JP2016049475A - Unburned carbon recovery method and flotation separator - Google Patents

Unburned carbon recovery method and flotation separator Download PDF

Info

Publication number
JP2016049475A
JP2016049475A JP2014174652A JP2014174652A JP2016049475A JP 2016049475 A JP2016049475 A JP 2016049475A JP 2014174652 A JP2014174652 A JP 2014174652A JP 2014174652 A JP2014174652 A JP 2014174652A JP 2016049475 A JP2016049475 A JP 2016049475A
Authority
JP
Japan
Prior art keywords
floss
froth
unburned carbon
discriminating
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174652A
Other languages
Japanese (ja)
Other versions
JP6411135B2 (en
Inventor
幸二 高巣
Koji Takasu
幸二 高巣
裕樹 陶山
Hiroki Toyama
裕樹 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2014174652A priority Critical patent/JP6411135B2/en
Publication of JP2016049475A publication Critical patent/JP2016049475A/en
Application granted granted Critical
Publication of JP6411135B2 publication Critical patent/JP6411135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To separate and recover froth containing high-concentration of unburned carbon from fly ash.SOLUTION: A flotation separator comprises: a treatment tank 1 into which a liquid to be treated prepared by slurrying unburned carbon-containing coal ash and water by stirring means is charged; froth discrimination means 22 for discriminating the content of unburned carbon in overflowing froth in the flotation separator where air bubbles are injected into the liquid to be treated to generate a swirl flow in the treatment tank 1 and froth is overflowed from a froth overflow port 2a installed in an upper part of the treatment tank 1; discrimination and recovery means that discriminates the froth into V froth having high content of the unburned carbon and P froth having low content of the unburned carbon according to the content of the unburned carbon discriminated by the froth discrimination means 22 and recovering them respectively in a V froth recovery tank 12 and a P froth recovery tank 11; and returning means 16 that returns the whole or a part of the recovered P froth to the treatment tank 1.SELECTED DRAWING: Figure 1

Description

本発明は、未燃カーボン回収方法および浮遊分離装置に関し、詳しくは、フライアッシュから未燃カーボンを含有するフロスを分離・回収することを可能にした方法および装置に関するものである。   The present invention relates to an unburned carbon recovery method and a floating separation device, and more particularly, to a method and an apparatus capable of separating and collecting floss containing unburned carbon from fly ash.

従来、フライアッシュを水に分散させた被処理液を処理槽に収容し、被処理液に渦流を生じさせ、下部より未燃カーボン量の少ないテール灰を回収するとともに、上部に設けられたフロス溢流口から未燃カーボン量を比較的多く含有するフロスを溢流させて分離する浮遊分離装置がある(例えば、特許文献1参照)。   Conventionally, a liquid to be treated in which fly ash is dispersed in water is stored in a treatment tank, a vortex is generated in the liquid to be treated, tail ash with a small amount of unburned carbon is recovered from the lower part, and a floss provided in the upper part is provided. There is a floating separation device that overflows and separates a floss containing a relatively large amount of unburned carbon from an overflow port (see, for example, Patent Document 1).

特許第4802305号Patent No. 4802305

上述のように、従来の技術は、フライアッシュをテール灰とフロスとに分離するものであって、従来装置により得られたテール灰はコンクリート混和材等に利用されるが、分離後のフロス(未燃カーボンを多く含むフライアッシュ)は回収することなく廃棄処分としていた。フロスを廃棄することなく、工業用製品として利用するためには、フロスの未燃カーボンを高含有率(例えば50%以上)の安定した値とする必要があるため、上記のような従来の浮遊分離装置の技術を改良する。   As described above, the conventional technology separates fly ash into tail ash and floss, and tail ash obtained by a conventional apparatus is used for a concrete admixture or the like. The fly ash containing a large amount of unburned carbon was disposed of without being collected. In order to use it as an industrial product without discarding the floss, it is necessary to make the unburned carbon of the floss stable at a high content (for example, 50% or more). Improve the technology of the separation device.

本発明はこのような課題に鑑みなされたもので、フライアッシュから分離されたフロスの未燃カーボン回収量を増加させ、新たな廃棄物の発生を少なくした未燃カーボン回収方法、浮遊分離装置を提供することを目的とする。   The present invention has been made in view of such problems. An unburned carbon recovery method and a floating separation device that increase the amount of unburned carbon recovered from floss separated from fly ash and reduce the generation of new waste. The purpose is to provide.

本発明の要旨は、撹拌槽で未燃カーボンを含有する石炭灰を水に分散させてスラリー化した被処理液を第一の処理槽で浮遊選鉱して前記未燃カーボンを分離する分離工程と、前記浮遊選鉱により得られたフロスを測定する測定工程と、
前記測定工程における測定結果に基づいて、前記フロスを未燃カーボンが高含有率のVフロスと、未燃カーボンが低含有率のPフロスとに判別して回収する判別回収工程と、回収された前記Pフロスを第一の処理槽内の被処理液に再投入し、再度浮遊選鉱を行う工程とを備えた回収方法、装置である。
The gist of the present invention is a separation step of separating the unburned carbon by flotation in a first treatment tank of a liquid to be treated which is a slurry obtained by dispersing coal ash containing unburned carbon in water in a stirring tank. A measuring step for measuring the floss obtained by the flotation,
Based on the measurement result in the measurement step, the floss is discriminated and recovered by discriminating and recovering the V floss with a high content of unburned carbon and the P floss with a low content of unburned carbon. The P froth is re-introduced into the liquid to be treated in the first treatment tank, and the step of flotation is performed again.

また、前記撹拌槽とは異なる第二の撹拌槽で前記Vフロスを被処理液として第二の処理槽で浮遊選鉱を行い、未燃カーボンが80%以上の高含有率のCフロスとして回収する工程とを備えた回収方法、装置である。     In addition, in the second stirrer tank different from the stirrer tank, the V froth is treated as a liquid to be treated and the flotation is performed in the second treatment tank, and unburned carbon is recovered as C froth having a high content of 80% or more. A recovery method and apparatus comprising a process.

本発明によれば、フライアッシュから未燃カーボンを含有するフロスを分離・回収できる、未燃カーボンの含有率を向上・安定させ、新たな廃棄物の発生を少なくし、資源の有効利用および環境保全に寄与することができる。   According to the present invention, froth containing unburned carbon can be separated and recovered from fly ash, the content of unburned carbon is improved and stabilized, the generation of new waste is reduced, the effective use of resources and the environment It can contribute to conservation.

本発明による浮遊分離装置の実施形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of a floating separation device by the present invention. 方向切換弁を備えたフロス判別手段の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the floss discrimination | determination means provided with the direction switching valve. (a)はフロスの採取時間、(b)(c)は輝度、(d)は色の強度をそれぞれ横軸にとり、強熱減量との関係を示したグラフである。(A) is a graph showing the relationship between loss of ignition and floss collection time, (b) and (c) are luminance, and (d) is color intensity on the horizontal axis. 従来装置と本発明による装置について、(a)はテール灰の強熱減量、(b)はVフロスの強熱減量を示したグラフである。(A) is a graph showing ignition loss of tail ash, and (b) is a graph showing ignition loss of V floss for the conventional apparatus and the apparatus according to the present invention. Vフロスを図7の装置を使用して処理した場合の、Cフロス回収時間と強熱減量の関係を示したグラフである。It is the graph which showed the relationship between C froth collection | recovery time and ignition loss at the time of processing V floss using the apparatus of FIG. 色の強度の比を説明する写真である。It is a photograph explaining the ratio of color intensity. 本発明による浮遊分離装置の他の実施形態を示すシステム構成図である。It is a system block diagram which shows other embodiment of the floating separation apparatus by this invention.

以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。
図1は、本発明の浮遊分離装置の一実施形態を示すシステム構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a system configuration diagram showing an embodiment of the floating separation apparatus of the present invention.

図1に示す浮遊分離装置は、円筒状の処理槽1を有し、この処理槽1内の上部に円錐台形状のフロス回収トレイ2が設けられている。フロス回収トレイ2の上端にはフロス溢流口2aが設けられている。     The floating separation apparatus shown in FIG. 1 has a cylindrical processing tank 1, and a frusto-collecting tray 2 having a truncated cone shape is provided in the upper part of the processing tank 1. A floss overflow port 2 a is provided at the upper end of the floss collection tray 2.

フロス溢流口2aの上部にはスラリー投入流路3およびパイン油投入流路4が連接され、フロス回収トレイ2の下端付近にはフロス回収流路5が接続されている。処理槽1の上部と下部の間に循環流路6が接続されている。循環流路6の上端部は、処理槽1の上部(フロス回収トレイ2の下方)であって、処理槽1内の被処理液面より下部に位置し、循環流路6の下端部は処理槽1の下部に位置している。循環流路6の途中にはポンプ7およびマイクロバブル発生装置8が設けられている。なお、パイン油は起泡剤の一種である。   A slurry charging channel 3 and a pine oil charging channel 4 are connected to the upper part of the floss overflow port 2a, and a floss recovery channel 5 is connected to the vicinity of the lower end of the floss recovery tray 2. A circulation channel 6 is connected between the upper part and the lower part of the treatment tank 1. The upper end of the circulation channel 6 is located at the upper part of the processing tank 1 (below the froth collection tray 2) and below the surface of the liquid to be treated in the processing tank 1, and the lower end of the circulation channel 6 is treated. Located in the lower part of the tank 1. A pump 7 and a microbubble generator 8 are provided in the middle of the circulation flow path 6. Pine oil is a kind of foaming agent.

フロス回収流路5に方向切換弁10が設けられ、この方向切換弁10からPフロス回収槽11へ通ずるPフロス回収流路12、およびVフロス回収槽13に通ずるVフロス回収流路14が分岐されている。Pフロス回収槽11から攪拌槽15にPフロス還流流路16が接続され、Pフロス還流流路16中にポンプ17が設けられている。スラリー投入流路3は攪拌槽15の下端部に接続され、その途中にポンプ18が設けられている。   A direction switching valve 10 is provided in the floss recovery flow path 5, and a P floss recovery flow path 12 that leads from the direction switching valve 10 to the P floss recovery tank 11 and a V floss recovery flow path 14 that leads to the V floss recovery tank 13 branch off. Has been. A P-floss reflux channel 16 is connected from the P-floss recovery tank 11 to the stirring vessel 15, and a pump 17 is provided in the P-floss reflux channel 16. The slurry charging flow path 3 is connected to the lower end of the stirring tank 15, and a pump 18 is provided in the middle thereof.

攪拌槽15には、未燃カーボンを含有する原料(例えばフライアッシュ)、水、捕集剤(たとえばケロシン)を上部から投入し、攪拌子19を、回転軸21を介して回転させることによりスラリー化した被処理液を得て、これをポンプ18によりスラリー投入流路3を介してフロス溢流口2aから処理槽1に投入する。前記原料、水及び捕集材の投入順序はどのような順番でも良い。なお、パイン油は水の投入後、投入する。   A raw material containing unburned carbon (for example, fly ash), water, and a scavenger (for example, kerosene) is introduced into the stirring tank 15 from above, and the stirring bar 19 is rotated through the rotating shaft 21 to form a slurry. The liquid to be treated is obtained, and this is introduced into the treatment tank 1 from the floss overflow port 2a through the slurry introduction channel 3 by the pump 18. The raw material, water, and collecting material may be input in any order. Note that pine oil is introduced after water is introduced.

被処理液は処理槽1に落下して収容され、収容された被処理液は循環流路6を介して強制的に循環される。循環流路6の途中のマイクロバブル発生装置でマイクロバブルが混合され、処理槽1の内面に沿って流入させることで処理槽1に渦流を形成し、それに伴ってマイクロバブルに付着したフロスFがフロス溢流口2aからオーバーフローし、フロス回収トレイ2に沿って落下する。   The liquid to be processed falls and is stored in the processing tank 1, and the stored liquid to be processed is forcibly circulated through the circulation channel 6. Microbubbles are mixed in the microbubble generator in the middle of the circulation channel 6 and flow along the inner surface of the processing tank 1 to form a vortex in the processing tank 1. It overflows from the floss overflow port 2 a and falls along the floss collection tray 2.

処理槽1の下端部にはテール灰回収流路36が設けられており、テール灰回収流路36から大部分の未燃カーボンが除去されたテール灰Tがテール灰回収槽37に落下して回収される。
A tail ash collection channel 36 is provided at the lower end of the treatment tank 1, and the tail ash T from which most unburned carbon has been removed from the tail ash collection channel 36 falls into the tail ash collection tank 37. Collected.

フロス溢流口よりオーバーフローしたフロスFはフロス判別手段22により測定されており、その測定データは、フロス判別手段22により方向切換信号に変換される。フロス判別手段22は、前記方向切換信号を方向切換弁10に送信し、方向切換弁10は、前記方向切換信号に基づいて制御するようになっている。なお、フロス判別手段22については後述する。   The floss F overflowed from the floss overflow port is measured by the floss discrimination means 22, and the measured data is converted into a direction switching signal by the floss discrimination means 22. The floss discrimination means 22 transmits the direction switching signal to the direction switching valve 10, and the direction switching valve 10 is controlled based on the direction switching signal. The floss discrimination means 22 will be described later.

落下したフロスFは、フロス回収流路5から回収されて方向切換弁10に送られる。方向切換弁10はフロス判別手段22からの方向切換信号により制御され、Pフロス回収流路12又はVフロス回収流路14のいずれかに振り分けられ、PフロスFPはPフロス回収槽11に、VフロスFVはVフロス回収槽13にそれぞれ回収される。   The fallen Floss F is recovered from the Floss recovery flow path 5 and sent to the direction switching valve 10. The direction switching valve 10 is controlled by a direction switching signal from the floss discriminating means 22 and is distributed to either the P floss recovery flow path 12 or the V floss recovery flow path 14, and the P floss FP is transferred to the P floss recovery tank 11. The floss FV is recovered in the V floss recovery tank 13.

ここに、Vフロスとは、フロスF中の未燃カーボンが高含有率(未燃カーボンが50%以上)の成分であるもの、Pフロスとは、未燃カーボンがそれ以下の低含有率(未燃カーボンが50%未満)の成分のものと定義する。Pフロス回収槽11に回収されたPフロスFPは、その一部又は全部をPフロス還流流路16から攪拌槽15に還流され、ここで再び原料とともに攪拌されて上記の浮遊選鉱を繰り返す。   Here, V floss is a component having a high content of unburned carbon in floss F (unburned carbon is 50% or more), and P floss is a low content of unburned carbon less than that ( It is defined as a component having an unburned carbon content of less than 50%. Part or all of the P froth FP collected in the P froth collection tank 11 is returned to the stirring tank 15 from the P froth reflux channel 16 and is again stirred with the raw material to repeat the above flotation.

図2(a)〜(d)は、フロス判別手段22及び方向切換弁の具体例を示している。
図2(a)は、フロス判別手段22がタイマ23で構成された例である。すなわち、フロスFがオーバーフローし始めてからの時間をタイマ23で計測し、このタイマ23で計測した時間に基づいて方向切換弁10を切換えるようにしたものである。
FIGS. 2A to 2D show specific examples of the floss discrimination means 22 and the direction switching valve.
FIG. 2A shows an example in which the floss discrimination means 22 is composed of a timer 23. That is, the time after the floss F starts to overflow is measured by the timer 23, and the direction switching valve 10 is switched based on the time measured by the timer 23.

図3(a)に、A灰とB灰の2種類のフロスについて、採取時間と強熱減量の関係を試験した結果を示している。
A灰とB灰の両者とも、フロスがオーバーフローし始めてからほぼ10分を境に強熱減量が50%未満に減少していることがわかる。したがって、図2(a)において、フロスFが溢流し始めてから10分未満のとき方向切換弁10をVフロス回収流路14側、10分以上のときPフロス回収流路12側に切換えることにより、PフロスFPとVフロスFVを判別し、それぞれ、Pフロス回収槽11およびVフロス回収槽12に回収することができる。
FIG. 3A shows the results of testing the relationship between the collection time and the loss on ignition for two types of froth, A ash and B ash.
It can be seen that in both A ash and B ash, the loss on ignition decreased to less than 50% almost 10 minutes after the floss began to overflow. Accordingly, in FIG. 2 (a), by switching the direction switching valve 10 to the V floss recovery flow path 14 side when it is less than 10 minutes after the floss F starts to overflow, to the P floss recovery flow path 12 side when it is 10 minutes or longer. The P-floss FP and the V-floss FV can be discriminated and recovered in the P-floss collection tank 11 and the V-floss collection tank 12, respectively.

図2(b)は、オーバーフローしたフロスFの光源26による反射光の強さとして、たとえばフロスF表面の輝度を測定し、この測定データに基づいてバルブ30又は31を開放するように制御するものである。すなわち、フロス回収流路5の途中にフロス測定槽25を設け、このフロス測定槽25に回収されたフロスFを光源26(ハロゲンランプ、照度3500lx)で300mmの距離から照射し、測光計27は輝度計によって構成され、輝度を測定する。反射光の強さとして測定した輝度が設定値以上か設定値以下かを制御部28で判断し、電磁弁30又は電磁弁31のいずれかを開放するように制御することにより、PフロスとVフロスを判別することができる。   FIG. 2B shows the intensity of the reflected light from the light source 26 of the overflow Floss F, for example, the brightness of the surface of the Floss F is measured, and the valve 30 or 31 is controlled to be opened based on this measurement data. It is. That is, a floss measuring tank 25 is provided in the middle of the floss collecting flow path 5, and the floss F collected in the floss measuring tank 25 is irradiated from a distance of 300 mm with a light source 26 (halogen lamp, illuminance 3500 lx). Consists of a luminance meter and measures luminance. The control unit 28 determines whether the luminance measured as the intensity of the reflected light is greater than or equal to the set value and controls to open either the solenoid valve 30 or the solenoid valve 31, whereby P floss and V Floss can be determined.

なお、反射光の強さとして照度を用いることも出来る。その場合、測光計27は照度計で構成して、照度を測定し、測定データに基づいてバルブ30又は31を開放するように制御する。 Illuminance can also be used as the intensity of reflected light. In that case, the photometer 27 is composed of an illuminometer, measures the illuminance, and controls to open the valve 30 or 31 based on the measurement data.

図3(b)(c)に、2種類のフロス(A灰とB灰)について、フロスの輝度(常用対数)と強熱減量との関係を試験した結果を示している。同図で明らかなように、A灰とB灰の両者ともに輝度と強熱減量は相関関係にあり、AとB灰とも、輝度の常用対数Log10(Cd/m2)がほぼ2.6を境にして強熱減量が50%未満に低下している。 FIGS. 3B and 3C show the results of testing the relationship between the brightness of floss (common logarithm) and ignition loss for two types of floss (A ash and B ash). As is clear from the figure, the luminance and ignition loss are correlated for both A ash and B ash, and the common logarithm Log10 (Cd / m2) of luminance for both A and B ash is about 2.6. The ignition loss is reduced to less than 50%.

なお、ここで、常用対数Log10(Cd/m2)が2.6という数値は、光源26としてハロゲンランプ、照度3500lxを使用した場合の例であり、光源の仕様が異なる場合、改めてフロスの輝度と強熱減量との関係を試験で求め、所望する強熱減量に対応する輝度の常用対数を設定値とする必要がある。 Here, the numerical value of the common logarithm Log10 (Cd / m2) of 2.6 is an example in the case where a halogen lamp and illuminance of 3500 lx are used as the light source 26. It is necessary to obtain a relationship with ignition loss by a test and set the common logarithm of luminance corresponding to the desired ignition loss as a set value.

図2(c)は、フロス溢流口2aからオーバーフローした直後のフロスFを光源33(ハロゲンランプ、照度3500lx)で300mmの距離から照射し、カメラ32(デジタルカメラ、開放絞り値F3.3、ISO感度2400、シャッタースピード1/10秒)で撮影してフロスFの反射率を測定してこの測定データを制御部34で判断し、これに基づいて方向切換弁10を制御するものである。 FIG. 2 (c) shows that the floss F immediately after overflowing from the floss overflow port 2a is irradiated from a distance of 300 mm with a light source 33 (halogen lamp, illuminance 3500 lx), and a camera 32 (digital camera, open aperture value F3.3, (ISO sensitivity 2400, shutter speed 1/10 seconds), the reflectance of the floss F is measured, the measurement data is judged by the control unit 34, and the direction switching valve 10 is controlled based on this measurement data.

図3(d)は、光源33(ハロゲンランプ、照度3500lx)で照射し、カメラ32(デジタルカメラ、開放絞り値F3.3、ISO感度2400、シャッタースピード1/10秒)により測定したフロスFの色の強度の比(図6参照)と強熱減量との関係を試験した結果を示している。図3(d)で明らかなように、レッドR,グリーンG、ブルーBがともに、色の強度の比がほぼ0.3を境にして強熱減量が50%未満に低下している。したがって、図2(c)において、色の強度の比が設定値以上か設定値以下かを制御部34で判断し、方向切換弁10をVフロスF側又はPフロスF側に切換えることにより、PフロスとVフロスを判別することができる。 FIG. 3 (d) shows the Floss F measured with a camera 32 (digital camera, open aperture value F3.3, ISO sensitivity 2400, shutter speed 1/10 seconds) irradiated with a light source 33 (halogen lamp, illuminance 3500 lx). The result of testing the relationship between the ratio of color intensity (see FIG. 6) and loss on ignition is shown. As apparent from FIG. 3 (d), the red R, green G, and blue B all have a loss on ignition of less than 50% when the color intensity ratio is approximately 0.3. Therefore, in FIG. 2 (c), the control unit 34 determines whether the ratio of the color intensity is greater than or equal to the set value and switches the direction switching valve 10 to the V floss F side or the P floss F side. P floss and V floss can be discriminated.

図6は、フロスFの色の強度の比を説明する図(写真)である。図6において、フロス溢流口2aからオーバーフローした直後のフロスFを光源(図示せず)で照射し、上記のカメラ(図示せず)より得たRGBデータ(0〜255)の100ピクセル四方内の平均値の比(白Wの標本を1、黒Bの標本を0とした比)を色の強度の比とする。 FIG. 6 is a diagram (photograph) for explaining the intensity ratio of the color of the floss F. FIG. In FIG. 6, Floss F immediately after overflowing from the floss overflow port 2a is irradiated with a light source (not shown), and within 100 pixels square of RGB data (0 to 255) obtained from the camera (not shown). The ratio of the average values (the ratio in which the white W sample is 1 and the black B sample is 0) is the color intensity ratio.

図2(d)は、フロス溢流口2に筒状のフロス溜部2bを設け、このフロス溜部2b内に溜まった直後のフロスF´を測定してこれを回収する例である。すなわち、フロス溜部2bから2本のフロス回収流路12、14を介してフロスF´を回収し、各々のフロス回収流路12、14に電磁弁30、31を設けるとともに、フロスF´を光源で照射してフロスF´からの反射光を輝度計27(又はカメラ)で測定し、この測定データに基づいていずれかの電磁弁30、又は電磁弁31を開放するようにしたものである。なお、このようにフロス溜部2b内のフロスF´を回収する手段は、図2(a)に示す、タイマでオーバーフローの時間を測定する手段にも適用可能である。
なおまた、図2(a)〜(d)のように、光の反射を利用した判別では、光源以外の光の入射を防ぎ、外乱光の影響を回避する必要がある。
FIG. 2 (d) shows an example in which a cylindrical floss reservoir 2b is provided in the floss overflow port 2, and the floss F 'immediately after collecting in the floss reservoir 2b is measured and recovered. That is, the floss F ′ is recovered from the floss reservoir 2b via the two floss recovery passages 12 and 14, and the electromagnetic valves 30 and 31 are provided in the respective floss recovery passages 12 and 14, respectively. The reflected light from the floss F ′ is measured by the luminance meter 27 (or camera) after being irradiated with the light source, and any one of the solenoid valves 30 or 31 is opened based on this measurement data. . Note that the means for collecting the floss F ′ in the floss reservoir 2b in this way can also be applied to the means for measuring the overflow time with a timer shown in FIG.
In addition, as shown in FIGS. 2A to 2D, in the determination using the reflection of light, it is necessary to prevent the light other than the light source from entering and to avoid the influence of disturbance light.

図4(a)は、従来の一般的な浮遊分離装置と本発明の方法および装置により得られた、テール灰の強熱減量の品質を比較したグラフである。同図に示すように、従来装置の平均は1.4%程度、本発明では約1.5%であって、Pフロスの投入が回収したテール灰の強熱減量に影響を及ぼさないことがわかる。 FIG. 4 (a) is a graph comparing the quality of tail ash ignition loss obtained by a conventional general floating separation apparatus and the method and apparatus of the present invention. As shown in the figure, the average of the conventional apparatus is about 1.4%, and in the present invention it is about 1.5%, and the input of P-floss does not affect the ignition loss of the collected tail ash. Recognize.

図4(b)は、本発明の方法および装置で回収されたPフロスの再処理を行わない場合と、Pフロスの再処理を行った場合とで、得られた、Vフロスの強熱減量の品質を比較したグラフである。 FIG. 4 (b) shows ignition loss of V froth obtained when the reprocessing of P froth collected by the method and apparatus of the present invention is not performed and when the reprocessing of P floss is performed. It is the graph which compared the quality of.

図4(b)に示すように、本発明装置においてPフロスの再処理を行わない場合で得られたVフロスと、本発明方法および装置で得られたVフロスは、2回目、3回目、4回目ともに、ほぼ同程度の強熱減量であることがわかる。このことは、従来は廃棄物処理をしていたPフロスを減らすことができ、工業用製品として利用可能なVフロスを増やすことが出来ることを意味する。 As shown in FIG. 4 (b), the V floss obtained when the reprocessing of P floss is not performed in the device of the present invention and the V floss obtained by the method and device of the present invention are the second time, the third time, It turns out that it is the ignition loss of about the same level in the 4th time. This means that it is possible to reduce the P-floss that has conventionally been treated as waste, and to increase the V-floss that can be used as an industrial product.

以上のようにして、Vフロス回収槽13に回収されたVフロスの強熱減量は50%以上であり、この値は原料とするフライアッシュの強熱減量に関わらずほぼ一定であることが実験により確かめられた。この強熱減量からVフロスの発熱量を推定すると、19.7MJ/kgとなる。このようなVフロスは、補助燃料、鉛筆の芯、リサイクル燃料等として利用可能である。 As described above, the ignition loss of V froth collected in the V froth recovery tank 13 is 50% or more, and this value is an experiment that is almost constant regardless of the ignition loss of fly ash as a raw material. It was confirmed by. When the calorific value of V floss is estimated from this ignition loss, it is 19.7 MJ / kg. Such V floss can be used as auxiliary fuel, pencil lead, recycled fuel, and the like.

図5は、上述のようにして得られたVフロスを原料として、図7に示す浮遊分離装置を用いて、1〜15分間浮遊選鉱することにより、強熱減量が80%以上の含有成分のCフロスを分離することができることを示す図である。 FIG. 5 shows the content of a component with a loss on ignition of 80% or more by flotation using the floss obtained as described above as a raw material for 1 to 15 minutes using the floating separation apparatus shown in FIG. It is a figure which shows that C floss can be isolate | separated.

図7は、Vフロスを浮遊選鉱し、強熱減量が80%以上の含有成分のCフロスを回収するための浮遊分離装置である。 FIG. 7 shows a floating separation device for flotation of V-floss and recovering C-floss containing a component with an ignition loss of 80% or more.

図7に示す浮遊分離装置は、円筒状の処理槽10Aを有し、この処理槽10A内の上部に円錐台形状のフロス回収トレイ20Aが設けられている。フロス回収トレイ20Aの上端にはフロス溢流口20aが設けられている。 The floating separation apparatus shown in FIG. 7 includes a cylindrical processing tank 10A, and a frusto-collecting tray 20A having a truncated cone shape is provided in an upper part of the processing tank 10A. A floss overflow port 20a is provided at the upper end of the floss collection tray 20A.

フロス溢流口20aの上部にはスラリー投入流路30およびパイン油投入流路40が連接され、フロス回収トレイ20A下端付近にはフロス回収流路50が接続されている。処理槽10Aの上部と下部の間に循環流路60が接続されている。循環流路60の上端部は、処理槽10Aの上部(フロス回収トレイ20Aの下方)であって、処理槽10A内の被処理液面より下部に位置し、循環流路60の下端部は処理槽10Aの下部に位置している。循環流路60の途中にはポンプ70およびマイクロバブル発生装置80が設けられている。 A slurry charging channel 30 and a pine oil charging channel 40 are connected to the upper part of the floss overflow port 20a, and a floss recovery channel 50 is connected near the lower end of the floss recovery tray 20A. A circulation channel 60 is connected between the upper and lower portions of the treatment tank 10A. The upper end of the circulation channel 60 is the upper part of the treatment tank 10A (below the froth collection tray 20A) and is located below the liquid surface to be treated in the treatment tank 10A. It is located in the lower part of the tank 10A. A pump 70 and a microbubble generator 80 are provided in the middle of the circulation channel 60.

フロス回収流路50に方向切換弁100が設けられ、この方向切換弁100からPフロス回収槽110へ通ずるPフロス回収流路120、およびCフロス回収槽130に通ずるCフロス回収流路140が分岐されている。Pフロス回収槽110から攪拌槽150にPフロス還流流路160が接続され、Pフロス還流流路160中にポンプ170が設けられている。スラリー投入流路30は攪拌槽150の下端部に接続され、その途中にポンプ180が設けられている。 A direction switching valve 100 is provided in the floss recovery flow path 50, and a P froth recovery flow path 120 that leads from the direction change valve 100 to the P froth recovery tank 110 and a C froth recovery flow path 140 that leads to the C floss recovery tank 130 branch off. Has been. A P froth return flow path 160 is connected from the P froth recovery tank 110 to the stirring tank 150, and a pump 170 is provided in the P floss return flow path 160. The slurry charging channel 30 is connected to the lower end of the stirring tank 150, and a pump 180 is provided in the middle thereof.

攪拌槽150には、図1に示す浮遊分離装置により得られたVフロスFV及び水、捕集剤(たとえばケロシン)を上部から投入し、攪拌子190を回転軸210を介して回転させることによりスラリー化した被処理液を得て、これをポンプ180によりスラリー投入流路30を介してフロス溢流口20aから処理槽10Aに投入する。 V stir FV obtained by the floating separation apparatus shown in FIG. 1, water, and a collecting agent (for example, kerosene) are introduced into the stirring tank 150 from above, and the stirrer 190 is rotated through the rotating shaft 210. A slurry-treated liquid is obtained, and this is introduced into the treatment tank 10 </ b> A from the floss overflow port 20 a through the slurry introduction channel 30 by the pump 180.

被処理液は処理槽10Aに落下して収容され、収容された被処理液は循環流路60を介して強制的に循環され、処理槽10Aの接線方向にマイクロバブルが発生するように設置されたマイクロバブル発生装置80により処理槽10A内で旋回流となって上昇し、それに伴って気泡に付着したフロスFがフロス溢流口20aからオーバーフローし、フロス回収トレイ20Aに沿って落下する。 The liquid to be treated is dropped and accommodated in the treatment tank 10A, and the accommodated liquid to be treated is forcibly circulated through the circulation channel 60 so that microbubbles are generated in the tangential direction of the treatment tank 10A. The microbubble generator 80 rises as a swirling flow in the treatment tank 10A, and the floss F adhering to the bubbles overflows from the floss overflow port 20a and falls along the floss collection tray 20A.

処理槽10Aの下端部にはテール灰回収流路360が設けられており、テール灰回収流路360からテール灰Tがテール灰回収槽370に落下して回収される。 A tail ash collection channel 360 is provided at the lower end of the treatment tank 10A, and the tail ash T falls from the tail ash collection channel 360 to the tail ash collection tank 370 and is collected.

オーバーフローしたフロスFはフロス判別手段220により測定されており、その測定データは
を方向切換弁100に送信してこれを制御するようになっている。
The overflow Floss F is measured by the floss discrimination means 220, and the measurement data is transmitted to the direction switching valve 100 to control it.

落下したフロスFは、フロス回収流路50から回収されて方向切換弁100に送られる。フロス判別手段220は、方向切換弁100はフロス判別手段220からの測定データにより制御され、Pフロス回収流路120又はCフロス回収流路140のいずれかに振り分けられ、PフロスFPはPフロス回収槽110に、CフロスFCはCフロス回収槽130にそれぞれ回収される。ここに、Cフロスとは、フロスF中の未燃カーボンが高含有率(未燃カーボンが80%以上)の成分であるものと定義する。 The fallen Floss F is recovered from the Floss recovery flow path 50 and sent to the direction switching valve 100. The floss discriminating means 220 is controlled by the measurement data from the floss discriminating means 220 and the direction switching valve 100 is distributed to either the P floss recovery flow path 120 or the C floss recovery flow path 140, and the P floss FP is the P floss recovery flow path. The C floss FC is recovered in the tank 110 and the C floss recovery tank 130, respectively. Here, C froth is defined as a component having a high content of unburned carbon in the floss F (80% or more of unburned carbon).

フロス判別手段220の構成は、図2(a)〜(d)で示したものと同様である。なお、強熱減量80%以上のCフロスを得る場合には、基準とするものにより以下のとおり判別出来る。光源及びカメラによる測定機器は、Vフロスを判別する際の構成と同じである。なお、基準は灰の種類や光源の輝度、カメラの位置や性能及び色標本の濃度により異なる。 The configuration of the floss discrimination means 220 is the same as that shown in FIGS. In addition, when obtaining C floss of ignition loss 80% or more, it can discriminate | determine as follows by what becomes a reference | standard. The measuring device using the light source and the camera has the same configuration as that used for determining the V floss. The standard differs depending on the type of ash, the brightness of the light source, the position and performance of the camera, and the density of the color sample.

時間を基準に判断する場合には、15分を境にして強熱減量が80%未満に低下する。
輝度を基準に判断する場合には、輝度の常用対数Log10(Cd/m2)がほぼ2.07を境にして強熱減量が80%未満に低下する。
色強度を基準に判断する場合には、色の強度の比はそれぞれ、レッドRの場合は−0.14、グリーンGの場合は−0.1、ブルーBの場合は−0.13を境にして強熱減量が80%未満に低下する。ここで、色強度がマイナスとなっているのは、使用した黒色標本よりもフロスの色が黒い事を意味する。すなわち、色強度は相対値であり、標本の色の濃度によって色強度比は異なるものになることに留意が必要である。
When judging on the basis of time, the ignition loss is reduced to less than 80% after 15 minutes.
When the determination is made based on the luminance, the loss on ignition decreases to less than 80% when the common logarithm Log10 (Cd / m2) of the luminance is approximately 2.07 as a boundary.
When judging based on the color intensity, the ratio of the color intensities is -0.14 for red R, -0.1 for green G, and -0.13 for blue B, respectively. Thus, the ignition loss is reduced to less than 80%. Here, the negative color intensity means that the color of the floss is blacker than the black specimen used. That is, it should be noted that the color intensity is a relative value, and the color intensity ratio varies depending on the color density of the sample.

以上のように、図7に示す浮遊分離装置では、Vフロスから未燃カーボンが80%以上の高含有率のCフロスを得ることができる。 As described above, in the floating separation apparatus shown in FIG. 7, it is possible to obtain C froth having a high content rate of 80% or more of unburned carbon from V froth.

以上のように、本発明の方法及び装置によれば、従来、廃棄物として処理されていたフロスに替わって、未燃カーボンが高含有率のVフロス、さらにはより高含有率のCフロスとして得ることが可能であり、廃棄物をほとんどなくすることができ、テール灰の回収量も増加するという利点がある。 As described above, according to the method and apparatus of the present invention, instead of the floss that has been treated as waste in the past, unburned carbon has a high content of V-floss, and even higher content of C-floss. There is an advantage that it can be obtained, waste can be almost eliminated, and the amount of recovered tail ash is also increased.

1 …処理槽
2 …フロス回収トレイ
2a…フロス溢流口
8…マイクロバブル発生装置
10 …方向切換弁
11…Pフロス回収槽
13…Vフロス回収槽
16…Pフロス還流流路
15…攪拌槽
20…被処理液
22…フロス判別手段
23…タイマ
27…輝度計
30、31…電磁弁
32…カメラ
110…Pフロス回収槽
150…撹拌槽
130…Cフロス回収槽
300…Vフロス回収槽
F…フロス
T…テール灰
FP…Pフロス
FC…Cフロス
FV…Vフロス
DESCRIPTION OF SYMBOLS 1 ... Processing tank 2 ... Floss collection tray 2a ... Floss overflow port 8 ... Micro bubble generator 10 ... Direction switching valve 11 ... P froth collection tank 13 ... V floss collection tank 16 ... P floss return flow path 15 ... Stirring tank 20 ... Liquid to be treated 22 ... Floss discriminating means 23 ... Timer 27 ... Luminance meter 30, 31 ... Solenoid valve 32 ... Camera 110 ... P froth recovery tank 150 ... Stirring tank 130 ... C floss recovery tank 300 ... V floss recovery tank F ... Floss T ... tail ash FP ... P floss FC ... C floss FV ... V floss

Claims (10)

未燃カーボンを含有する石炭灰を水に分散させてスラリー化した被処理液を浮遊選鉱して前記未燃カーボンとテール灰を分離する分離工程と、
前記浮遊選鉱により得られたフロスを判別するフロス判別工程と、
前記フロス判別工程における判別結果に基づいて、前記フロスを未燃カーボンが高含有率のVフロスと、未燃カーボンが低含有率のPフロスとに判別して回収する判別回収工程と、
回収された前記Pフロスを前記被処理液に再投入し、再度浮遊選鉱を行う工程と、を備えたことを特徴とする未燃カーボン回収方法。
A separation step of separating the unburned carbon and the tail ash by flotation of the liquid to be treated in which coal ash containing unburned carbon is dispersed in water and slurried;
A floss discrimination step for discriminating the floss obtained by the flotation;
A discriminating and recovering step for discriminating and recovering the floss from V floss having a high content of unburned carbon and P floss having a low content of unburned carbon based on the discrimination result in the floss discrimination step;
A method of recovering unburnt carbon, comprising: re-introducing the recovered P-floss into the liquid to be treated and performing flotation again.
回収された前記Vフロスを被処理液として前記浮遊選鉱装置とは異なる第二の浮遊選鉱装置を使用して浮遊選鉱を行い、未燃カーボンが80%以上の高含有率のCフロスとして回収する工程と、を備えたことを特徴とする請求項1に記載の未燃カーボン回収方法。   Using the recovered V floss as a liquid to be treated, a second flotation apparatus different from the flotation apparatus is used to perform flotation, and unburned carbon is recovered as C froth having a high content of 80% or more. And an unburned carbon recovery method according to claim 1, further comprising: a step. 未燃カーボンを含有するフライアッシュと水とを撹拌手段でスラリー化した被処理液を投入する処理槽と、前記処理槽で前記被処理液に気泡を注入して過流を生じさせ、前記処理槽の上部に設けられたフロス溢流口よりフロスを溢流させるようにし、前記処理槽下部に設けられた回収流路によりテール灰を回収するようにした浮遊分離装置において、
少なくとも前記フロスの溢流開始からの時間、測光値及び色濃度を含むデータに基づいてフロスを判別するフロス判別手段と、
前記フロス判別手段により含有率が高いVフロスと、含有率が低いPフロスとに判別して回収する判別回収手段と、
回収された前記Pフロスの全部または一部を前記処理槽へ還流する還流手段と、を備えることを特徴とする浮遊分離装置。
A treatment tank into which a liquid to be treated which is a slurry of unburned carbon containing fly ash and water is stirred by a stirring means, and bubbles are injected into the liquid to be treated in the treatment tank to cause overflow, and the treatment In the floating separation device that causes the froth to overflow from the froth overflow port provided in the upper part of the tank, and collects the tail ash by the recovery flow path provided in the lower part of the processing tank,
Floss discriminating means for discriminating floss based on data including at least a time from the start of overflow of the floss, a photometric value, and a color density;
A discriminating and collecting means for discriminating and collecting V-floss having a high content rate and P-floss having a low content rate by the floss discriminating means;
And a reflux means for refluxing all or part of the recovered P-floss to the treatment tank.
前記フロス判別手段は、前記フロスの溢流開始からの時間を計測し、予め設定した時間未満であれば前記Vフロスであり、予め設定した時間以上であれば前記Pフロスと判定するものであることを特徴とする請求項3記載の浮遊分離装置。 The floss discriminating means measures the time from the start of overflow of the floss, and determines that it is the V floss if it is less than a preset time, and the P floss if it is not less than a preset time. The floating separation device according to claim 3. 前記フロス判別手段は、前記フロスに光を照射して測光し、計測結果に基づいて前記Vフロスか前記Pフロスかを判定するものであることを特徴とする請求項3記載の浮遊分離装置。 4. The floating separation device according to claim 3, wherein the floss discrimination means measures light by irradiating the floss with light and determines whether the V floss or the P floss is based on a measurement result. 前記フロス判別手段は、前記フロスに光を照射して色の強度を計測し、その色の強度の値により前記Vフロスか前記Pフロスかを判定するものであることを特徴とする請求項3記載の浮遊分離装置。   4. The floss determination means irradiates light with the floss, measures the intensity of the color, and determines whether it is the V floss or the P floss based on the intensity value of the color. The floating separator described. 前記判別回収手段は、前記フロス判別手段による制御に基づいてVフロス回収流路又はPフロス回収流路にフロスが流れるように動作する方向切換弁又は電磁弁と、前記VフロスとPフロスを各々回収するVフロス回収槽及びPフロス回収槽とを備えていることを特徴とする請求項4乃至6のいずれかに記載の浮遊分離装置。   The discriminating and collecting means includes a direction switching valve or an electromagnetic valve that operates so that the floss flows through the V floss collecting flow path or the P floss collecting flow path based on the control by the floss discriminating means, and the V floss and P floss respectively. The floating separation apparatus according to any one of claims 4 to 6, further comprising a V froth collection tank and a P froth collection tank to be collected. 請求項1又は2に記載の未燃カーボン回収方法、又は請求項3ないし7のいずれかに記載の浮遊分離装置により回収されたVフロス。 A V-floss recovered by the unburned carbon recovery method according to claim 1 or 2 or the floating separation device according to any one of claims 3 to 7. 請求項1又は2に記載の未燃カーボン回収方法、又は請求項3ないし7のいずれかに記載の浮遊分離装置により回収されたテール灰。 Tail ash recovered by the unburned carbon recovery method according to claim 1 or 2, or the floating separation device according to any of claims 3 to 7. 請求項2に記載の未燃カーボン回収方法によって回収されたCフロス。 C floss recovered by the unburned carbon recovery method according to claim 2.
JP2014174652A 2014-08-28 2014-08-28 Unburned carbon recovery method, floating separation device, tail ash manufacturing method and floss manufacturing method Active JP6411135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174652A JP6411135B2 (en) 2014-08-28 2014-08-28 Unburned carbon recovery method, floating separation device, tail ash manufacturing method and floss manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174652A JP6411135B2 (en) 2014-08-28 2014-08-28 Unburned carbon recovery method, floating separation device, tail ash manufacturing method and floss manufacturing method

Publications (2)

Publication Number Publication Date
JP2016049475A true JP2016049475A (en) 2016-04-11
JP6411135B2 JP6411135B2 (en) 2018-10-24

Family

ID=55657428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174652A Active JP6411135B2 (en) 2014-08-28 2014-08-28 Unburned carbon recovery method, floating separation device, tail ash manufacturing method and floss manufacturing method

Country Status (1)

Country Link
JP (1) JP6411135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167243A (en) * 2017-03-30 2018-11-01 株式会社藤井基礎設計事務所 Separation device, manufacturing method of coal ash, and washing system of coal ash
CN110475757A (en) * 2017-03-31 2019-11-19 三菱综合材料株式会社 The manufacturing method of method of modifying containing unburned carbon contained coal ash, the reforming system containing unburned carbon contained coal ash and concrete admixture flyash
JP2021152708A (en) * 2020-03-24 2021-09-30 住友金属鉱山株式会社 Froth color measurement device and froth color measurement method, and flotation ore dressing apparatus and flotation ore dressing method using them
CN115888992A (en) * 2023-02-07 2023-04-04 浙江艾领创矿业科技有限公司 Production process and equipment of ultra-pure fine iron powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258155A (en) * 1998-03-16 1999-09-24 Sumitomo Osaka Cement Co Ltd Method for measuring quantity of unburnt carbon of fly ash and apparatus therefor
WO2008078389A1 (en) * 2006-12-26 2008-07-03 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for removing unburned carbon in fly ash
JP2009240933A (en) * 2008-03-31 2009-10-22 Taiheiyo Cement Corp Pretreatment device and pretreatment method in wet decarbonization of fly ash
JP2011057465A (en) * 2009-09-07 2011-03-24 Taiheiyo Cement Corp Quick lime production system and method of producing the same
JP4802305B2 (en) * 2009-07-17 2011-10-26 独立行政法人科学技術振興機構 Floating separation apparatus and method, and manufacturing method of product using the same
JP2013193078A (en) * 2012-03-23 2013-09-30 Taiheiyo Cement Corp Method and device of treating fly ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258155A (en) * 1998-03-16 1999-09-24 Sumitomo Osaka Cement Co Ltd Method for measuring quantity of unburnt carbon of fly ash and apparatus therefor
WO2008078389A1 (en) * 2006-12-26 2008-07-03 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for removing unburned carbon in fly ash
JP2009240933A (en) * 2008-03-31 2009-10-22 Taiheiyo Cement Corp Pretreatment device and pretreatment method in wet decarbonization of fly ash
JP4802305B2 (en) * 2009-07-17 2011-10-26 独立行政法人科学技術振興機構 Floating separation apparatus and method, and manufacturing method of product using the same
JP2011057465A (en) * 2009-09-07 2011-03-24 Taiheiyo Cement Corp Quick lime production system and method of producing the same
JP2013193078A (en) * 2012-03-23 2013-09-30 Taiheiyo Cement Corp Method and device of treating fly ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167243A (en) * 2017-03-30 2018-11-01 株式会社藤井基礎設計事務所 Separation device, manufacturing method of coal ash, and washing system of coal ash
CN110475757A (en) * 2017-03-31 2019-11-19 三菱综合材料株式会社 The manufacturing method of method of modifying containing unburned carbon contained coal ash, the reforming system containing unburned carbon contained coal ash and concrete admixture flyash
JP2021152708A (en) * 2020-03-24 2021-09-30 住友金属鉱山株式会社 Froth color measurement device and froth color measurement method, and flotation ore dressing apparatus and flotation ore dressing method using them
CN115888992A (en) * 2023-02-07 2023-04-04 浙江艾领创矿业科技有限公司 Production process and equipment of ultra-pure fine iron powder
CN115888992B (en) * 2023-02-07 2023-06-02 浙江艾领创矿业科技有限公司 Production process and equipment of ultra-pure iron refined powder

Also Published As

Publication number Publication date
JP6411135B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6411135B2 (en) Unburned carbon recovery method, floating separation device, tail ash manufacturing method and floss manufacturing method
CN1525240A (en) Original size detecting apparatus, original size detecting method, and program for original size detection
US7835632B2 (en) Apparatus and method for photographing marine organism specimen
CN110201800A (en) A kind of waste oil is used for the device and technique of coal sorting
AU2015271029B2 (en) Fine particle coal, and systems, apparatuses, and methods for collecting and using the same
TWI689718B (en) Resin analysis method and resin treatment method
US10671097B2 (en) Image processing for improving coagulation and flocculation
US11174591B2 (en) Green liquor clarification using sedimentation tank during white liquor preparation
US4084796A (en) Liquid mixing device
JP6726696B2 (en) Diluted sludge imaging system, flocculant addition amount control system, sludge concentration system, diluted sludge imaging method
US20140076787A1 (en) Suspended Marine Platform
KR102259123B1 (en) Vision inspection apparatus and method for controlling thereof
JP2005193204A (en) Water treatment system
JP2022159606A (en) Flocculation separation processing system, flocculation separation processing method, flocculation state detection device and flocculation state detection method
JP2019162601A (en) Flocculant addition amount control device, sludge concentration system, and flocculant addition amount control method
JP2009240934A (en) Method of managing chemical in wet decarbonization of fly ash
JPH09229867A (en) Method and apparatus for inspecting pulp liquor
Fukuoka et al. Novel analysis method for pulp furnish using tube flow fractionator (Part 1)
CN108128926B (en) Industrial wastewater rapid treatment device based on industrial wastewater recycling
KR20240023046A (en) How to control flocculant addition to sludge
JPS57204068A (en) Exposure controller
ATE100734T1 (en) METHOD AND DEVICE FOR WET SEPARATION OF HETEROGENOUS MIXTURES OF SOLIDS OF DIFFERENT DENSITY.
Liukkonen et al. Towards Online Characterization of Oxygen Delignification in Kraft Pulping
JPH0720522B2 (en) Flocculant injection controller
JP2022119488A (en) Pressure floating separation apparatus and method of operating pressure floating separation apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20161222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150