JP2016047875A - Lubricating oil and method for producing the same - Google Patents

Lubricating oil and method for producing the same Download PDF

Info

Publication number
JP2016047875A
JP2016047875A JP2014172774A JP2014172774A JP2016047875A JP 2016047875 A JP2016047875 A JP 2016047875A JP 2014172774 A JP2014172774 A JP 2014172774A JP 2014172774 A JP2014172774 A JP 2014172774A JP 2016047875 A JP2016047875 A JP 2016047875A
Authority
JP
Japan
Prior art keywords
graphene oxide
lubricating oil
pao
wear
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014172774A
Other languages
Japanese (ja)
Inventor
博 木之下
Hiroshi Kinoshita
博 木之下
勇太 仁科
Yuta Nishina
勇太 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2014172774A priority Critical patent/JP2016047875A/en
Publication of JP2016047875A publication Critical patent/JP2016047875A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a good lubricating oil that achieves low friction and low abrasion by sufficiently dispersing graphene oxide in a lubricating oil.SOLUTION: The lubricating oil produced by dispersing graphene oxide in a base oil and the method for producing the lubricating oil are provided. The graphene oxide is formed by subjecting graphite to oxidation treatment in water. After a surfactant is added to an aqueous solution containing the graphene oxide, an intermediate solution capable of mixing with both a polar solution and a nonpolar solution is added and water is removed from the aqueous solution by centrifugal separation to prepare a graphene oxide dispersion. The graphene oxide dispersion is added to a base oil to prepare a lubricating oil having graphene oxide dispersed in the base oil.SELECTED DRAWING: Figure 7

Description

本発明は、酸化グラフェンを含有した潤滑油及びその製造方法に関する。   The present invention relates to a lubricating oil containing graphene oxide and a method for producing the same.

通常、金属材料の表面同士の摩擦は、摩擦係数が0.4以上と非常に高く、その状態で摩擦させると激しい摩耗が生じる。そのため、潤滑油を用いることで金属材料の表面に油膜を形成し、金属材料の表面同士の直接接触を防ぐことで、摩擦の低減、及び摩耗の抑制を図っている。油膜によって金属材料同士の接触が完全に防がれている場合には、摩擦力は潤滑油の粘度だけで決まる流体潤滑状態となり、この流体潤滑状態では摩擦及び摩耗を著しく低下させることができる。   Usually, the friction between the surfaces of the metal material has a very high friction coefficient of 0.4 or more, and severe friction occurs when friction is caused in this state. Therefore, an oil film is formed on the surface of the metal material by using lubricating oil, and direct contact between the surfaces of the metal material is prevented, thereby reducing friction and suppressing wear. When contact between metal materials is completely prevented by the oil film, the frictional force is in a fluid lubrication state determined only by the viscosity of the lubricating oil, and friction and wear can be significantly reduced in this fluid lubrication state.

しかしながら、金属材料で構成されるギヤやピストン等の部材は、駆動にともなって金属材料同士が高面圧で接触することとなり、この高面圧によって潤滑油の油膜の消失が生じると、金属材料の凸部分同士で直接的な接触が生じ、摩擦及び摩耗が生じることとなっている。   However, members such as gears and pistons made of a metal material come into contact with each other at a high surface pressure as they are driven, and if this high surface pressure causes the oil film of the lubricating oil to disappear, the metal material Direct contact occurs between the convex portions of each other, and friction and wear occur.

そこで、潤滑性の向上を目的としてナノカーボン材料を添加することが提案されている(例えば、特許文献1参照。)。   Therefore, it has been proposed to add a nanocarbon material for the purpose of improving lubricity (see, for example, Patent Document 1).

特に、本発明者らは、粉末状の黒鉛から酸化グラフェンを安価に製造する技術を有しており、この酸化グラフェンを分散させた水溶液が潤滑剤として利用できることを知見し、すでに特許出願を行っている。   In particular, the present inventors have a technique for producing graphene oxide from powdered graphite at a low cost, knowing that an aqueous solution in which this graphene oxide is dispersed can be used as a lubricant, and have already filed a patent application. ing.

酸化グラフェンは、グラファイトの六員環構造を有する1層のグラファイト構造であり、平面方向のサイズは数μm以上に達し、化学安定性の非常に高い表面(基底面)にも非常に多くの酸素官能基を有している。このような酸化グラフェンは、金属材料の表面を被覆する効果が高いと思われ、酸化グラフェンで金属材料の表面が被覆されることで潤滑性が向上しているものと考えている。   Graphene oxide is a one-layer graphite structure with a graphite six-membered ring structure. The size in the plane direction reaches several μm or more, and there is a great deal of oxygen on the surface (basal plane) with extremely high chemical stability. Has a functional group. Such graphene oxide is considered to have a high effect of covering the surface of the metal material, and it is considered that the lubricity is improved by covering the surface of the metal material with graphene oxide.

特開2009−173814号公報JP 2009-173814 A

酸化グラフェンは、多くの酸素官能基を有することで水等の極性分子には良好に分散し、酸化グラフェンを分散させた水溶液が潤滑剤として機能する一方で、油のような無極性分子には分散せず、油系の潤滑剤では、酸化グラフェンによる潤滑性の向上効果が得られにくいという問題があった。   Graphene oxide has many oxygen functional groups, so it is well dispersed in polar molecules such as water, and an aqueous solution in which graphene oxide is dispersed functions as a lubricant, whereas non-polar molecules such as oil The oil-based lubricant that does not disperse has a problem that it is difficult to obtain the effect of improving the lubricity by graphene oxide.

特に、油系の潤滑剤では、基油の酸化防止剤としても知られているフラーレン等のナノカーボン材料が添加されている場合があるが、酸化防止剤としての利用であるために、添加量自体が極めて少なく、低分散性が問題とされることはなかったが、潤滑助剤としての添加である場合には、十分な分散性を有する必要があった。   In particular, in oil-based lubricants, nanocarbon materials such as fullerenes, which are also known as base oil antioxidants, may be added. Although it was extremely small per se and low dispersibility was not a problem, in the case of addition as a lubricating aid, it was necessary to have sufficient dispersibility.

本発明者らはこのような現状に鑑み、油系の潤滑剤、すなわち潤滑油においても酸化グラフェンを十分に分散させて、低摩擦及び低摩耗となる良好な潤滑油として利用可能とすべく研究開発を行って、本発明を成すに至ったものである。   In view of the present situation, the present inventors have studied to make it possible to sufficiently disperse graphene oxide in an oil-based lubricant, that is, a lubricating oil, so that it can be used as a good lubricating oil with low friction and low wear. The present invention has been made through development.

本発明の潤滑油は、基油に酸化グラフェンを分散させて成る潤滑油であって、酸化グラフェンは、水中でグラファイトを酸化処理することで形成し、この酸化グラフェンを含有する水溶液に界面活性剤を添加した後に、極性の溶液にも無極性の溶液にも混ざる中間溶液を加え、遠心分離によって水を除去した酸化グラフェン分散液とし、この酸化グラフェン分散液を基油に添加することで基油中に酸化グラフェンを分散させた潤滑油である。酸化グラフェン水溶液を乾燥させて粉末状にし、それを基油に分散させる方法もあるが、乾燥によって酸化グラフェン同士が強固に結びつき、基油中で十分分散しないおそれがある。本方法では乾燥を伴わない分散方法で、基油中で十分分散する優位性がある。   The lubricating oil of the present invention is a lubricating oil obtained by dispersing graphene oxide in a base oil, and the graphene oxide is formed by oxidizing graphite in water, and the surfactant is added to the aqueous solution containing the graphene oxide. Is added to the polar solution and the non-polar solution to add an intermediate solution, and the graphene oxide dispersion is prepared by removing water by centrifugation, and this graphene oxide dispersion is added to the base oil. It is a lubricating oil in which graphene oxide is dispersed. There is also a method of drying the graphene oxide aqueous solution to form a powder and dispersing it in the base oil, but there is a possibility that the graphene oxides are strongly bonded to each other by drying and are not sufficiently dispersed in the base oil. This method has the advantage of being sufficiently dispersed in the base oil by a dispersion method without drying.

さらに、本発明の潤滑油では、以下の点にも特徴を有するものである。
(1)酸化グラフェンを4wt%以下の濃度で含有すること。
(2)中間溶液は、アセトンまたは1−プロパノールであること。
(3)界面活性剤は、ヘキサデシルトリメチルアンモニウムブロミド、ジヘキサデシルジメチルアンモニウムブロミド、ドデシル硫酸ナトリウムの少なくともいずれか1つであること。
Furthermore, the lubricating oil of the present invention is also characterized by the following points.
(1) Containing graphene oxide at a concentration of 4 wt% or less.
(2) The intermediate solution is acetone or 1-propanol.
(3) The surfactant is at least one of hexadecyltrimethylammonium bromide, dihexadecyldimethylammonium bromide, and sodium dodecylsulfate.

また、本発明の潤滑油の製造方法では、基油に酸化グラフェンを分散させて成る潤滑油の製造方法であって、グラファイトを水中で酸化処理すること酸化グラフェンを作製する工程と、この酸化グラフェンを含有する水溶液に界面活性剤を添加する工程と、界面活性剤が添加された酸化グラフェンを含有する水溶液に、極性の溶液にも無極性の溶液にも混ざる中間溶液を加えて遠心分離によって水を除去することで酸化グラフェン分散液を作製する工程と、この酸化グラフェン分散液を基油に添加することで基油中に酸化グラフェンを分散させる工程とを有するものである。   The method for producing a lubricating oil according to the present invention is a method for producing a lubricating oil obtained by dispersing graphene oxide in a base oil, the step of producing graphene oxide by oxidizing graphite in water, and the graphene oxide. A step of adding a surfactant to an aqueous solution containing a solution, and adding an intermediate solution mixed with a polar solution and a nonpolar solution to an aqueous solution containing graphene oxide to which a surfactant has been added, and centrifuging the aqueous solution by centrifugation. Removing graphene oxide to prepare a graphene oxide dispersion, and adding the graphene oxide dispersion to the base oil to disperse the graphene oxide in the base oil.

本発明によれば、酸化グラフェンを高分散させた潤滑油とすることで、低摩擦及び低摩耗の潤滑油を提供することができる。   According to the present invention, a low-friction and low-wear lubricant can be provided by using a lubricant in which graphene oxide is highly dispersed.

PAOのみの場合における、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。FIG. 5 is an optical micrograph of a wear mark after a friction test (lower figure) and a graph of a measurement result with a palpation type roughness meter in a direction crossing the wear mark in the case of only PAO (upper figure). PAO−GO−Aにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-A, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Bにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-B, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with the palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Cにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-C, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with the palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Dにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-D, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Eにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-E, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Fにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-F, it is the optical microscope photograph (lower figure) of the abrasion trace after a friction test, and the graph (upper figure) of the measurement result with the palpation type roughness meter in the direction which crosses an abrasion trace. . PAO−GO−Aにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-A, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Fにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-F, it is the optical microscope photograph (lower figure) of the abrasion trace after a friction test, and the graph (upper figure) of the measurement result with the palpation type roughness meter in the direction which crosses an abrasion trace. . PAO−GO−Dにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-D, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAO−GO−Dにおける、摩擦試験後の摩耗痕の光学顕微鏡写真(下の図)、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(上の図)である。In PAO-GO-D, it is the optical microscope photograph (lower figure) of the wear trace after a friction test, and the graph (upper figure) of the measurement result with a palpation type roughness meter in the direction which crosses a wear trace. . PAOのみの場合であって、約10万回摺動した付近での摩擦力データのグラフである。It is a case of only PAO, and is a graph of frictional force data in the vicinity of sliding about 100,000 times. PAO−GO−Aで、酸化グラフェンの濃度が2wt%の場合であって、約10万回摺動した付近での摩擦力データのグラフである。It is a graph of frictional force data in the vicinity of about 100,000 times of sliding when PAO-GO-A has a concentration of graphene oxide of 2 wt%. PAO−GO−Fで、酸化グラフェンの濃度が2wt%の場合であって、約10万回摺動した付近での摩擦力データのグラフである。It is a graph of frictional force data when the concentration of graphene oxide is 2 wt% with PAO-GO-F, and it slides about 100,000 times.

本発明の潤滑油は、基油に酸化グラフェンを分散させて成る潤滑油である。   The lubricating oil of the present invention is a lubricating oil obtained by dispersing graphene oxide in a base oil.

一般的に、酸化グラフェンは、油のような無極性の溶液には分散しない。酸化グラフェンは、化学安定性の非常に高い表面(基底面)にも非常に多くの酸素官能基を有しており、この酸素官能基が親水性、すなわち疎油性を示すためである。   In general, graphene oxide does not disperse in nonpolar solutions such as oil. This is because graphene oxide has a very large number of oxygen functional groups on the surface (base surface) having very high chemical stability, and these oxygen functional groups exhibit hydrophilicity, that is, oleophobicity.

であるならば、酸化グラフェンに還元処理を施して酸素官能基を取り除くことで親油性を向上させることも考えられるが、酸化グラフェンは、還元処理が施されることで酸化グラフェン同士の凝集が生じやすくなり、凝集することで薄膜状の酸化グラフェンのメリットが消失するおそれがある。さらに還元されることで金属と結びつきやすい酸素官能基も無くなり、金属への吸着性も極めて低下する。   If this is the case, it may be possible to improve the lipophilicity by subjecting the graphene oxide to a reduction treatment to remove the oxygen functional group, but the graphene oxide undergoes a reduction treatment to cause aggregation of the graphene oxides. It becomes easy to agglomerate, and the merit of the thin film graphene oxide may be lost. Furthermore, by being reduced, oxygen functional groups that are easily bonded to the metal are eliminated, and the adsorptivity to the metal is extremely lowered.

そこで、本発明では、酸化グラフェンを含有する水溶液に界面活性剤を添加することで親油性を向上させるとともに、界面活性剤が添加された酸化グラフェンを含有する水溶液に、極性の溶液にも無極性の溶液にも混ざる中間溶液を加えて遠心分離によって水を除去することで酸化グラフェン分散液を作製し、この酸化グラフェン分散液を基油に添加することで基油中に酸化グラフェンを分散させている。中間溶液の添加と遠心分離の処理は、基油への水の持ち込みを抑制するためであり、この処理を必要に応じて複数回繰り替えすことで、水を完全に除去することが望ましい。   Therefore, in the present invention, lipophilicity is improved by adding a surfactant to an aqueous solution containing graphene oxide, and an aqueous solution containing graphene oxide to which a surfactant is added is also nonpolar to polar solutions. A graphene oxide dispersion is prepared by adding an intermediate solution that is also mixed with the above solution and removing water by centrifugation, and the graphene oxide is dispersed in the base oil by adding this graphene oxide dispersion to the base oil. Yes. The addition of the intermediate solution and the centrifugation process are for suppressing the introduction of water into the base oil, and it is desirable to completely remove the water by repeating this process a plurality of times as necessary.

このように、界面活性剤で酸化グラフェンの親油性を向上させるとともに、中間溶液を用いて水を含まない酸化グラフェン分散液を作製することで、基油に酸化グラフェンを分散させやすくすることができる。   Thus, while improving the lipophilicity of graphene oxide with a surfactant, it is possible to easily disperse graphene oxide in the base oil by preparing a graphene oxide dispersion containing no water using an intermediate solution. .

ここで、界面活性剤が添加される前の酸化グラフェンを含有する水溶液は、水中でグラファイトを酸化処理することで形成することが望ましい。   Here, it is desirable that the aqueous solution containing graphene oxide before the addition of the surfactant is formed by oxidizing graphite in water.

具体的には、特許第5098064号公報に記載されている製造方法等を用いて作成することが望ましい。   Specifically, it is desirable to create using a manufacturing method described in Japanese Patent No. 5098064.

すなわち、最初に原料となるグラファイトに対して電子レンジによるマイクロ波の照射を行い、次いでマイクロ波が照射されたグラファイトを、硫酸と、硝酸ナトリウムと、過マンガン酸カリウムで構成される酸化剤入りの水溶液に混合させることにより酸化させて、酸化グラフェンとしての剥離を生じさせて作成することができる。   That is, first, the raw material graphite is irradiated with microwaves using a microwave oven, and then the graphite irradiated with the microwaves is mixed with an oxidizing agent composed of sulfuric acid, sodium nitrate, and potassium permanganate. It can be made by being mixed with an aqueous solution to be oxidized to cause exfoliation as graphene oxide.

なお、剥離を生じさせて酸化グラフェンとした後、水の添加と遠心分離とを繰り返し行うことで硫酸等を除去して、酸化グラフェンを含有する水溶液としている。   Note that, after peeling off to form graphene oxide, sulfuric acid and the like are removed by repeatedly adding water and centrifuging to obtain an aqueous solution containing graphene oxide.

このように、グラファイトを水中で酸化処理することで酸化グラフェンを形成することにより、酸化グラフェン同士が接合したりすることなく、シート状の薄膜体として存在させることができ、摩擦抵抗の低減に効果的であると考えられる。   In this way, by forming graphene oxide by oxidizing graphite in water, it can be made to exist as a sheet-like thin film body without joining graphene oxides, which is effective in reducing frictional resistance It is considered to be appropriate

剥離処理されるグラファイトは、平均粒径100μm以下の微粉末としていることが望ましく、好適には、平均粒径50μm以下の微粉末であることが望ましい。   The graphite to be exfoliated is desirably a fine powder having an average particle size of 100 μm or less, and preferably a fine powder having an average particle size of 50 μm or less.

以下において、具体的な実施例を説明する。   Specific examples will be described below.

まず、上述した方法で、酸化グラフェンを含有する水溶液を作製した。この酸化グラフェンを含有する水溶液に添加する界面活性剤としては、ヘキサデシルトリメチルアンモニウムブロミド(C19H42BrN)、ジヘキサデシルジメチルアンモニウムブロミド(C34H72BrN)、ドデシル硫酸ナトリウム(C12H25NaO4S)の3種類を準備した。また、中間溶液としては、アセトン(CH3COCH3)と1-プロパノール(CH3CH2CH2OH)の2種類を準備した。 First, an aqueous solution containing graphene oxide was prepared by the method described above. Surfactants added to this aqueous solution containing graphene oxide include hexadecyltrimethylammonium bromide (C 19 H 42 BrN), dihexadecyldimethylammonium bromide (C 34 H 72 BrN), sodium dodecyl sulfate (C 12 H Three types of 25 NaO 4 S) were prepared. Moreover, two types of acetone (CH 3 COCH 3 ) and 1-propanol (CH 3 CH 2 CH 2 OH) were prepared as intermediate solutions.

潤滑油の基油としては、ポリ−α−オレフィン(poly-α-olefin,以下において「PAO」と呼ぶ。)を用いた。作製した試料の識別のため、以下のナンバリングを行った。
Poly-α-olefin (hereinafter referred to as “PAO”) was used as the base oil of the lubricating oil. The following numbering was performed to identify the prepared samples.

摩擦実験に用いた試験機は、基板上をボールが往復摺動するタイプの試験機であって、ボールが全く回転しないタイプである。ボールの材質は、非常に硬い軸受用のスチール(SUJ2)球で、直径は2mmとした。基板の材質は、SUS304で、研削仕上げを行って表面は滑らかとした。試験機では、1サイクルの摺動距離を約2mm、摺動周期を500RPMとした。さらに、試験機では、荷重を11.1Nとし,初期面圧を3.0GPaと非常に高面圧として行った。   The test machine used for the friction experiment is a test machine in which the ball reciprocates on the substrate, and the ball does not rotate at all. The ball was made of a very hard bearing steel (SUJ2) ball with a diameter of 2 mm. The substrate material was SUS304, and the surface was smoothed by grinding. In the testing machine, the sliding distance for one cycle was about 2 mm and the sliding cycle was 500 RPM. Furthermore, in the testing machine, the load was set to 11.1 N and the initial surface pressure was set to a very high surface pressure of 3.0 GPa.

試験機による摩擦試験の結果、摩擦係数は、いずれの試料においても0.1程度であって、明確な差はなかった。そこで、摩耗痕の形状を評価することで、摩耗性の評価とすることとした。   As a result of a friction test using a testing machine, the coefficient of friction was about 0.1 in all samples, and there was no clear difference. Therefore, it was decided to evaluate the wear by evaluating the shape of the wear scar.

図1は、潤滑油の基油であるPAOのみ、すなわち、酸化グラフェンも、界面活性剤も、中間溶液も添加していない状態での試験後の摩耗痕の光学顕微鏡写真(図1の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図1の上の図)である。約10万回の摩擦後の状態である。   FIG. 1 shows an optical micrograph of the wear scar after the test in the state where only PAO which is the base oil of the lubricating oil, that is, graphene oxide, a surfactant and an intermediate solution is not added. Fig. 2) and a graph of the result of measurement with a palpation type roughness meter in the direction crossing the wear scar (the upper diagram in Fig. 1). It is in a state after about 100,000 frictions.

摩耗痕深さは、図1の上の図から約8μmで、摩耗幅は約450μmとなっている。図1の上の図は、摩擦痕の断面形状を示しており、凹部の両端が盛り上がっている。これは高面圧のために基板材料が塑性流動を生じて、摺動面外側に材料が押し出されたためである。また図1の下の図の摩耗痕を見ると、中央部で摺動痕幅が大きくなり、波打っているような形状をしている。   The wear scar depth is about 8 μm from the upper diagram of FIG. 1, and the wear width is about 450 μm. The upper diagram in FIG. 1 shows the cross-sectional shape of the frictional trace, and both ends of the recess are raised. This is because the substrate material caused plastic flow due to the high surface pressure, and the material was pushed out of the sliding surface. Moreover, when the wear trace of the lower figure of FIG. 1 is seen, the width | variety of a slide trace becomes large in the center part, and it has the shape which is wavy.

図2は、PAO−GO−Aでの試験後の摩耗痕の光学顕微鏡写真(図2の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図2の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 2 shows an optical micrograph of the wear scar after the test with PAO-GO-A (the lower diagram in FIG. 2), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 2 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図3は、PAO−GO−Bでの試験後の摩耗痕の光学顕微鏡写真(図3の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図3の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 3 is an optical micrograph of the wear scar after the test with PAO-GO-B (the lower diagram in FIG. 3), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 3 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図4は、PAO−GO−Cでの試験後の摩耗痕の光学顕微鏡写真(図4の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図4の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 4 is an optical micrograph of the wear scar after the test with PAO-GO-C (the lower diagram in FIG. 4), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 4 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図5は、PAO−GO−Dでの試験後の摩耗痕の光学顕微鏡写真(図5の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図5の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 5 is an optical micrograph of the wear scar after the test with PAO-GO-D (the lower diagram of FIG. 5) and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 6 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図6は、PAO−GO−Eでの試験後の摩耗痕の光学顕微鏡写真(図6の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図6の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 6 is an optical micrograph of the wear scar after the test with PAO-GO-E (the lower diagram in FIG. 6) and a graph of the measurement result with a palpation type roughness meter in the direction crossing the wear scar. FIG. 7 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図7は、PAO−GO−Fでの試験後の摩耗痕の光学顕微鏡写真(図7の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図7の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、2wt%である。   FIG. 7 is an optical micrograph of the wear scar after the test with PAO-GO-F (the lower diagram of FIG. 7), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 7 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 2 wt%.

図2〜図7の摩耗痕では、図1のPAOのみの場合と比較して摩耗痕が比較的直線状となっており、摩耗痕幅がほぼ一定になっている。特に、PAO−GO−Cと、PAO−GO−Fにおいて摩耗痕幅が明らかに小さくなっている。また、摺動痕の深さは、PAO−GO−Aで約8μmあって、PAOのみと差異が無いが、それ以外では約6μmと小さくなっており、特に、PAO−GO−Fでは約4μmと非常に小さくなっている.   In the wear traces of FIGS. 2 to 7, the wear trace is relatively linear compared to the case of only the PAO of FIG. 1, and the wear trace width is substantially constant. In particular, the wear scar width is clearly reduced in PAO-GO-C and PAO-GO-F. The depth of the sliding trace is about 8 μm for PAO-GO-A, which is not different from that of PAO alone, but is about 6 μm smaller than that of PAO. Especially, about 4 μm for PAO-GO-F. It is very small.

図8は、PAO−GO−Aでの試験後の摩耗痕の光学顕微鏡写真(図8の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図8の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、4wt%である。   FIG. 8 is an optical micrograph of the wear scar after the test with PAO-GO-A (the lower diagram in FIG. 8), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. It is (upper figure of FIG. 8). It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 4 wt%.

酸化グラフェンの濃度を高めることで、図8に示すように、摩耗痕幅が約360μmとなり、摩耗痕深さも約5μmと、図2に示す酸化グラフェンの濃度が2wt%の場合よりも小さくすることができている。   By increasing the concentration of graphene oxide, as shown in FIG. 8, the wear scar width is about 360 μm and the wear scar depth is about 5 μm, which is smaller than the graphene oxide concentration shown in FIG. 2 being 2 wt%. Is done.

図9は、PAO−GO−Fでの試験後の摩耗痕の光学顕微鏡写真(図9の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図9の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、4wt%である。   FIG. 9 is an optical micrograph of the wear scar after the test with PAO-GO-F (the lower diagram of FIG. 9), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. FIG. 10 is an upper view of FIG. It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 4 wt%.

酸化グラフェンの濃度を高めることで、図9に示すように、摩耗痕幅が約270μmとなり、図7に示す酸化グラフェンの濃度が2wt%の場合よりもさらに小さくすることができている。   By increasing the concentration of graphene oxide, as shown in FIG. 9, the wear scar width becomes about 270 μm, and the concentration of graphene oxide shown in FIG. 7 can be further reduced as compared with the case of 2 wt%.

図10は、PAO−GO−Dでの試験後の摩耗痕の光学顕微鏡写真(図10の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図10の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、4wt%である。   FIG. 10 shows an optical micrograph of the wear scar after the test with PAO-GO-D (the lower diagram in FIG. 10) and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. It is (upper figure of FIG. 10). It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 4 wt%.

図11は、PAO−GO−Dでの試験後の摩耗痕の光学顕微鏡写真(図11の下の図)と、摩耗痕を横断する方向での触診式の粗さ計での測定結果のグラフ(図11の上の図)である。約10万回の摩擦後の状態である。ここで、酸化グラフェンの濃度は、10wt%である。   FIG. 11 is an optical micrograph of the wear scar after the test with PAO-GO-D (the lower diagram in FIG. 11), and a graph of the measurement result with a palpation type roughness meter in a direction crossing the wear scar. It is (upper figure of FIG. 11). It is in a state after about 100,000 frictions. Here, the concentration of graphene oxide is 10 wt%.

酸化グラフェンの濃度を高めることで、図10に示すように、摩耗痕幅が約360μmとなり、摩耗痕深さも約5μmと、図5に示す酸化グラフェンの濃度が2wt%の場合よりもさらに小さくすることができている。しかし、図10の結果と、図11の結果を対比すると大差はなく、酸化グラフェンの濃度が4wt%以上では濃度上昇による効果が小さくなると思われ、逆に、酸化グラフェンの使用量の増加にともなうコスト増が生じることから、酸化グラフェンの濃度は、4wt%以下であることが望ましい。   By increasing the concentration of graphene oxide, as shown in FIG. 10, the wear scar width is about 360 μm, and the wear scar depth is also about 5 μm, which is even smaller than the graphene oxide concentration shown in FIG. 5 of 2 wt%. Is able to. However, comparing the results of FIG. 10 with the results of FIG. 11, there is no significant difference, and it seems that the effect of increasing the concentration of graphene oxide is less than 4 wt%, and conversely, the amount of graphene oxide used increases. Since the cost increases, the concentration of graphene oxide is desirably 4 wt% or less.

摩擦実験に用いた試験機では、ひずみゲージを用いて直接的な摩擦力をモニタリング可能としている。   The testing machine used for the friction experiment can monitor the direct frictional force using a strain gauge.

図12は、PAOのみの場合であって、約10万回摺動した付近での摩擦力データのグラフである。縦軸が摩擦力で、横軸がある時間からの経過時間である。摩擦は往復摺動で行われており、摩擦方向が反転することによって、摩擦力もプラス値とマイナス値に反転し、のこぎり状の波形となって表れる。   FIG. 12 is a graph of frictional force data in the vicinity of sliding about 100,000 times in the case of only PAO. The vertical axis is the frictional force, and the horizontal axis is the elapsed time from a certain time. Friction is performed by reciprocal sliding, and when the friction direction is reversed, the friction force is also reversed between a plus value and a minus value, and appears as a saw-tooth waveform.

PAOのみの場合には、図12に示すように、一方向内で非常に値が乱れており、摩擦力データは安定していない。   In the case of only PAO, as shown in FIG. 12, the value is very disturbed in one direction, and the frictional force data is not stable.

図13は、PAO−GO−Aで、酸化グラフェンの濃度が2wt%の場合あって、約10万回摺動した付近での摩擦力データのグラフである。この場合には、摩擦力データは安定した値が得られている.すなわちPAOのみの場合では、摩耗痕の凹凸が激しいため、摩擦力が乱れているが、PAO−GO−Aの場合では、摩耗痕が比較的に滑らかとなっているため、摩擦力が安定していると思われる。   FIG. 13 is a graph of friction force data in the vicinity of sliding about 100,000 times when PAO-GO-A has a graphene oxide concentration of 2 wt%. In this case, the frictional force data is stable. That is, in the case of only PAO, the frictional force is disturbed because the unevenness of the wear trace is intense, but in the case of PAO-GO-A, the frictional force is stabilized because the wear trace is relatively smooth. It seems that

図14は、PAO−GO−Fで、酸化グラフェンの濃度が2wt%の場合あって、約10万回摺動した付近での摩擦力データのグラフである。この場合には、摩擦力データが安定するとともに、摩擦力自体の値も小さくなっている。   FIG. 14 is a graph of friction force data in the vicinity of sliding about 100,000 times in the case of PAO-GO-F where the concentration of graphene oxide is 2 wt%. In this case, the frictional force data is stabilized and the value of the frictional force itself is small.

Claims (5)

基油に酸化グラフェンを分散させて成る潤滑油であって、
酸化グラフェンは、水中でグラファイトを酸化処理することで形成し、
この酸化グラフェンを含有する水溶液に界面活性剤を添加した後に、極性の溶液にも無極性の溶液にも混ざる中間溶液を加え、遠心分離によって水を除去した酸化グラフェン分散液とし、
この酸化グラフェン分散液を基油に添加することで基油中に酸化グラフェンを分散させた潤滑油。
A lubricating oil in which graphene oxide is dispersed in a base oil,
Graphene oxide is formed by oxidizing graphite in water,
After adding a surfactant to the aqueous solution containing this graphene oxide, an intermediate solution mixed with both a polar solution and a nonpolar solution is added, and the graphene oxide dispersion is obtained by removing water by centrifugation,
A lubricating oil in which graphene oxide is dispersed in a base oil by adding this graphene oxide dispersion to the base oil.
酸化グラフェンを4wt%以下の濃度で含有する請求項1に記載の潤滑油。   The lubricating oil according to claim 1, comprising graphene oxide at a concentration of 4 wt% or less. 中間溶液は、アセトンまたは1−プロパノールである請求項1または請求項2に記載の潤滑油。   The lubricating oil according to claim 1 or 2, wherein the intermediate solution is acetone or 1-propanol. 界面活性剤は、ヘキサデシルトリメチルアンモニウムブロミド、ジヘキサデシルジメチルアンモニウムブロミド、ドデシル硫酸ナトリウムの少なくともいずれか1つである請求項3に記載の潤滑油。   The lubricating oil according to claim 3, wherein the surfactant is at least one of hexadecyltrimethylammonium bromide, dihexadecyldimethylammonium bromide, and sodium dodecyl sulfate. 基油に酸化グラフェンを分散させて成る潤滑油の製造方法であって、
グラファイトを水中で酸化処理すること酸化グラフェンを作製する工程と、
この酸化グラフェンを含有する水溶液に界面活性剤を添加する工程と、
界面活性剤が添加された酸化グラフェンを含有する水溶液に、極性の溶液にも無極性の溶液にも混ざる中間溶液を加えて遠心分離によって水を除去することで酸化グラフェン分散液を作製する工程と、
この酸化グラフェン分散液を基油に添加することで基油中に酸化グラフェンを分散させる工程と
を有する潤滑油の製造方法。
A method for producing a lubricating oil comprising graphene oxide dispersed in a base oil,
Oxidizing graphite in water to produce graphene oxide;
Adding a surfactant to the aqueous solution containing the graphene oxide;
A step of preparing a graphene oxide dispersion by adding an intermediate solution mixed with a polar solution and a nonpolar solution to an aqueous solution containing graphene oxide to which a surfactant is added, and removing water by centrifugation. ,
And a step of dispersing the graphene oxide in the base oil by adding the graphene oxide dispersion to the base oil.
JP2014172774A 2014-08-27 2014-08-27 Lubricating oil and method for producing the same Pending JP2016047875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172774A JP2016047875A (en) 2014-08-27 2014-08-27 Lubricating oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172774A JP2016047875A (en) 2014-08-27 2014-08-27 Lubricating oil and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016047875A true JP2016047875A (en) 2016-04-07

Family

ID=55648964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172774A Pending JP2016047875A (en) 2014-08-27 2014-08-27 Lubricating oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016047875A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107541318A (en) * 2017-08-15 2018-01-05 湖南七纬科技有限公司 A kind of wear-resistant antirust oil containing graphene and preparation method thereof
CN107739644A (en) * 2017-11-22 2018-02-27 苏州市宽道模具机械有限公司 A kind of nano wearproof lubricant and preparation method thereof
CN107880973A (en) * 2017-10-30 2018-04-06 湖南金泰检测检验有限公司 A kind of graphene oxide enhancing lubricant and preparation method thereof
KR20180073017A (en) * 2016-12-22 2018-07-02 주식회사 포스코 A coated steel plate having excellent friction property during fabricating thereof
KR101923648B1 (en) 2017-11-16 2018-11-29 계명대학교 산학협력단 manufacturing method of oil-based lubricants using Alkyl functionlized Graphene oxide nanosheets
KR101973490B1 (en) * 2018-02-08 2019-09-02 이승우 Lubricating additives composition, methode for preparing the same and lubricant oil comprising the same
CN110499205A (en) * 2019-09-17 2019-11-26 南方科技大学 A kind of oil-soluble slurry, preparation method and application being dispersed with graphene oxide
JP2020164639A (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Friction and/or wear reducing agent
KR102384901B1 (en) * 2021-04-27 2022-04-25 주식회사 캐프 Coating composition for wiper blade comprising graphene and wiper blade coated using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298097A (en) * 2007-05-29 2008-12-11 Panasonic Corp Fluid bearing device using lubricating oil, motor using this fluid bearing device and compressor using lubricating oil
JP2012153590A (en) * 2011-01-28 2012-08-16 Mitsubishi Gas Chemical Co Inc Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
JP2014514231A (en) * 2011-03-15 2014-06-19 ピアレス・ワールドワイド・リミテッド・ライアビリティ・カンパニー Easy synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including use as tribologically beneficial lubricant additives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298097A (en) * 2007-05-29 2008-12-11 Panasonic Corp Fluid bearing device using lubricating oil, motor using this fluid bearing device and compressor using lubricating oil
JP2012153590A (en) * 2011-01-28 2012-08-16 Mitsubishi Gas Chemical Co Inc Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
JP2014514231A (en) * 2011-03-15 2014-06-19 ピアレス・ワールドワイド・リミテッド・ライアビリティ・カンパニー Easy synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including use as tribologically beneficial lubricant additives

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073017A (en) * 2016-12-22 2018-07-02 주식회사 포스코 A coated steel plate having excellent friction property during fabricating thereof
KR102045605B1 (en) * 2016-12-22 2019-11-15 주식회사 포스코 A coated steel plate having excellent friction property during fabricating thereof
CN107541318A (en) * 2017-08-15 2018-01-05 湖南七纬科技有限公司 A kind of wear-resistant antirust oil containing graphene and preparation method thereof
CN107880973A (en) * 2017-10-30 2018-04-06 湖南金泰检测检验有限公司 A kind of graphene oxide enhancing lubricant and preparation method thereof
KR101923648B1 (en) 2017-11-16 2018-11-29 계명대학교 산학협력단 manufacturing method of oil-based lubricants using Alkyl functionlized Graphene oxide nanosheets
WO2019098462A1 (en) * 2017-11-16 2019-05-23 계명대학교 산학협력단 Method for preparing oily lubricant by using functionalized graphene oxide
CN107739644A (en) * 2017-11-22 2018-02-27 苏州市宽道模具机械有限公司 A kind of nano wearproof lubricant and preparation method thereof
KR101973490B1 (en) * 2018-02-08 2019-09-02 이승우 Lubricating additives composition, methode for preparing the same and lubricant oil comprising the same
JP2020164639A (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Friction and/or wear reducing agent
CN110499205A (en) * 2019-09-17 2019-11-26 南方科技大学 A kind of oil-soluble slurry, preparation method and application being dispersed with graphene oxide
KR102384901B1 (en) * 2021-04-27 2022-04-25 주식회사 캐프 Coating composition for wiper blade comprising graphene and wiper blade coated using the same

Similar Documents

Publication Publication Date Title
JP2016047875A (en) Lubricating oil and method for producing the same
Wang et al. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles
Khalil et al. Tribological properties of dispersed carbon nanotubes in lubricant
Zhao et al. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications
Kogovšek et al. Various MoS 2-, WS 2-and C-based micro-and nanoparticles in boundary lubrication
Shafi et al. Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime
Chou et al. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy
Zin et al. Tribological properties of engine oil with carbon nano-horns as nano-additives
Kumar et al. Tribological characterisation of graphene oxide as lubricant additive on hypereutectic Al-25Si/steel tribopair
Zhao et al. A study of tribological properties of water-based ceria nanofluids
JPWO2014189065A1 (en) Water based lubricant
Zin et al. Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil
Chen et al. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives
Morshed et al. A comprehensive review of water-based nanolubricants
Bhaumik et al. Analysis of tribological behavior of carbon nanotube based industrial mineral gear oil 250 cSt viscosity
Thottackkad et al. Tribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticles
Li et al. Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-based lubricant additive
V. Thottackkad et al. Experimental studies on the tribological behaviour of engine oil (SAE15W40) with the addition of CuO nanoparticles
Rosenkranz et al. Load-dependent run-in and wear behaviour of line-like surface patterns produced by direct laser interference patterning
Min et al. Graphene oxide/carboxyl-functionalized multi-walled carbon nanotube hybrids: Powerful additives for water-based lubrication
Das et al. Tribological properties of magnesium nano-alumina composites under nano-graphite lubrication
JP2014516102A (en) Nano-lubricant to adjust the surface
Kim et al. Tribological characteristics of paraffin liquid with nanodiamond based on the scuffing life and wear amount
Juan et al. Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials
Kumar et al. Investigation on friction, anti-wear, and extreme pressure properties of different grades of polyalphaolefins with functionalized multi-walled carbon nanotubes as an additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180529