.0Vとなるまで放電させて、さらに1.0Vで6時間保持して充分に放電した(初期放電)。
初期放電ののち、0.1Cの電流で3.0Vまで充電した後、再び0.1Cで1.0Vまで放電させるサイクル数回行った。このサイクルを、1C、2C、5C、10C(それぞれチタン酸リチウム1g当たり175mA/h、350mA/h、875mA/h、1750mA/h)の電流の条件にて繰り返し行い、それぞれの放電時に流れた電流量の平均値を、チタン酸リチウム1g当たりの電気量に換算した値を電気容量とした。この際のサイクル数については、0.1Cの電流のみ2回のサイクルを行い、1C、2C、5C、10Cにおいては、5回のサイクルを行い、そのときの電気容量を測定し、その電気容量の平均値を求めた。得られた実測値(mAh/g)および、0.1Cでの電気容量を100%とした時の各充電電流での電気容量の割合を、充放電特性として、表1に示す。
The coin cell produced above was set in a holder installed in a constant temperature bath at 30 ° C., and charge / discharge characteristics were measured using a charge / discharge device (HJ1001SD, manufactured by Hokuto Denko).
First, a current (0.1 C) of 17.5 mA per 1 g of lithium titanate in the positive electrode was supplied to discharge the battery until the voltage reached 1.0 V, and the battery was sufficiently discharged by holding at 1.0 V for 6 hours. (Initial discharge).
After the initial discharge, the battery was charged to 3.0 V with a current of 0.1 C, and then again discharged several times to discharge to 1.0 V at 0.1 C. This cycle was repeated under the conditions of 1C, 2C, 5C, and 10C (175 mA / h, 350 mA / h, 875 mA / h, and 1750 mA / h, respectively, per 1 g of lithium titanate). The value obtained by converting the average value of the quantity into the quantity of electricity per 1 g of lithium titanate was defined as the electric capacity. As for the number of cycles at this time, only a current of 0.1 C is subjected to two cycles, and in 1C, 2C, 5C, and 10C, five cycles are performed, and the electric capacity at that time is measured. The average value of was obtained. Table 1 shows the ratio of the electric capacity at each charging current when the obtained actual value (mAh / g) and the electric capacity at 0.1 C are 100%, as charge / discharge characteristics.

(実施例2)
熱処理温度を400℃から500℃としたこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、白色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Example 2)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the heat treatment temperature was changed from 400 ° C to 500 ° C. As a result, white powdery lithium titanate was obtained. When ESR spectrum measurement was performed, no peak derived from Ti 3+ was detected, and oxygen deficiency could not be confirmed. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(実施例3)
熱処理温度を400℃から600℃としたこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、白色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Example 3)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the heat treatment temperature was changed from 400 ° C to 600 ° C. As a result, white powdery lithium titanate was obtained. When ESR spectrum measurement was performed, no peak derived from Ti 3+ was detected, and oxygen deficiency could not be confirmed. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(比較例1)
焼成の雰囲気を、窒素雰囲気から大気雰囲気としたこと、かつ、2回目の熱処理を行わなかったこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。
その結果、白色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Comparative Example 1)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the firing atmosphere was changed from a nitrogen atmosphere to an air atmosphere and the second heat treatment was not performed.
As a result, white powdery lithium titanate was obtained. When ESR spectrum measurement was performed, no peak derived from Ti 3+ was detected, and oxygen deficiency could not be confirmed. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(比較例2)
焼成の雰囲気を、窒素雰囲気から大気雰囲気としたこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、白色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Comparative Example 2)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the firing atmosphere was changed from a nitrogen atmosphere to an air atmosphere. As a result, white powdery lithium titanate was obtained. When ESR spectrum measurement was performed, no peak derived from Ti 3+ was detected, and oxygen deficiency could not be confirmed. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(比較例3)
熱処理を行わないこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、青色の粉末状チタン酸リチウムが得られた。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Comparative Example 3)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that no heat treatment was performed. As a result, blue powdery lithium titanate was obtained. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(比較例4)
熱処理の雰囲気を、大気雰囲気から窒素ガス雰囲気へ変更した以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、青色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークが検出され、Ti3+が0.8×1019[個/g]と定量された。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Comparative Example 4)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the heat treatment atmosphere was changed from an air atmosphere to a nitrogen gas atmosphere. As a result, blue powdery lithium titanate was obtained. When ESR spectrum measurement was performed, a peak derived from Ti 3+ was detected, and Ti 3+ was quantified as 0.8 × 10 19 [pieces / g]. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

(比較例5)
熱処理温度を500℃から700℃としたこと以外は、実施例1と同様の条件にて、粉末状チタン酸リチウムを作製した。その結果、白色の粉末状チタン酸リチウムが得られた。ESRスペクトル測定を行ったところ、Ti3+由来のピークは検出されず、酸素欠損は確認できなかった。また、得られたチタン酸リチウムの充放電特性の結果を表1に示す。
(Comparative Example 5)
Powdered lithium titanate was produced under the same conditions as in Example 1 except that the heat treatment temperature was changed from 500 ° C to 700 ° C. As a result, white powdery lithium titanate was obtained. When ESR spectrum measurement was performed, no peak derived from Ti 3+ was detected, and oxygen deficiency could not be confirmed. Table 1 shows the results of the charge / discharge characteristics of the obtained lithium titanate.

表1から、実施例の製造方法で得られたチタン酸リチウムを用いたリチウムイオン二次電池は、充放電速度が10Cにおいて充放電速度が0.1Cの85%以上であり、高速充放電に際して、電気容量の損失が少ないリチウムイオン二次電池であることが分かる。   From Table 1, the lithium ion secondary battery using lithium titanate obtained by the manufacturing method of the example has a charge / discharge rate of 10C and a charge / discharge rate of 85% or more at 0.1C, and at the time of high-speed charge / discharge It can be seen that this is a lithium ion secondary battery with little loss of electric capacity.

Figure 2016050156
Figure 2016050156

本発明の方法で得られるチタン酸リチウムは、酸素欠損がないため結晶構造が安定しており、リチウムイオン二次電池の電極活物質として有用であり、また、このチタン酸リチウムを電極活物質として用いるリチウムイオン二次電池は、高速充放電に際して、電気容量の損失が少なく、安定した高速充放電ができるため、自動車や電子機器等、各種機器の駆動用またはバックアップ用、家庭や事務所等での夜間電力貯蔵用の二次電池として有用である。   The lithium titanate obtained by the method of the present invention has a stable crystal structure because it has no oxygen deficiency, and is useful as an electrode active material for lithium ion secondary batteries. Further, this lithium titanate is used as an electrode active material. The lithium-ion secondary battery used has little loss of electric capacity during high-speed charging / discharging and can perform stable high-speed charging / discharging, so it can be used for driving or backup of various devices such as automobiles and electronic devices, homes, offices, etc. It is useful as a secondary battery for nighttime power storage.

Claims (3)

酸素欠損を有するチタン酸リチウムを、酸化性ガスを含む雰囲気で400℃〜600℃で熱処理することを特徴とするチタン酸リチウムの製造方法。   A method for producing lithium titanate, characterized by heat-treating lithium titanate having oxygen vacancies at 400 ° C. to 600 ° C. in an atmosphere containing an oxidizing gas. 酸素欠損を有するチタン酸リチウムが、不活性ガス雰囲気によって焼成されたものである請求項1に記載のチタン酸リチウムの製造方法。   The method for producing lithium titanate according to claim 1, wherein the lithium titanate having oxygen deficiency is fired in an inert gas atmosphere. 請求項1または請求項2により得られたチタン酸リチウムと、バインダーと、導電剤とを含む塗料を集電体上に塗布して、前記集電体と前記集電体上に積層されたチタン酸リチウム層とを有する電極を作製する工程を含むリチウムイオン二次電池の製造方法。   Titanium coated on the current collector and the current collector by applying a paint containing lithium titanate obtained according to claim 1 or claim 2, a binder, and a conductive agent on the current collector The manufacturing method of a lithium ion secondary battery including the process of producing the electrode which has a lithium acid lithium layer.
JP2014177231A 2014-09-01 2014-09-01 Method for producing lithium titanate and method for producing lithium ion secondary battery using the same Active JP6329034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177231A JP6329034B2 (en) 2014-09-01 2014-09-01 Method for producing lithium titanate and method for producing lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177231A JP6329034B2 (en) 2014-09-01 2014-09-01 Method for producing lithium titanate and method for producing lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2016050156A true JP2016050156A (en) 2016-04-11
JP6329034B2 JP6329034B2 (en) 2018-05-23

Family

ID=55657929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177231A Active JP6329034B2 (en) 2014-09-01 2014-09-01 Method for producing lithium titanate and method for producing lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6329034B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069024A (en) * 2017-04-07 2017-08-18 天津巴莫科技股份有限公司 The preparation method of oxygen vacancy type lithium titanate material
WO2018135113A1 (en) * 2017-01-20 2018-07-26 東邦チタニウム株式会社 Lithium titanate having consistent battery characteristic, lithium ion secondary battery using same, and method for producing same
WO2023027382A1 (en) * 2021-08-26 2023-03-02 한양대학교에리카산학협력단 Negative electrode material for lithium secondary battery, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
JP2011520752A (en) * 2008-05-14 2011-07-21 エナーデル、インク Lithium titanate and method for forming the same
JP2013133256A (en) * 2011-12-26 2013-07-08 Taiyo Yuden Co Ltd Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using the same
JP2014143004A (en) * 2013-01-22 2014-08-07 Toshiba Corp Negative electrode and nonaqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2011520752A (en) * 2008-05-14 2011-07-21 エナーデル、インク Lithium titanate and method for forming the same
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
JP2013133256A (en) * 2011-12-26 2013-07-08 Taiyo Yuden Co Ltd Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using the same
JP2014143004A (en) * 2013-01-22 2014-08-07 Toshiba Corp Negative electrode and nonaqueous electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135113A1 (en) * 2017-01-20 2018-07-26 東邦チタニウム株式会社 Lithium titanate having consistent battery characteristic, lithium ion secondary battery using same, and method for producing same
JP6400250B1 (en) * 2017-01-20 2018-10-03 東邦チタニウム株式会社 Lithium titanate having no variation in battery characteristics, lithium ion secondary battery using the same, and manufacturing method thereof
CN107069024A (en) * 2017-04-07 2017-08-18 天津巴莫科技股份有限公司 The preparation method of oxygen vacancy type lithium titanate material
WO2023027382A1 (en) * 2021-08-26 2023-03-02 한양대학교에리카산학협력단 Negative electrode material for lithium secondary battery, and method for producing same

Also Published As

Publication number Publication date
JP6329034B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
US10205158B2 (en) LMFP cathode materials with improved electrochemical performance
JP2008130265A (en) Surface coated metal fluoride electrode active material
KR20110088504A (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2011071018A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
CN110521037B (en) Positive electrode active material for sodium ion secondary battery
JP2013229318A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
Fu et al. Synthesis and electrochemical properties of Mg-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials for Li-ion battery
JP6329034B2 (en) Method for producing lithium titanate and method for producing lithium ion secondary battery using the same
JP6800322B2 (en) Positive electrode active material for potassium secondary batteries, potassium secondary batteries containing this
Zhang et al. Electrochemical performance of Al-substituted Li3V2 (PO4) 3 cathode materials synthesized by sol-gel method
Xue et al. Synthesis and performance of hollow LiNi 0.5 Mn 1.5 O 4 with different particle sizes for lithium-ion batteries
JP2003100292A (en) Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same
US11133504B2 (en) Nickel complex oxide and method of manufacturing lithium nickel complex oxide
JP6400250B1 (en) Lithium titanate having no variation in battery characteristics, lithium ion secondary battery using the same, and manufacturing method thereof
JP2013206563A (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5594309B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
EP4269358A1 (en) Spinel-type lithium manganate, method for producing same and use of same
Triwibowo et al. Electrochemical performance of LiFe (1-x) MnxPO4 (x= 0, 0.10, 0.15, 0.2) synthesized by solid state process as cathode material for Li-ion battery
JP6600991B2 (en) Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP2015125835A (en) Powdery lithium titanate, production method therefor, and lithium ion battery using the same
KR101623868B1 (en) Manufacturing method of metal oxide coated lithium manganese oxide and metal oxide coated lithium manganese oxide manufactured thereby
Triwibowo et al. Electrochemical performance of LiFe
JP2017103066A (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6329034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250