JP2016049262A - Lighting imaging device - Google Patents

Lighting imaging device Download PDF

Info

Publication number
JP2016049262A
JP2016049262A JP2014176157A JP2014176157A JP2016049262A JP 2016049262 A JP2016049262 A JP 2016049262A JP 2014176157 A JP2014176157 A JP 2014176157A JP 2014176157 A JP2014176157 A JP 2014176157A JP 2016049262 A JP2016049262 A JP 2016049262A
Authority
JP
Japan
Prior art keywords
light
imaging member
image
optical axis
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014176157A
Other languages
Japanese (ja)
Inventor
慶太郎 内田
Keitaro Uchida
慶太郎 内田
勇一 安田
Yuichi Yasuda
勇一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2014176157A priority Critical patent/JP2016049262A/en
Publication of JP2016049262A publication Critical patent/JP2016049262A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting imaging device which suppresses attenuation of reflected light from the eye by keeping efficiency for light utilization high and which comprises an irradiation part making an optical axis coaxial with an optical axis of an imaging member.SOLUTION: A lighting imaging device for detecting an object person's sight line on the basis of an image acquired by an imaging member includes an irradiation part that applies detection light to the object person's eye, and the imaging member that acquires the image including the object person's eye. The irradiation part is arranged in such a manner that an optical axis overlaps an optical axis of the imaging member, in an area that is positioned on the optical axis of the imaging member and in which the image is not formed on the imaging member.SELECTED DRAWING: Figure 1

Description

本発明は、対象者の視線を検出するための照明撮像装置に関する。   The present invention relates to an illumination imaging apparatus for detecting a line of sight of a subject.

人間の目には、網膜による光の反射に再帰性の特性があり、瞳孔から入射した光はその光源の方向に対して強く反射する。このため、視線検出装置においては、人の顔を撮影する際に、撮影カメラの光軸と同軸に光源を配置させることによって、瞳孔が明るい状態の画像を取得し、この画像から瞳孔画像を抽出して視線を検出することが提案されている。   The human eye has a recursive characteristic in the reflection of light by the retina, and light incident from the pupil is strongly reflected in the direction of the light source. Therefore, in the gaze detection device, when photographing a human face, an image with a bright pupil is obtained by arranging a light source coaxially with the optical axis of the photographing camera, and a pupil image is extracted from this image. It has been proposed to detect the line of sight.

このように画像を撮影するための装置としては、輪帯状に光源を設け、この光源全体の輝度分布の重心位置(仮想光軸)がカメラの光軸と同一となるように配置した輪帯照明方式や、入射光をカメラの光軸上に反射させるハーフミラーを配置したハーフミラー方式(例えば特許文献1)が知られている。   As an apparatus for taking an image in this way, an annular light source is provided in a ring shape, and the center of gravity (virtual optical axis) of the luminance distribution of the entire light source is arranged to be the same as the optical axis of the camera. There are known a half mirror system (for example, Patent Document 1) in which a half mirror that reflects incident light on the optical axis of a camera is disposed.

ここで、目の特性として、瞳孔画像を得るためにはカメラで撮影される網膜の領域に照明光が到達している必要があるが、瞳孔が収縮しているために撮影される網膜の領域が小さい場合や、カメラとほぼ等距離の範囲に目が焦点を合わせている場合には瞳孔画像が得られにくいことが分かっている。   Here, as a characteristic of the eye, in order to obtain a pupil image, the illumination light needs to reach the region of the retina photographed by the camera, but the region of the retina photographed because the pupil is contracted It has been found that a pupil image is difficult to obtain when the eye is small or when the eye is in focus at a distance approximately equidistant from the camera.

特許第3848953号公報Japanese Patent No. 3848953

しかしながら、上記輪帯方式は構造が単純ではあるが、光源の仮想光軸とカメラの光軸を厳密に同軸に合わせるのが困難であり、このような配置関係において、瞳孔が収縮している場合や目が撮像カメラの近傍に焦点を合わせている場合は一定以上の輝度の瞳孔画像を得ることは難しい。   However, although the ring system is simple in structure, it is difficult to align the virtual optical axis of the light source and the optical axis of the camera exactly on the same axis, and the pupil is contracted in such an arrangement relationship. When the eyes are focused in the vicinity of the imaging camera, it is difficult to obtain a pupil image with a certain brightness or higher.

また、上記ハーフミラー方式では、光源からの光がハーフミラーで反射するとき、及び、目からの入射光がハーフミラーを透過するときに、それぞれ光量が1/2以下に減衰するため、光源の光利用効率が低くなり、さらに、光源からの出射光量に対してカメラへの入射光量が小さいことから、SN比が低下しやすくなることから視線検出の精度が低下する。   Further, in the above half mirror method, when the light from the light source is reflected by the half mirror and when the incident light from the eyes is transmitted through the half mirror, the light amount is attenuated to ½ or less. The light utilization efficiency is lowered, and the incident light amount to the camera is small with respect to the emitted light amount from the light source, so that the SN ratio is likely to be lowered, and the accuracy of line-of-sight detection is lowered.

そこで本発明は、光利用効率を高く維持し、目からの反射光の減衰を抑え、かつ、光軸が撮像部材の光軸と同軸となる照射部を備えた照明撮像装置を提供することを目的とする。   Therefore, the present invention provides an illumination imaging apparatus having an irradiation unit that maintains high light utilization efficiency, suppresses attenuation of reflected light from the eyes, and has an optical axis that is coaxial with the optical axis of the imaging member. Objective.

上記課題を解決するために、対象者の目に検知光を与える照射部と、前記目を含む画像を取得する撮像部材とを備え、前記撮像部材で取得した画像に基づいて前記対象者の視線を検出する照明撮像装置において、
前記照射部は、前記撮像部材の光軸上であって前記撮像部材に結像しない領域に配置されていることを特徴としている。
In order to solve the above-mentioned problem, an irradiating unit that provides detection light to the eye of the subject and an imaging member that acquires an image including the eye, and the line of sight of the subject based on the image acquired by the imaging member In the illumination imaging device for detecting
The irradiating unit is arranged in a region on the optical axis of the imaging member and not imaged on the imaging member.

この構成により、対象者の目の瞳孔が収縮している場合や、対象者の目が撮像部材とほぼ等距離の範囲に焦点を合わせている場合であっても、瞳孔画像を確実に取得することができ、これにより、撮像時の条件によらずに対象者の視線方向を精度良く検出することが可能となる。   With this configuration, even when the pupil of the subject's eyes is contracting or when the subject's eyes are focused on a range approximately equidistant from the imaging member, the pupil image is reliably acquired. This makes it possible to accurately detect the direction of the subject's line of sight regardless of the conditions during imaging.

本発明の照明撮像装置は、前記照射部が、反射拡散体であり、前記反射拡散体に光を与える光源が設けられ、この光が前記反射拡散体で反射されて前記検知光となるものとして構成できる。   In the illumination imaging apparatus of the present invention, the irradiation unit is a reflection diffuser, a light source that provides light to the reflection diffuser is provided, and this light is reflected by the reflection diffuser to become the detection light. Can be configured.

これにより、反射拡散体から対象者側へ至る過程での検知光の減衰や、対象者側から撮像部材に至る過程での反射光の減衰を抑えることができるため、光源から出射した光の利用効率を高く維持することができる。したがって、撮像部材への入射光量を十分確保できることから、SN比の低下を防ぐことができ、瞳孔画像の抽出や視線方向の検出を高精度で行うことができる。
または、前記照射部は、前記検知光を出射する光源であってもよい。
This makes it possible to suppress the attenuation of the detection light in the process from the reflection diffuser to the subject side and the reflection light in the process from the subject side to the imaging member. High efficiency can be maintained. Therefore, a sufficient amount of light incident on the imaging member can be secured, so that the SN ratio can be prevented from being lowered, and pupil image extraction and gaze direction detection can be performed with high accuracy.
Alternatively, the irradiation unit may be a light source that emits the detection light.

照射部として光源を用いることにより、光源と反射拡散体を組み合わせる場合に比べて、構成部材を減らすことができる。さらに、光源として、収束性の高い光を出射するレーザー光源を用いると、拡散光に比べて対象者の目に入射する割合が高くなるため光の利用効率を高めることができる。   By using a light source as the irradiating unit, the number of constituent members can be reduced as compared with a case where a light source and a reflective diffuser are combined. Furthermore, when a laser light source that emits highly convergent light is used as the light source, the rate of incidence on the subject's eyes is higher than that of diffused light, so that the light utilization efficiency can be increased.

本発明の照明撮像装置は、前記撮像部材に撮像光を集光するレンズが設けられ、前記照射部は、前記レンズの表面に固定されている。   In the illumination imaging apparatus of the present invention, a lens for collecting imaging light is provided on the imaging member, and the irradiation unit is fixed to the surface of the lens.

または、前記撮像部材の前方に透光板が設けられ、前記照射部は、前記透明板の表面に固定されている。   Alternatively, a translucent plate is provided in front of the imaging member, and the irradiation unit is fixed to the surface of the transparent plate.

あるいは、前記撮像部材の前方に絞りが設けられ、前記照射部が、前記絞りの前方に設けられている。   Alternatively, a diaphragm is provided in front of the imaging member, and the irradiation unit is provided in front of the diaphragm.

本発明の照明撮像装置は、前記撮像部材で取得した画像から、明瞳孔画像を抽出する明瞳孔画像抽出部を備えるものとして構成できる。   The illumination imaging apparatus of the present invention can be configured to include a bright pupil image extraction unit that extracts a bright pupil image from an image acquired by the imaging member.

本発明によると、光利用効率を高く維持し、目からの反射光の減衰を抑え、かつ、光軸が撮像部材の光軸と同軸となる照射部を備えた照明撮像装置を提供することができる。   According to the present invention, it is possible to provide an illumination imaging apparatus including an irradiation unit that maintains high light utilization efficiency, suppresses attenuation of reflected light from the eyes, and has an optical axis that is coaxial with the optical axis of the imaging member. it can.

本発明の第1の実施形態に係る照明撮像装置の概略構成を示す図である。It is a figure which shows schematic structure of the illumination imaging device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る照明撮像装置の概略構成を示す図である。It is a figure which shows schematic structure of the illumination imaging device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る照明撮像装置の概略構成を示す図である。It is a figure which shows schematic structure of the illumination imaging device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る照明撮像装置の概略構成を示す図である。It is a figure which shows schematic structure of the illumination imaging device which concerns on the 4th Embodiment of this invention. 本発明の実施形態に係る照明撮像装置を含む視線検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the gaze detection apparatus containing the illumination imaging device which concerns on embodiment of this invention. 人の目の視線の向きと照明撮像装置との関係を示す平面図である。It is a top view which shows the relationship between the direction of the eyes | visual_axis of a human eye, and an illumination imaging device. 瞳孔中心と角膜反射光の中心とから視線の向きを算出するための説明図である。It is explanatory drawing for calculating the direction of eyes | visual_axis from the pupil center and the center of corneal reflected light.

以下、本発明の実施形態に係る照明撮像装置について図面を参照しつつ詳しく説明する
。以下、対象者の視線を検出するための視線検出装置に用いる照明撮像装置について説明する。
Hereinafter, an illumination imaging apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Hereinafter, the illumination imaging device used for the gaze detection device for detecting the gaze of the subject will be described.

図1は、本発明の第1の本実施形態に係る照明撮像装置の概略構成を示す図であり、図5は、本実施形態に係る照明撮像装置を含む視線検出装置の構成を示すブロック図である。   FIG. 1 is a diagram showing a schematic configuration of an illumination imaging apparatus according to the first embodiment of the present invention, and FIG. 5 is a block diagram showing a configuration of a line-of-sight detection apparatus including the illumination imaging apparatus according to the embodiment. It is.

図1に示すように、本実施形態に係る照明撮像装置10は、光源11と、撮像部材12と、照射部としての反射拡散体13と、光学部材としてのレンズ14(撮像光学系)とを備える。   As shown in FIG. 1, the illumination imaging apparatus 10 according to the present embodiment includes a light source 11, an imaging member 12, a reflection diffuser 13 as an irradiation unit, and a lens 14 (imaging optical system) as an optical member. Prepare.

また、図5に示すように、本実施形態に係る視線検出装置は、前記照明撮像装置10と、演算制御部CCとを備え、自動車の車室内の、例えばインストルメントパネルやウインドシールドの上部などに、対象者としての運転者の顔に向けるように設置される。   Further, as shown in FIG. 5, the line-of-sight detection device according to the present embodiment includes the illumination imaging device 10 and a calculation control unit CC, and is, for example, an upper part of an instrument panel or a windshield in a vehicle cabin. It is installed so as to face the driver's face as the subject.

光源11は、例えば、LED(発光ダイオード)やレーザーを用いる。光源11は、レンズ14に入射する光束の光路の範囲外に配置され、反射拡散体13に向けて検知光を出射する。光源11がLEDの場合には、光を反射拡散体13に集光させる集光レンズが設けられる。   For example, an LED (light emitting diode) or a laser is used as the light source 11. The light source 11 is disposed outside the optical path of the light beam incident on the lens 14 and emits detection light toward the reflection diffuser 13. When the light source 11 is an LED, a condensing lens for condensing light on the reflection diffuser 13 is provided.

光源11は、2つの波長の光を発する2つの発光源(発光チップ)を有し、検知光として、波長850nm(第1波長)の赤外光と波長940nm(第2波長)の赤外光を選択的に出射することができる。光源11が出射する検知光の波長の選択や、光源11の点灯・非点灯は光源制御部21によって制御される。ここで、850nmまたはこれに近似した波長の赤外光(近赤外光)は、眼球内の水分で吸収されにくく、眼球の奥に位置する網膜まで到達して反射される光の量が多くなる。一方、940nmの赤外光は、人の目の眼球内の水分で吸収されやすい。そのため、眼球の奥に位置する網膜に到達して反射される光量が少なくなる。なお、検知光としては、850nmと940nm以外の波長の光を用いることも可能である。   The light source 11 includes two light emitting sources (light emitting chips) that emit light having two wavelengths, and infrared light having a wavelength of 850 nm (first wavelength) and infrared light having a wavelength of 940 nm (second wavelength) are used as detection light. Can be selectively emitted. Selection of the wavelength of the detection light emitted from the light source 11 and lighting / non-lighting of the light source 11 are controlled by the light source controller 21. Here, infrared light (near-infrared light) having a wavelength of 850 nm or a wavelength close thereto is not easily absorbed by moisture in the eyeball, and the amount of light that reaches and is reflected by the retina located in the back of the eyeball is large. Become. On the other hand, infrared light of 940 nm is easily absorbed by moisture in the eyeball of human eyes. Therefore, the amount of light that reaches the retina located behind the eyeball and is reflected is reduced. Note that light having a wavelength other than 850 nm and 940 nm may be used as the detection light.

撮像部材12は、例えば、カメラが備える撮像素子であって、CMOS(相補型金属酸化膜半導体)やCCD(電荷結合素子)などで構成される。撮像部材12は、レンズ14を経て入射した、運転者の目を含む顔の画像を取得する。撮像素子では、二次元的に配列された複数の画素で光が検出される。   The imaging member 12 is, for example, an imaging device included in a camera, and is configured by a CMOS (complementary metal oxide semiconductor), a CCD (charge coupled device), or the like. The imaging member 12 acquires an image of a face that enters through the lens 14 and includes the eyes of the driver. In the image sensor, light is detected by a plurality of pixels arranged two-dimensionally.

レンズ14は、その光軸14Cが撮像部材12の光軸12Cに重なるように配置された両凸レンズであり、対象者からの入射光を集光して撮像部材12側へ出射する。なお、撮像光学系としては、1つのレンズ14に限定されず、複数のレンズからなる光学系によって対象者からの入射光を集光するものであってもよい。   The lens 14 is a biconvex lens arranged so that its optical axis 14C overlaps the optical axis 12C of the imaging member 12, and collects incident light from the subject and emits it to the imaging member 12 side. Note that the imaging optical system is not limited to one lens 14, and the incident light from the subject may be collected by an optical system including a plurality of lenses.

反射拡散体13は、例えば、対象者側に向けた反射拡散面を備えた、ガラスやプラスチックで構成する。反射拡散面は、例えば、表面又は内部に入射光を拡散させる形状や機能を持たせ、さらに、金属のコーティング等によって入射光を反射させる。反射拡散体13は、撮像部材12の光軸12C(レンズ14の光軸14C)上であって、対象者とレンズ14の間のうち、撮像部材12に結像しない、レンズ14近傍の領域に配置されている。図1に示す実施の形態では、反射拡散体13がレンズ14の表面に直接に固定されている。   The reflection diffuser 13 is made of, for example, glass or plastic provided with a reflection diffusion surface directed toward the subject. The reflection diffusion surface has, for example, a shape or a function for diffusing incident light on the surface or inside, and further reflects incident light by a metal coating or the like. The reflection diffuser 13 is on the optical axis 12C of the imaging member 12 (the optical axis 14C of the lens 14), and is located between the subject and the lens 14 in an area near the lens 14 that does not form an image on the imaging member 12. Has been placed. In the embodiment shown in FIG. 1, the reflection diffuser 13 is directly fixed to the surface of the lens 14.

反射拡散体13は、撮像部材12に結像しないように、レンズ14の径方向において、レンズ14の有効光束径に対して十分小さな形状を備え、光軸が撮像部材12の光軸12
Cと重なるように配置されている。すなわち、反射拡散体13と撮像部材12は、光軸が互いに同軸となっている。反射拡散体13は、光源11から入射した検知光を、撮像部材12の光軸12Cの方向を中心にして、対象者側へ反射拡散させ、これにより対象者の目に検知光を与える。
The reflection diffuser 13 has a sufficiently small shape with respect to the effective light beam diameter of the lens 14 in the radial direction of the lens 14 so as not to form an image on the imaging member 12, and the optical axis is the optical axis 12 of the imaging member 12.
It is arranged so as to overlap with C. That is, the reflection diffuser 13 and the imaging member 12 have the same optical axis. The reflection diffuser 13 reflects and diffuses the detection light incident from the light source 11 toward the subject side with the direction of the optical axis 12C of the imaging member 12 as the center, thereby providing detection light to the subject's eyes.

演算制御部CCは、コンピュータのCPUやメモリで構成されており、図5に示す各ブロックの機能は、予めインストールされたソフトウエアを実行することで演算が行われる。   The arithmetic control unit CC is composed of a CPU and a memory of a computer, and the function of each block shown in FIG. 5 is calculated by executing software installed in advance.

演算制御部CCには、光源制御部21と、画像取得部22と、瞳孔画像抽出部30と、瞳孔中心算出部33と、角膜反射光中心検出部34と、視線方向算出部35とが設けられている。   The arithmetic control unit CC includes a light source control unit 21, an image acquisition unit 22, a pupil image extraction unit 30, a pupil center calculation unit 33, a corneal reflection light center detection unit 34, and a gaze direction calculation unit 35. It has been.

撮像部材12で取得された画像は、フレームごとに画像取得部22に取得される。画像取得部22で取得された画像は、フレームごとに瞳孔画像抽出部30に読み込まれる。瞳孔画像抽出部30は、明瞳孔画像検出部31と暗瞳孔画像検出部32とを備えている。   The image acquired by the imaging member 12 is acquired by the image acquisition unit 22 for each frame. The image acquired by the image acquisition unit 22 is read into the pupil image extraction unit 30 for each frame. The pupil image extraction unit 30 includes a bright pupil image detection unit 31 and a dark pupil image detection unit 32.

図6は、対象者の目40の視線の向きと照明撮像装置10との関係を模式的に示す平面図である。図7は、瞳孔中心と角膜反射光の中心とから視線の向きを算出するための説明図である。図6(A)と図7(A)は、対象者の視線方向VLが撮像部材12の光軸12Cに沿っている場合であり、図6(B)と図7(B)は視線方向VLが撮像部材12の光軸12Cからずれている場合である。   FIG. 6 is a plan view schematically showing the relationship between the direction of the line of sight of the eye 40 of the subject and the illumination imaging apparatus 10. FIG. 7 is an explanatory diagram for calculating the direction of the line of sight from the center of the pupil and the center of the corneal reflected light. 6A and 7A show a case where the line-of-sight direction VL of the subject is along the optical axis 12C of the imaging member 12, and FIGS. 6B and 7B show the line-of-sight direction VL. This is a case where is deviated from the optical axis 12 </ b> C of the imaging member 12.

目40は前方に角膜41を有し、その後方に瞳孔42と水晶体43が位置している。そして最後部に網膜44が存在している。   The eye 40 has a cornea 41 at the front, and a pupil 42 and a crystalline lens 43 are positioned behind the cornea 41. And the retina 44 exists in the last part.

波長850nmの検知光は、網膜44に至って反射されやすいため、光源11が点灯したときに、光源11と同軸の撮像部材12で取得される画像では、網膜44で反射された赤外光が瞳孔42を通じて検出され、瞳孔42が明るく見える。この画像が明瞳孔画像として明瞳孔画像検出部31で抽出される。これに対して、波長940nmの検知光は、網膜44に至るまでに眼球内で吸収されやすいため、光源11が点灯したときに撮像部材12で取得される画像では、網膜44から赤外光がほとんど反射されず、瞳孔42が暗く見える。この画像が暗瞳孔画像として、暗瞳孔画像検出部32で抽出される。   Since the detection light having a wavelength of 850 nm is likely to be reflected by reaching the retina 44, when the light source 11 is turned on, in the image acquired by the imaging member 12 coaxial with the light source 11, the infrared light reflected by the retina 44 is in the pupil. 42 is detected and the pupil 42 appears bright. This image is extracted as a bright pupil image by the bright pupil image detection unit 31. On the other hand, since the detection light having a wavelength of 940 nm is easily absorbed in the eyeball before reaching the retina 44, infrared light from the retina 44 is transmitted from the retina 44 in the image acquired by the imaging member 12 when the light source 11 is turned on. It is hardly reflected and the pupil 42 looks dark. This image is extracted as a dark pupil image by the dark pupil image detection unit 32.

一方、波長850nmと波長940nmの検知光はいずれも、角膜41の表面で反射され、その反射光が明瞳孔画像検出部31と暗瞳孔画像検出部32の双方で検出される。特に暗瞳孔画像検出部32では、瞳孔42の画像が暗いため、角膜41の反射点45から反射された反射光が明るくスポット画像として検出される。   On the other hand, both the detection light with a wavelength of 850 nm and a wavelength of 940 nm is reflected by the surface of the cornea 41, and the reflected light is detected by both the bright pupil image detection unit 31 and the dark pupil image detection unit 32. In particular, in the dark pupil image detection unit 32, since the image of the pupil 42 is dark, the reflected light reflected from the reflection point 45 of the cornea 41 is detected as a bright spot image.

瞳孔画像抽出部30では、明瞳孔画像検出部31で検出された明瞳孔画像から暗瞳孔画像検出部32で検出された暗瞳孔画像がマイナスされて、瞳孔42の形状が明るくなった瞳孔画像信号が生成される。この瞳孔画像信号は、瞳孔中心算出部33に与えられる。瞳孔中心算出部33では、瞳孔画像信号が画像処理されて二値化され、瞳孔42の形状と面積に対応する部分のエリア画像を算出される。さらに、このエリア画像を含む楕円が抽出され、楕円の長軸と短軸との交点が瞳孔42の中心位置として算出される。   The pupil image extraction unit 30 subtracts the dark pupil image detected by the dark pupil image detection unit 32 from the bright pupil image detected by the bright pupil image detection unit 31 and the pupil image signal in which the shape of the pupil 42 is brightened. Is generated. This pupil image signal is given to the pupil center calculation unit 33. In the pupil center calculation unit 33, the pupil image signal is subjected to image processing and binarized, and an area image corresponding to the shape and area of the pupil 42 is calculated. Further, an ellipse including this area image is extracted, and the intersection of the major axis and the minor axis of the ellipse is calculated as the center position of the pupil 42.

また、暗瞳孔画像検出部32で検出された暗瞳孔画像信号は、角膜反射光中心検出部34に与えられる。暗瞳孔画像信号は、図6と図7に示す、角膜41の反射点45から反射された反射光による輝度信号が含まれている。角膜41の反射点45からの反射光はプルキニエ像を結像するものであり、図7に示すように、撮像部材12の撮像素子には、きわ
めて小さい面積のスポット画像が取得される。角膜反射光中心検出部34では、スポット画像が画像処理されて、角膜41の反射点45からの反射光の中心が求められる。
The dark pupil image signal detected by the dark pupil image detection unit 32 is given to the corneal reflection light center detection unit 34. The dark pupil image signal includes a luminance signal by reflected light reflected from the reflection point 45 of the cornea 41 shown in FIGS. 6 and 7. The reflected light from the reflection point 45 of the cornea 41 forms a Purkinje image. As shown in FIG. 7, a spot image with a very small area is acquired on the imaging element of the imaging member 12. In the corneal reflection light center detection unit 34, the spot image is subjected to image processing, and the center of the reflected light from the reflection point 45 of the cornea 41 is obtained.

瞳孔中心算出部33で算出された瞳孔中心算出値と角膜反射光中心検出部34で算出された角膜反射光中心算出値は、視線方向算出部35に与えられる。視線方向算出部35では、瞳孔中心算出値と角膜反射光中心算出値とから視線の向きが検出される。   The pupil center calculation value calculated by the pupil center calculation unit 33 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 34 are given to the gaze direction calculation unit 35. The line-of-sight direction calculation unit 35 detects the direction of the line of sight from the pupil center calculated value and the corneal reflection light center calculated value.

図6(A)に示す場合では、人の目40の視線方向VLが、撮像部材12の撮像部材12の光軸12Cと一致している。このとき、図7(A)に示すように、角膜41からの反射点45の中心が瞳孔42の中心と一致している。これに対して、図6(B)に示す場合では、人の目40の視線方向VLが、撮像部材12の光軸12Cと異なる方向へ向けられている。このとき、図7(B)に示すように、瞳孔42の中心と角膜41からの反射点45の中心とが位置ずれする。   In the case shown in FIG. 6A, the line-of-sight direction VL of the human eye 40 coincides with the optical axis 12C of the imaging member 12 of the imaging member 12. At this time, as shown in FIG. 7A, the center of the reflection point 45 from the cornea 41 coincides with the center of the pupil 42. On the other hand, in the case shown in FIG. 6B, the line-of-sight direction VL of the human eye 40 is directed in a direction different from the optical axis 12C of the imaging member 12. At this time, as shown in FIG. 7B, the center of the pupil 42 and the center of the reflection point 45 from the cornea 41 are displaced.

視線方向算出部35では、瞳孔42の中心と、角膜41からの反射点45の中心との直線距離αが算出される(図7(B))。また瞳孔42の中心を原点とするX−Y座標が設定され、瞳孔42の中心と反射点45の中心とを結ぶ線とX軸との傾き角度βが算出される。さらに、前記直線距離αと前記傾き角度βとから、視線方向VLが算出される。   The line-of-sight direction calculation unit 35 calculates a linear distance α between the center of the pupil 42 and the center of the reflection point 45 from the cornea 41 (FIG. 7B). Further, an XY coordinate having the center of the pupil 42 as an origin is set, and an inclination angle β between the line connecting the center of the pupil 42 and the center of the reflection point 45 and the X axis is calculated. Further, the line-of-sight direction VL is calculated from the linear distance α and the inclination angle β.

視線方向算出部35において、視線方向VLを精度良く算出するためには、瞳孔42の中心座標と反射点45の中心座標を高精度に検出することが必要である。   In order to calculate the gaze direction VL with high accuracy in the gaze direction calculation unit 35, it is necessary to detect the center coordinates of the pupil 42 and the center coordinates of the reflection point 45 with high accuracy.

以上のように構成されたことから、上記実施形態によれば、次の効果を奏する。
(1)光軸が撮像部材12の光軸12Cと同軸となるように反射拡散体13を配置したため、対象者の目の瞳孔が収縮している場合や、対象者の目が撮像部材12とほぼ等距離の範囲に焦点を合わせている場合であっても、瞳孔画像(明瞳孔画像、暗瞳孔画像)を確実に取得することができ、これにより、撮像時の条件によらずに対象者の視線方向を精度良く検出することが可能となる。
With the configuration described above, the following effects are achieved according to the above embodiment.
(1) Since the reflective diffuser 13 is arranged so that the optical axis is coaxial with the optical axis 12C of the imaging member 12, the pupil of the subject's eyes is contracted, or the subject's eyes are in contact with the imaging member 12. Even when focusing on a substantially equidistant range, pupil images (bright pupil images, dark pupil images) can be reliably acquired, so that the target person can be obtained regardless of the conditions at the time of imaging. It is possible to accurately detect the line-of-sight direction.

(2)光源11から出射した光は、反射拡散体13によって対象者側へ反射拡散されて検知光として与えられ、さらに、対象者の目からの光は、撮像部材12に結像しない領域に配置した反射拡散体13の影響を受けずにレンズ14によって集光されて撮像部材12上に結像する。このため、反射拡散体13から対象者側へ至る過程での検知光の減衰や、対象者側から撮像部材12に至る過程での反射光の減衰を抑えることができ、光源11から出射した光の利用効率を高く維持することができる。これにより、撮像部材12への入射光量を十分確保できるため、SN比の低下を防ぐことができ、瞳孔画像の抽出や視線方向の検出を高精度で行うことができる。 (2) The light emitted from the light source 11 is reflected and diffused toward the subject side by the reflection diffuser 13 and is provided as detection light. Further, the light from the subject's eyes is in a region where no image is formed on the imaging member 12. The light is collected by the lens 14 without being influenced by the reflection diffuser 13 disposed and forms an image on the imaging member 12. For this reason, the attenuation of the detection light in the process from the reflection diffuser 13 to the subject side and the reflection light in the process from the subject side to the imaging member 12 can be suppressed, and the light emitted from the light source 11 can be suppressed. High utilization efficiency can be maintained. As a result, a sufficient amount of light incident on the imaging member 12 can be secured, so that the SN ratio can be prevented from being lowered, and pupil image extraction and gaze direction detection can be performed with high accuracy.

以下に他の実施の形態について説明する。
(1)図2に示す第2の実施の形態では、レンズ14の前方にレンズカバーとなる透光板15が設けられており、透光板15の表面に照射部としての反射拡散体13が固定されている。透光板15はガラス板またはプラスチック板である。
Other embodiments will be described below.
(1) In the second embodiment shown in FIG. 2, a translucent plate 15 serving as a lens cover is provided in front of the lens 14, and a reflective diffuser 13 as an irradiation unit is provided on the surface of the translucent plate 15. It is fixed. The translucent plate 15 is a glass plate or a plastic plate.

(2)図3に示す第3の実施の形態では、撮像部材12とレンズ12との間に絞り17が設けられて、撮像部材12で検知する像の焦点深度が深く構成されている。この場合には、絞り17よりも前方に照射部としての反射拡散体13が配置される。例えば、レンズ14と絞り17との間に透光板16が配置され、この透光板16に反射拡散体13が配置される。 (2) In the third embodiment shown in FIG. 3, a diaphragm 17 is provided between the imaging member 12 and the lens 12 so that the depth of focus of an image detected by the imaging member 12 is deep. In this case, the reflection diffuser 13 as an irradiation unit is disposed in front of the diaphragm 17. For example, a translucent plate 16 is disposed between the lens 14 and the diaphragm 17, and the reflective diffuser 13 is disposed on the translucent plate 16.

(3)図4に示す第4の実施形態では、光源11と反射拡散体13に代えて、照射部とし
て検知光を出射する光源111がレンズ14の近傍に配置されている。図4では、光源111が透光板15の表面に固定されている。
(3) In the fourth embodiment shown in FIG. 4, instead of the light source 11 and the reflective diffuser 13, a light source 111 that emits detection light as an irradiation unit is disposed in the vicinity of the lens 14. In FIG. 4, the light source 111 is fixed to the surface of the translucent plate 15.

光源111は、例えば、LED(発光ダイオード)やレーザーを用いる。光源111は、撮像部材12の光軸12C上であって、対象者とレンズ14の間の撮像部材12に結像しない、レンズ14近傍の領域に配置されている。光源111は、レンズ14の径方向において、レンズ14の有効光束径に対して十分小さな形状を備え、光軸が撮像部材12の光軸12Cと重なるように配置されている。すなわち、光源111と撮像部材12は、光軸が互いに同軸となっている。光源111は、撮像部材12の光軸12Cの方向に検知光を出射し、対象者の目に検知光を与える。   For example, an LED (light emitting diode) or a laser is used as the light source 111. The light source 111 is disposed on the optical axis 12 </ b> C of the imaging member 12 and in a region near the lens 14 that does not form an image on the imaging member 12 between the subject and the lens 14. The light source 111 has a shape that is sufficiently small with respect to the effective light beam diameter of the lens 14 in the radial direction of the lens 14, and is disposed so that the optical axis overlaps the optical axis 12 </ b> C of the imaging member 12. That is, the light axes of the light source 111 and the imaging member 12 are coaxial with each other. The light source 111 emits detection light in the direction of the optical axis 12C of the imaging member 12 and provides detection light to the subject's eyes.

光源111は、例えば、2つの波長の光を発する2つの発光源(発光チップ)を有し、検知光として、波長850nmの赤外光と波長940nmの赤外光を選択的に出射する。光源111が出射する検知光の波長の選択や、光源111の点灯・非点灯は光源制御部21によって制御される。   The light source 111 has, for example, two light sources (light emitting chips) that emit light of two wavelengths, and selectively emits infrared light with a wavelength of 850 nm and infrared light with a wavelength of 940 nm as detection light. Selection of the wavelength of the detection light emitted from the light source 111 and lighting / non-lighting of the light source 111 are controlled by the light source controller 21.

照射部として光源111を用いることにより、光源11と反射拡散体13を用いていた前記各実施形態に比べて、構成部材を減らすことができる。さらに、光源111として、収束性の高い光を出射するレーザー光源を用いると、拡散光に比べて対象者の目に入射する割合が高くなるため光の利用効率を高めることができる。   By using the light source 111 as the irradiating unit, it is possible to reduce the number of constituent members as compared to the above embodiments in which the light source 11 and the reflective diffuser 13 are used. Furthermore, when a laser light source that emits highly convergent light is used as the light source 111, the ratio of light incident on the subject's eyes is higher than that of diffused light, so that the light utilization efficiency can be increased.

本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.

以上のように、本発明に係る照明撮像装置は、対象者の視線を検出するための視線検出装置における照明及び撮像に有用である。   As described above, the illumination imaging device according to the present invention is useful for illumination and imaging in the visual line detection device for detecting the visual line of the subject.

10 照明撮像装置
11 光源
12 撮像部材
12C 光軸
13 反射拡散体
14 レンズ
14C 光軸
15,16 透光板
17 絞り
30 瞳孔画像抽出部
31 明瞳孔画像検出部
32 暗瞳孔画像検出部
33 瞳孔中心算出部
34 角膜反射光中心検出部
35 視線方向算出部
60 目
111 光源
DESCRIPTION OF SYMBOLS 10 Illumination imaging device 11 Light source 12 Imaging member 12C Optical axis 13 Reflection diffuser 14 Lens 14C Optical axis 15, 16 Transmissive plate 17 Aperture 30 Pupil image extraction part 31 Bright pupil image detection part 32 Dark pupil image detection part 33 Pupil center calculation Unit 34 cornea reflected light center detection unit 35 line-of-sight direction calculation unit 60 eyes 111 light source

Claims (7)

対象者の目に検知光を与える照射部と、前記目を含む画像を取得する撮像部材とを備え、前記撮像部材で取得した画像に基づいて前記対象者の視線を検出する照明撮像装置において、
前記照射部は、前記撮像部材の光軸上であって前記撮像部材に結像しない領域に配置されていることを特徴とする照明撮像装置。
In an illumination imaging apparatus that includes an irradiation unit that supplies detection light to the eyes of a subject and an imaging member that acquires an image including the eyes, and that detects the line of sight of the subject based on an image acquired by the imaging member.
The illumination imaging apparatus, wherein the irradiation unit is disposed in a region on the optical axis of the imaging member and not imaged on the imaging member.
前記照射部は、反射拡散体であり、前記反射拡散体に光を与える光源が設けられ、この光が前記反射拡散体で反射されて前記検知光となる請求項1に記載の照明撮像装置。   The illumination imaging apparatus according to claim 1, wherein the irradiating unit is a reflection diffuser, a light source that provides light to the reflection diffuser is provided, and the light is reflected by the reflection diffuser to become the detection light. 前記照射部は、前記検知光を出射する光源である請求項1に記載の照明撮像装置。   The illumination imaging apparatus according to claim 1, wherein the irradiation unit is a light source that emits the detection light. 前記撮像部材に撮像光を集光するレンズが設けられ、前記照射部は、前記レンズの表面に固定されている請求項1ないし3のいずれかに記載の照明撮像装置。   The illumination imaging apparatus according to any one of claims 1 to 3, wherein a lens that collects imaging light is provided on the imaging member, and the irradiation unit is fixed to a surface of the lens. 前記撮像部材の前方に透光板が設けられ、前記照射部は、前記透明板の表面に固定されている請求項1ないし3のいずれかに記載の照明撮像装置。   The illumination imaging device according to any one of claims 1 to 3, wherein a translucent plate is provided in front of the imaging member, and the irradiation unit is fixed to a surface of the transparent plate. 前記撮像部材の前方に絞りが設けられ、前記照射部が、前記絞りの前方に設けられている請求項1ないし5のいずれかに記載の照明撮像装置。   The illumination imaging apparatus according to claim 1, wherein a diaphragm is provided in front of the imaging member, and the irradiation unit is provided in front of the diaphragm. 前記撮像部材で取得した画像から、明瞳孔画像を抽出する明瞳孔画像抽出部を備える請求項1ないし6のいずれかに記載の照明撮像装置。   The illumination imaging apparatus according to claim 1, further comprising a bright pupil image extracting unit that extracts a bright pupil image from an image acquired by the imaging member.
JP2014176157A 2014-08-29 2014-08-29 Lighting imaging device Pending JP2016049262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176157A JP2016049262A (en) 2014-08-29 2014-08-29 Lighting imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176157A JP2016049262A (en) 2014-08-29 2014-08-29 Lighting imaging device

Publications (1)

Publication Number Publication Date
JP2016049262A true JP2016049262A (en) 2016-04-11

Family

ID=55657260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176157A Pending JP2016049262A (en) 2014-08-29 2014-08-29 Lighting imaging device

Country Status (1)

Country Link
JP (1) JP2016049262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092986A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー State detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092986A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー State detection device
JP2019087934A (en) * 2017-11-09 2019-06-06 株式会社デンソー Condition detection device
US11561408B2 (en) 2017-11-09 2023-01-24 Denso Corporation State detection device

Similar Documents

Publication Publication Date Title
US10564429B2 (en) Gaze-tracking system using illuminators emitting different wavelengths
CN107997737B (en) Eye imaging system, method and device
JP6239287B2 (en) Corneal endothelial cell imaging device
JP2016051315A (en) Line-of-sight detection apparatus
CN105431076A (en) Gaze guidance arrangement
WO2019149995A1 (en) Gaze-tracking system using curved photo-sensitive chip
US20220179207A1 (en) Holographic Eye Imaging Device
US20200187774A1 (en) Method and system for controlling illuminators
US20230013134A1 (en) Electronic device
JP6360752B2 (en) Illumination imaging device
WO2018164104A1 (en) Eye image processing device
JP2016049261A (en) Illumination imaging device and visual axis detecting apparatus
JPH08322797A (en) Visual axis detector
JP2016051317A (en) Visual line detection device
JP2016049262A (en) Lighting imaging device
JPH02264632A (en) Sight line detector
JP6124556B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP2017162233A (en) Visual line detection device and visual line detection method
JP4613315B2 (en) Pupil detection method and apparatus using two types of light sources
US11594075B2 (en) Holographic eye imaging device
JP2018028728A (en) Ophthalmic portion image processing device
JP2008132160A (en) Pupil detecting device and pupil detecting method
JP6711638B2 (en) Ophthalmic equipment
US20230092593A1 (en) Detection device detecting gaze point of user, control method therefor, and storage medium storing control program therefor
TW201838582A (en) Fundus photography device