JP2016047556A - Rolling bearing unit for wheel support - Google Patents

Rolling bearing unit for wheel support Download PDF

Info

Publication number
JP2016047556A
JP2016047556A JP2015211660A JP2015211660A JP2016047556A JP 2016047556 A JP2016047556 A JP 2016047556A JP 2015211660 A JP2015211660 A JP 2015211660A JP 2015211660 A JP2015211660 A JP 2015211660A JP 2016047556 A JP2016047556 A JP 2016047556A
Authority
JP
Japan
Prior art keywords
intermediate material
cylindrical surface
tip
hub
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015211660A
Other languages
Japanese (ja)
Other versions
JP6094653B2 (en
Inventor
良雄 神谷
Yoshio Kamiya
良雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015211660A priority Critical patent/JP6094653B2/en
Publication of JP2016047556A publication Critical patent/JP2016047556A/en
Application granted granted Critical
Publication of JP6094653B2 publication Critical patent/JP6094653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method by which a stepped columnar member to be used as a hub body of a rolling bearing unit for wheel support for instance can be manufactured, while occurrence of a chevron crack is prevented and increase in weight of the member is suppressed.SOLUTION: Material 28 formed by internally fitting core material 26 made of a light alloy such as an aluminum alloy in bottomed cylindrical surface layer material 27 by tight fit is utilized. Then, by inserting the material 28 into a cavity of a die and forming cold forging of pushing the material 28 into the cavity by a pressing punch, the stepped columnar member is formed.SELECTED DRAWING: Figure 1

Description

この発明は、例えば、車輪支持用転がり軸受ユニットを構成する軌道輪部材、即ち、内輪と組み合わされてハブを構成するハブ本体の如く、外周面に互いに同心で径が互いに異なる、複数の円筒面部を設け、隣り合う円筒面部同士を段部により連続させた段付円柱状部材の製造方法、及びこの段付円柱状部材の製造方法により造られたハブ本体を備える車輪支持用転がり軸受ユニットの改良に関する。   The present invention provides, for example, a plurality of cylindrical surface portions that are concentric to the outer peripheral surface and have different diameters, such as a bearing ring member that constitutes a wheel bearing rolling bearing unit, that is, a hub body that constitutes a hub in combination with an inner ring. Of a stepped columnar member in which adjacent cylindrical surface portions are made continuous with each other by a stepped portion, and an improvement of a wheel bearing rolling bearing unit including a hub body made by the method of manufacturing the stepped columnar member. About.

自動車の車輪を構成するホイール、及び、制動用回転部材であるディスク或いはドラムを、懸架装置を構成するナックルに回転自在に支持する為に、車輪支持用転がり軸受ユニットが広く使用されている。図12は、従来から広く知られている、従動輪(FR車及びMR車の前輪、FF車の後輪)用の車輪支持用転がり軸受ユニット1の1例を示している。この車輪支持用転がり軸受ユニット1は、外輪2の内径側にハブ3を、複数の転動体4、4を介して、回転自在に支持している。使用状態では、前記外輪2を前記ナックルに結合固定し、前記ハブ3に車輪及び制動用回転部材を支持固定する。そして、これら車輪及び制動用回転部材を前記ナックルに対し、回転自在に支持する。   2. Description of the Related Art A wheel bearing rolling bearing unit is widely used to rotatably support a wheel constituting a wheel of an automobile and a disk or drum which is a rotating member for braking on a knuckle constituting a suspension device. FIG. 12 shows an example of a wheel bearing rolling bearing unit 1 for a driven wheel (a front wheel of an FR vehicle and an MR vehicle, a rear wheel of an FF vehicle) that has been widely known. The wheel supporting rolling bearing unit 1 supports a hub 3 on the inner diameter side of an outer ring 2 via a plurality of rolling elements 4 and 4 in a freely rotatable manner. In the state of use, the outer ring 2 is coupled and fixed to the knuckle, and the wheel and the brake rotating member are supported and fixed to the hub 3. Then, these wheels and the brake rotating member are rotatably supported with respect to the knuckle.

この為に、前記外輪2の内周面の2箇所位置に複列の外輪軌道5、5を、外周面の一部で、軸方向中央部よりも少し軸方向内寄り部分(軸方向に関して内とは、使用状態で車体の幅方向中央側となる側を言い、図12の右側。反対に、使用状態で車体の幅方向外側となる、図12の左側を、軸方向に関して外と言う。本明細書全体で同じ。)に静止側フランジ6を、それぞれ形成している。一方、前記ハブ3の外周面には、前記外輪2よりも軸方向外方に突出した外端寄り部分に、車輪及び制動用回転部材を支持固定する為の回転側フランジ7を、軸方向中間部乃至内端寄り部分に複列の内輪軌道8、8を、それぞれ形成している。そして、これら両列の内輪軌道8、8と前記両列の外輪軌道5、5との間に前記各転動体4、4を、両列毎に複数個ずつ配置して、前記外輪2の内径側での前記ハブ3の回転を自在としている。   For this purpose, double-row outer ring raceways 5 and 5 are arranged at two positions on the inner peripheral surface of the outer ring 2 at a part of the outer peripheral surface, slightly inwardly in the axial direction from the central part in the axial direction. Means the side that is the central side in the width direction of the vehicle body in the used state, and the right side of Fig. 12. Conversely, the left side in Fig. 12 that is the outside in the width direction of the vehicle body in the used state is referred to as the outside in the axial direction. The same applies to the entire specification), and the stationary side flanges 6 are respectively formed. On the other hand, the outer peripheral surface of the hub 3 is provided with a rotation-side flange 7 for supporting and fixing the wheel and the brake rotating member on a portion near the outer end protruding outward in the axial direction from the outer ring 2. Double-row inner ring raceways 8 and 8 are formed on the portion near the inner end. A plurality of rolling elements 4, 4 are arranged between the inner ring raceways 8, 8 in both rows and the outer ring raceways 5, 5 in both rows, and the inner diameter of the outer race 2 is set. The hub 3 can freely rotate on the side.

尚、前記ハブ3は、ハブ本体9と、内輪10と、ナット11とから成り、前記内輪軌道8、8は、このハブ本体9の中間部及びこの内輪10の外周面に形成されている。又、この内輪10は、このハブ本体9の軸方向内端寄り部分に形成した小径段部12に外嵌した状態で、前記ナット11により、前記ハブ本体9に対し固定している。尚、このハブ本体9の軸方向内端部に形成したかしめ部により、前記内輪10をこのハブ本体9に対し固定する構造も、広く知られている。   The hub 3 includes a hub body 9, an inner ring 10, and a nut 11, and the inner ring raceways 8 and 8 are formed in an intermediate portion of the hub body 9 and an outer peripheral surface of the inner ring 10. Further, the inner ring 10 is fixed to the hub body 9 by the nut 11 in a state where the inner ring 10 is externally fitted to a small-diameter step portion 12 formed near the inner end of the hub body 9 in the axial direction. A structure in which the inner ring 10 is fixed to the hub body 9 by a caulking portion formed at the inner end of the hub body 9 in the axial direction is also widely known.

上述の様な車輪支持用転がり軸受ユニット1を構成する前記ハブ本体9は、炭素鋼等の金属材料に塑性加工を施す事により造る。この様な塑性加工により造られるハブ本体の構造、並びにこの様な塑性加工の方法に就いては、例えば特許文献1〜4に記載される等により、従来から広く知られている。このうちの特許文献4に記載されたハブ本体の構造及びその製造方法に就いて、図13〜16により説明する。   The hub body 9 constituting the wheel support rolling bearing unit 1 as described above is manufactured by subjecting a metal material such as carbon steel to plastic working. The structure of the hub body produced by such plastic working and the method of such plastic working have been widely known, for example, as described in Patent Documents 1 to 4. Among these, the structure of the hub main body and the manufacturing method thereof described in Patent Document 4 will be described with reference to FIGS.

このうちの図13に示したハブ本体9aは、外周面の軸方向外端寄り部分に放射状の回転側フランジ7aを、同じく中間部に内輪軌道8を、同じく内端部に小径段部12を、それぞれ形成している。
この様なハブ本体9aは、図14〜16に示した工程により造る。先ず、押し出し成形、圧延成形等により造られた長尺な原材料を所定長さに切断する事により、各図の(A)に示す様な、円柱状の素材13を得る。次いで、この素材13に、冷間鍛造加工の一種である、第一段階の前方押し出し加工を施す事により、各図の(B)に示した第一中間素材14を造る。次に、この第一中間素材14に、やはり冷間鍛造加工の一種である、第二段階の前方押し出し加工を施す事により、各図の(C)に示した第二中間素材15を得る。次に、この第二中間素材15を、前記特許文献4に記載されている様に、所定の内周面形状を有する分割型のダイス内にセットした状態で、前記第二中間素材15の軸方向端面{各図の(C)の上端面}にパンチを押し付ける。そして、この軸方向外端面を凹ませると共に、この第二中間素材15を構成する金属材料を径方向外方に流動させる、冷間鍛造の一種である側方押し出し加工を施す事により、各図の(D)に示す様な、回転側フランジ7aを有する、第三中間素材16とする。次に、この第三中間素材16に、スタッド17の頭部18(図12参照)の軸方向側面を当接させる座面19、19を形成する為のサイジング加工を施して、各図の(E)に示した第四中間素材20とする。
Of these, the hub main body 9a shown in FIG. 13 has a radial rotation-side flange 7a near the outer peripheral portion of the outer peripheral surface in the axial direction, an inner ring raceway 8 at the middle portion, and a small-diameter step portion 12 at the inner end portion. , Each formed.
Such a hub main body 9a is manufactured by the process shown in FIGS. First, a long raw material made by extrusion molding, rolling molding, or the like is cut into a predetermined length to obtain a columnar material 13 as shown in FIG. Next, a first intermediate material 14 shown in (B) of each figure is produced by subjecting this material 13 to a first-stage forward extrusion process, which is a kind of cold forging process. Next, a second intermediate material 15 shown in (C) of each figure is obtained by subjecting the first intermediate material 14 to a second-stage forward extrusion process, which is also a kind of cold forging. Next, the shaft of the second intermediate material 15 is set in a state where the second intermediate material 15 is set in a split die having a predetermined inner peripheral surface shape as described in Patent Document 4. A punch is pressed against the direction end face {the upper end face of (C) in each figure}. And each figure is given by carrying out the side extrusion processing which is a kind of cold forging which makes the metal material which constitutes this 2nd intermediate material 15 flow radially outward while making this axial direction end face concave. A third intermediate material 16 having a rotation-side flange 7a as shown in FIG. Next, the third intermediate material 16 is subjected to a sizing process for forming seating surfaces 19 and 19 for contacting the axial side surface of the head 18 (see FIG. 12) of the stud 17 (FIG. The fourth intermediate material 20 shown in E) is used.

この第四中間素材20の軸方向内端部{各図の(E)の下端部}には、外周面に雄ねじ部を形成するか(図12に示す様に、前記小径段部12に外嵌した内輪10の抜け止めをナット11により図る構造の場合)、或いは、図15の(F)に示す様に、軸方向内端面に開口する、有底で円形の凹孔21を形成し、この凹孔21の周囲部分を円筒部22として、第五中間素材23とする。この様な円筒部22は、前記小径段部12に前記内輪10を外嵌した状態で、径方向外方に塑性変形させて(かしめ拡げて)、この内輪10の軸方向内端面を抑え付け、この内輪10が前記小径段部12から抜け出る事を防止する。更に、前記第四中間素材20乃至前記第五中間素材23に、前記スタッド17を挿通する為の円孔を形成する為の穿孔、バリ取り、内輪軌道8の加工等の、所定の切削加工及び研削加工を施して、前記ハブ本体9aとする。   In the axially inner end {the lower end of (E) in each figure} of the fourth intermediate material 20 is a male thread formed on the outer peripheral surface (as shown in FIG. (In the case of a structure in which the fitted inner ring 10 is prevented by a nut 11), or as shown in FIG. 15 (F), a bottomed and circular concave hole 21 that opens to the inner end surface in the axial direction is formed. A peripheral portion of the concave hole 21 is a cylindrical portion 22 and is a fifth intermediate material 23. Such a cylindrical portion 22 is plastically deformed radially outward (clamped) in a state in which the inner ring 10 is externally fitted to the small-diameter stepped portion 12, and the axial inner end face of the inner ring 10 is suppressed. The inner ring 10 is prevented from coming out of the small diameter step portion 12. Further, predetermined cutting processing such as drilling for forming a circular hole for inserting the stud 17 in the fourth intermediate material 20 to the fifth intermediate material 23, deburring, and processing of the inner ring raceway 8; The hub body 9a is obtained by grinding.

上述の様にして造られるハブ本体9aは、軽量化する事が望まれる。即ち、このハブ本体9aが組み込まれる車輪支持用転がり軸受ユニット1(図12参照)は、懸架装置を構成するばねよりも路面側に設けられる、所謂ばね下荷重であるから、乗り心地や走行安定性を中心とする走行性能を向上させる為には、少しでも軽量化する事が望まれる。前記特許文献4に記載の製造方法の場合、一般的には、中炭素鋼の如き鉄系合金に冷間鍛造等を施す事で前記ハブ本体9aとしている為、このハブ本体9aの重量が嵩み、前記車輪支持用転がり軸受ユニット1全体の重量も増大してしまう。   It is desired to reduce the weight of the hub body 9a manufactured as described above. That is, the wheel-supporting rolling bearing unit 1 (see FIG. 12) in which the hub body 9a is incorporated is a so-called unsprung load provided on the road surface side of the spring constituting the suspension device. In order to improve the driving performance centering on the characteristics, it is desirable to reduce the weight as much as possible. In the case of the manufacturing method described in Patent Document 4, generally, the hub body 9a is made by subjecting an iron-based alloy such as medium-carbon steel to cold forging, so that the weight of the hub body 9a is bulky. Thus, the weight of the wheel supporting rolling bearing unit 1 as a whole also increases.

尚、前記特許文献4に記載の製造方法の場合、冷間鍛造を主とし、切削加工及び研削加工を最小限に止めて、前記ハブ本体9aを造る。この為、材料の歩留まりを向上させると共に、これら切削加工及び研削加工に要する加工時間を短縮して、前記ハブ本体9aを含む、車輪支持用転がり軸受ユニット1(図12参照)のコスト低減を図れる。但し、上述の図14〜16に示す様に、冷間での前方押し出し加工を利用して前記ハブ本体9aを造ると、このハブ本体9aを構成する軸部24のうちの軸方向中間部乃至内端寄り部分に、非特許文献1に記載される等により冷間鍛造の技術分野で広く知られている、シェブロンクラックと呼ばれる亀裂が発生し、前記軸部24の強度が低下する可能性がある。特に、上述の図14〜16に示す様にして前記ハブ本体9aを造る場合、これら各図の(B)→(C)に示す様に、前記第一中間素材14を前記第二中間素材15に加工する過程で、次述する段部25から軸方向内端面に掛けての領域で、前記シェブロンクラックが発生し易い。   In the case of the manufacturing method described in Patent Document 4, the hub main body 9a is manufactured mainly by cold forging, with cutting and grinding being minimized. For this reason, while improving the yield of material, the processing time which these cutting processing and grinding processing require can be shortened, and the cost reduction of the wheel bearing rolling bearing unit 1 (refer FIG. 12) including the said hub main body 9a can be aimed at. . However, as shown in FIGS. 14 to 16 described above, when the hub main body 9a is manufactured by using the forward extrusion process in the cold, the axially intermediate portion through the shaft portion 24 constituting the hub main body 9a. There is a possibility that a crack called a chevron crack, which is widely known in the technical field of cold forging due to the description in Non-Patent Document 1 or the like, occurs in the inner end portion and the strength of the shaft portion 24 is lowered. is there. In particular, when the hub body 9a is manufactured as shown in FIGS. 14 to 16 described above, the first intermediate material 14 is replaced with the second intermediate material 15 as shown in FIGS. During the processing, the chevron crack is likely to occur in a region extending from the step portion 25 described below to the inner end surface in the axial direction.

この様にシェブロンクラックが発生し易い理由の第一は、前記各図の(A)→(B)に示した、前記素材13に前方押し出し加工を施して前記第一中間素材14とする過程で金属材料(一般的には、炭素濃度が0.3〜0.7重量%程度の中炭素鋼)が加工硬化しているものに、更に前方押し出し加工を施して前記第二中間素材15とする為である。又、理由の第二は、この前方押し出し加工時に於ける、前記金属材料が前記段部25を通過する際の移動速度の差が、径方向外寄り部分と同じく中央寄り部分との間で大きくなる為である。特に、前記段部25の傾斜角度や径方向に関する幅寸法(段差の大きさ)によっては、前記前方押し出し加工時に於ける金属材料の移動速度が、径方向外寄り部分で遅く、中央寄り部分で速くなる傾向が著しくなり(これら両部分の速度の差が大きくなり)、前記軸部24の内部に発生する引っ張り応力が大きくなって、前記シェブロンクラックが発生し易くなる。   As described above, the first reason why chevron cracks are likely to occur is the process shown in (A) → (B) of each of the drawings, in which the material 13 is subjected to forward extrusion processing to form the first intermediate material 14. A metal material (generally, medium carbon steel having a carbon concentration of about 0.3 to 0.7% by weight) is further subjected to forward extrusion to form the second intermediate material 15. Because of that. The second reason is that the difference in moving speed when the metal material passes through the step portion 25 during the forward extrusion process is large between the radially outer portion and the central portion. It is to become. In particular, depending on the inclination angle of the step portion 25 and the width dimension (step size) in the radial direction, the moving speed of the metal material during the forward extrusion process is slow at the radially outer portion and at the central portion. The tendency to increase becomes remarkable (the difference between the speeds of these two parts increases), the tensile stress generated inside the shaft part 24 increases, and the chevron crack is likely to occur.

この様なシェブロンクラックの発生を防止する為には、前記第一中間素材14を得た後、この第一中間素材14に焼鈍処理を施してから、前記第二中間素材15を得る為の、第二段階の前方押し出し加工を施す事が効果がある。但し、この場合には、前記ハブ本体9aの軸方向中間部で前記内輪軌道8を形成すべき部分を含め、各部に必要な硬度を確保する事が難しくなる。又、前記各図の(B)→(C)に示した、第二段階の前方押し出し加工時に、前記第一中間素材14乃至第二中間素材15を、例えば軸方向両側から強く押圧し(高い静水圧を加え)、この第一中間素材14乃至第二中間素材15の内部を圧縮応力場にすれば、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記前方押し出し加工に使用する金型(パンチ及びダイス)として十分な強度及び剛性を有するものを使用する必要があり、この金型の制作費が嵩む。更には、プレス装置として、容量の大きな大型のものを使用する必要があり、この面からも設備費が嵩む。これに対して、前記第一中間素材14乃至第二中間素材15を中空構造とすれば(前記軸部24を中空円筒状とすれば)、前方押し出し加工時に於ける金属材料の移動速度の差を小さく抑えて、前記シェブロンクラックの発生を抑えられる。この様な方法は、駆動輪用の車輪支持用転がり軸受ユニットに組み込まれる、中心部にスプライン孔を有するハブを造る場合には有効であるが、従動輪用で中実のハブ本体9aを造る場合には、必ずしも好ましくない。即ち、ハブ本体を中空にする事で、軽量化を図れる反面、本来不要な中心孔(貫通孔)を形成する事で、この中心孔内に泥水等の異物が入り込むのを防止する為の密封構造が必要になり、コスト低減の面からは不利になる。   In order to prevent the occurrence of such chevron cracks, after obtaining the first intermediate material 14, the first intermediate material 14 is subjected to an annealing treatment, and then the second intermediate material 15 is obtained. It is effective to perform the second-stage forward extrusion. However, in this case, it is difficult to ensure the necessary hardness for each part including the part where the inner ring raceway 8 should be formed at the axially intermediate part of the hub body 9a. Further, at the time of the second-stage forward extrusion process shown in (B) → (C) of each figure, the first intermediate material 14 to the second intermediate material 15 are strongly pressed, for example, from both axial sides (high) If a hydrostatic pressure is applied and the inside of the first intermediate material 14 to the second intermediate material 15 is made a compressive stress field, the generation of the chevron crack can be prevented. However, in such a method, it is necessary to use a mold having a sufficient strength and rigidity as a mold (punch and die) used for the forward extrusion process, and the production cost of this mold increases. Furthermore, it is necessary to use a large press machine having a large capacity, and this also increases the equipment cost. On the other hand, if the first intermediate material 14 to the second intermediate material 15 have a hollow structure (if the shaft portion 24 has a hollow cylindrical shape), the difference in the moving speed of the metal material during forward extrusion processing. The occurrence of the chevron crack can be suppressed. Such a method is effective when building a hub having a spline hole at the center, which is incorporated in a wheel bearing rolling bearing unit for a drive wheel, but a solid hub body 9a for a driven wheel. In some cases, it is not always preferable. That is, by making the hub body hollow, it is possible to reduce the weight, but by forming a center hole (through hole) that is essentially unnecessary, sealing to prevent foreign matter such as muddy water from entering the center hole. A structure is required, which is disadvantageous in terms of cost reduction.

前記ハブ本体9aの軸部24の内部に前記シェブロンクラックの発生を防止する為には、前記各図の(B)→(C)に示した工程を廃止し、前記第一中間素材14に直接、前記回転側フランジ7aを形成する為の側方押し出し加工を施す事が考えられる。この様な製造方法を採用すれば、加工硬化後の前記第一中間素材14に、更に前方押し出し加工を施す必要がなくなる為、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記ハブ本体9aの軸方向内端部の小径段部12全体を、削り加工により形成する必要がある。この為、材料の歩留が悪化するだけでなく、加工時間を要する削り加工の作業量の増大により、前記ハブ本体9aの製造コストが、金型のコストが1工程分減る以上に嵩む事が避けられない。   In order to prevent the occurrence of the chevron crack in the shaft portion 24 of the hub main body 9a, the steps shown in FIGS. It is conceivable to perform a side extrusion process for forming the rotation side flange 7a. By adopting such a manufacturing method, it is not necessary to further extrude the first intermediate material 14 after work hardening, so that the occurrence of the chevron crack can be prevented. However, in such a method, it is necessary to form the entire small-diameter step 12 at the inner end in the axial direction of the hub main body 9a by shaving. For this reason, not only the yield of the material is deteriorated, but also the manufacturing cost of the hub body 9a is increased more than the cost of the mold is reduced by one process due to an increase in the amount of machining that requires machining time. Unavoidable.

特開2006−111070号公報JP 2006-111070 A 特開2006−142983号公報JP 2006-142983 A 特開2008−296694号公報JP 2008-296694 A 特開2009−255751号公報JP 2009-255751 A

木下修司、井上毅、秋田章二著、「鐵と鋼:日本鐵鋼協▲会▼々誌、62(4)」、社団法人日本鉄鋼協会、1976年3月10日、p.165Shuji Kinoshita, Atsushi Inoue, Shoji Akita, “Samurai and Steel: Nippon Steel Cooperative Society, 62 (4)”, Japan Iron and Steel Institute, March 10, 1976, p. 165

本発明は、上述の様な事情に鑑みて、シェブロンクラックの発生を防止しつつ、軽量な段付円柱状部材を得られ、しかも、材料の歩留が悪化したり、加工の手間が煩雑化するのを防止できる製造方法及び軽量な車輪支持用転がり軸受ユニットの構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can obtain a light-weight stepped columnar member while preventing the occurrence of chevron cracks, and the yield of the material is deteriorated, and the labor of processing is complicated. The invention has been invented to realize a manufacturing method that can prevent this from happening and a structure of a lightweight wheel-supporting rolling bearing unit.

本発明の対象となる段付円柱状部材は、外周面に、外径が互いに異なる複数の円筒面部を備える。そして、これら各円筒面部のうち、隣り合う円筒面部同士を段部により連続させている。
特に請求項1に記載した段付円柱状部材の製造方法は、アルミニウム系合金の如き軽合金製の芯材と、中炭素鋼の如き鉄系合金製で、この芯材の端部を除いた外側部分を覆う有底円筒状の表層材とから成る素材を、冷間鍛造加工する。
The stepped columnar member that is the subject of the present invention includes a plurality of cylindrical surface portions having different outer diameters on the outer peripheral surface. And among these cylindrical surface parts, the adjacent cylindrical surface parts are made to continue by the step part.
In particular, the manufacturing method of the stepped columnar member described in claim 1 is made of a light alloy core material such as an aluminum alloy and an iron alloy material such as medium carbon steel, and the end of the core material is removed. A cold forging process is performed on a material composed of a bottomed cylindrical surface layer covering the outer portion.

上述の様な本発明の段付円柱状部材の製造方法を実施する場合に、好ましくは請求項2に記載した発明の様に、前記素材を、前記芯材を前記表層材の内径側部分に締り嵌めする事により造る。
又、この様な請求項2に記載した発明を実施する場合に、好ましくは請求項3に記載した発明の様に、前記芯材の高さ寸法を、前記表層材の中心孔の深さ寸法よりも小さくする。
When implementing the manufacturing method of the stepped columnar member of the present invention as described above, preferably, as in the invention described in claim 2, the raw material is used as the inner diameter side portion of the surface layer material. Made by an interference fit.
Further, when the invention described in claim 2 is carried out, preferably the height dimension of the core material is set to the depth dimension of the center hole of the surface layer material as in the invention described in claim 3. Smaller than.

又、請求項4に記載した発明は、前記素材(この素材に前の工程を施す事により得られた前段階の中間素材を含む)の先端部をダイスに押し込む、前方押し出し加工を施す事により、前記素材の先端部の外径を縮める。そして、この先端部に小径側の円筒面部を、この小径側の円筒面部の基端部に段部を、それぞれ形成する。特に、請求項4に記載した段付円柱状部材の製造方法に於いては、前記小径側の円筒面部及び段部を形成する際に、前記素材の先端面の中央部を、前記ダイスの内径側に配置した、前記小径側の円筒面部の外径よりも小径のカウンターパンチの先端面に押し付けつつ、前記素材の先端部を前記ダイス内に押し込む。そして、この押し込みにより、この素材の先端部の外径を縮めて、前記小径側の円筒面部及び前記段部を形成すると同時に、この小径側の円筒面部の中心部の少なくとも先端寄り部分に、前記先端面の中央部に開口する有底の凹孔を形成する。   In addition, the invention described in claim 4 is such that the front end portion of the material (including the intermediate material of the previous stage obtained by subjecting this material to the previous step) is pushed into the die and subjected to forward extrusion processing. The outer diameter of the tip of the material is reduced. A small-diameter cylindrical surface portion is formed at the distal end portion, and a step portion is formed at the proximal end portion of the small-diameter side cylindrical surface portion. In particular, in the method of manufacturing the stepped columnar member according to claim 4, when forming the cylindrical surface portion and the step portion on the small diameter side, the central portion of the tip surface of the material is set to the inner diameter of the die. The front end portion of the material is pushed into the die while being pressed against the front end surface of the counter punch having a smaller diameter than the outer diameter of the cylindrical surface portion on the small diameter side. And by this pushing, the outer diameter of the tip portion of this material is reduced to form the cylindrical surface portion on the small diameter side and the stepped portion, and at the same time, at least in the portion near the tip of the central portion of the cylindrical surface portion on the small diameter side, A bottomed recessed hole is formed at the center of the distal end surface.

上述の様な請求項4に記載した段付円柱状部材の製造方法を実施する場合に、例えば請求項5〜6に記載した発明の様に、先ず、円柱状の素材に第一段階の前方押し出し加工を施す事により、先端寄り部分を基端寄り部分よりも小径とした第一中間素材とした後、この第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部よりも更に小径の第二円筒面部を、この先端寄り部分の軸方向中間部に第二段部を、それぞれ有する第二中間素材とする。
そして、請求項5に記載した発明の場合には、前記素材の先端面の中央部に前記カウンターパンチの先端面を押し付けつつ、この素材を、この先端面の中央部に前記凹孔を有する前記第一中間素材とする。次いで、この凹孔内にスペーサを内嵌した状態で、この第一中間素材を前記第二中間素材に加工する。
これに対して、請求項6に記載した発明の場合には、前記素材を前記第一中間素材とする際には、前記凹孔を形成しない。その代わりに、前記第一中間素材の先端面の中央部に前記カウンターパンチの先端面を押し付けて前記凹孔を形成しつつ、この第一中間素材を前記第二中間素材とする。
When implementing the manufacturing method of the stepped columnar member described in claim 4 as described above, for example, as in the invention described in claims 5 to 6, first, the columnar material is moved forward of the first step. By making the first intermediate material smaller in diameter than the proximal end portion by extruding, the second intermediate forward extrusion process is applied to the first intermediate material near the distal end. A second cylindrical surface portion having a smaller diameter than the cylindrical surface portion on the small diameter side at the distal end portion and a second step portion at the axial intermediate portion of the distal end portion are used as second intermediate materials.
In the case of the invention described in claim 5, while pressing the tip surface of the counter punch against the center portion of the tip surface of the material, the material has the concave hole in the center portion of the tip surface. The first intermediate material. Next, the first intermediate material is processed into the second intermediate material with a spacer fitted in the concave hole.
On the other hand, in the case of the invention described in claim 6, the concave hole is not formed when the material is the first intermediate material. Instead, the first intermediate material is used as the second intermediate material while the front surface of the counter punch is pressed against the center of the front surface of the first intermediate material to form the concave hole.

又、請求項7に記載した発明は、前記表層材の中心孔の奥端面に凹孔を、前記芯材の基端部にこの凹孔と隙間なく係合する小径部を、それぞれ設ける。そして、前記表層材の内径側部分に前記芯材を締り嵌めする事で前記素材とし、この素材に冷間鍛造加工により前記各円筒面部と前記各段部とを形成して中間素材とする。その後、この中間素材に側方押し出し加工を施す事により、この中間素材の基端寄り部分の外周面に放射状のフランジを設ける。   According to a seventh aspect of the present invention, a concave hole is provided at the back end face of the central hole of the surface layer material, and a small diameter portion is provided at the base end portion of the core member to be engaged with the concave hole without a gap. Then, the core material is tightly fitted to the inner diameter side portion of the surface layer material to form the material, and the cylindrical surface portion and the stepped portion are formed on the material by cold forging to form an intermediate material. Then, a radial flange is provided on the outer peripheral surface of the intermediate material near the base end by subjecting the intermediate material to side extrusion.

又、請求項8に記載した車輪支持用転がり軸受ユニットは、外輪と、ハブと、転動体とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時にも回転しない。
又、前記ハブは、使用時に車輪と共に回転するものであり、ハブ本体と、内輪とを備える。このうちのハブ本体は、軸方向外端寄り部分の外周面に前記車輪を支持固定する為の放射状の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成している。又、前記内輪は、外周面に軸方向内側の内輪軌道を形成し、前記ハブ本体の軸方向内端部に形成された小径段部に外嵌固定されている。
又、前記転動体は、これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている。
特に、請求項8に記載した車輪支持用転がり軸受ユニットの場合には、前記ハブ本体の芯部を軽合金で、この芯部を覆う表面部分を鉄系合金で、それぞれ構成している。
The wheel support rolling bearing unit described in claim 8 includes an outer ring, a hub, and rolling elements.
Among these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate during use.
The hub rotates together with the wheel when in use, and includes a hub body and an inner ring. Of these, the hub body directly forms a radial rotation flange for supporting and fixing the wheel on the outer peripheral surface near the axially outer end, and an axially outer ring on the outer peripheral surface in the axial direction. doing. Further, the inner ring forms an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is fitted and fixed to a small-diameter step portion formed at the inner end in the axial direction of the hub body.
Further, a plurality of rolling elements are provided between the inner ring raceways and the outer ring raceways so as to roll freely in each row.
In particular, in the case of the rolling bearing unit for supporting a wheel according to claim 8, the core portion of the hub body is made of a light alloy, and the surface portion covering the core portion is made of an iron-based alloy.

上述の様に構成する本発明によれば、シェブロンクラックの発生を防止しつつ、軽量な段付円柱状部材を製造して、例えば、この段付円柱状部材をハブ本体として使用した、車輪支持用転がり軸受ユニットを軽量化する事ができる。即ち、この段付円柱状部材を、軽合金製の芯材と、鉄系合金製で、この芯材の外側部分を覆う表層材とから成る素材を冷間鍛造する事により造る為、これら芯材と表層材との間の滑り性を良好にでき、これら芯材及び表層材内部で、それぞれの金属材料の移動速度の差を小さく抑えて、シェブロンクラックの発生を防止できる。又、前述した従来構造の様に全体を中炭素鋼の如き鉄系合金で造る場合と比較して、前記段付円柱状部材の重量が増大するのを抑える事ができる。   According to the present invention configured as described above, a lightweight stepped columnar member is manufactured while preventing the occurrence of chevron cracks. For example, the wheel support using the stepped columnar member as a hub body is used. The rolling bearing unit can be reduced in weight. That is, since this stepped columnar member is made by cold forging a material made of a light alloy core material and a surface layer material made of an iron-based alloy and covering the outer portion of the core material, these cores are made. The sliding property between the material and the surface layer material can be improved, and the difference in the moving speed of the respective metal materials can be suppressed small inside the core material and the surface layer material, thereby preventing the occurrence of chevron cracks. Further, as compared with the case where the whole is made of an iron-based alloy such as medium carbon steel as in the conventional structure described above, it is possible to suppress an increase in the weight of the stepped columnar member.

更に、請求項4〜6に記載した発明によれば、段付円柱状部材の外面形状が限られる場合にも、シェブロンクラックの発生をより効果的に防止でき、しかも、材料の歩留が悪化したり、加工の手間が煩雑化するのを防止できる。
即ち、請求項4〜6に記載した発明の場合には、前記素材の先端部の外径を縮める際に、カウンターパンチにより小径側の円筒面部の中心部に有底の凹孔を形成する。この為、前記素材の先端部をこの小径側の円筒面部とする過程で、この素材の内部での金属材料の流れを整えられる。言い換えれば、前記シェブロンクラック発生の原因となる、前記素材の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。特に、強度確保上の面からの重要部分である、鉄系合金製の表層材部分で、金属材料の移動速度の差を小さくできる。この差を小さくできる事は、前記素材、特に表層材の内部に生じる引っ張り応力の低減に結び付いて、前記シェブロンクラックの発生を抑えられる。更に、前記素材の先端部の中心部を押し潰しつつ、前記凹孔を形成する事により、この素材の内部に、圧縮応力が生じる。この圧縮応力により、前記芯材と前記表層材との間に隙間が生じるのを防ぐ。又、金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑えられる。
Furthermore, according to the invention described in claims 4 to 6, even when the outer surface shape of the stepped columnar member is limited, the generation of chevron cracks can be more effectively prevented, and the yield of the material is deteriorated. And troublesome processing can be prevented.
That is, in the case of the inventions described in claims 4 to 6, when the outer diameter of the leading end portion of the material is reduced, a bottomed concave hole is formed in the central portion of the cylindrical surface portion on the small diameter side by the counter punch. For this reason, the flow of the metallic material inside the material can be adjusted in the process of making the tip of the material the cylindrical surface portion on the small diameter side. In other words, the difference in the moving speed of the metal material between the portion near the outer diameter and the portion near the center of the material that causes the chevron crack can be reduced. In particular, the difference in the moving speed of the metal material can be reduced at the surface layer portion made of an iron-based alloy, which is an important portion from the viewpoint of securing the strength. The fact that this difference can be reduced leads to a reduction in tensile stress generated in the material, particularly the surface layer material, and the generation of the chevron cracks can be suppressed. Furthermore, compressive stress is generated inside the material by forming the concave hole while crushing the center of the tip of the material. This compressive stress prevents a gap from being generated between the core material and the surface layer material. Further, as is well known in the field of metal processing, the compressive stress has an action of suppressing the generation of cracks, and therefore, the generation of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes.

又、前記素材の内部での金属材料の流れを整えると共に、この内部を、圧縮応力場乃至はそれに近い状態にする為に、前記カウンターパンチをこの素材の先端面からこの素材の先端部内側に押し込んで前記凹孔を形成するが、この押し込みに要する力は小さくて済む。この為、前記素材の先端部に小径側の円筒面部を形成する為に要する力が、前記凹孔を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体等の段付円柱状部材の加工コストが嵩む事を防止できる。   In addition, the flow of the metallic material inside the material is arranged, and the counter punch is moved from the front end surface of the material to the inside of the front end portion of the material in order to make the inside of the material a compressive stress field or a state close thereto. Although the concave hole is formed by pushing, the force required for the pushing may be small. For this reason, the force required to form the cylindrical surface portion on the small diameter side at the tip end portion of the material is not significantly increased as compared with the case where the concave hole is not formed (conventional method). Therefore, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub body manufactured by the manufacturing apparatus can be prevented from increasing.

本発明の実施の形態の第1例に関して、中心軸を含む仮想平面に関する断面形状の変化を工程順に示すと共に、一部に就いて端面形状を示した図。The figure which showed the end face shape about a part while showing the change of the cross-sectional shape regarding the virtual plane containing a central axis in order of a process regarding the 1st example of embodiment of this invention. 金型装置により、素材を第一中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing a raw material into the 1st intermediate raw material with a metal mold apparatus. カウンターパンチの先端部の形状の3例を示す部分側面図。The partial side view which shows three examples of the shape of the front-end | tip part of a counter punch. 同じく、別例を示す部分断面図。Similarly, the fragmentary sectional view which shows another example. 金型装置により、第一中間素材を第二中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing a 1st intermediate material into a 2nd intermediate material with the metal mold apparatus. 金型装置により、第二中間素材を第三中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing the 2nd intermediate material into the 3rd intermediate material with the metal mold apparatus. 本発明の実施の形態の第1例を示す、図12と同様の図。The figure similar to FIG. 12 which shows the 1st example of embodiment of this invention. 同第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example. 同じく、図12と同様の図。Similarly, the same figure as FIG. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. 同第4例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 4th example. 本発明の製造方法の対象となるハブ本体を組み込んだ、車輪支持用転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows an example of the rolling bearing unit for wheel support incorporating the hub main body used as the object of the manufacturing method of this invention. 冷間での鍛造加工により造られる、従来から知られたハブ本体の1例を示す、端面図(a)及び側面図(b)。The end view (a) and side view (b) which show an example of the hub body known conventionally from the forging process by cold. 従来から知られているハブ本体の製造方法の1例に関して、側面形状の変化を工程順に示すと共に、一部に関して端面形状を示した図。The figure which showed the end surface shape about one part while showing the change of a side surface shape in order of a process regarding one example of the manufacturing method of the hub main body conventionally known. 同じく側面形状乃至断面形状の変化を示す図。The figure which similarly shows the change of side surface shape thru | or cross-sectional shape. 同じく表面形状の変化を示す斜視図。The perspective view which similarly shows the change of surface shape.

[実施の形態の第1例]
図1〜7は、請求項1〜5、8に対応する本発明の実施の形態の第1例を示している。本例の場合、先ず、第一工程で、図1の(A)に示した、A7075、A6061等のアルミニウム系合金製の芯材26と、中炭素鋼等の鉄系合金製で、この芯材26の外側部分を覆う表層材27とから成る素材28に冷間で前方押し出し加工を施す。この様な素材28は、有底円筒状の表層材27の内径側部分に、円柱状の芯材26を締り嵌めで内嵌する事により造り、これら芯材26と表層材27との間の滑り性を良好にしている。本例の場合、この芯材26の高さHを、表層材27の中心孔の深さDよりも小さくして、前記素材28の端部に段差部29を設けている。この段差部29の深さ(D−H)は、芯材26を構成するアルミニウム系合金や表層材27を構成する鉄系合金の流動性、及び、後述する第一、第二両中間素材33、51の形状や絞り率等を考慮して設定的に定める。前記素材28に冷間鍛造を施す第一工程では、先ず、この素材28を、図2に示す様な、複数のブロックを重ね合わせて成るダイス30のキャビティ31内に挿入する。その後、図示しないプレス装置のラムで押圧される押圧パンチ32により、前記素材28を前記キャビティ31内に押し込む。この押し込み作業によりこの素材28が塑性変形し、この素材28が、このキャビティ31の内周面形状に見合う(母線形状が同じで凹凸が逆である)外周面形状を有する、第一中間素材33となる。
[First example of embodiment]
FIGS. 1-7 has shown the 1st example of embodiment of this invention corresponding to Claims 1-5,8. In the case of this example, first, in the first step, the core 26 made of an aluminum alloy such as A7075 or A6061 and the iron alloy such as medium carbon steel shown in FIG. The material 28 composed of the surface layer material 27 that covers the outer portion of the material 26 is cold-extruded forward. Such a material 28 is formed by fitting a columnar core material 26 into the inner diameter side portion of the bottomed cylindrical surface material 27 with an interference fit, and between the core material 26 and the surface material 27. Good slipperiness. In the case of this example, the height H of the core material 26 is made smaller than the depth D of the center hole of the surface layer material 27, and the step portion 29 is provided at the end of the material 28. The depth (DH) of the stepped portion 29 is such that the fluidity of the aluminum-based alloy constituting the core material 26 and the iron-based alloy constituting the surface layer material 27, and the first and second intermediate materials 33 described later. , 51 in consideration of the shape and aperture ratio. In the first step of cold forging the material 28, first, the material 28 is inserted into a cavity 31 of a die 30 formed by stacking a plurality of blocks as shown in FIG. Thereafter, the material 28 is pushed into the cavity 31 by a pressing punch 32 pressed by a ram of a pressing device (not shown). The material 28 is plastically deformed by the pushing operation, and the material 28 has an outer peripheral surface shape corresponding to the inner peripheral surface shape of the cavity 31 (the bus bar shape is the same and the unevenness is reversed). It becomes.

特に、本例の製造方法の場合には、前記キャビティ31の下端中央部に、カウンターパンチ34の上端部を突出させている。このカウンターパンチ34の下端部は、前記ダイス30を構成する複数個のブロックのうち、最下段のブロックの上面と、次段のブロックとの間で挟持固定している。又、前記カウンターパンチ34の周囲には、円筒状のスリーブ35を、昇降可能に外嵌している。前記キャビティ31の下部は、このスリーブ35の上端面と前記カウンターパンチ34の上端部外面と最上段のブロックの内周面とにより画成されている。又、このスリーブ35の下端面にそれぞれの上端面を突き当てたノックアウトピン36、36の下端面を、前記最下段のブロックに内嵌した、昇降駒37の上面に突き当てている。   In particular, in the case of the manufacturing method of this example, the upper end portion of the counter punch 34 is projected from the lower end center portion of the cavity 31. The lower end portion of the counter punch 34 is clamped and fixed between the upper surface of the lowermost block among the plurality of blocks constituting the die 30 and the next block. A cylindrical sleeve 35 is fitted around the counter punch 34 so as to be movable up and down. The lower portion of the cavity 31 is defined by the upper end surface of the sleeve 35, the outer surface of the upper end portion of the counter punch 34, and the inner peripheral surface of the uppermost block. Further, the lower end surfaces of the knockout pins 36, 36 each abutting the upper end surface against the lower end surface of the sleeve 35 are abutted against the upper surface of the elevating piece 37 fitted in the lowermost block.

上述の様な、図2に示した金型装置を使用し、前記素材28を前記キャビティ31内に押し込むと、この素材28の先端部(下端部)外周面がこのキャビティ31の内周面に沿って塑性変形し、前記第一中間素材33となる。即ち、この第一中間素材33の先端部に、小径側の円筒面部38と、この小径側の円筒面部38の基端側から連続してより大径の部分に連続する、傾斜段部39とを形成する。これと同時に、前記第一中間素材33のうちで前記小径側の円筒面部38の中心部(前記芯材26の中心部)に前記カウンターパンチ34の上端部が押し込まれ、この小径側の円筒面部38の中心部に、前記第一中間素材33の先端面に開口する、断面形状が円形である、有底の凹孔40が形成される。   When the material 28 is pushed into the cavity 31 using the mold apparatus shown in FIG. 2 as described above, the outer peripheral surface of the tip (lower end) of the material 28 is brought to the inner peripheral surface of the cavity 31. The first intermediate material 33 is plastically deformed along the line. That is, at the distal end portion of the first intermediate material 33, a cylindrical surface portion 38 on the small diameter side, and an inclined step portion 39 that continues from the proximal end side of the cylindrical surface portion 38 on the small diameter side and continues to the larger diameter portion, Form. At the same time, the upper end portion of the counter punch 34 is pushed into the central portion of the first intermediate material 33 (the central portion of the core member 26) of the cylindrical surface portion 38 on the small diameter side, and this cylindrical surface portion on the small diameter side A bottomed concave hole 40 having a circular cross-sectional shape that opens at the front end surface of the first intermediate material 33 is formed at the center of the first intermediate material 33.

この凹孔40を形成する為の、前記カウンターパンチ34の外径及び軸方向長さは、前記素材28乃至前記第一中間素材33の、芯材26を構成するアルミニウム系合金及び表層材27を構成する鉄系合金の流動性や、前記カウンターパンチ34の耐久性を考慮して、設計的配慮により決定する。このカウンターパンチ34の外径に関しては、大きい程、その耐久性が向上する代わりに、前記第一中間素材33の先端部で前記凹孔40の周囲部分が加工硬化する程度が著しくなる。そして、完成後のハブ本体9bの先端部(軸方向内端部)を径方向外方に塑性変形させる(かしめ拡げる)事が難しくなる。これらの点を考慮すれば、前記カウンターパンチ34の外径は、前記小径側の円筒面部38の外径の1/3〜2/3程度、最も好ましくは1/2程度に規制する。又、前記カウンターパンチ34の軸方向長さにより定まる、前記凹孔40の深さに関しても、前記耐久性及び加工硬化の程度を考慮して定める。本例の場合、前記押圧パンチ32を下死点にまで下降させ、前記第一中間素材33の加工を完了した状態で、前記凹孔40の深さが、完成後のハブ本体の軸方向内端部に存在する小径段部12aの軸方向長さに一致するか、この軸方向長さよりも少しだけ大きくなる様にしている。又、前記カウンターパンチ34の先端面(上端面)の形状に関しても、前記耐久性及び加工硬化の程度を考慮して定める。例えば、図3の(a)に示す様な単なる平坦面、同じく(b)に示す様な円すい台形、同じく(c)に示す様な半球状を採用できる。或いは、図4に示す様に、先端部に傾斜面部41を設け、この傾斜面部41に真鍮等の銅系合金製のリング42をボルト43で支持固定した、カウンターパンチ34を採用する事もできる。この様なカウンターパンチ34の先端部が前記小径側の円筒面部38の中心部に押し込まれると、前記図4に誇張して示す様に、前記芯材26の静水圧により前記傾斜面部41に沿って前記リング42の直径が、前記カウンターパンチ34の径方向外方に弾性的に拡げられる。この結果、前記カウンターパンチ34を押し込む際に、このリング42の外周面と前記第一中間素材33の中心部に存在する、前記芯材26或いは前記表層材27とを隙間なく摺接させて、この芯材26の一部が前記凹孔40の内周面で突出するのを防止できる(この内周面を滑らかにできる)。このリング42は、前記芯材26を構成するアルミニウム系合金、前記表層材27や前記カウンターパンチ34を構成する鉄系合金とは異なる、銅系合金である為、このリング42と前記第一中間素材33との接触部の滑り性を良好にできる。   The outer diameter and axial length of the counter punch 34 for forming the concave hole 40 are the same as those of the aluminum alloy and the surface layer material 27 constituting the core material 26 of the material 28 to the first intermediate material 33. This is determined by design consideration in consideration of the fluidity of the iron-based alloy to be constructed and the durability of the counter punch 34. The larger the outer diameter of the counter punch 34, the greater the degree of work hardening of the peripheral portion of the concave hole 40 at the tip of the first intermediate material 33, instead of improving its durability. Then, it becomes difficult to plastically deform (clamp and spread) the distal end portion (axially inner end portion) of the hub body 9b after completion in the radial direction. Considering these points, the outer diameter of the counter punch 34 is restricted to about 1/3 to 2/3, most preferably about 1/2 of the outer diameter of the cylindrical surface portion 38 on the small diameter side. Further, the depth of the concave hole 40 determined by the axial length of the counter punch 34 is determined in consideration of the durability and the degree of work hardening. In the case of this example, in the state where the pressing punch 32 is lowered to the bottom dead center and the processing of the first intermediate material 33 is completed, the depth of the concave hole 40 is set in the axial direction of the hub body after completion. It is made to correspond to the axial direction length of the small diameter step part 12a which exists in an edge part, or just to become slightly larger than this axial direction length. Further, the shape of the front end surface (upper end surface) of the counter punch 34 is determined in consideration of the durability and the degree of work hardening. For example, a simple flat surface as shown in FIG. 3A, a truncated trapezoidal shape as shown in FIG. 3B, or a hemispherical shape as shown in FIG. Alternatively, as shown in FIG. 4, it is possible to employ a counter punch 34 in which an inclined surface portion 41 is provided at the tip portion, and a ring 42 made of a copper alloy such as brass is supported and fixed to the inclined surface portion 41 by a bolt 43. . When the tip of the counter punch 34 is pushed into the central portion of the cylindrical surface portion 38 on the small diameter side, as shown exaggeratedly in FIG. 4, along the inclined surface portion 41 due to the hydrostatic pressure of the core member 26. Thus, the diameter of the ring 42 is elastically expanded outward in the radial direction of the counter punch 34. As a result, when the counter punch 34 is pushed in, the core material 26 or the surface layer material 27 present in the outer peripheral surface of the ring 42 and the central portion of the first intermediate material 33 is slidably contacted without gaps, It is possible to prevent a part of the core material 26 from protruding from the inner peripheral surface of the concave hole 40 (this inner peripheral surface can be made smooth). Since this ring 42 is a copper-based alloy different from the aluminum-based alloy constituting the core material 26 and the iron-based alloy constituting the surface layer material 27 and the counter punch 34, the ring 42 and the first intermediate The slipperiness of the contact portion with the material 33 can be improved.

何れの場合でも、前記押圧パンチ32を下死点まで下降させ、前記第一中間素材33を形成したならば、この押圧パンチ32を上昇させるのに続いて、それまで下降していた前記昇降駒37を上昇させ、前記各ノックアウトピン36、36を介して前記スリーブ35を上昇させる。この結果、前記第一中間素材33が前記キャビティ31から押し出されるので、この第一中間素材33を前記ダイス30から取り出し、次の第二工程を施す為、図5に示した金型装置の、フローティングダイス44の第二キャビティ45内に挿入する。このフローティングダイス44は、複数のばね46、46により固定ブロック47の上方に、下方に向いた大きな力が加わった場合に下降する様に、昇降可能に支持されている。又、前記固定ブロック47の上面に載置固定した第二スリーブ48の上端部を、前記フローティングダイス44の下端部に軸方向の変位(上下方向の摺動)を可能に内嵌している。更に、前記第二スリーブ48の下端部に、前記固定ブロック47の内径側に昇降可能に設置した、スリーブ35aの上端部を、軸方向の変位(上下方向の摺動)を可能に内嵌している。   In any case, if the pressing punch 32 is lowered to the bottom dead center and the first intermediate material 33 is formed, the raising / lowering piece that has been lowered until then is raised after the pressing punch 32 is raised. 37 is raised, and the sleeve 35 is raised via the knockout pins 36, 36. As a result, the first intermediate material 33 is pushed out of the cavity 31, so that the first intermediate material 33 is taken out from the die 30 and subjected to the next second step, so that the mold apparatus shown in FIG. It is inserted into the second cavity 45 of the floating die 44. The floating die 44 is supported by a plurality of springs 46 and 46 so as to be able to move up and down so as to descend when a large downward force is applied above the fixed block 47. The upper end portion of the second sleeve 48 placed and fixed on the upper surface of the fixed block 47 is fitted into the lower end portion of the floating die 44 so as to be capable of axial displacement (sliding in the vertical direction). Further, the upper end portion of the sleeve 35a, which is installed on the inner diameter side of the fixed block 47, is fitted into the lower end portion of the second sleeve 48 so as to be capable of axial displacement (up and down sliding). ing.

又、前記スリーブ35aの内側に、前記カウンターパンチ34とほぼ同じ外面形状を有するスペーサ49を、このスリーブ35aとは独立した昇降を可能に設置している。本例の場合、このスペーサ49の下端面と、前記固定ブロック47を構成する固定板との間にばね50を設けて、このスペーサ49に、上方に向いた弾力を付与している。前記第一中間素材33{図1の(B)及び図2参照}を前記第二キャビティ45内に挿入した状態で、前記スペーサ49の上端面は、前記凹孔40の奥端面に当接する。そして、前記第一中間素材33を第二中間素材51に加工する為の、前記第二工程の進行中、前記スペーサ49の上端面が前記凹孔40の奥端面に当接し続ける。前記第二キャビティ45の下部の内面形状は、前記第二スリーブ48の内周面及び先端面(上端面)と、前記スリーブ35aの上端面と、前記スペーサ49の外周面及び先端面とにより画成される。更に、前記フローティングダイス44には、押圧パンチ32aの下端部を押し込む事により、前記第一中間素材33の外面形状を、前記第二キャビティ45の内面形状に合わせて塑性変形(前方押し出し成形)可能としている。   In addition, a spacer 49 having substantially the same outer shape as the counter punch 34 is provided inside the sleeve 35a so as to be able to move up and down independently of the sleeve 35a. In the case of this example, a spring 50 is provided between the lower end surface of the spacer 49 and the fixing plate that constitutes the fixing block 47, and an upward elasticity is applied to the spacer 49. With the first intermediate material 33 (see FIG. 1B and FIG. 2) inserted into the second cavity 45, the upper end surface of the spacer 49 abuts against the inner end surface of the concave hole 40. Then, the upper end surface of the spacer 49 is kept in contact with the inner end surface of the concave hole 40 during the progress of the second step for processing the first intermediate material 33 into the second intermediate material 51. The inner surface shape of the lower portion of the second cavity 45 is defined by the inner peripheral surface and the front end surface (upper end surface) of the second sleeve 48, the upper end surface of the sleeve 35a, and the outer peripheral surface and front end surface of the spacer 49. Made. Further, by pushing the lower end portion of the pressing punch 32 a into the floating die 44, the outer surface shape of the first intermediate material 33 can be plastically deformed (forward extrusion molding) in accordance with the inner surface shape of the second cavity 45. It is said.

上述の様な、図5に示した金型装置を使用し、前記第一中間素材33を前記第二キャビティ45内に大きな力で押し込むと、この第一中間素材33の下部が、この第二キャビティ45の内面に沿って塑性変形し、前記第二中間素材51となる。即ち、前記第一中間素材33の先端部の小径側の円筒面部38の先端部乃至軸方向中間部が、前記第二スリーブ48の内周面と前記スペーサ49の外周面との間に存在する円筒状の空間内に押し込まれる。そして、この押し込まれた部分の外周面が、前記小径側の円筒面部38よりも更に小径の、小径段部12aとなる。又、前記押圧パンチ32aが下死点にまで下降した状態で、前記第二スリーブ48の先端面(上端面)により押圧された部分が、ハブ3aを組み立てた状態で内輪10a(図7参照)の軸方向外端面を突き当てる為の、段部25aとなる。尚、前記スペーサ49は、上述の様な第二工程の進行に伴って、前記ばね50を圧縮しつつ、その下端面が前記固定ブロック47を構成する一部のブロックの上面に当接するまで下降する。従って、この第二工程が進行する間中、前記スペーサ49の先端面が前記凹孔40の奥端面に押し付けられたままの状態となる。又、前記第二工程の進行に伴って、前記小径段部12aの軸方向長さが、元の小径側の円筒面部38の一部でこの小径段部12aとなるべき部分の軸方向長さよりも伸張し、これに伴って前記凹孔40の深さも深くなる。   When the first intermediate material 33 is pushed into the second cavity 45 with a large force using the mold apparatus shown in FIG. 5 as described above, the lower portion of the first intermediate material 33 is moved to the second intermediate material 33. The second intermediate material 51 is plastically deformed along the inner surface of the cavity 45. That is, the distal end portion or the axial intermediate portion of the cylindrical surface portion 38 on the small diameter side of the distal end portion of the first intermediate material 33 exists between the inner peripheral surface of the second sleeve 48 and the outer peripheral surface of the spacer 49. It is pushed into the cylindrical space. The outer peripheral surface of the pushed-in portion becomes a small diameter step portion 12a having a smaller diameter than the cylindrical surface portion 38 on the small diameter side. Further, in a state where the pressing punch 32a is lowered to the bottom dead center, the portion pressed by the tip surface (upper end surface) of the second sleeve 48 is the inner ring 10a (see FIG. 7) in a state where the hub 3a is assembled. It becomes the step part 25a for abutting the axial direction outer end surface. The spacer 49 is lowered until the lower end surface of the spacer 49 comes into contact with the upper surface of a part of the fixed block 47 while compressing the spring 50 with the progress of the second step as described above. To do. Accordingly, while the second step proceeds, the tip end surface of the spacer 49 remains pressed against the back end surface of the concave hole 40. With the progress of the second step, the axial length of the small diameter step portion 12a is larger than the axial length of the portion of the original cylindrical surface portion 38 on the small diameter side that should become the small diameter step portion 12a. And the depth of the concave hole 40 is increased accordingly.

上述の様にして、前記第二中間素材51を形成したならば、前記押圧パンチ32aを上昇させる。すると、前記フローティングダイス44が前記各ばね46、46の弾力により、前記スペーサ49が前記ばね50の弾力により、それぞれ少し上昇する。そこで、これら各部材44、49の上昇に続いて、それまで下降していた昇降駒37aを上昇させ、各ノックアウトピン36a、36aを介して前記スリーブ35aを上昇させる。この結果、前記第二中間素材51が前記第二キャビティ45から押し出される為、この第二中間素材51を前記フローティングダイス44から取り出し、次の第三工程を施す為、図6に示した金型装置の、ダイス52の第三キャビティ53内に挿入する。又、前記凹孔40に、ばね50aにより上方に付勢されているスペーサ49aの先端部(上端部側)を、隙間なく内嵌する。そして、押圧パンチ32bの周囲に配置したフローティングダイス44aにより前記第二中間素材51を抑えつつ、前記押圧パンチ32bによりこの第二中間素材51を軸方向に押し潰す。そして、外周面に放射状の回転側フランジ7aを設けた、図1の(D)及び図6に示す様な、第三中間素材54とする。この様な第三工程の進行中、前記フローティングダイス44aの下面は、ばね46a、46aの弾力により、前記ダイス52の上面に押し付けられたままとなる。   When the second intermediate material 51 is formed as described above, the pressing punch 32a is raised. Then, the floating die 44 is slightly raised by the elasticity of the springs 46 and 46, and the spacer 49 is slightly raised by the elasticity of the spring 50. Therefore, following the ascent of these members 44, 49, the elevating piece 37a that has been lowered is raised, and the sleeve 35a is raised via the knockout pins 36a, 36a. As a result, since the second intermediate material 51 is pushed out from the second cavity 45, the second intermediate material 51 is taken out from the floating die 44 and subjected to the next third step. The device is inserted into the third cavity 53 of the die 52. Further, the front end portion (upper end portion side) of the spacer 49a biased upward by the spring 50a is fitted into the concave hole 40 without any gap. The second intermediate material 51 is crushed in the axial direction by the pressing punch 32b while the second intermediate material 51 is suppressed by the floating die 44a disposed around the pressing punch 32b. And it is set as the 3rd intermediate material 54 as shown to (D) of FIG. 1, and FIG. 6 which provided the radial rotation side flange 7a in the outer peripheral surface. During the progress of such a third step, the lower surface of the floating die 44a remains pressed against the upper surface of the die 52 by the elasticity of the springs 46a and 46a.

上述の様にして、前記第三中間素材54を形成したならば、前記押圧パンチ32bを上昇させてから、それまで下降していた昇降駒37bを上昇させ、各ノックアウトピン36b、36bを介してスリーブ35bを上昇させる。この結果、前記第三中間素材54が前記第三キャビティ53から押し出されるので、この第三中間素材54を前記ダイス52から取り出し、次の工程に送る。
この次の工程では、前記第三中間素材54のうちで、前記凹孔40の開口寄り部分の内径を、旋削加工等の削り加工により拡げ、当該部分を、別の凹孔40aとして、図1の(E)に示す様な、第四中間素材55とする。
この第四中間素材55は、更に次の工程に送り、面押し加工や切削加工、研削加工等、必要な加工を施して、ハブ本体9bとして完成する。これらの加工に就いては、従来の製造方法と同様であり、又、当業者にとって周知であるから、図示並びに説明は省略する。但し、本例の場合、スタッド17を挿通する為の円孔56の内周面をシール剤で覆い、電食を防止する。
When the third intermediate material 54 is formed as described above, the pressing punch 32b is raised, and then the raising / lowering piece 37b that has been lowered is raised and the knockout pins 36b and 36b are interposed. The sleeve 35b is raised. As a result, the third intermediate material 54 is pushed out from the third cavity 53, and the third intermediate material 54 is taken out of the die 52 and sent to the next step.
In this next step, in the third intermediate material 54, the inner diameter of the portion near the opening of the concave hole 40 is expanded by a cutting process such as turning, and this part is used as another concave hole 40a. A fourth intermediate material 55 as shown in (E) of FIG.
The fourth intermediate material 55 is further sent to the next step, and subjected to necessary processing such as surface pressing, cutting, and grinding to complete the hub body 9b. Since these processes are the same as those in the conventional manufacturing method and are well known to those skilled in the art, illustration and description are omitted. However, in this example, the inner peripheral surface of the circular hole 56 through which the stud 17 is inserted is covered with a sealant to prevent electrolytic corrosion.

そして、この様にして造られたハブ本体9bの小径段部12aに内輪10aを外嵌し、前記別の凹孔40aに治具を挿入し、この小径段部12aの軸方向内端部を径方向外方にかしめ拡げる事でかしめ部57を形成する。これにより、前記ハブ本体9bの軸方向内端部に、前記内輪10aを支持固定する事でハブ3aとする。このハブ3aを、転動体4、4を介して外輪2に支持する事により、車輪支持用転がり軸受ユニット1aを構成する。尚、この外輪2の内端開口部を、有底円筒状のカバー(図示せず)で塞ぐ事により、この外輪2の内径側空間への塵芥や雨水等の浸入防止、及びこの内径側空間に充填したグリースの外部への漏えい防止を図る。   Then, the inner ring 10a is externally fitted to the small-diameter step portion 12a of the hub main body 9b manufactured in this way, a jig is inserted into the another concave hole 40a, and the axial inner end portion of the small-diameter step portion 12a is inserted. The caulking portion 57 is formed by caulking outward in the radial direction. Thus, the hub 3a is formed by supporting and fixing the inner ring 10a to the inner end of the hub body 9b in the axial direction. By supporting the hub 3a on the outer ring 2 via the rolling elements 4 and 4, a wheel support rolling bearing unit 1a is configured. The inner ring opening of the outer ring 2 is closed with a bottomed cylindrical cover (not shown) to prevent infiltration of dust and rain water into the inner diameter side space of the outer ring 2, and the inner diameter side space. Prevent leakage of grease filled in the outside.

上述の様な本例のハブ本体の製造方法によれば、造られるハブ本体9bの重量の増大を抑えて、このハブ本体9bを組み込んだ車輪支持用転がり軸受ユニット1a全体を軽量化できる。即ち、このハブ本体9bの芯部を軽合金で、同じく外側部分を鉄系合金で形成している為、前述した従来構造の様にハブ本体を鉄系合金のみで形成する場合と比較して、前記ハブ本体9bを軽量化する事ができる。又、このハブ本体9bのうち、車輪支持用転がり軸受ユニット1aを構成する転動体4、4や内輪10aと接触する部分である表面部分をこれら各部材4、10aを構成するのと同じ鉄系合金としているので、この表面部分に必要とされる硬度を確保すると共に、この表面部分に電食による損傷が発生するのを防止できる。ハブ本体9bの軸方向内端部に関しては、周知の従来構造と同様、使用状態で、前記外輪2の内端開口部を塞ぐキャップにより外部空間と遮てられるので、電食が発生する事はない。   According to the hub body manufacturing method of this example as described above, an increase in the weight of the hub body 9b to be manufactured can be suppressed, and the entire wheel support rolling bearing unit 1a incorporating the hub body 9b can be reduced in weight. That is, since the core portion of the hub body 9b is made of a light alloy and the outer portion is made of an iron alloy, the hub body is made of only an iron alloy as in the conventional structure described above. The hub body 9b can be reduced in weight. Further, in the hub main body 9b, the same iron system as that constituting the respective members 4, 10a is formed on the surface portion which is a portion in contact with the rolling elements 4, 4 and the inner ring 10a constituting the wheel supporting rolling bearing unit 1a. Since the alloy is used, it is possible to ensure the required hardness for the surface portion and to prevent the surface portion from being damaged by electrolytic corrosion. The inner end of the hub body 9b in the axial direction is shielded from the external space by a cap that closes the inner end opening of the outer ring 2 in use, as in the known conventional structure. Absent.

又、本例の場合、前記素材28の先端部(図1の下端部)の外径を縮めて前記第一中間素材33とする際に、前記カウンターパンチ34により、前記小径側の円筒面部38の中心部に有底の凹孔40を形成する。この時、前記芯材26の高さHを前記表層材27の深さDよりも小さくし段差部29を設けている為、この表層材27を構成する鉄系合金よりも流動性が高い、前記芯材26を構成する軽合金が、前記第一中間素材33の先端面(図1、2の下端面)から突出するのを防止できる。又、前記芯材26を軽合金製とし、前記表層材27を鉄系合金製としている為、これら芯材26と表層材27との間の滑り性を良好にでき、これら芯材26及び表層材27内部で、それぞれの金属材料の移動速度の差を小さく抑えて、前述したシェブロンクラックの発生を防止できる。更に、前記素材28の先端部をこの小径側の円筒面部38とする過程で、この素材28の内部での金属材料の流れを整流できて、前記シェブロンクラック発生の原因となる、この素材28の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。この結果、前記素材28乃至前記第一中間素材33の内部に生じる引っ張り応力を低減して、前記シェブロンクラックの発生を抑えられる。更に、前記素材28の先端部の中心部を押し潰しつつ、前記凹孔40を形成する事により、この素材28を塑性変形させて得られる、前記第一中間素材33の内部に、圧縮応力が生じる。この圧縮応力により、前記芯材26と前記表層材27との間に隙間が生じるのを防止できる。又、金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔40の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑える事ができる。そして、前記第一工程で前記第一中間素材33の内部に生じた、前記圧縮応力は、前記第二工程でも亀裂の発生防止に寄与して、この第二工程で前記第二中間素材51の内部に、シェブロンクラックが発生する事を防止する。   Further, in the case of this example, when the outer diameter of the tip end portion (lower end portion in FIG. 1) of the material 28 is reduced to form the first intermediate material 33, the counter punch 34 causes the cylindrical surface portion 38 on the small diameter side. A bottomed recessed hole 40 is formed at the center of the substrate. At this time, since the height H of the core material 26 is smaller than the depth D of the surface layer material 27 and the step portion 29 is provided, the fluidity is higher than the iron-based alloy constituting the surface layer material 27. It can prevent that the light alloy which comprises the said core material 26 protrudes from the front end surface (lower end surface of FIG. 1, 2) of said 1st intermediate raw material 33. FIG. In addition, since the core material 26 is made of a light alloy and the surface layer material 27 is made of an iron-based alloy, the sliding property between the core material 26 and the surface layer material 27 can be improved. In the material 27, the difference in the moving speed of the respective metal materials can be suppressed small, and the above-mentioned chevron crack can be prevented. Further, in the process of making the tip portion of the material 28 into the cylindrical surface portion 38 on the small diameter side, the flow of the metal material inside the material 28 can be rectified, causing the chevron crack to occur. The difference in the moving speed of the metal material between the outer diameter portion and the center portion can be reduced. As a result, the tensile stress generated inside the material 28 to the first intermediate material 33 is reduced, and the occurrence of the chevron crack can be suppressed. Further, by forming the concave hole 40 while crushing the central portion of the distal end portion of the material 28, a compressive stress is generated in the first intermediate material 33 obtained by plastic deformation of the material 28. Arise. This compressive stress can prevent a gap from being generated between the core material 26 and the surface layer material 27. Further, as is well known in the field of metalworking, the compressive stress has the effect of suppressing the occurrence of cracks, and therefore the generation of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes 40. The compressive stress generated in the first intermediate material 33 in the first step contributes to prevention of cracks in the second step, and the second intermediate material 51 of the second step 51 Prevents chevron cracks from occurring inside.

又、本例の場合、前記芯材26が鉄系合金よりも軟らかい、アルミニウム系合金等の軽合金製である為、前記素材28を冷間鍛造するのに要する力は、前述した従来構造の様に素材を鉄系合金のみで造る場合と比較して小さくて済む。又、前記カウンターパンチ34を前記素材28の先端面からこの素材28の先端部内側に押し込んで、前記凹孔40を形成する為に要する力は小さくて済む。従って、前記素材28の先端部に小径側の円筒面部38を形成する為に要する力が、前記凹孔40を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部38を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体9b等の段付円柱状部材の加工コストが嵩む事を防止できる。   In the case of this example, since the core material 26 is softer than the iron-based alloy and is made of a light alloy such as an aluminum-based alloy, the force required for cold forging the material 28 is the same as that of the conventional structure described above. In this way, the material can be made smaller compared to the case where the material is made of only an iron alloy. Further, the force required to form the concave hole 40 by pushing the counter punch 34 from the front end surface of the material 28 into the front end portion of the material 28 may be small. Accordingly, the force required to form the small-diameter cylindrical surface portion 38 at the distal end portion of the material 28 is not significantly increased compared to the case where the concave hole 40 is not formed (in the conventional method). Accordingly, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion 38 on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub main body 9b manufactured by the manufacturing apparatus can be prevented from increasing.

[実施の形態の第2例]
図8〜9は、請求項1〜5、7、8に対応する、本発明の実施の形態の第2例を示している。本例の場合、素材28aの芯材26aの奥端部(図8の上端部)に、中間寄り部分よりも外径寸法の小さい小径部58を設けている。これにより、第二中間素材51aを第三中間素材54aに加工する第三工程{図8の(C)→(D)}で、外周面に放射状の回転側フランジ7bを設ける際に、スタッド17を挿通する為の円孔56を形成する部分に、前記芯材26aを構成する軽合金が進入しない様にできる。この結果、前記円孔56を形成した後に、この円孔56の内径側に軽合金が露出するのを防止できるので、電食防止の為に、この円孔56部分にシール剤を塗布する手間が不要になる。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
[Second Example of Embodiment]
FIGS. 8-9 has shown the 2nd example of embodiment of this invention corresponding to Claims 1-5,7,8. In the case of this example, a small-diameter portion 58 having a smaller outer diameter than the middle portion is provided at the back end portion (upper end portion in FIG. 8) of the core material 26a of the material 28a. Accordingly, when the radial rotation side flange 7b is provided on the outer peripheral surface in the third step {(C) → (D)} in FIG. 8 in which the second intermediate material 51a is processed into the third intermediate material 54a, the stud 17 is provided. It is possible to prevent the light alloy constituting the core material 26a from entering the portion where the circular hole 56 is inserted. As a result, it is possible to prevent the light alloy from being exposed to the inner diameter side of the circular hole 56 after the circular hole 56 is formed. Therefore, it is troublesome to apply a sealing agent to the circular hole 56 portion in order to prevent electrolytic corrosion. Is no longer necessary.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

[実施の形態の第3例]
図10は、請求項1〜5に対応する、本発明の実施の形態の第3例を示している。本例の場合には、素材28を第一中間素材33aに加工する第一工程{図10の(A)→(B)}で、この第一中間素材33aの先端部に形成する凹孔40bの深さを、前述した実施の形態の第1例の場合よりも浅くしている。そして、前記第一中間素材33aを第二中間素材51bとする、第二工程{図10の(B)→(C)}を終了した状態で、前記凹孔40bの奥端面の軸方向位置が、小径段部12aの基端部に存在する段部25aの軸方向位置とほぼ一致する様にしている。本例の場合、前記第一中間素材33aの表層材27のうち、前記凹孔40bを形成する部分の外径側に存在する部分(段部25aを形成する部分よりも軸方向外側に位置する部分まで)の内周面を、円筒面状としている。この結果、芯材26が前記凹孔40bの内周面に突出し難くできる。特に、カウンターパンチ34の先端部の形状を、前述した図4に示す様なものとする事で、前記芯材26の突出量を更に抑える事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
[Third example of embodiment]
FIG. 10 shows a third example of an embodiment of the present invention corresponding to claims 1 to 5. In the case of this example, in the first step {(A) → (B)} in FIG. 10) of processing the material 28 into the first intermediate material 33a, the concave hole 40b formed at the tip of the first intermediate material 33a. Is made shallower than in the first example of the embodiment described above. Then, in the state where the second step {(B) → (C)} in FIG. 10}, in which the first intermediate material 33a is the second intermediate material 51b, the axial position of the back end surface of the concave hole 40b is The axial position of the step portion 25a existing at the base end portion of the small-diameter step portion 12a is substantially matched. In the case of this example, of the surface layer material 27 of the first intermediate material 33a, a portion that exists on the outer diameter side of the portion that forms the recessed hole 40b (is located on the outer side in the axial direction than the portion that forms the step portion 25a). The inner peripheral surface (up to the part) is cylindrical. As a result, the core member 26 can be made difficult to protrude from the inner peripheral surface of the concave hole 40b. Particularly, by making the shape of the tip of the counter punch 34 as shown in FIG. 4 described above, the protruding amount of the core material 26 can be further suppressed.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

[実施の形態の第4例]
図11は、請求項1〜4、6に対応する、本発明の実施の形態の第4例を示している。本例の場合には、素材28を第一中間素材33bに加工する第一工程{図11の(A)→(B)}は、前述の図13〜16に示した従来方法と同様に行う。そして、次に行う、前記第一中間素材33bを第二中間素材51cとする第二工程{図11の(B)→(C)}で、カウンターパンチ34(図2参照)により、前記第二中間素材51cの先端中心部に、凹孔40を形成する。又、この第二中間素材51cの先端寄り部分に、小径段部12aを、この先端寄り部分の軸方向中間部(小径段部12aの基端部)に、段部25aを、それぞれ形成する。
[Fourth Example of Embodiment]
FIG. 11 shows a fourth example of an embodiment of the present invention corresponding to claims 1 to 4 and 6. In the case of this example, the first step {(A) → (B)} in FIG. 11 for processing the material 28 into the first intermediate material 33b is performed in the same manner as the conventional method shown in FIGS. . Then, in the second step {(B) → (C)} in FIG. 11) in which the first intermediate material 33b is used as the second intermediate material 51c, the second step is performed by the counter punch 34 (see FIG. 2). A concave hole 40 is formed in the center of the tip of the intermediate material 51c. Further, a small-diameter step portion 12a is formed near the tip of the second intermediate material 51c, and a step portion 25a is formed at an axially intermediate portion (base end portion of the small-diameter step portion 12a) near the tip.

前記第一工程時には、前記素材28が未だ加工硬化されていない為、得られる第一中間素材33bの内部にシェブロンクラックが発生する事はない。これに対して、前記第二中間素材51cを得る第二工程時には、既に加工硬化している前記第一中間素材33bの先端部の外径を前方押し出し加工により縮める為、シェブロンクラックが発生し易い。そこで、本例の場合には、この様な第二工程時に、前記第一中間素材33bの先端面に前記凹孔40を形成して、前記シェブロンクラックの発生を防止する様にしている。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
At the time of the first step, since the material 28 is not yet work hardened, chevron cracks do not occur inside the obtained first intermediate material 33b. On the other hand, in the second step of obtaining the second intermediate material 51c, the outer diameter of the tip of the first intermediate material 33b that has already been hardened is reduced by forward extrusion processing, so that chevron cracks are likely to occur. . Therefore, in the case of this example, the concave hole 40 is formed in the front end surface of the first intermediate material 33b in such a second step so as to prevent the occurrence of the chevron crack.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

上述した本発明の実施の形態の各例は何れも、外径が異なる複数の円筒面部を設ける為の前方押し出し加工を、第一工程と第二工程との二段階で実施している。但し、加工後の円筒面部のうち、最も小径の円筒面部の外径を、加工前の素材の外径で除した値(絞り率)が1/2以上の場合、これら各円筒面部を設ける前方押し出し加工を一工程で実施する事もできる。   In each example of the embodiment of the present invention described above, the forward extrusion processing for providing a plurality of cylindrical surface portions having different outer diameters is performed in two stages of the first process and the second process. However, when the value (drawing rate) obtained by dividing the outer diameter of the smallest cylindrical surface portion by the outer diameter of the raw material before processing is 1/2 or more among the processed cylindrical surface portions, the front where the respective cylindrical surface portions are provided. Extrusion can also be performed in one step.

又、本発明の段付円柱状部材の製造方法及び車輪支持用転がり軸受ユニットのうち、請求項1〜3の何れか1項に記載した段付円柱状部材の製造方法を適用する、車輪支持用転がり軸受ユニットを構成するハブ本体の製造方法は、上述した本発明の実施の形態の各例の製造方法に限られない。即ち、シェブロンクラックの発生が問題にならない程度であったり、或いは、別の方法によりシェブロンクラックの発生を防止できるのであれば、前述した従来のハブ本体の製造方法に、本発明の段付円柱状部材の製造方法を適用する事もできる。   Moreover, the wheel support which applies the manufacturing method of the stepped cylindrical member as described in any one of Claims 1-3 among the manufacturing method of the stepped cylindrical member of this invention, and the rolling bearing unit for wheel support. The manufacturing method of the hub main body constituting the rolling bearing unit for use is not limited to the manufacturing method of each example of the embodiment of the present invention described above. That is, if the generation of chevron cracks is not a problem, or if the generation of chevron cracks can be prevented by another method, the conventional hub body manufacturing method described above is incorporated in the stepped cylindrical shape of the present invention. The manufacturing method of a member can also be applied.

又、本発明の段付円柱状部材の製造方法は、従動輪用の車輪支持用転がり軸受ユニットを構成するハブ本体を造る場合に、顕著な効果を得られる。但し、複数段階で重複する部分に前方押し出し加工を施し、当該部分を段付形状とする物品であれば、前記ハブ本体に限らず、当該物品の製造に適用できる。   Moreover, the manufacturing method of the stepped columnar member of the present invention can provide a remarkable effect when a hub body constituting a wheel support rolling bearing unit for a driven wheel is manufactured. However, as long as it is an article in which a portion that overlaps in a plurality of stages is subjected to forward extrusion and the part has a stepped shape, the present invention can be applied not only to the hub body but also to the manufacture of the article.

1、1a 車輪支持用転がり軸受ユニット
2 外輪
3、3a ハブ
4 転動体
5 外輪軌道
6 静止側フランジ
7、7a、7b 回転側フランジ
8 内輪軌道
9、9a ハブ本体
10、10a 内輪
11 ナット
12、12a 小径段部
13 素材
14 第一中間素材
15 第二中間素材
16 第三中間素材
17 スタッド
18 頭部
19 座面
20 第四中間素材
21、21a 凹孔
22 円筒部
23 第五中間素材
24 軸部
25、25a 段部
26、26a 芯材
27 表層材
28、28a 素材
29 段差部
30 ダイス
31 キャビティ
32、32a、32b 押圧パンチ
33、33a、33b 第一中間素材
34 カウンターパンチ
35、35a スリーブ
36、36a、36b ノックアウトピン
37、37a、37b 昇降駒
38 小径側の円筒面部
39 傾斜段部
40、40a 凹孔
41 傾斜面部
42 リング
43 ボルト
44、44a フローティングダイス
45 第二キャビティ
46、46a ばね
47 固定ブロック
48 第二スリーブ
49、49a スペーサ
50、50a ばね
51、51a〜51c 第二中間素材
52 ダイス
53 第三キャビティ
54、54a 第三中間素材
55 第四中間素材
56 円孔
57 かしめ部
58 小径部
DESCRIPTION OF SYMBOLS 1, 1a Rolling bearing unit for wheel support 2 Outer ring 3, 3a Hub 4 Rolling element 5 Outer ring raceway 6 Stationary side flange 7, 7a, 7b Rotation side flange 8 Inner ring raceway 9, 9a Hub body 10, 10a Inner ring 11 Nut 12, 12a Small diameter step portion 13 Material 14 First intermediate material 15 Second intermediate material 16 Third intermediate material 17 Stud 18 Head 19 Seat surface 20 Fourth intermediate material 21, 21a Recessed hole 22 Cylindrical portion 23 Fifth intermediate material 24 Shaft portion 25 , 25a Step part 26, 26a Core material 27 Surface layer material 28, 28a Material 29 Step part 30 Dies 31 Cavity 32, 32a, 32b Press punch 33, 33a, 33b First intermediate material 34 Counter punch 35, 35a Sleeve 36, 36a, 36b Knockout pin 37, 37a, 37b Elevating piece 38 Cylindrical surface portion 3 on the small diameter side 3 9 Inclined step 40, 40a Recessed hole 41 Inclined surface 42 Ring 43 Bolt 44, 44a Floating die 45 Second cavity 46, 46a Spring 47 Fixed block 48 Second sleeve 49, 49a Spacer 50, 50a Spring 51, 51a-51c First Second intermediate material 52 Die 53 Third cavity 54, 54a Third intermediate material 55 Fourth intermediate material 56 Circular hole 57 Caulking portion 58 Small diameter portion

この発明は、ハブ本体を備える車輪支持用転がり軸受ユニットの改良に関する。 This invention relates to an improvement in a wheel supporting rolling bearing unit comprising a hub body.

自動車の車輪を構成するホイール、及び、制動用回転部材であるディスク或いはドラムを、懸架装置を構成するナックルに回転自在に支持する為に、車輪支持用転がり軸受ユニットが広く使用されている。図12は、従来から広く知られている、従動輪(FR車及びMR車の前輪、FF車の後輪)用の車輪支持用転がり軸受ユニット1の1例を示している。この車輪支持用転がり軸受ユニット1は、外輪2の内径側にハブ3を、複数の転動体4、4を介して、回転自在に支持している。使用状態では、前記外輪2を前記ナックルに結合固定し、前記ハブ3に車輪及び制動用回転部材を支持固定する。そして、これら車輪及び制動用回転部材を前記ナックルに対し、回転自在に支持する。   2. Description of the Related Art A wheel bearing rolling bearing unit is widely used to rotatably support a wheel constituting a wheel of an automobile and a disk or drum which is a rotating member for braking on a knuckle constituting a suspension device. FIG. 12 shows an example of a wheel bearing rolling bearing unit 1 for a driven wheel (a front wheel of an FR vehicle and an MR vehicle, a rear wheel of an FF vehicle) that has been widely known. The wheel supporting rolling bearing unit 1 supports a hub 3 on the inner diameter side of an outer ring 2 via a plurality of rolling elements 4 and 4 in a freely rotatable manner. In the state of use, the outer ring 2 is coupled and fixed to the knuckle, and the wheel and the brake rotating member are supported and fixed to the hub 3. Then, these wheels and the brake rotating member are rotatably supported with respect to the knuckle.

この為に、前記外輪2の内周面の2箇所位置に複列の外輪軌道5、5を、外周面の一部で、軸方向中央部よりも少し軸方向内寄り部分(軸方向に関して内とは、使用状態で車体の幅方向中央側となる側を言い、図12の右側。反対に、使用状態で車体の幅方向外側となる、図12の左側を、軸方向に関して外と言う。本明細書全体で同じ。)に静止側フランジ6を、それぞれ形成している。一方、前記ハブ3の外周面には、前記外輪2よりも軸方向外方に突出した外端寄り部分に、車輪及び制動用回転部材を支持固定する為の回転側フランジ7を、軸方向中間部乃至内端寄り部分に複列の内輪軌道8、8を、それぞれ形成している。そして、これら両列の内輪軌道8、8と前記両列の外輪軌道5、5との間に前記各転動体4、4を、両列毎に複数個ずつ配置して、前記外輪2の内径側での前記ハブ3の回転を自在としている。   For this purpose, double-row outer ring raceways 5 and 5 are arranged at two positions on the inner peripheral surface of the outer ring 2 at a part of the outer peripheral surface, slightly inwardly in the axial direction from the central part in the axial direction. Means the side that is the central side in the width direction of the vehicle body in the used state, and the right side of Fig. 12. Conversely, the left side in Fig. 12 that is the outside in the width direction of the vehicle body in the used state is referred to as the outside in the axial direction. The same applies to the entire specification), and the stationary side flanges 6 are respectively formed. On the other hand, the outer peripheral surface of the hub 3 is provided with a rotation-side flange 7 for supporting and fixing the wheel and the brake rotating member on a portion near the outer end protruding outward in the axial direction from the outer ring 2. Double-row inner ring raceways 8 and 8 are formed on the portion near the inner end. A plurality of rolling elements 4, 4 are arranged between the inner ring raceways 8, 8 in both rows and the outer ring raceways 5, 5 in both rows, and the inner diameter of the outer race 2 is set. The hub 3 can freely rotate on the side.

尚、前記ハブ3は、ハブ本体9と、内輪10と、ナット11とから成り、前記内輪軌道8、8は、このハブ本体9の中間部及びこの内輪10の外周面に形成されている。又、この内輪10は、このハブ本体9の軸方向内端寄り部分に形成した小径段部12に外嵌した状態で、前記ナット11により、前記ハブ本体9に対し固定している。尚、このハブ本体9の軸方向内端部に形成したかしめ部により、前記内輪10をこのハブ本体9に対し固定する構造も、広く知られている。   The hub 3 includes a hub body 9, an inner ring 10, and a nut 11, and the inner ring raceways 8 and 8 are formed in an intermediate portion of the hub body 9 and an outer peripheral surface of the inner ring 10. Further, the inner ring 10 is fixed to the hub body 9 by the nut 11 in a state where the inner ring 10 is externally fitted to a small-diameter step portion 12 formed near the inner end of the hub body 9 in the axial direction. A structure in which the inner ring 10 is fixed to the hub body 9 by a caulking portion formed at the inner end of the hub body 9 in the axial direction is also widely known.

上述の様な車輪支持用転がり軸受ユニット1を構成する前記ハブ本体9は、炭素鋼等の金属材料に塑性加工を施す事により造る。この様な塑性加工により造られるハブ本体の構造、並びにこの様な塑性加工の方法に就いては、例えば特許文献1〜4に記載される等により、従来から広く知られている。このうちの特許文献4に記載されたハブ本体の構造及びその製造方法に就いて、図13〜16により説明する。   The hub body 9 constituting the wheel support rolling bearing unit 1 as described above is manufactured by subjecting a metal material such as carbon steel to plastic working. The structure of the hub body produced by such plastic working and the method of such plastic working have been widely known, for example, as described in Patent Documents 1 to 4. Among these, the structure of the hub main body and the manufacturing method thereof described in Patent Document 4 will be described with reference to FIGS.

このうちの図13に示したハブ本体9aは、外周面の軸方向外端寄り部分に放射状の回転側フランジ7aを、同じく中間部に内輪軌道8を、同じく内端部に小径段部12を、それぞれ形成している。
この様なハブ本体9aは、図14〜16に示した工程により造る。先ず、押し出し成形、圧延成形等により造られた長尺な原材料を所定長さに切断する事により、各図の(A)に示す様な、円柱状の素材13を得る。次いで、この素材13に、冷間鍛造加工の一種である、第一段階の前方押し出し加工を施す事により、各図の(B)に示した第一中間素材14を造る。次に、この第一中間素材14に、やはり冷間鍛造加工の一種である、第二段階の前方押し出し加工を施す事により、各図の(C)に示した第二中間素材15を得る。次に、この第二中間素材15を、前記特許文献4に記載されている様に、所定の内周面形状を有する分割型のダイス内にセットした状態で、前記第二中間素材15の軸方向端面{各図の(C)の上端面}にパンチを押し付ける。そして、この軸方向外端面を凹ませると共に、この第二中間素材15を構成する金属材料を径方向外方に流動させる、冷間鍛造の一種である側方押し出し加工を施す事により、各図の(D)に示す様な、回転側フランジ7aを有する、第三中間素材16とする。次に、この第三中間素材16に、スタッド17の頭部18(図12参照)の軸方向側面を当接させる座面19、19を形成する為のサイジング加工を施して、各図の(E)に示した第四中間素材20とする。
Of these, the hub main body 9a shown in FIG. 13 has a radial rotation-side flange 7a near the outer peripheral portion of the outer peripheral surface in the axial direction, an inner ring raceway 8 at the middle portion, and a small-diameter step portion 12 at the inner end portion. , Each formed.
Such a hub main body 9a is manufactured by the process shown in FIGS. First, a long raw material made by extrusion molding, rolling molding, or the like is cut into a predetermined length to obtain a columnar material 13 as shown in FIG. Next, a first intermediate material 14 shown in (B) of each figure is produced by subjecting this material 13 to a first-stage forward extrusion process, which is a kind of cold forging process. Next, a second intermediate material 15 shown in (C) of each figure is obtained by subjecting the first intermediate material 14 to a second-stage forward extrusion process, which is also a kind of cold forging. Next, the shaft of the second intermediate material 15 is set in a state where the second intermediate material 15 is set in a split die having a predetermined inner peripheral surface shape as described in Patent Document 4. A punch is pressed against the direction end face {the upper end face of (C) in each figure}. And each figure is given by carrying out the side extrusion processing which is a kind of cold forging which makes the metal material which constitutes this 2nd intermediate material 15 flow radially outward while making this axial direction end face concave. A third intermediate material 16 having a rotation-side flange 7a as shown in FIG. Next, the third intermediate material 16 is subjected to a sizing process for forming seating surfaces 19 and 19 for contacting the axial side surface of the head 18 (see FIG. 12) of the stud 17 (FIG. The fourth intermediate material 20 shown in E) is used.

この第四中間素材20の軸方向内端部{各図の(E)の下端部}には、外周面に雄ねじ部を形成するか(図12に示す様に、前記小径段部12に外嵌した内輪10の抜け止めをナット11により図る構造の場合)、或いは、図15の(F)に示す様に、軸方向内端面に開口する、有底で円形の凹孔21を形成し、この凹孔21の周囲部分を円筒部22として、第五中間素材23とする。この様な円筒部22は、前記小径段部12に前記内輪10を外嵌した状態で、径方向外方に塑性変形させて(かしめ拡げて)、この内輪10の軸方向内端面を抑え付け、この内輪10が前記小径段部12から抜け出る事を防止する。更に、前記第四中間素材20乃至前記第五中間素材23に、前記スタッド17を挿通する為の円孔を形成する為の穿孔、バリ取り、内輪軌道8の加工等の、所定の切削加工及び研削加工を施して、前記ハブ本体9aとする。   In the axially inner end {the lower end of (E) in each figure} of the fourth intermediate material 20 is a male thread formed on the outer peripheral surface (as shown in FIG. (In the case of a structure in which the fitted inner ring 10 is prevented by a nut 11), or as shown in FIG. 15 (F), a bottomed and circular concave hole 21 that opens to the inner end surface in the axial direction is formed. A peripheral portion of the concave hole 21 is a cylindrical portion 22 and is a fifth intermediate material 23. Such a cylindrical portion 22 is plastically deformed radially outward (clamped) in a state in which the inner ring 10 is externally fitted to the small-diameter stepped portion 12, and the axial inner end face of the inner ring 10 is suppressed. The inner ring 10 is prevented from coming out of the small diameter step portion 12. Further, predetermined cutting processing such as drilling for forming a circular hole for inserting the stud 17 in the fourth intermediate material 20 to the fifth intermediate material 23, deburring, and processing of the inner ring raceway 8; The hub body 9a is obtained by grinding.

上述の様にして造られるハブ本体9aは、軽量化する事が望まれる。即ち、このハブ本体9aが組み込まれる車輪支持用転がり軸受ユニット1(図12参照)は、懸架装置を構成するばねよりも路面側に設けられる、所謂ばね下荷重であるから、乗り心地や走行安定性を中心とする走行性能を向上させる為には、少しでも軽量化する事が望まれる。前記特許文献4に記載の製造方法の場合、一般的には、中炭素鋼の如き鉄系合金に冷間鍛造等を施す事で前記ハブ本体9aとしている為、このハブ本体9aの重量が嵩み、前記車輪支持用転がり軸受ユニット1全体の重量も増大してしまう。   It is desired to reduce the weight of the hub body 9a manufactured as described above. That is, the wheel-supporting rolling bearing unit 1 (see FIG. 12) in which the hub body 9a is incorporated is a so-called unsprung load provided on the road surface side of the spring constituting the suspension device. In order to improve the driving performance centering on the characteristics, it is desirable to reduce the weight as much as possible. In the case of the manufacturing method described in Patent Document 4, generally, the hub body 9a is made by subjecting an iron-based alloy such as medium-carbon steel to cold forging, so that the weight of the hub body 9a is bulky. Thus, the weight of the wheel supporting rolling bearing unit 1 as a whole also increases.

尚、前記特許文献4に記載の製造方法の場合、冷間鍛造を主とし、切削加工及び研削加工を最小限に止めて、前記ハブ本体9aを造る。この為、材料の歩留まりを向上させると共に、これら切削加工及び研削加工に要する加工時間を短縮して、前記ハブ本体9aを含む、車輪支持用転がり軸受ユニット1(図12参照)のコスト低減を図れる。但し、上述の図14〜16に示す様に、冷間での前方押し出し加工を利用して前記ハブ本体9aを造ると、このハブ本体9aを構成する軸部24のうちの軸方向中間部乃至内端寄り部分に、非特許文献1に記載される等により冷間鍛造の技術分野で広く知られている、シェブロンクラックと呼ばれる亀裂が発生し、前記軸部24の強度が低下する可能性がある。特に、上述の図14〜16に示す様にして前記ハブ本体9aを造る場合、これら各図の(B)→(C)に示す様に、前記第一中間素材14を前記第二中間素材15に加工する過程で、次述する段部25から軸方向内端面に掛けての領域で、前記シェブロンクラックが発生し易い。   In the case of the manufacturing method described in Patent Document 4, the hub main body 9a is manufactured mainly by cold forging, with cutting and grinding being minimized. For this reason, while improving the yield of material, the processing time which these cutting processing and grinding processing require can be shortened, and the cost reduction of the wheel bearing rolling bearing unit 1 (refer FIG. 12) including the said hub main body 9a can be aimed at. . However, as shown in FIGS. 14 to 16 described above, when the hub main body 9a is manufactured by using the forward extrusion process in the cold, the axially intermediate portion through the shaft portion 24 constituting the hub main body 9a. There is a possibility that a crack called a chevron crack, which is widely known in the technical field of cold forging due to the description in Non-Patent Document 1 or the like, occurs in the inner end portion and the strength of the shaft portion 24 is lowered. is there. In particular, when the hub body 9a is manufactured as shown in FIGS. 14 to 16 described above, the first intermediate material 14 is replaced with the second intermediate material 15 as shown in FIGS. During the processing, the chevron crack is likely to occur in a region extending from the step portion 25 described below to the inner end surface in the axial direction.

この様にシェブロンクラックが発生し易い理由の第一は、前記各図の(A)→(B)に示した、前記素材13に前方押し出し加工を施して前記第一中間素材14とする過程で金属材料(一般的には、炭素濃度が0.3〜0.7重量%程度の中炭素鋼)が加工硬化しているものに、更に前方押し出し加工を施して前記第二中間素材15とする為である。又、理由の第二は、この前方押し出し加工時に於ける、前記金属材料が前記段部25を通過する際の移動速度の差が、径方向外寄り部分と同じく中央寄り部分との間で大きくなる為である。特に、前記段部25の傾斜角度や径方向に関する幅寸法(段差の大きさ)によっては、前記前方押し出し加工時に於ける金属材料の移動速度が、径方向外寄り部分で遅く、中央寄り部分で速くなる傾向が著しくなり(これら両部分の速度の差が大きくなり)、前記軸部24の内部に発生する引っ張り応力が大きくなって、前記シェブロンクラックが発生し易くなる。   As described above, the first reason why chevron cracks are likely to occur is the process shown in (A) → (B) of each of the drawings, in which the material 13 is subjected to forward extrusion processing to form the first intermediate material 14. A metal material (generally, medium carbon steel having a carbon concentration of about 0.3 to 0.7% by weight) is further subjected to forward extrusion to form the second intermediate material 15. Because of that. The second reason is that the difference in moving speed when the metal material passes through the step portion 25 during the forward extrusion process is large between the radially outer portion and the central portion. It is to become. In particular, depending on the inclination angle of the step portion 25 and the width dimension (step size) in the radial direction, the moving speed of the metal material during the forward extrusion process is slow at the radially outer portion and at the central portion. The tendency to increase becomes remarkable (the difference between the speeds of these two parts increases), the tensile stress generated inside the shaft part 24 increases, and the chevron crack is likely to occur.

この様なシェブロンクラックの発生を防止する為には、前記第一中間素材14を得た後、この第一中間素材14に焼鈍処理を施してから、前記第二中間素材15を得る為の、第二段階の前方押し出し加工を施す事が効果がある。但し、この場合には、前記ハブ本体9aの軸方向中間部で前記内輪軌道8を形成すべき部分を含め、各部に必要な硬度を確保する事が難しくなる。又、前記各図の(B)→(C)に示した、第二段階の前方押し出し加工時に、前記第一中間素材14乃至第二中間素材15を、例えば軸方向両側から強く押圧し(高い静水圧を加え)、この第一中間素材14乃至第二中間素材15の内部を圧縮応力場にすれば、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記前方押し出し加工に使用する金型(パンチ及びダイス)として十分な強度及び剛性を有するものを使用する必要があり、この金型の制作費が嵩む。更には、プレス装置として、容量の大きな大型のものを使用する必要があり、この面からも設備費が嵩む。これに対して、前記第一中間素材14乃至第二中間素材15を中空構造とすれば(前記軸部24を中空円筒状とすれば)、前方押し出し加工時に於ける金属材料の移動速度の差を小さく抑えて、前記シェブロンクラックの発生を抑えられる。この様な方法は、駆動輪用の車輪支持用転がり軸受ユニットに組み込まれる、中心部にスプライン孔を有するハブを造る場合には有効であるが、従動輪用で中実のハブ本体9aを造る場合には、必ずしも好ましくない。即ち、ハブ本体を中空にする事で、軽量化を図れる反面、本来不要な中心孔(貫通孔)を形成する事で、この中心孔内に泥水等の異物が入り込むのを防止する為の密封構造が必要になり、コスト低減の面からは不利になる。   In order to prevent the occurrence of such chevron cracks, after obtaining the first intermediate material 14, the first intermediate material 14 is subjected to an annealing treatment, and then the second intermediate material 15 is obtained. It is effective to perform the second-stage forward extrusion. However, in this case, it is difficult to ensure the necessary hardness for each part including the part where the inner ring raceway 8 should be formed at the axially intermediate part of the hub body 9a. Further, at the time of the second-stage forward extrusion process shown in (B) → (C) of each figure, the first intermediate material 14 to the second intermediate material 15 are strongly pressed, for example, from both axial sides (high) If a hydrostatic pressure is applied and the inside of the first intermediate material 14 to the second intermediate material 15 is made a compressive stress field, the generation of the chevron crack can be prevented. However, in such a method, it is necessary to use a mold having a sufficient strength and rigidity as a mold (punch and die) used for the forward extrusion process, and the production cost of this mold increases. Furthermore, it is necessary to use a large press machine having a large capacity, and this also increases the equipment cost. On the other hand, if the first intermediate material 14 to the second intermediate material 15 have a hollow structure (if the shaft portion 24 has a hollow cylindrical shape), the difference in the moving speed of the metal material during forward extrusion processing. The occurrence of the chevron crack can be suppressed. Such a method is effective when building a hub having a spline hole at the center, which is incorporated in a wheel bearing rolling bearing unit for a drive wheel, but a solid hub body 9a for a driven wheel. In some cases, it is not always preferable. That is, by making the hub body hollow, it is possible to reduce the weight, but by forming a center hole (through hole) that is essentially unnecessary, sealing to prevent foreign matter such as muddy water from entering the center hole. A structure is required, which is disadvantageous in terms of cost reduction.

前記ハブ本体9aの軸部24の内部に前記シェブロンクラックの発生を防止する為には、前記各図の(B)→(C)に示した工程を廃止し、前記第一中間素材14に直接、前記回転側フランジ7aを形成する為の側方押し出し加工を施す事が考えられる。この様な製造方法を採用すれば、加工硬化後の前記第一中間素材14に、更に前方押し出し加工を施す必要がなくなる為、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記ハブ本体9aの軸方向内端部の小径段部12全体を、削り加工により形成する必要がある。この為、材料の歩留が悪化するだけでなく、加工時間を要する削り加工の作業量の増大により、前記ハブ本体9aの製造コストが、金型のコストが1工程分減る以上に嵩む事が避けられない。   In order to prevent the occurrence of the chevron crack in the shaft portion 24 of the hub main body 9a, the steps shown in FIGS. It is conceivable to perform a side extrusion process for forming the rotation side flange 7a. By adopting such a manufacturing method, it is not necessary to further extrude the first intermediate material 14 after work hardening, so that the occurrence of the chevron crack can be prevented. However, in such a method, it is necessary to form the entire small-diameter step 12 at the inner end in the axial direction of the hub main body 9a by shaving. For this reason, not only the yield of the material is deteriorated, but also the manufacturing cost of the hub body 9a is increased more than the cost of the mold is reduced by one process due to an increase in the amount of machining that requires machining time. Unavoidable.

特開2006−111070号公報JP 2006-111070 A 特開2006−142983号公報JP 2006-142983 A 特開2008−296694号公報JP 2008-296694 A 特開2009−255751号公報JP 2009-255751 A

木下修司、井上毅、秋田章二著、「鐵と鋼:日本鐵鋼協▲会▼々誌、62(4)」、社団法人日本鉄鋼協会、1976年3月10日、p.165Shuji Kinoshita, Atsushi Inoue, Shoji Akita, “Samurai and Steel: Nippon Steel Cooperative Society, 62 (4)”, Japan Iron and Steel Institute, March 10, 1976, p. 165

本発明は、上述の様な事情に鑑みて、シェブロンクラックの発生を防止できて、軽量な車輪支持用転がり軸受ユニットの構造を実現すべく発明したものである。 The present invention is, in view of the circumstances as described above, it is possible to prevent the occurrence of chevron cracks is obtained by the invention to realize a structure of lightweight wheel supporting rolling bearing unit.

本発明の対象となる車輪支持用転がり軸受ユニットを構成するハブ本体を含めて、段付円柱状部材は、外周面に、外径が互いに異なる複数の円筒面部を備える。そして、これら各円筒面部のうち、隣り合う円筒面部同士を段部により連続させている。
又、段付円柱状部材の製造方法は、アルミニウム系合金の如き軽合金製の芯材と、中炭素鋼の如き鉄系合金製で、この芯材の端部を除いた外側部分を覆う有底円筒状の表層材とから成る素材を、冷間鍛造加工する。
The stepped columnar member including the hub body constituting the wheel bearing rolling bearing unit that is the subject of the present invention includes a plurality of cylindrical surface portions having different outer diameters on the outer peripheral surface. And among these cylindrical surface parts, the adjacent cylindrical surface parts are made to continue by the step part.
In addition, the manufacturing method of the stepped columnar member is made of a light alloy core material such as an aluminum alloy and an iron alloy material such as medium carbon steel, and covers the outer portion excluding the end of the core material. A material composed of a bottom cylindrical surface layer material is cold forged.

上述の様な段付円柱状部材の製造方法を実施する場合に、好ましくは、前記素材を、前記芯材を前記表層材の内径側部分に締り嵌めする事により造る。
又、この場合に、好ましくは、前記芯材の高さ寸法を、前記表層材の中心孔の深さ寸法よりも小さくする。
When implementing the manufacturing method of the stepped columnar member as described above, preferably , the material is made by fitting the core material to the inner diameter side portion of the surface layer material.
Also, if this, preferably, the height dimension of said core member, is smaller than the depth dimension of the center hole of the surface layer member.

、前記素材(この素材に前の工程を施す事により得られた前段階の中間素材を含む)の先端部をダイスに押し込む、前方押し出し加工を施す事により、前記素材の先端部の外径を縮める。そして、この先端部に小径側の円筒面部を、この小径側の円筒面部の基端部に段部を、それぞれ形成する。そして、前記小径側の円筒面部及び段部を形成する際に、前記素材の先端面の中央部を、前記ダイスの内径側に配置した、前記小径側の円筒面部の外径よりも小径のカウンターパンチの先端面に押し付けつつ、前記素材の先端部を前記ダイス内に押し込む。そして、この押し込みにより、この素材の先端部の外径を縮めて、前記小径側の円筒面部及び前記段部を形成すると同時に、この小径側の円筒面部の中心部の少なくとも先端寄り部分に、前記先端面の中央部に開口する有底の凹孔を形成する。 Also, before SL material pushes the leading end of (the pre-obtained by subjecting a previous step to the material comprising the intermediate material) in the die, by applying a forward extrusion, the outer tip portion of said material Shrink the diameter. A small-diameter cylindrical surface portion is formed at the distal end portion, and a step portion is formed at the proximal end portion of the small-diameter side cylindrical surface portion . Then, when forming the cylindrical surface portion and the stepped portion of the small diameter side, the central portion of the front end surface of the material was placed on the inner diameter side of the die, the small diameter of the counter than the outer diameter of the cylindrical surface portion of the small diameter side While pressing against the front end surface of the punch, the front end portion of the material is pressed into the die. And by this pushing, the outer diameter of the tip portion of this material is reduced to form the cylindrical surface portion on the small diameter side and the stepped portion, and at the same time, at least in the portion near the tip of the central portion of the cylindrical surface portion on the small diameter side, A bottomed recessed hole is formed at the center of the distal end surface.

この場合に、例えば、先ず、円柱状の素材に第一段階の前方押し出し加工を施す事により、先端寄り部分を基端寄り部分よりも小径とした第一中間素材とした後、この第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部よりも更に小径の第二円筒面部を、この先端寄り部分の軸方向中間部に第二段部を、それぞれ有する第二中間素材とする。
そして、前記素材の先端面の中央部に前記カウンターパンチの先端面を押し付けつつ、この素材を、この先端面の中央部に前記凹孔を有する前記第一中間素材とする。次いで、この凹孔内にスペーサを内嵌した状態で、この第一中間素材を前記第二中間素材に加工する。
或いは、前記素材を前記第一中間素材とする際には、前記凹孔を形成しない。その代わりに、前記第一中間素材の先端面の中央部に前記カウンターパンチの先端面を押し付けて前記凹孔を形成しつつ、この第一中間素材を前記第二中間素材とする。
In this case, For example, first, by applying a forward extrusion of the first stage cylindrical material, after the first intermediate material has a smaller diameter than the proximal end portion near the distal end portion closer, the first A second-stage forward extrusion process is performed on the tip portion of the intermediate material, and a second cylindrical surface portion having a smaller diameter than the cylindrical surface portion on the small diameter side is provided at the tip portion, and an axially intermediate portion of the tip portion is provided. Let the second step part be a second intermediate material.
Then, before Symbol while pressing the distal end surface of the counter punch on the central portion of the front end surface of the material, the material, and the first intermediate material having a concave hole at the center portion of the distal end surface. Next, the first intermediate material is processed into the second intermediate material with a spacer fitted in the concave hole.
Alternatively , when the material is the first intermediate material, the concave hole is not formed. Instead, the first intermediate material is used as the second intermediate material while the front surface of the counter punch is pressed against the center of the front surface of the first intermediate material to form the concave hole.

、前記表層材の中心孔の奥端面に凹孔を、前記芯材の基端部にこの凹孔と隙間なく係合する小径部を、それぞれ設ける。そして、前記表層材の内径側部分に前記芯材を締り嵌めする事で前記素材とし、この素材に冷間鍛造加工により前記各円筒面部と前記各段部とを形成して中間素材とする。その後、この中間素材に側方押し出し加工を施す事により、この中間素材の基端寄り部分の外周面に放射状のフランジを設ける。 Also, pre-Symbol a recessed holes in the back end surface of the center hole of the surface layer material, a small diameter portion which engages without gaps and the concave hole on the base end portion of the core member, respectively provided. Then, the core material is tightly fitted to the inner diameter side portion of the surface layer material to form the material, and the cylindrical surface portion and the stepped portion are formed on the material by cold forging to form an intermediate material. Then, a radial flange is provided on the outer peripheral surface of the intermediate material near the base end by subjecting the intermediate material to side extrusion.

上述の様に構成する段付円柱状部材の製造方法によれば、シェブロンクラックの発生を防止しつつ、軽量な段付円柱状部材を製造して、例えば、この段付円柱状部材をハブ本体として使用した、本発明の車輪支持用転がり軸受ユニットを軽量化する事ができる。即ち、この段付円柱状部材を、軽合金製の芯材と、鉄系合金製で、この芯材の外側部分を覆う表層材とから成る素材を冷間鍛造する事により造る為、これら芯材と表層材との間の滑り性を良好にでき、これら芯材及び表層材内部で、それぞれの金属材料の移動速度の差を小さく抑えて、シェブロンクラックの発生を防止できる。又、前述した従来構造の様に全体を中炭素鋼の如き鉄系合金で造る場合と比較して、前記段付円柱状部材の重量が増大するのを抑える事ができる。According to the manufacturing method of the stepped columnar member configured as described above, a lightweight stepped columnar member is manufactured while preventing the occurrence of chevron cracks. It is possible to reduce the weight of the rolling bearing unit for wheel support according to the present invention. That is, since this stepped columnar member is made by cold forging a material made of a light alloy core material and a surface layer material made of an iron-based alloy and covering the outer portion of the core material, these cores are made. The sliding property between the material and the surface layer material can be improved, and the difference in the moving speed of the respective metal materials can be suppressed small inside the core material and the surface layer material, thereby preventing the occurrence of chevron cracks. Further, as compared with the case where the whole is made of an iron-based alloy such as medium carbon steel as in the conventional structure described above, it is possible to suppress an increase in the weight of the stepped columnar member.

更に、小径側の円筒面部の中心部に有底の凹孔を形成すれば、段付円柱状部材の外面形状が限られる場合にも、シェブロンクラックの発生をより効果的に防止でき、しかも、材料の歩留が悪化したり、加工の手間が煩雑化するのを防止できる。Furthermore, if a bottomed concave hole is formed at the center of the cylindrical surface portion on the small diameter side, the occurrence of chevron cracks can be more effectively prevented even when the outer surface shape of the stepped columnar member is limited, It is possible to prevent the yield of the material from deteriorating and complication of processing.
即ち、前記素材の先端部の外径を縮める際に、カウンターパンチにより小径側の円筒面部の中心部に有底の凹孔を形成する。この為、前記素材の先端部をこの小径側の円筒面部とする過程で、この素材の内部での金属材料の流れを整えられる。言い換えれば、前記シェブロンクラック発生の原因となる、前記素材の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。特に、強度確保上の面からの重要部分である、鉄系合金製の表層材部分で、金属材料の移動速度の差を小さくできる。この差を小さくできる事は、前記素材、特に表層材の内部に生じる引っ張り応力の低減に結び付いて、前記シェブロンクラックの発生を抑えられる。更に、前記素材の先端部の中心部を押し潰しつつ、前記凹孔を形成する事により、この素材の内部に、圧縮応力が生じる。この圧縮応力により、前記芯材と前記表層材との間に隙間が生じるのを防ぐ。又、金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑えられる。That is, when the outer diameter of the tip of the material is reduced, a bottomed concave hole is formed in the central portion of the cylindrical surface portion on the small diameter side by the counter punch. For this reason, the flow of the metallic material inside the material can be adjusted in the process of making the tip of the material the cylindrical surface portion on the small diameter side. In other words, the difference in the moving speed of the metal material between the portion near the outer diameter and the portion near the center of the material that causes the chevron crack can be reduced. In particular, the difference in the moving speed of the metal material can be reduced at the surface layer portion made of an iron-based alloy, which is an important portion from the viewpoint of securing the strength. The fact that this difference can be reduced leads to a reduction in tensile stress generated in the material, particularly the surface layer material, and the generation of the chevron cracks can be suppressed. Furthermore, compressive stress is generated inside the material by forming the concave hole while crushing the center of the tip of the material. This compressive stress prevents a gap from being generated between the core material and the surface layer material. Further, as is well known in the field of metal processing, the compressive stress has an action of suppressing the generation of cracks, and therefore, the generation of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes.

又、前記素材の内部での金属材料の流れを整えると共に、この内部を、圧縮応力場乃至はそれに近い状態にする為に、前記カウンターパンチをこの素材の先端面からこの素材の先端部内側に押し込んで前記凹孔を形成するが、この押し込みに要する力は小さくて済む。この為、前記素材の先端部に小径側の円筒面部を形成する為に要する力が、前記凹孔を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体等の段付円柱状部材の加工コストが嵩む事を防止できる。In addition, the flow of the metallic material inside the material is arranged, and the counter punch is moved from the front end surface of the material to the inside of the front end portion of the material in order to make the inside of the material a compressive stress field or a state close thereto. Although the concave hole is formed by pushing, the force required for the pushing may be small. For this reason, the force required to form the cylindrical surface portion on the small diameter side at the tip end portion of the material is not significantly increased as compared with the case where the concave hole is not formed (conventional method). Therefore, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub body manufactured by the manufacturing apparatus can be prevented from increasing.

又、本発明の車輪支持用転がり軸受ユニットは、外輪と、カバーと、ハブと、転動体とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時にも回転しない。
又、前記カバーは、前記外輪の軸方向内端開口を塞ぐものである。
又、前記ハブは、使用時に車輪と共に回転するものであり、ハブ本体と、内輪とを備える。このうちのハブ本体は、軸方向外端寄り部分の外周面に前記車輪を支持固定する為の放射状の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成している。又、前記内輪は、外周面に軸方向内側の内輪軌道を形成し、前記ハブ本体の軸方向内端部に形成された小径段部に外嵌固定されている。
又、前記転動体は、これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている。
特に、本発明の車輪支持用転がり軸受ユニットの場合には、前記ハブ本体の芯部を軽合金で、この芯部を覆う表面部分を鉄系合金で、それぞれ構成している。更に、前記回転側フランジの芯部を、前記ハブ本体の芯部を構成する軽合金の一部により構成している。
上述の様な本発明の車輪支持用転がり軸受ユニットを実施する場合に、好ましくは請求項2に記載した発明の様に、前記回転側フランジに、前記車輪を支持固定する為のスタッドを挿通する為の円孔を設け、前記ハブ本体を構成する軽合金を、この円孔の内周面に露出させており、この円孔の内周面をシール剤で覆う。
The rolling bearing unit for supporting a wheel according to the present invention includes an outer ring, a cover, a hub, and a rolling element.
Among these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate during use.
The cover closes the axially inner end opening of the outer ring.
The hub rotates together with the wheel when in use, and includes a hub body and an inner ring. Hub body of this, the outer peripheral surface of the axially outer end portion near the radial rotation side flange for supporting and fixing the wheel, an inner ring raceway of the axially outer axially intermediate portion outer peripheral surfaces, respectively directly Forming. Further, the inner ring forms an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is fitted and fixed to a small-diameter step portion formed at the inner end in the axial direction of the hub body.
Further, a plurality of rolling elements are provided between the inner ring raceways and the outer ring raceways so as to roll freely in each row.
In particular, in the case of the rolling bearing unit for supporting a wheel according to the present invention, the core portion of the hub body is made of a light alloy, and the surface portion covering the core portion is made of an iron-based alloy. Furthermore, the core part of the rotation side flange is constituted by a part of a light alloy constituting the core part of the hub body.
When the rolling bearing unit for supporting a wheel according to the present invention as described above is implemented, a stud for supporting and fixing the wheel is preferably inserted into the rotation side flange as in the invention described in claim 2. For this purpose, a light alloy constituting the hub body is exposed on the inner peripheral surface of the circular hole, and the inner peripheral surface of the circular hole is covered with a sealant.

上述の様に構成する本発明の車輪支持用転がり軸受ユニットによれば、ハブ本体の芯部を軽合金で、同じく外側部分を鉄系合金で形成している為、前述した従来構造の様にハブ本体を鉄系合金のみで形成する場合と比較して、前記ハブ本体を軽量化する事ができる。又、このハブ本体のうち、車輪支持用転がり軸受ユニットを構成する転動体や内輪と接触する部分である表面部分をこれら転動体や内輪を構成するのと同じ鉄系合金としているので、この表面部分に必要とされる硬度を確保すると共に、この表面部分に電食による損傷が発生するのを防止できる。前記ハブ本体の軸方向内端部に関しては、周知の従来構造と同様、使用状態で、前記外輪の内端開口部を塞ぐカバーにより外部空間と遮てられるので、電食が発生する事はない。更に、前記ハブ本体を、軽合金製の芯材と、鉄系合金製で、この芯材の外側部分を覆う表層材とから成る素材を冷間鍛造する事により造る事ができる為、これら芯材と表層材との間の滑り性を良好にでき、これら芯材及び表層材内部で、それぞれの金属材料の移動速度の差を小さく抑えて、シェブロンクラックの発生を防止できる。 According to the wheel support rolling bearing unit of the present invention configured as described above, the core portion of the hub body is made of a light alloy and the outer portion is also made of an iron-based alloy. Compared with the case where the hub body is made of only an iron-based alloy, the hub body can be reduced in weight. In addition, the surface of the hub body that is in contact with the rolling elements and the inner ring constituting the rolling bearing unit for supporting the wheel is made of the same iron-based alloy as that constituting the rolling elements and the inner ring. It is possible to secure the hardness required for the portion and to prevent the surface portion from being damaged by electrolytic corrosion. The inner end of the hub body in the axial direction is shielded from the external space by a cover that closes the inner end opening of the outer ring in use, as in the known conventional structure, so that electric corrosion does not occur. . Further, since the hub body can be made by cold forging a material made of a light alloy core material and a surface layer material made of an iron-based alloy and covering the outer portion of the core material, these cores can be made. The sliding property between the material and the surface layer material can be improved, and the difference in the moving speed of the respective metal materials can be suppressed small inside the core material and the surface layer material, thereby preventing the occurrence of chevron cracks.

本発明の実施の形態の第1例に関して、中心軸を含む仮想平面に関する断面形状の変化を工程順に示すと共に、一部に就いて端面形状を示した図。The figure which showed the end face shape about a part while showing the change of the cross-sectional shape regarding the virtual plane containing a central axis in order of a process regarding the 1st example of embodiment of this invention. 金型装置により、素材を第一中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing a raw material into the 1st intermediate raw material with a metal mold apparatus. カウンターパンチの先端部の形状の3例を示す部分側面図。The partial side view which shows three examples of the shape of the front-end | tip part of a counter punch. 同じく、別例を示す部分断面図。Similarly, the fragmentary sectional view which shows another example. 金型装置により、第一中間素材を第二中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing a 1st intermediate material into a 2nd intermediate material with the metal mold apparatus. 金型装置により、第二中間素材を第三中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing the 2nd intermediate material into the 3rd intermediate material with the metal mold apparatus. 本発明の実施の形態の第1例を示す、図12と同様の図。The figure similar to FIG. 12 which shows the 1st example of embodiment of this invention. 同第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example. 同じく、図12と同様の図。Similarly, the same figure as FIG. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. 同第4例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 4th example. 本発明の製造方法の対象となるハブ本体を組み込んだ、車輪支持用転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows an example of the rolling bearing unit for wheel support incorporating the hub main body used as the object of the manufacturing method of this invention. 冷間での鍛造加工により造られる、従来から知られたハブ本体の1例を示す、端面図(a)及び側面図(b)。The end view (a) and side view (b) which show an example of the hub body known conventionally from the forging process by cold. 従来から知られているハブ本体の製造方法の1例に関して、側面形状の変化を工程順に示すと共に、一部に関して端面形状を示した図。The figure which showed the end surface shape about one part while showing the change of a side surface shape in order of a process regarding one example of the manufacturing method of the hub main body conventionally known. 同じく側面形状乃至断面形状の変化を示す図。The figure which similarly shows the change of side surface shape thru | or cross-sectional shape. 同じく表面形状の変化を示す斜視図。The perspective view which similarly shows the change of surface shape.

[実施の形態の第1例]
図1〜7は、本発明の実施の形態の第1例を示している。本例の場合、先ず、第一工程で、図1の(A)に示した、A7075、A6061等のアルミニウム系合金製の芯材26と、中炭素鋼等の鉄系合金製で、この芯材26の外側部分を覆う表層材27とから成る素材28に冷間で前方押し出し加工を施す。この様な素材28は、有底円筒状の表層材27の内径側部分に、円柱状の芯材26を締り嵌めで内嵌する事により造り、これら芯材26と表層材27との間の滑り性を良好にしている。本例の場合、この芯材26の高さHを、表層材27の中心孔の深さDよりも小さくして、前記素材28の端部に段差部29を設けている。この段差部29の深さ(D−H)は、芯材26を構成するアルミニウム系合金や表層材27を構成する鉄系合金の流動性、及び、後述する第一、第二両中間素材33、51の形状や絞り率等を考慮して設定的に定める。前記素材28に冷間鍛造を施す第一工程では、先ず、この素材28を、図2に示す様な、複数のブロックを重ね合わせて成るダイス30のキャビティ31内に挿入する。その後、図示しないプレス装置のラムで押圧される押圧パンチ32により、前記素材28を前記キャビティ31内に押し込む。この押し込み作業によりこの素材28が塑性変形し、この素材28が、このキャビティ31の内周面形状に見合う(母線形状が同じで凹凸が逆である)外周面形状を有する、第一中間素材33となる。
[First example of embodiment]
1 to 7 show a first example of an embodiment of the present invention. In the case of this example, first, in the first step, the core 26 made of an aluminum alloy such as A7075 or A6061 and the iron alloy such as medium carbon steel shown in FIG. The material 28 composed of the surface layer material 27 that covers the outer portion of the material 26 is cold-extruded forward. Such a material 28 is formed by fitting a columnar core material 26 into the inner diameter side portion of the bottomed cylindrical surface material 27 with an interference fit, and between the core material 26 and the surface material 27. Good slipperiness. In the case of this example, the height H of the core material 26 is made smaller than the depth D of the center hole of the surface layer material 27, and the step portion 29 is provided at the end of the material 28. The depth (DH) of the stepped portion 29 is such that the fluidity of the aluminum-based alloy constituting the core material 26 and the iron-based alloy constituting the surface layer material 27, and the first and second intermediate materials 33 described later. , 51 in consideration of the shape and aperture ratio. In the first step of cold forging the material 28, first, the material 28 is inserted into a cavity 31 of a die 30 formed by stacking a plurality of blocks as shown in FIG. Thereafter, the material 28 is pushed into the cavity 31 by a pressing punch 32 pressed by a ram of a pressing device (not shown). The material 28 is plastically deformed by the pushing operation, and the material 28 has an outer peripheral surface shape that matches the inner peripheral surface shape of the cavity 31 (the bus bar shape is the same and the concavity and convexity are reversed). It becomes.

特に、本例の製造方法の場合には、前記キャビティ31の下端中央部に、カウンターパンチ34の上端部を突出させている。このカウンターパンチ34の下端部は、前記ダイス30を構成する複数個のブロックのうち、最下段のブロックの上面と、次段のブロックとの間で挟持固定している。又、前記カウンターパンチ34の周囲には、円筒状のスリーブ35を、昇降可能に外嵌している。前記キャビティ31の下部は、このスリーブ35の上端面と前記カウンターパンチ34の上端部外面と最上段のブロックの内周面とにより画成されている。又、このスリーブ35の下端面にそれぞれの上端面を突き当てたノックアウトピン36、36の下端面を、前記最下段のブロックに内嵌した、昇降駒37の上面に突き当てている。   In particular, in the case of the manufacturing method of this example, the upper end portion of the counter punch 34 is projected from the lower end center portion of the cavity 31. The lower end portion of the counter punch 34 is clamped and fixed between the upper surface of the lowermost block among the plurality of blocks constituting the die 30 and the next block. A cylindrical sleeve 35 is fitted around the counter punch 34 so as to be movable up and down. The lower portion of the cavity 31 is defined by the upper end surface of the sleeve 35, the outer surface of the upper end portion of the counter punch 34, and the inner peripheral surface of the uppermost block. Further, the lower end surfaces of the knockout pins 36, 36 each abutting the upper end surface against the lower end surface of the sleeve 35 are abutted against the upper surface of the elevating piece 37 fitted in the lowermost block.

上述の様な、図2に示した金型装置を使用し、前記素材28を前記キャビティ31内に押し込むと、この素材28の先端部(下端部)外周面がこのキャビティ31の内周面に沿って塑性変形し、前記第一中間素材33となる。即ち、この第一中間素材33の先端部に、小径側の円筒面部38と、この小径側の円筒面部38の基端側から連続してより大径の部分に連続する、傾斜段部39とを形成する。これと同時に、前記第一中間素材33のうちで前記小径側の円筒面部38の中心部(前記芯材26の中心部)に前記カウンターパンチ34の上端部が押し込まれ、この小径側の円筒面部38の中心部に、前記第一中間素材33の先端面に開口する、断面形状が円形である、有底の凹孔40が形成される。   When the material 28 is pushed into the cavity 31 using the mold apparatus shown in FIG. 2 as described above, the outer peripheral surface of the tip (lower end) of the material 28 is brought to the inner peripheral surface of the cavity 31. The first intermediate material 33 is plastically deformed along the line. That is, at the distal end portion of the first intermediate material 33, a cylindrical surface portion 38 on the small diameter side, and an inclined step portion 39 that continues from the base end side of the cylindrical surface portion 38 on the small diameter side and continues to the larger diameter portion Form. At the same time, the upper end portion of the counter punch 34 is pushed into the central portion of the first intermediate material 33 (the central portion of the core member 26) of the cylindrical surface portion 38 on the small diameter side, and this cylindrical surface portion on the small diameter side A bottomed concave hole 40 having a circular cross-sectional shape that opens at the front end surface of the first intermediate material 33 is formed at the center of the first intermediate material 33.

この凹孔40を形成する為の、前記カウンターパンチ34の外径及び軸方向長さは、前記素材28乃至前記第一中間素材33の、芯材26を構成するアルミニウム系合金及び表層材27を構成する鉄系合金の流動性や、前記カウンターパンチ34の耐久性を考慮して、設計的配慮により決定する。このカウンターパンチ34の外径に関しては、大きい程、その耐久性が向上する代わりに、前記第一中間素材33の先端部で前記凹孔40の周囲部分が加工硬化する程度が著しくなる。そして、完成後のハブ本体9bの先端部(軸方向内端部)を径方向外方に塑性変形させる(かしめ拡げる)事が難しくなる。これらの点を考慮すれば、前記カウンターパンチ34の外径は、前記小径側の円筒面部38の外径の1/3〜2/3程度、最も好ましくは1/2程度に規制する。又、前記カウンターパンチ34の軸方向長さにより定まる、前記凹孔40の深さに関しても、前記耐久性及び加工硬化の程度を考慮して定める。本例の場合、前記押圧パンチ32を下死点にまで下降させ、前記第一中間素材33の加工を完了した状態で、前記凹孔40の深さが、完成後のハブ本体の軸方向内端部に存在する小径段部12aの軸方向長さに一致するか、この軸方向長さよりも少しだけ大きくなる様にしている。又、前記カウンターパンチ34の先端面(上端面)の形状に関しても、前記耐久性及び加工硬化の程度を考慮して定める。例えば、図3の(a)に示す様な単なる平坦面、同じく(b)に示す様な円すい台形、同じく(c)に示す様な半球状を採用できる。或いは、図4に示す様に、先端部に傾斜面部41を設け、この傾斜面部41に真鍮等の銅系合金製のリング42をボルト43で支持固定した、カウンターパンチ34を採用する事もできる。この様なカウンターパンチ34の先端部が前記小径側の円筒面部38の中心部に押し込まれると、前記図4に誇張して示す様に、前記芯材26の静水圧により前記傾斜面部41に沿って前記リング42の直径が、前記カウンターパンチ34の径方向外方に弾性的に拡げられる。この結果、前記カウンターパンチ34を押し込む際に、このリング42の外周面と前記第一中間素材33の中心部に存在する、前記芯材26或いは前記表層材27とを隙間なく摺接させて、この芯材26の一部が前記凹孔40の内周面で突出するのを防止できる(この内周面を滑らかにできる)。このリング42は、前記芯材26を構成するアルミニウム系合金、前記表層材27や前記カウンターパンチ34を構成する鉄系合金とは異なる、銅系合金である為、このリング42と前記第一中間素材33との接触部の滑り性を良好にできる。   The outer diameter and axial length of the counter punch 34 for forming the concave hole 40 are the same as those of the aluminum alloy and the surface layer material 27 constituting the core material 26 of the material 28 to the first intermediate material 33. This is determined by design consideration in consideration of the fluidity of the iron-based alloy to be constructed and the durability of the counter punch 34. The larger the outer diameter of the counter punch 34, the greater the degree of work hardening of the peripheral portion of the concave hole 40 at the tip of the first intermediate material 33, instead of improving its durability. Then, it becomes difficult to plastically deform (clamp and spread) the distal end portion (axially inner end portion) of the hub body 9b after completion in the radial direction. Considering these points, the outer diameter of the counter punch 34 is restricted to about 1/3 to 2/3, most preferably about 1/2 of the outer diameter of the cylindrical surface portion 38 on the small diameter side. Further, the depth of the concave hole 40 determined by the axial length of the counter punch 34 is determined in consideration of the durability and the degree of work hardening. In the case of this example, in the state where the pressing punch 32 is lowered to the bottom dead center and the processing of the first intermediate material 33 is completed, the depth of the concave hole 40 is set in the axial direction of the hub body after completion. It is made to correspond to the axial direction length of the small diameter step part 12a which exists in an edge part, or just to become slightly larger than this axial direction length. Further, the shape of the front end surface (upper end surface) of the counter punch 34 is determined in consideration of the durability and the degree of work hardening. For example, a simple flat surface as shown in FIG. 3A, a truncated trapezoidal shape as shown in FIG. 3B, or a hemispherical shape as shown in FIG. Alternatively, as shown in FIG. 4, it is possible to employ a counter punch 34 in which an inclined surface portion 41 is provided at the tip portion, and a ring 42 made of a copper alloy such as brass is supported and fixed to the inclined surface portion 41 by a bolt 43. . When the tip of the counter punch 34 is pushed into the central portion of the cylindrical surface portion 38 on the small diameter side, as shown exaggeratedly in FIG. 4, along the inclined surface portion 41 due to the hydrostatic pressure of the core member 26. Thus, the diameter of the ring 42 is elastically expanded outward in the radial direction of the counter punch 34. As a result, when the counter punch 34 is pushed in, the core material 26 or the surface layer material 27 present in the outer peripheral surface of the ring 42 and the central portion of the first intermediate material 33 is slidably contacted without gaps, It is possible to prevent a part of the core material 26 from protruding from the inner peripheral surface of the concave hole 40 (this inner peripheral surface can be made smooth). Since this ring 42 is a copper-based alloy different from the aluminum-based alloy constituting the core material 26 and the iron-based alloy constituting the surface layer material 27 and the counter punch 34, the ring 42 and the first intermediate The slipperiness of the contact portion with the material 33 can be improved.

何れの場合でも、前記押圧パンチ32を下死点まで下降させ、前記第一中間素材33を形成したならば、この押圧パンチ32を上昇させるのに続いて、それまで下降していた前記昇降駒37を上昇させ、前記各ノックアウトピン36、36を介して前記スリーブ35を上昇させる。この結果、前記第一中間素材33が前記キャビティ31から押し出されるので、この第一中間素材33を前記ダイス30から取り出し、次の第二工程を施す為、図5に示した金型装置の、フローティングダイス44の第二キャビティ45内に挿入する。このフローティングダイス44は、複数のばね46、46により固定ブロック47の上方に、下方に向いた大きな力が加わった場合に下降する様に、昇降可能に支持されている。又、前記固定ブロック47の上面に載置固定した第二スリーブ48の上端部を、前記フローティングダイス44の下端部に軸方向の変位(上下方向の摺動)を可能に内嵌している。更に、前記第二スリーブ48の下端部に、前記固定ブロック47の内径側に昇降可能に設置した、スリーブ35aの上端部を、軸方向の変位(上下方向の摺動)を可能に内嵌している。   In any case, if the pressing punch 32 is lowered to the bottom dead center and the first intermediate material 33 is formed, the raising / lowering piece that has been lowered until then is raised after the pressing punch 32 is raised. 37 is raised, and the sleeve 35 is raised via the knockout pins 36, 36. As a result, the first intermediate material 33 is pushed out of the cavity 31, so that the first intermediate material 33 is taken out from the die 30 and subjected to the next second step, so that the mold apparatus shown in FIG. It is inserted into the second cavity 45 of the floating die 44. The floating die 44 is supported by a plurality of springs 46 and 46 so as to be able to move up and down so as to descend when a large downward force is applied above the fixed block 47. The upper end portion of the second sleeve 48 placed and fixed on the upper surface of the fixed block 47 is fitted into the lower end portion of the floating die 44 so as to be capable of axial displacement (sliding in the vertical direction). Further, the upper end portion of the sleeve 35a, which is installed on the inner diameter side of the fixed block 47, is fitted into the lower end portion of the second sleeve 48 so as to be capable of axial displacement (up and down sliding). ing.

又、前記スリーブ35aの内側に、前記カウンターパンチ34とほぼ同じ外面形状を有するスペーサ49を、このスリーブ35aとは独立した昇降を可能に設置している。本例の場合、このスペーサ49の下端面と、前記固定ブロック47を構成する固定板との間にばね50を設けて、このスペーサ49に、上方に向いた弾力を付与している。前記第一中間素材33{図1の(B)及び図2参照}を前記第二キャビティ45内に挿入した状態で、前記スペーサ49の上端面は、前記凹孔40の奥端面に当接する。そして、前記第一中間素材33を第二中間素材51に加工する為の、前記第二工程の進行中、前記スペーサ49の上端面が前記凹孔40の奥端面に当接し続ける。前記第二キャビティ45の下部の内面形状は、前記第二スリーブ48の内周面及び先端面(上端面)と、前記スリーブ35aの上端面と、前記スペーサ49の外周面及び先端面とにより画成される。更に、前記フローティングダイス44には、押圧パンチ32aの下端部を押し込む事により、前記第一中間素材33の外面形状を、前記第二キャビティ45の内面形状に合わせて塑性変形(前方押し出し成形)可能としている。   In addition, a spacer 49 having substantially the same outer shape as the counter punch 34 is provided inside the sleeve 35a so as to be able to move up and down independently of the sleeve 35a. In the case of this example, a spring 50 is provided between the lower end surface of the spacer 49 and the fixing plate that constitutes the fixing block 47, and an upward elasticity is applied to the spacer 49. With the first intermediate material 33 (see FIG. 1B and FIG. 2) inserted into the second cavity 45, the upper end surface of the spacer 49 abuts against the inner end surface of the concave hole 40. Then, the upper end surface of the spacer 49 is kept in contact with the inner end surface of the concave hole 40 during the progress of the second step for processing the first intermediate material 33 into the second intermediate material 51. The inner surface shape of the lower portion of the second cavity 45 is defined by the inner peripheral surface and the front end surface (upper end surface) of the second sleeve 48, the upper end surface of the sleeve 35a, and the outer peripheral surface and front end surface of the spacer 49. Made. Further, by pushing the lower end portion of the pressing punch 32 a into the floating die 44, the outer surface shape of the first intermediate material 33 can be plastically deformed (forward extrusion molding) in accordance with the inner surface shape of the second cavity 45. It is said.

上述の様な、図5に示した金型装置を使用し、前記第一中間素材33を前記第二キャビティ45内に大きな力で押し込むと、この第一中間素材33の下部が、この第二キャビティ45の内面に沿って塑性変形し、前記第二中間素材51となる。即ち、前記第一中間素材33の先端部の小径側の円筒面部38の先端部乃至軸方向中間部が、前記第二スリーブ48の内周面と前記スペーサ49の外周面との間に存在する円筒状の空間内に押し込まれる。そして、この押し込まれた部分の外周面が、前記小径側の円筒面部38よりも更に小径の、小径段部12aとなる。又、前記押圧パンチ32aが下死点にまで下降した状態で、前記第二スリーブ48の先端面(上端面)により押圧された部分が、ハブ3aを組み立てた状態で内輪10a(図7参照)の軸方向外端面を突き当てる為の、段部25aとなる。尚、前記スペーサ49は、上述の様な第二工程の進行に伴って、前記ばね50を圧縮しつつ、その下端面が前記固定ブロック47を構成する一部のブロックの上面に当接するまで下降する。従って、この第二工程が進行する間中、前記スペーサ49の先端面が前記凹孔40の奥端面に押し付けられたままの状態となる。又、前記第二工程の進行に伴って、前記小径段部12aの軸方向長さが、元の小径側の円筒面部38の一部でこの小径段部12aとなるべき部分の軸方向長さよりも伸張し、これに伴って前記凹孔40の深さも深くなる。   When the first intermediate material 33 is pushed into the second cavity 45 with a large force using the mold apparatus shown in FIG. 5 as described above, the lower portion of the first intermediate material 33 is moved to the second intermediate material 33. The second intermediate material 51 is plastically deformed along the inner surface of the cavity 45. That is, the distal end portion or the axial intermediate portion of the cylindrical surface portion 38 on the small diameter side of the distal end portion of the first intermediate material 33 exists between the inner peripheral surface of the second sleeve 48 and the outer peripheral surface of the spacer 49. It is pushed into the cylindrical space. The outer peripheral surface of the pushed-in portion becomes a small diameter step portion 12a having a smaller diameter than the cylindrical surface portion 38 on the small diameter side. Further, in a state where the pressing punch 32a is lowered to the bottom dead center, the portion pressed by the tip surface (upper end surface) of the second sleeve 48 is the inner ring 10a (see FIG. 7) in a state where the hub 3a is assembled. It becomes the step part 25a for abutting the axial direction outer end surface. The spacer 49 is lowered until the lower end surface of the spacer 49 comes into contact with the upper surface of a part of the fixed block 47 while compressing the spring 50 with the progress of the second step as described above. To do. Accordingly, while the second step proceeds, the tip end surface of the spacer 49 remains pressed against the back end surface of the concave hole 40. With the progress of the second step, the axial length of the small diameter step portion 12a is larger than the axial length of the portion of the original cylindrical surface portion 38 on the small diameter side that should become the small diameter step portion 12a. And the depth of the concave hole 40 is increased accordingly.

上述の様にして、前記第二中間素材51を形成したならば、前記押圧パンチ32aを上昇させる。すると、前記フローティングダイス44が前記各ばね46、46の弾力により、前記スペーサ49が前記ばね50の弾力により、それぞれ少し上昇する。そこで、これら各部材44、49の上昇に続いて、それまで下降していた昇降駒37aを上昇させ、各ノックアウトピン36a、36aを介して前記スリーブ35aを上昇させる。この結果、前記第二中間素材51が前記第二キャビティ45から押し出される為、この第二中間素材51を前記フローティングダイス44から取り出し、次の第三工程を施す為、図6に示した金型装置の、ダイス52の第三キャビティ53内に挿入する。又、前記凹孔40に、ばね50aにより上方に付勢されているスペーサ49aの先端部(上端部側)を、隙間なく内嵌する。そして、押圧パンチ32bの周囲に配置したフローティングダイス44aにより前記第二中間素材51を抑えつつ、前記押圧パンチ32bによりこの第二中間素材51を軸方向に押し潰す。そして、外周面に放射状の回転側フランジ7aを設けた、図1の(D)及び図6に示す様な、第三中間素材54とする。この様な第三工程の進行中、前記フローティングダイス44aの下面は、ばね46a、46aの弾力により、前記ダイス52の上面に押し付けられたままとなる。   When the second intermediate material 51 is formed as described above, the pressing punch 32a is raised. Then, the floating die 44 is slightly raised by the elasticity of the springs 46 and 46, and the spacer 49 is slightly raised by the elasticity of the spring 50. Therefore, following the ascent of these members 44, 49, the elevating piece 37a that has been lowered is raised, and the sleeve 35a is raised via the knockout pins 36a, 36a. As a result, since the second intermediate material 51 is pushed out from the second cavity 45, the second intermediate material 51 is taken out from the floating die 44 and subjected to the next third step. The device is inserted into the third cavity 53 of the die 52. Further, the front end portion (upper end portion side) of the spacer 49a biased upward by the spring 50a is fitted into the concave hole 40 without any gap. The second intermediate material 51 is crushed in the axial direction by the pressing punch 32b while the second intermediate material 51 is suppressed by the floating die 44a disposed around the pressing punch 32b. And it is set as the 3rd intermediate material 54 as shown to (D) of FIG. 1, and FIG. 6 which provided the radial rotation side flange 7a in the outer peripheral surface. During the progress of such a third step, the lower surface of the floating die 44a remains pressed against the upper surface of the die 52 by the elasticity of the springs 46a and 46a.

上述の様にして、前記第三中間素材54を形成したならば、前記押圧パンチ32bを上昇させてから、それまで下降していた昇降駒37bを上昇させ、各ノックアウトピン36b、36bを介してスリーブ35bを上昇させる。この結果、前記第三中間素材54が前記第三キャビティ53から押し出されるので、この第三中間素材54を前記ダイス52から取り出し、次の工程に送る。
この次の工程では、前記第三中間素材54のうちで、前記凹孔40の開口寄り部分の内径を、旋削加工等の削り加工により拡げ、当該部分を、別の凹孔40aとして、図1の(E)に示す様な、第四中間素材55とする。
この第四中間素材55は、更に次の工程に送り、面押し加工や切削加工、研削加工等、必要な加工を施して、ハブ本体9bとして完成する。これらの加工に就いては、従来の製造方法と同様であり、又、当業者にとって周知であるから、図示並びに説明は省略する。但し、本例の場合、スタッド17を挿通する為の円孔56の内周面をシール剤で覆い、電食を防止する。
When the third intermediate material 54 is formed as described above, the pressing punch 32b is raised, and then the raising / lowering piece 37b that has been lowered is raised and the knockout pins 36b and 36b are interposed. The sleeve 35b is raised. As a result, the third intermediate material 54 is pushed out from the third cavity 53, and the third intermediate material 54 is taken out of the die 52 and sent to the next step.
In this next step, in the third intermediate material 54, the inner diameter of the portion near the opening of the concave hole 40 is expanded by a cutting process such as turning, and this part is used as another concave hole 40a. A fourth intermediate material 55 as shown in (E) of FIG.
The fourth intermediate material 55 is further sent to the next step, and subjected to necessary processing such as surface pressing, cutting, and grinding to complete the hub body 9b. Since these processes are the same as those in the conventional manufacturing method and are well known to those skilled in the art, illustration and description are omitted. However, in this example, the inner peripheral surface of the circular hole 56 through which the stud 17 is inserted is covered with a sealant to prevent electrolytic corrosion.

そして、この様にして造られたハブ本体9bの小径段部12aに内輪10aを外嵌し、前記別の凹孔40aに治具を挿入し、この小径段部12aの軸方向内端部を径方向外方にかしめ拡げる事でかしめ部57を形成する。これにより、前記ハブ本体9bの軸方向内端部に、前記内輪10aを支持固定する事でハブ3aとする。このハブ3aを、転動体4、4を介して外輪2に支持する事により、車輪支持用転がり軸受ユニット1aを構成する。尚、この外輪2の内端開口部を、有底円筒状のカバー(図示せず)で塞ぐ事により、この外輪2の内径側空間への塵芥や雨水等の浸入防止、及びこの内径側空間に充填したグリースの外部への漏えい防止を図る。   Then, the inner ring 10a is externally fitted to the small-diameter step portion 12a of the hub main body 9b manufactured in this way, a jig is inserted into the another concave hole 40a, and the axial inner end portion of the small-diameter step portion 12a is inserted. The caulking portion 57 is formed by caulking outward in the radial direction. Thus, the hub 3a is formed by supporting and fixing the inner ring 10a to the inner end of the hub body 9b in the axial direction. By supporting the hub 3a on the outer ring 2 via the rolling elements 4 and 4, a wheel support rolling bearing unit 1a is configured. The inner ring opening of the outer ring 2 is closed with a bottomed cylindrical cover (not shown) to prevent infiltration of dust and rain water into the inner diameter side space of the outer ring 2, and the inner diameter side space. Prevent leakage of grease filled in the outside.

上述の様な本例のハブ本体の製造方法によれば、造られるハブ本体9bの重量の増大を抑えて、このハブ本体9bを組み込んだ車輪支持用転がり軸受ユニット1a全体を軽量化できる。即ち、このハブ本体9bの芯部を軽合金で、同じく外側部分を鉄系合金で形成している為、前述した従来構造の様にハブ本体を鉄系合金のみで形成する場合と比較して、前記ハブ本体9bを軽量化する事ができる。又、このハブ本体9bのうち、車輪支持用転がり軸受ユニット1aを構成する転動体4、4や内輪10aと接触する部分である表面部分をこれら各部材4、10aを構成するのと同じ鉄系合金としているので、この表面部分に必要とされる硬度を確保すると共に、この表面部分に電食による損傷が発生するのを防止できる。ハブ本体9bの軸方向内端部に関しては、周知の従来構造と同様、使用状態で、前記外輪2の内端開口部を塞ぐカバーにより外部空間と遮てられるので、電食が発生する事はない。 According to the hub body manufacturing method of this example as described above, an increase in the weight of the hub body 9b to be manufactured can be suppressed, and the entire wheel support rolling bearing unit 1a incorporating the hub body 9b can be reduced in weight. That is, since the core portion of the hub body 9b is made of a light alloy and the outer portion is made of an iron alloy, the hub body is made of only an iron alloy as in the conventional structure described above. The hub body 9b can be reduced in weight. Further, in the hub main body 9b, the same iron system as that constituting the respective members 4, 10a is formed on the surface portion which is a portion in contact with the rolling elements 4, 4 and the inner ring 10a constituting the wheel supporting rolling bearing unit 1a. Since the alloy is used, it is possible to ensure the required hardness for the surface portion and to prevent the surface portion from being damaged by electrolytic corrosion. The inner end of the hub body 9b in the axial direction is shielded from the outer space by a cover that closes the inner end opening of the outer ring 2 in use, as in the known conventional structure. Absent.

又、本例の場合、前記素材28の先端部(図1の下端部)の外径を縮めて前記第一中間素材33とする際に、前記カウンターパンチ34により、前記小径側の円筒面部38の中心部に有底の凹孔40を形成する。この時、前記芯材26の高さHを前記表層材27の深さDよりも小さくし段差部29を設けている為、この表層材27を構成する鉄系合金よりも流動性が高い、前記芯材26を構成する軽合金が、前記第一中間素材33の先端面(図1、2の下端面)から突出するのを防止できる。又、前記芯材26を軽合金製とし、前記表層材27を鉄系合金製としている為、これら芯材26と表層材27との間の滑り性を良好にでき、これら芯材26及び表層材27内部で、それぞれの金属材料の移動速度の差を小さく抑えて、前述したシェブロンクラックの発生を防止できる。更に、前記素材28の先端部をこの小径側の円筒面部38とする過程で、この素材28の内部での金属材料の流れを整流できて、前記シェブロンクラック発生の原因となる、この素材28の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。この結果、前記素材28乃至前記第一中間素材33の内部に生じる引っ張り応力を低減して、前記シェブロンクラックの発生を抑えられる。更に、前記素材28の先端部の中心部を押し潰しつつ、前記凹孔40を形成する事により、この素材28を塑性変形させて得られる、前記第一中間素材33の内部に、圧縮応力が生じる。この圧縮応力により、前記芯材26と前記表層材27との間に隙間が生じるのを防止できる。又、金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔40の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑える事ができる。そして、前記第一工程で前記第一中間素材33の内部に生じた、前記圧縮応力は、前記第二工程でも亀裂の発生防止に寄与して、この第二工程で前記第二中間素材51の内部に、シェブロンクラックが発生する事を防止する。   Further, in the case of this example, when the outer diameter of the tip end portion (lower end portion in FIG. 1) of the material 28 is reduced to form the first intermediate material 33, the counter punch 34 causes the cylindrical surface portion 38 on the small diameter side. A bottomed recessed hole 40 is formed at the center of the substrate. At this time, since the height H of the core material 26 is smaller than the depth D of the surface layer material 27 and the step portion 29 is provided, the fluidity is higher than the iron-based alloy constituting the surface layer material 27. It can prevent that the light alloy which comprises the said core material 26 protrudes from the front end surface (lower end surface of FIG. 1, 2) of said 1st intermediate raw material 33. FIG. In addition, since the core material 26 is made of a light alloy and the surface layer material 27 is made of an iron-based alloy, the sliding property between the core material 26 and the surface layer material 27 can be improved. In the material 27, the difference in the moving speed of the respective metal materials can be suppressed small, and the above-mentioned chevron crack can be prevented. Further, in the process of making the tip portion of the material 28 into the cylindrical surface portion 38 on the small diameter side, the flow of the metal material inside the material 28 can be rectified, causing the chevron crack to occur. The difference in the moving speed of the metal material between the outer diameter portion and the center portion can be reduced. As a result, the tensile stress generated inside the material 28 to the first intermediate material 33 is reduced, and the occurrence of the chevron crack can be suppressed. Further, by forming the concave hole 40 while crushing the central portion of the distal end portion of the material 28, a compressive stress is generated in the first intermediate material 33 obtained by plastic deformation of the material 28. Arise. This compressive stress can prevent a gap from being generated between the core material 26 and the surface layer material 27. Further, as is well known in the field of metalworking, the compressive stress has the effect of suppressing the occurrence of cracks, and therefore the generation of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes 40. The compressive stress generated in the first intermediate material 33 in the first step contributes to prevention of cracks in the second step, and the second intermediate material 51 of the second step 51 Prevents chevron cracks from occurring inside.

又、本例の場合、前記芯材26が鉄系合金よりも軟らかい、アルミニウム系合金等の軽合金製である為、前記素材28を冷間鍛造するのに要する力は、前述した従来構造の様に素材を鉄系合金のみで造る場合と比較して小さくて済む。又、前記カウンターパンチ34を前記素材28の先端面からこの素材28の先端部内側に押し込んで、前記凹孔40を形成する為に要する力は小さくて済む。従って、前記素材28の先端部に小径側の円筒面部38を形成する為に要する力が、前記凹孔40を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部38を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体9b等の段付円柱状部材の加工コストが嵩む事を防止できる。   In the case of this example, since the core material 26 is softer than the iron-based alloy and is made of a light alloy such as an aluminum-based alloy, the force required for cold forging the material 28 is the same as that of the conventional structure described above. In this way, the material can be made smaller compared to the case where the material is made of only an iron alloy. Further, the force required to form the concave hole 40 by pushing the counter punch 34 from the front end surface of the material 28 into the front end portion of the material 28 may be small. Accordingly, the force required to form the small-diameter cylindrical surface portion 38 at the distal end portion of the material 28 is not significantly increased compared to the case where the concave hole 40 is not formed (in the conventional method). Accordingly, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion 38 on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub main body 9b manufactured by the manufacturing apparatus can be prevented from increasing.

[実施の形態の第2例]
図8〜9は、本発明の実施の形態の第2例を示している。本例の場合、素材28aの芯材26aの奥端部(図8の上端部)に、中間寄り部分よりも外径寸法の小さい小径部58を設けている。これにより、第二中間素材51aを第三中間素材54aに加工する第三工程{図8の(C)→(D)}で、外周面に放射状の回転側フランジ7bを設ける際に、スタッド17を挿通する為の円孔56を形成する部分に、前記芯材26aを構成する軽合金が進入しない様にできる。この結果、前記円孔56を形成した後に、この円孔56の内径側に軽合金が露出するのを防止できるので、電食防止の為に、この円孔56部分にシール剤を塗布する手間が不要になる。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
[Second Example of Embodiment]
8 to 9 show a second example of the embodiment of the present invention. In the case of this example, a small-diameter portion 58 having a smaller outer diameter than the middle portion is provided at the back end portion (upper end portion in FIG. 8) of the core material 26a of the material 28a. Accordingly, when the radial rotation side flange 7b is provided on the outer peripheral surface in the third step {(C) → (D)} in FIG. 8 in which the second intermediate material 51a is processed into the third intermediate material 54a, the stud 17 is provided. It is possible to prevent the light alloy constituting the core material 26a from entering the portion where the circular hole 56 is inserted. As a result, it is possible to prevent the light alloy from being exposed to the inner diameter side of the circular hole 56 after the circular hole 56 is formed. Therefore, it is troublesome to apply a sealing agent to the circular hole 56 portion in order to prevent electrolytic corrosion. Is no longer necessary.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

[実施の形態の第3例]
図10は、本発明の実施の形態の第3例を示している。本例の場合には、素材28を第一中間素材33aに加工する第一工程{図10の(A)→(B)}で、この第一中間素材33aの先端部に形成する凹孔40bの深さを、前述した実施の形態の第1例の場合よりも浅くしている。そして、前記第一中間素材33aを第二中間素材51bとする、第二工程{図10の(B)→(C)}を終了した状態で、前記凹孔40bの奥端面の軸方向位置が、小径段部12aの基端部に存在する段部25aの軸方向位置とほぼ一致する様にしている。本例の場合、前記第一中間素材33aの表層材27のうち、前記凹孔40bを形成する部分の外径側に存在する部分(段部25aを形成する部分よりも軸方向外側に位置する部分まで)の内周面を、円筒面状としている。この結果、芯材26が前記凹孔40bの内周面に突出し難くできる。特に、カウンターパンチ34の先端部の形状を、前述した図4に示す様なものとする事で、前記芯材26の突出量を更に抑える事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
[Third example of embodiment]
FIG. 10 shows a third example of the embodiment of the present invention. In the case of this example, in the first step {(A) → (B)} in FIG. 10) of processing the material 28 into the first intermediate material 33a, the concave hole 40b formed at the tip of the first intermediate material 33a. Is made shallower than in the first example of the embodiment described above. Then, in the state where the second step {(B) → (C)} in FIG. 10}, in which the first intermediate material 33a is the second intermediate material 51b, the axial position of the back end surface of the concave hole 40b is The axial position of the step portion 25a existing at the base end portion of the small-diameter step portion 12a is substantially matched. In the case of this example, of the surface layer material 27 of the first intermediate material 33a, a portion that exists on the outer diameter side of the portion that forms the recessed hole 40b (is located on the outer side in the axial direction than the portion that forms the step portion 25a). The inner peripheral surface (up to the part) is cylindrical. As a result, the core member 26 can be made difficult to protrude from the inner peripheral surface of the concave hole 40b. Particularly, by making the shape of the tip of the counter punch 34 as shown in FIG. 4 described above, the protruding amount of the core material 26 can be further suppressed.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

[実施の形態の第4例]
図11は、本発明の実施の形態の第4例を示している。本例の場合には、素材28を第一中間素材33bに加工する第一工程{図11の(A)→(B)}は、前述の図13〜16に示した従来方法と同様に行う。そして、次に行う、前記第一中間素材33bを第二中間素材51cとする第二工程{図11の(B)→(C)}で、カウンターパンチ34(図2参照)により、前記第二中間素材51cの先端中心部に、凹孔40を形成する。又、この第二中間素材51cの先端寄り部分に、小径段部12aを、この先端寄り部分の軸方向中間部(小径段部12aの基端部)に、段部25aを、それぞれ形成する。
[Fourth Example of Embodiment]
FIG. 11 shows a fourth example of the embodiment of the present invention. In the case of this example, the first step {(A) → (B)} in FIG. 11 for processing the material 28 into the first intermediate material 33b is performed in the same manner as the conventional method shown in FIGS. . Then, in the second step {(B) → (C)} in FIG. 11) in which the first intermediate material 33b is used as the second intermediate material 51c, the second step is performed by the counter punch 34 (see FIG. 2). A concave hole 40 is formed in the center of the tip of the intermediate material 51c. Further, a small-diameter step portion 12a is formed near the tip of the second intermediate material 51c, and a step portion 25a is formed at an axially intermediate portion (base end portion of the small-diameter step portion 12a) near the tip.

前記第一工程時には、前記素材28が未だ加工硬化されていない為、得られる第一中間素材33bの内部にシェブロンクラックが発生する事はない。これに対して、前記第二中間素材51cを得る第二工程時には、既に加工硬化している前記第一中間素材33bの先端部の外径を前方押し出し加工により縮める為、シェブロンクラックが発生し易い。そこで、本例の場合には、この様な第二工程時に、前記第一中間素材33bの先端面に前記凹孔40を形成して、前記シェブロンクラックの発生を防止する様にしている。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
At the time of the first step, since the material 28 is not yet work hardened, chevron cracks do not occur inside the obtained first intermediate material 33b. On the other hand, in the second step of obtaining the second intermediate material 51c, the outer diameter of the tip of the first intermediate material 33b that has already been hardened is reduced by forward extrusion processing, so that chevron cracks are likely to occur. . Therefore, in the case of this example, the concave hole 40 is formed in the front end surface of the first intermediate material 33b in such a second step so as to prevent the occurrence of the chevron crack.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

上述した本発明の実施の形態の各例は何れも、外径が異なる複数の円筒面部を設ける為の前方押し出し加工を、第一工程と第二工程との二段階で実施している。但し、加工後の円筒面部のうち、最も小径の円筒面部の外径を、加工前の素材の外径で除した値(絞り率)が1/2以上の場合、これら各円筒面部を設ける前方押し出し加工を一工程で実施する事もできる。   In each example of the embodiment of the present invention described above, the forward extrusion processing for providing a plurality of cylindrical surface portions having different outer diameters is performed in two stages of the first process and the second process. However, when the value (drawing rate) obtained by dividing the outer diameter of the smallest cylindrical surface portion by the outer diameter of the raw material before processing is 1/2 or more among the processed cylindrical surface portions, the front where the respective cylindrical surface portions are provided. Extrusion can also be performed in one step.

、本発明の車輪支持用転がり軸受ユニットを構成するハブ本体の製造方法は、上述した本発明の実施の形態の各例の製造方法に限られない。即ち、シェブロンクラックの発生が問題にならない程度であったり、或いは、別の方法によりシェブロンクラックの発生を防止できるのであれば、前述した従来のハブ本体の製造方法に、アルミニウム系合金の如き軽合金製の芯材と、中炭素鋼の如き鉄系合金製で、この芯材の端部を除いた外側部分を覆う有底円筒状の表層材とから成る素材を、冷間鍛造加工する段付円柱状部材の製造方法を適用する事もできる。 Moreover , the manufacturing method of the hub main body which comprises the rolling bearing unit for wheel support of this invention is not restricted to the manufacturing method of each example of embodiment of this invention mentioned above. That is, if the generation of chevron cracks is not a problem, or if the generation of chevron cracks can be prevented by another method, a light alloy such as an aluminum alloy is added to the above-described conventional hub body manufacturing method. A step for cold forging a material consisting of a core material made of iron and an iron-based alloy such as medium carbon steel, and a bottomed cylindrical surface layer covering the outer portion excluding the end of the core material The manufacturing method of a cylindrical member can also be applied.

、段付円柱状部材の製造方法は、従動輪用の車輪支持用転がり軸受ユニットを構成するハブ本体を造る場合に、顕著な効果を得られる。但し、複数段階で重複する部分に前方押し出し加工を施し、当該部分を段付形状とする物品であれば、前記ハブ本体に限らず、当該物品の製造に適用できる。 Moreover , the manufacturing method of the stepped columnar member can provide a remarkable effect when a hub body constituting a wheel bearing rolling bearing unit for a driven wheel is manufactured. However, as long as it is an article in which a portion that overlaps in a plurality of stages is subjected to forward extrusion and the part has a stepped shape, the present invention can be applied not only to the hub body but also to the manufacture of the article.

1、1a 車輪支持用転がり軸受ユニット
2 外輪
3、3a ハブ
4 転動体
5 外輪軌道
6 静止側フランジ
7、7a、7b 回転側フランジ
8 内輪軌道
9、9a ハブ本体
10、10a 内輪
11 ナット
12、12a 小径段部
13 素材
14 第一中間素材
15 第二中間素材
16 第三中間素材
17 スタッド
18 頭部
19 座面
20 第四中間素材
21、21a 凹孔
22 円筒部
23 第五中間素材
24 軸部
25、25a 段部
26、26a 芯材
27 表層材
28、28a 素材
29 段差部
30 ダイス
31 キャビティ
32、32a、32b 押圧パンチ
33、33a、33b 第一中間素材
34 カウンターパンチ
35、35a スリーブ
36、36a、36b ノックアウトピン
37、37a、37b 昇降駒
38 小径側の円筒面部
39 傾斜段部
40、40a 凹孔
41 傾斜面部
42 リング
43 ボルト
44、44a フローティングダイス
45 第二キャビティ
46、46a ばね
47 固定ブロック
48 第二スリーブ
49、49a スペーサ
50、50a ばね
51、51a〜51c 第二中間素材
52 ダイス
53 第三キャビティ
54、54a 第三中間素材
55 第四中間素材
56 円孔
57 かしめ部
58 小径部
DESCRIPTION OF SYMBOLS 1, 1a Rolling bearing unit for wheel support 2 Outer ring 3, 3a Hub 4 Rolling element 5 Outer ring raceway 6 Stationary side flange 7, 7a, 7b Rotation side flange 8 Inner ring raceway 9, 9a Hub body 10, 10a Inner ring 11 Nut 12, 12a Small diameter step portion 13 Material 14 First intermediate material 15 Second intermediate material 16 Third intermediate material 17 Stud 18 Head 19 Seat surface 20 Fourth intermediate material 21, 21a Recessed hole 22 Cylindrical portion 23 Fifth intermediate material 24 Shaft portion 25 , 25a Step part 26, 26a Core material 27 Surface layer material 28, 28a Material 29 Step part 30 Dies 31 Cavity 32, 32a, 32b Press punch 33, 33a, 33b First intermediate material 34 Counter punch 35, 35a Sleeve 36, 36a, 36b Knockout pin 37, 37a, 37b Elevating piece 38 Cylindrical surface portion 3 on the small diameter side 3 9 Inclined step 40, 40a Recessed hole 41 Inclined surface 42 Ring 43 Bolt 44, 44a Floating die 45 Second cavity 46, 46a Spring 47 Fixed block 48 Second sleeve 49, 49a Spacer 50, 50a Spring 51, 51a-51c First Second intermediate material 52 Die 53 Third cavity 54, 54a Third intermediate material 55 Fourth intermediate material 56 Circular hole 57 Caulking portion 58 Small diameter portion

Claims (8)

外周面に、外径が互いに異なる複数の円筒面部を設け、隣り合う円筒面部同士を段部により連続させた段付円柱状部材の製造方法であって、軽合金製の芯材と、鉄系合金製で、この芯材の端部を除いた外側部分を覆う有底円筒状の表層材とから成る素材を、冷間鍛造加工する事を特徴とする段付円柱状部材の製造方法。   A method of manufacturing a stepped columnar member in which a plurality of cylindrical surface portions having different outer diameters are provided on an outer peripheral surface, and adjacent cylindrical surface portions are continuous with each other by a step portion, comprising: a light alloy core material; A method for producing a stepped columnar member, characterized by cold forging a material made of an alloy and comprising a bottomed cylindrical surface layer material covering an outer portion excluding the end of the core material. 前記素材を、前記芯材を前記表層材の内径側部分に締り嵌めする事により造る、請求項1に記載した段付円柱状部材の製造方法。   The method for producing a stepped columnar member according to claim 1, wherein the material is produced by tightly fitting the core material to an inner diameter side portion of the surface layer material. 前記芯材の高さ寸法を、前記表層材の中心孔の深さ寸法よりも小さくする、請求項2に記載した段付円柱状部材の製造方法。   The manufacturing method of the stepped columnar member of Claim 2 which makes the height dimension of the said core material smaller than the depth dimension of the center hole of the said surface layer material. 前記素材の先端部をダイスに押し込む事により、この素材の先端部の外径を縮めて、この先端部に小径側の円筒面部を、この小径側の円筒面部の基端部に段部を、それぞれ形成する際に、前記素材の先端面の中央部を、前記ダイスの内径側に配置した、前記小径側の円筒面部の外径よりも小径のカウンターパンチの先端面に押し付けつつ、前記素材の中間素材の先端部を前記ダイス内に押し込む事により、この素材の先端部の外径を縮めて、前記小径側の円筒面部及び前記段部を形成すると同時に、この小径側の円筒面部の中心部の少なくとも先端寄り部分に、前記先端面の中央部に開口する有底の凹孔を形成する、請求項2〜3のうちの何れか1項に記載した段付円柱状部材の製造方法。   By pushing the distal end of the material into a die, the outer diameter of the distal end of the material is reduced, and a cylindrical surface portion on the small diameter side is formed on the distal end portion, and a stepped portion is formed on the proximal end portion of the cylindrical surface portion on the small diameter side. When forming each, while pressing the center portion of the tip surface of the material against the tip surface of the counter punch having a smaller diameter than the outer diameter of the cylindrical surface portion on the small diameter side, arranged on the inner diameter side of the die, By pushing the tip of the intermediate material into the die, the outer diameter of the tip of the material is reduced to form the cylindrical surface portion and the step portion on the small diameter side, and at the same time, the central portion of the cylindrical surface portion on the small diameter side The manufacturing method of the stepped columnar member according to any one of claims 2 to 3, wherein a bottomed recessed hole that opens at a central portion of the tip surface is formed at least at a portion near the tip. 前記素材に第一段階の前方押し出し加工を施す事により、先端寄り部分を基端寄り部分よりも小径とした第一中間素材とした後、この第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部よりも更に小径の第二円筒面部を、この先端寄り部分の軸方向中間部に第二段部を、それぞれ有する第二中間素材とする過程で、前記素材の先端面の中央部に前記カウンターパンチの先端面を押し付けつつ、この素材を、この先端面の中央部に前記凹孔を有する前記第一中間素材とし、次いで、この凹孔内にスペーサを内嵌した状態で、この第一中間素材を前記第二中間素材に加工する、請求項4に記載した段付円柱状部材の製造方法。   By applying a first-stage forward extrusion process to the material, the first intermediate material having a smaller diameter than the proximal end portion is formed in the first intermediate material. A second intermediate having a second cylindrical surface portion with a smaller diameter than the cylindrical surface portion on the small diameter side at the front end portion and a second step portion at the axially intermediate portion of the front end portion. In the process of making the material, while pressing the tip surface of the counter punch against the center portion of the tip surface of the material, the material is the first intermediate material having the concave hole in the center portion of the tip surface, The manufacturing method of the stepped columnar member according to claim 4, wherein the first intermediate material is processed into the second intermediate material in a state where a spacer is fitted in the concave hole. 前記素材に第一段階の前方押し出し加工を施す事により、先端寄り部分を基端寄り部分よりも小径とした第一中間素材とした後、この第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部を、この先端寄り部分の軸方向中間部に前記段部を、それぞれ有する第二中間素材とする過程で、前記第一中間素材の先端面に前記カウンターパンチの先端面を押し付けつつ、この第一中間素材を前記第二中間素材とする、請求項4に記載した段付円柱状部材の製造方法。   By applying a first-stage forward extrusion process to the material, the first intermediate material having a smaller diameter than the proximal end portion is formed in the first intermediate material. In the process of subjecting the first intermediate to the second intermediate material, which is subjected to forward extrusion processing, and the cylindrical surface portion on the small diameter side is provided at the tip end portion and the step portion is provided at the axial intermediate portion of the tip end portion. The manufacturing method of the stepped columnar member according to claim 4, wherein the first intermediate material is used as the second intermediate material while pressing the front surface of the counter punch against the front surface of the material. 前記表層材の中心孔の奥端面に凹孔を、前記芯材の基端部にこの凹孔と隙間なく係合する小径部を、それぞれ設け、前記表層材の内径側部分に前記芯材を締り嵌めする事で前記素材とし、この素材に冷間鍛造加工により前記各円筒面部と前記各段部とを形成して中間素材とした後に、この中間素材に側方押し出し加工を施す事により、この中間素材の基端寄り部分の外周面に放射状のフランジを設ける、請求項2〜6のうちの何れか1項に記載した段付円柱状部材の製造方法。   A concave hole is provided in the back end surface of the center hole of the surface layer material, and a small diameter portion that engages with the concave hole without gap is provided in the base end portion of the core material, and the core material is provided on the inner diameter side portion of the surface material. By making an interference fit into the material, and forming the cylindrical surface portion and the stepped portion by cold forging into an intermediate material, and then subjecting the intermediate material to lateral extrusion, The method for manufacturing a stepped columnar member according to any one of claims 2 to 6, wherein a radial flange is provided on an outer peripheral surface of a portion near the base end of the intermediate material. 内周面に複列の外輪軌道を有し、使用時にも回転しない外輪と、外周面に複列の内輪軌道を有し、使用時に車輪と共に回転するハブと、これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられた転動体とを備え、前記ハブは、ハブ本体と内輪とを結合固定して成るものであって、このうちのハブ本体は、軸方向外端寄り部分の外周面に前記車輪を支持固定する為の放射状の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成したものであり、前記内輪は、外周面に軸方向内側の内輪軌道を形成したもので、前記ハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定されている車輪支持用転がり軸受ユニットに於いて、前記ハブ本体の芯部を軽合金製で、この芯部を覆う表面部分を鉄系合金で、それぞれ構成している事を特徴とする車輪支持用転がり軸受ユニット。   An outer ring having a double row outer ring raceway on the inner peripheral surface and not rotating during use, a hub having a double row inner ring raceway on the outer peripheral surface and rotating together with the wheels during use, both the inner ring raceways and the both outer rings A plurality of rolling elements provided in a freely movable manner for each row between the raceway and the hub, wherein the hub is formed by coupling and fixing a hub body and an inner ring, The hub body is formed by directly forming a radial rotation side flange for supporting and fixing the wheel on the outer peripheral surface near the outer end in the axial direction, and an inner ring track on the outer side in the axial direction on the outer peripheral surface in the axial direction. The inner ring is formed with an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is a rolling bearing for wheel support that is externally fitted and fixed to a small-diameter step portion formed near the axial inner end of the hub body. In the unit, the core of the hub body is made of light alloy, and this core A surface portion of a ferrous alloy covering, the wheel support rolling bearing unit, characterized in that constitute respectively.
JP2015211660A 2015-10-28 2015-10-28 Rolling bearing unit for wheel support Expired - Fee Related JP6094653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211660A JP6094653B2 (en) 2015-10-28 2015-10-28 Rolling bearing unit for wheel support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211660A JP6094653B2 (en) 2015-10-28 2015-10-28 Rolling bearing unit for wheel support

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011285095A Division JP5867070B2 (en) 2011-12-27 2011-12-27 Method for manufacturing stepped cylindrical member

Publications (2)

Publication Number Publication Date
JP2016047556A true JP2016047556A (en) 2016-04-07
JP6094653B2 JP6094653B2 (en) 2017-03-15

Family

ID=55648760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211660A Expired - Fee Related JP6094653B2 (en) 2015-10-28 2015-10-28 Rolling bearing unit for wheel support

Country Status (1)

Country Link
JP (1) JP6094653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090434A (en) * 2019-01-21 2020-07-29 현대자동차주식회사 Manufacturing method for a wheel bearing hub and the wheel bearing hub
JP7356035B2 (en) 2020-03-26 2023-10-04 日本製鉄株式会社 Forging materials, forged parts and manufacturing methods thereof
JP7356036B2 (en) 2020-03-26 2023-10-04 日本製鉄株式会社 Forging materials, forged parts, and methods for producing forged parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022258A (en) * 2005-07-14 2007-02-01 Jtekt Corp Rolling bearing device for wheel
JP2008279861A (en) * 2007-05-09 2008-11-20 Nsk Ltd Bearing unit
US20110235957A1 (en) * 2008-12-02 2011-09-29 Aktiebolaget Skf Bearing Unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022258A (en) * 2005-07-14 2007-02-01 Jtekt Corp Rolling bearing device for wheel
JP2008279861A (en) * 2007-05-09 2008-11-20 Nsk Ltd Bearing unit
US20110235957A1 (en) * 2008-12-02 2011-09-29 Aktiebolaget Skf Bearing Unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090434A (en) * 2019-01-21 2020-07-29 현대자동차주식회사 Manufacturing method for a wheel bearing hub and the wheel bearing hub
KR102621917B1 (en) * 2019-01-21 2024-01-05 현대자동차주식회사 Manufacturing method for a wheel bearing hub
JP7356035B2 (en) 2020-03-26 2023-10-04 日本製鉄株式会社 Forging materials, forged parts and manufacturing methods thereof
JP7356036B2 (en) 2020-03-26 2023-10-04 日本製鉄株式会社 Forging materials, forged parts, and methods for producing forged parts

Also Published As

Publication number Publication date
JP6094653B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6523677B2 (en) Method of manufacturing hub wheel and inner member of wheel bearing device
EP2123374B1 (en) Method for manufacturing raceway ring member
JP5103819B2 (en) Manufacturing method of bearing ring member for rolling bearing unit
JPWO2014175293A1 (en) Method of manufacturing race ring member and metal material for race ring member
JP6094653B2 (en) Rolling bearing unit for wheel support
JP2009255751A (en) Metallic member with outward flange part, and manufacturing method therefor
JP4840102B2 (en) Method for manufacturing bearing ring member
JP4775017B2 (en) Method for manufacturing cylindrical member with protrusion
JP5349875B2 (en) Manufacturing method of hub wheel of wheel bearing device
JP5750998B2 (en) Method for manufacturing stepped cylindrical member
JP5867070B2 (en) Method for manufacturing stepped cylindrical member
JP4674580B2 (en) Method for manufacturing bearing ring member
JP6191423B2 (en) Manufacturing method of outer ring for rolling bearing unit and outer ring for rolling bearing unit
US20120227459A1 (en) Method of manufacturing shaft member for wheel rolling bearing device
JP2007237958A (en) Bearing ring member for roller bearing unit, roller bearing unit, and manufacturing method of bearing ring member for roller bearing unit
JP5446920B2 (en) Manufacturing method of metal member with outward flange
JP5776365B2 (en) Method and apparatus for manufacturing stepped cylindrical member
JP5880037B2 (en) Manufacturing method of stepped metal member
JP4826491B2 (en) Method for manufacturing bearing ring member
JP6171741B2 (en) Manufacturing method of wheel-supporting rolling bearing unit and manufacturing method of wheel-supporting rolling bearing unit hub
JP5834592B2 (en) Manufacturing method of metal member with outward flange
JP5182144B2 (en) Method for manufacturing bearing ring member
JP6311414B2 (en) Manufacturing method of metal member with outward flange, manufacturing method of rolling bearing unit for supporting wheel, and manufacturing method of automobile
JP6429441B2 (en) Wheel bearing device, intermediate body, and manufacturing method thereof
JP2002213469A (en) Method of manufacturing hub unit for supporting wheel and manufacturing die therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees