JP2016045595A5 - - Google Patents

Download PDF

Info

Publication number
JP2016045595A5
JP2016045595A5 JP2014167884A JP2014167884A JP2016045595A5 JP 2016045595 A5 JP2016045595 A5 JP 2016045595A5 JP 2014167884 A JP2014167884 A JP 2014167884A JP 2014167884 A JP2014167884 A JP 2014167884A JP 2016045595 A5 JP2016045595 A5 JP 2016045595A5
Authority
JP
Japan
Prior art keywords
support
generalized
speed
coordinates
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167884A
Other languages
Japanese (ja)
Other versions
JP6550654B2 (en
JP2016045595A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014167884A priority Critical patent/JP6550654B2/en
Priority claimed from JP2014167884A external-priority patent/JP6550654B2/en
Publication of JP2016045595A publication Critical patent/JP2016045595A/en
Publication of JP2016045595A5 publication Critical patent/JP2016045595A5/ja
Application granted granted Critical
Publication of JP6550654B2 publication Critical patent/JP6550654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (12)

少なくとも第二支持体を備えた被制御体における少なくとも該第二支持体の軌道を制御する軌道制御装置であって、
前記被制御体のうち少なくとも前記第二支持体の所定の基準時刻における一般化座標及び一般化速度である第二支持体基準一般化座標と第二支持体基準一般化速度とを導出可能な基準情報を取得する基準情報取得手段と、
前記被制御体を、慣性系における固定支持体に振動自在に支持された第一支持体と、前記第一支持体に振動自在に並列に支持され、単振動子とした時の固有周期が等しい前記第二支持体および第三支持体と、を備え、前記第二支持体と前記第三支持体とを合わせた重心と前記第一支持体とからなる二体連成振動系の二つの固有角振動数の差の絶対値と所定の操作時間との積が2πの自然数倍となるように設定された三体振動系の一部である力学系とみなしたときに、前記基準情報に基づいて導出される前記第二支持体基準一般化座標及び前記第二支持体基準一般化速度と、前記基準情報に基づいて導出もしくは仮想的に定められる前記第一支持体の前記基準時刻における一般化座標及び一般化速度である第一支持体基準一般化座標及び第一支持体基準一般化速度と、前記基準時刻から前記操作時間後の時刻における前記第二支持体の一般化座標及び一般化速度である第二支持体目標一般化座標及び第二支持体目標一般化速度と、から決定される前記操作時間内の前記三体振動系の自由運動に基づいて定まる、前記操作時間内において前記被制御体に与える一般化座標の強制変位又は一般化外力の目標関数に基づいて、
前記基準時刻から前記操作時間経過までの間、前記被制御体の少なくとも一部に一般化座標の強制変位または一般化外力を与えることで、前記第二支持体の一般化座標及び一般化速度をフィードフォワード制御する制御手段と、
を備える軌道制御装置.
A trajectory control device for controlling a trajectory of at least the second support in a controlled body provided with at least a second support,
A reference that can derive a second support reference generalized coordinate and a second support reference generalized speed, which are generalized coordinates and a generalized speed at a predetermined reference time of at least the second support among the controlled bodies. Reference information acquisition means for acquiring information;
The natural period is the same when the controlled body is supported by a fixed support in an inertial system so as to be able to vibrate, and is supported in parallel by the first support so as to be able to vibrate and is a single vibrator. Two unique features of a two-body coupled vibration system comprising the second support and the third support, and comprising the center of gravity of the second support and the third support and the first support When the product of the absolute value of the difference in angular frequency and a predetermined operation time is regarded as a dynamic system that is a part of a three-body vibration system set to be a natural number multiple of 2π, The second support reference generalized coordinates derived based on the second support reference generalized speed, and the general at the reference time of the first support derived or virtually determined based on the reference information The first support reference generalized coordinates and the first support are the generalized coordinates and the generalized speed. Body reference generalized speed and second support target generalized coordinates and second support target generalized speed that are generalized coordinates and generalized speed of the second support at the time after the operation time from the reference time Based on the forced displacement of generalized coordinates given to the controlled object within the operation time or the target function of the generalized external force determined based on the free motion of the three-body vibration system within the operation time determined from And
By giving a generalized coordinate forced displacement or generalized external force to at least a part of the controlled body from the reference time until the operation time elapses, the generalized coordinate and generalized speed of the second support are obtained. Control means for feedforward control;
Orbit control device comprising:
前記基準情報取得手段は、前記基準時刻から前記操作時間経過後を新たな基準時刻として、前記基準情報を逐次定めた種々の長さの前記操作時間毎に繰り返し取得し、
前記制御手段は、前記基準時刻から前記操作時間経過後の前記第二支持体の一般化座標及び一般化速度が、前記第二支持体目標一般化座標及び前記第二支持体目標一般化速度に近づくように、前記フィードフォワード制御を行い、前記基準時刻から前記操作時間経過後を新たな基準時刻として、該フィードフォワード制御を繰り返し行う
請求項1に記載の軌道制御装置.
The reference information acquisition means repeatedly acquires the reference information for each of the operation times of various lengths that are sequentially determined, with the new reference time after the operation time has elapsed from the reference time,
The control means is configured such that the generalized coordinates and the generalized speed of the second support after the operation time has elapsed from the reference time are the second support target generalized coordinates and the second support target generalized speed. The trajectory control device according to claim 1, wherein the feedforward control is performed so as to approach, and the feedforward control is repeatedly performed with the operation time elapsed from the reference time as a new reference time.
前記被制御体は、固定支持体Aに移動自在に支持された前記第一支持体と、前記第一支持体に振動自在に支持された前記第二支持体と、を備えており、
該固定支持体Aは前記固定支持体からみて任意の静止位置に固定された支持体であり、前記基準情報取得手段は、前記第二支持体基準一般化座標、前記第二支持体基準一般化速度と、前記第一支持体基準一般化座標と、前記第一支持体基準一般化速度と、を導出可能な前記基準情報を取得し、
前記目標関数は、前記被制御体を前記三体振動系の一部である力学系とみなしたときに、前記基準情報に基づいて導出される前記第二支持体基準一般化座標、前記第二支持体基準一般化速度、前記第一支持体基準一般化座標、及び前記第一支持体基準一般化速度と、前記第二支持体目標一般化座標及び前記第二支持体目標一般化速度と、から決定される前記三体振動系の自由運動に基づいて定まる、前記操作時間の間において前記第一支持体に与える一般化座標の強制変位の目標関数であり、
前記制御手段は、前記目標関数に基づいて、前記基準時刻から前記操作時間経過までの間、前記第一支持体に前記一般化座標の強制変位を与えることで、前記フィードフォワード制御を行う、
請求項1又は2に記載の軌道制御装置.
The controlled body includes the first support body that is movably supported by a fixed support body A, and the second support body that is supported by the first support body so as to vibrate freely.
The fixed support A is a support fixed at an arbitrary stationary position as viewed from the fixed support, and the reference information acquisition means includes the second support reference generalized coordinates, the second support reference generalized Obtaining the reference information capable of deriving a speed, the first support reference generalized coordinates, and the first support reference generalized speed;
The target function is the second support reference generalized coordinates derived from the reference information when the controlled body is regarded as a dynamic system that is a part of the three-body vibration system, the second Support reference generalized speed, the first support reference generalized coordinates, and the first support reference generalized speed, the second support target generalized coordinates and the second support target generalized speed, A target function of forced displacement of generalized coordinates given to the first support during the operation time, which is determined based on the free motion of the three-body vibration system determined from
The control means performs the feedforward control by giving a forced displacement of the generalized coordinates to the first support during the period from the reference time to the operation time based on the target function.
A trajectory control device according to claim 1 or 2.
前記目標関数は、前記三体振動系全体が釣り合い状態にあった場合の前記第一支持体の一般化座標を前記第一支持体の一般化座標の原点とし、前記三体振動系全体が釣り合い状態にあった場合の前記第二支持体の一般化座標を前記第二支持体の一般化座標の原点とする、下記(式1)で表される一般化座標の強制変位関数X(t0+t')である、
請求項3に記載の軌道制御装置.
ただし、Δtは前記操作時間であり、
前記二体連成振動系の二つの固有角振動数のうち、大きい固有角振動数をω+=(2p+1)π/Δt、小さい固有角振動数をω-=π/Δt、pを自然数とする.
また、前記第二支持体基準一般化座標をxin、前記第二支持体基準一般化速度をvin、前記第一支持体基準一般化座標をXin、前記第一支持体基準一般化速度をVinとし、前記第二支持体目標一般化座標をxen、前記第二支持体目標一般化速度をvenとする.
また、(式1)は、前記第二支持体からなる単振動子の前記固有周期を2πとして代表時間とし、前記第二支持体の一般化質量を代表質量とした無次元化関数であり、t'=0〜Δtの範囲において成り立つ.さらにαpは(式2)を満たす任意の実数である.
The target function is that the generalized coordinates of the first support when the entire three-body vibration system is in a balanced state is the origin of the generalized coordinates of the first support, and the entire three-body vibration system is balanced. The generalized coordinate forced displacement function X (t 0 ) expressed by the following (Equation 1), where the generalized coordinate of the second support in the state is the origin of the generalized coordinate of the second support. + t '),
The trajectory control device according to claim 3.
However, Δt is the operation time,
Of the two natural angular frequencies of the two-body coupled vibration system, a large natural angular frequency is ω + = (2p + 1) π / Δt, a small natural angular frequency is ω = π / Δt, and p is a natural number. Do it.
Further, the second support reference generalized coordinate is x in , the second support reference generalized speed is v in , the first support reference generalized coordinate is X in , and the first support reference generalized speed is Is V in , the second support target generalized coordinate is x en , and the second support target generalized speed is v en .
(Equation 1) is a dimensionless function in which the natural period of the single oscillator composed of the second support is 2π, the representative time is the representative time, and the generalized mass of the second support is the representative mass. It holds in the range of t '= 0 to Δt. Α p is any real number that satisfies (Equation 2).
前記被制御体は、前記固定支持体と、前記固定支持体に振動自在に支持された前記第一支持体と、前記第一支持体に振動自在に支持された前記第二支持体と、を含み、
前記基準情報取得手段は、前記第二支持体基準一般化座標と、前記第二支持体基準一般化速度と、前記第一支持体基準一般化座標と、前記第一支持体基準一般化速度と、を導出可能な前記基準情報を取得し、
前記目標関数は、前記被制御体を前記三体振動系の一部である力学系とみなしたときに、前記基準情報に基づいて導出される前記第二支持体基準一般化座標、前記第二支持体基準一般化速度、前記第一支持体基準一般化座標、及び前記第一支持体基準一般化速度と、前記第二支持体目標一般化座標及び前記第二支持体目標一般化速度と、から決定される前記三体振動系の自由運動に基づいて定まる、前記操作時間の間において前記第一支持体に与える一般化外力の目標関数であり、
前記制御手段は、前記目標関数に基づいて、前記基準時刻から前記操作時間経過までの間、前記第一支持体に前記一般化外力を与えることで、前記フィードフォワード制御を行う、
請求項1又は2に記載の軌道制御装置.
The controlled body includes the fixed support, the first support supported by the fixed support in a freely vibrating manner, and the second support supported by the first support in a freely swingable manner. Including
The reference information acquisition means includes the second support reference generalized coordinates, the second support reference generalized speed, the first support reference generalized coordinates, and the first support reference generalized speed. , Obtain the reference information from which derivation is possible,
The target function is the second support reference generalized coordinates derived from the reference information when the controlled body is regarded as a dynamic system that is a part of the three-body vibration system, the second Support reference generalized speed, the first support reference generalized coordinates, and the first support reference generalized speed, the second support target generalized coordinates and the second support target generalized speed, A target function of a generalized external force applied to the first support during the operation time, which is determined based on the free motion of the three-body vibration system determined from
The control means performs the feedforward control by applying the generalized external force to the first support during the period from the reference time to the operation time based on the target function.
A trajectory control device according to claim 1 or 2.
前記目標関数は、前記三体振動系全体が釣り合い状態にあった場合の前記第一支持体の一般化座標を前記第一支持体の一般化座標の原点とし、前記三体振動系全体が釣り合い状態にあった場合の前記第二支持体の一般化座標を前記第二支持体の一般化座標の原点とする、下記(式3)で表される一般化外力関数FIIp(t0+t')である、
請求項5に記載の軌道制御装置.
ただし、Δtは前記操作時間であり、
前記二体連成振動系の二つの固有角振動数のうち、大きい固有角振動数をω+=(2p+1)π/Δt、小さい固有角振動数をω-=π/Δt、pを自然数とする.
また、前記第二支持体基準一般化座標をxin、前記第二支持体基準一般化速度をvin、前記第一支持体基準一般化座標をXin、前記第一支持体基準一般化速度をVinとし、前記第二支持体目標一般化座標をxen、前記第二支持体目標一般化速度をvenとする.
また(式3)は、前記固有周期を2π、前記第二支持体の一般化質量を代表質量とした無次元化関数であり、t'=0〜Δtの範囲において成り立つ.
さらに、γは任意の正の実数である.
The target function is that the generalized coordinates of the first support when the entire three-body vibration system is in a balanced state is the origin of the generalized coordinates of the first support, and the entire three-body vibration system is balanced. The generalized external force function F IIp (t 0 + t) expressed by the following (Equation 3), where the generalized coordinates of the second support in the state are the origin of the generalized coordinates of the second support ')
The trajectory control device according to claim 5.
However, Δt is the operation time,
Of the two natural angular frequencies of the two-body coupled vibration system, a large natural angular frequency is ω + = (2p + 1) π / Δt, a small natural angular frequency is ω = π / Δt, and p is a natural number. Do it.
Further, the second support reference generalized coordinate is x in , the second support reference generalized speed is v in , the first support reference generalized coordinate is X in , and the first support reference generalized speed is Is V in , the second support target generalized coordinate is x en , and the second support target generalized speed is v en .
Further, (Equation 3) is a dimensionless function in which the natural period is 2π and the generalized mass of the second support is a representative mass, and holds in the range of t ′ = 0 to Δt.
In addition, γ is any positive real number.
前記被制御体は、固定支持体Dと、前記固定支持体Dに振動自在に支持された前記第二支持体と、を含み、
該固定支持体Dは該三体振動系における該第一支持体の釣り合い位置に固定された支持体であり、前記基準情報取得手段は、前記第二支持体基準一般化座標及び前記第二支持体基準一般化速度を導出可能な前記基準情報を取得し、
前記目標関数は、前記第二支持体および仮想として定めた前記第一支持体を、前記三体振動系の一部である力学系とみなし、前記固定支持体Dを前記三体振動系全体が釣り合い状態にある時の前記第一支持体の一般化座標に置いたときに、前記基準情報に基づいて導出される前記第二支持体基準一般化座標及び前記第二支持体基準一般化速度と、前記第一支持体基準一般化座標及び前記第一支持体基準一般化速度と、前記第二支持体目標一般化座標及び前記第二支持体目標一般化速度と、から決定される前記三体振動系の自由運動に基づいて定まる、前記操作時間の間において前記第二支持体に与える一般化外力の目標関数であり、
前記制御手段は、前記基準時刻から前記操作時間経過までの間、前記目標関数に基づいて前記第二支持体に前記一般化外力を与えることで、前記フィードフォワード制御を行う、
請求項1又は2に記載の軌道制御装置.
The controlled body includes a fixed support D, and the second support that is supported by the fixed support D so as to freely vibrate,
The fixed support D is a support fixed at a balanced position of the first support in the three-body vibration system, and the reference information acquisition means includes the second support reference generalized coordinates and the second support. Obtain the reference information from which the body reference generalized speed can be derived,
The target function regards the second support and the first support defined as virtual as a dynamic system that is a part of the three-body vibration system, and the fixed support D as a whole of the three-body vibration system. The second support reference generalized coordinates and the second support reference generalized speed derived based on the reference information when placed in the generalized coordinates of the first support when in a balanced state; The three bodies determined from the first support reference generalized coordinates and the first support reference generalized speed, the second support target generalized coordinates and the second support target generalized speed A target function of a generalized external force applied to the second support during the operation time, which is determined based on a free motion of a vibration system;
The control means performs the feedforward control by applying the generalized external force to the second support based on the target function from the reference time to the operation time lapse.
A trajectory control device according to claim 1 or 2.
前記目標関数は、前記三体振動系全体が釣り合い状態にあった場合の前記第一支持体の一般化座標を前記第一支持体の一般化座標の原点とし、前記三体振動系全体が釣り合い状態にあった場合の前記第二支持体の一般化座標を前記第二支持体の一般化座標の原点とする、下記(式4)で表される一般化外力関数FIII(t0+t')である、
請求項7に記載の軌道制御装置.
ただし、Δtは前記操作時間であり、
前記二体連成振動系の二つの固有角振動数のうち、大きい固有角振動数をω+=(2p+1)π/Δt、小さい固有角振動数をω-=π/Δt、pを自然数とする.
また、前記第二支持体基準一般化座標をxin、前記第二支持体基準一般化速度をvin、前記第一支持体基準一般化座標をXin、前記第一支持体基準一般化速度をVinとし、前記第二支持体目標一般化座標をxen、前記第二支持体目標一般化速度をvenとする.
また(式4)は、前記固有周期を2π、前記第二支持体の一般化質量を代表質量とした無次元化関数であり、t'=0〜Δtの範囲において成り立つ.さらにαpは(式2)を満たす任意の実数である.
The target function is that the generalized coordinates of the first support when the entire three-body vibration system is in a balanced state is the origin of the generalized coordinates of the first support, and the entire three-body vibration system is balanced. The generalized external force function F III (t 0 + t) represented by the following (Equation 4), where the generalized coordinates of the second support in the state are the origin of the generalized coordinates of the second support. ')
The trajectory control device according to claim 7.
However, Δt is the operation time,
Of the two natural angular frequencies of the two-body coupled vibration system, a large natural angular frequency is ω + = (2p + 1) π / Δt, a small natural angular frequency is ω = π / Δt, and p is a natural number. Do it.
Further, the second support reference generalized coordinate is x in , the second support reference generalized speed is v in , the first support reference generalized coordinate is X in , and the first support reference generalized speed is Is V in , the second support target generalized coordinate is x en , and the second support target generalized speed is v en .
Further, (Equation 4) is a dimensionless function in which the natural period is 2π and the generalized mass of the second support is a representative mass, and holds in the range of t ′ = 0 to Δt. Α p is any real number that satisfies (Equation 2).
前記被制御体は、固定支持体Eに移動自在に支持された前記第二支持体であり、
該固定支持体Eは前記固定支持体からみて任意の静止位置に固定された支持体であり、前記基準情報取得手段は、前記第二支持体基準一般化座標及び前記第二支持体基準一般化速度を導出可能な前記基準情報を取得し、
前記目標関数は、前記被制御体を前記三体振動系の一部である力学系とみなしたときに、前記基準情報に基づいて導出される前記第二支持体基準一般化座標及び前記第二支持体基準一般化速度と、前記三体振動系において仮想的に定めた前記第一支持体基準一般化座標及び前記第一支持体基準一般化速度と、前記第二支持体目標一般化座標及び前記第二支持体目標一般化速度と、から決定される前記三体振動系の自由運動に基づいて定まる、前記操作時間の間において前記第二支持体に与える一般化外力の目標関数であり、
前記制御手段は、前記目標関数に基づいて、前記基準時刻から前記操作時間経過までの間、前記第二支持体に前記一般化外力を与えることで、前記フィードフォワード制御を行う、
請求項1又は2に記載の軌道制御装置.
The controlled body is the second support body that is movably supported by a fixed support body E,
The fixed support E is a support fixed at an arbitrary stationary position when viewed from the fixed support, and the reference information acquisition means includes the second support reference generalized coordinates and the second support reference generalized. Obtain the reference information from which the speed can be derived,
The target function includes the second support reference generalized coordinates derived from the reference information when the controlled body is regarded as a dynamic system that is a part of the three-body vibration system, and the second Support reference generalized speed, the first support reference generalized coordinates and the first support reference generalized speed virtually determined in the three-body vibration system, the second support target generalized coordinates, A target function of generalized external force applied to the second support during the operation time, determined based on the free motion of the three-body vibration system determined from the second support target generalized speed,
The control means performs the feedforward control by applying the generalized external force to the second support during the period from the reference time to the operation time based on the target function.
A trajectory control device according to claim 1 or 2.
前記目標関数は、前記三体振動系全体が釣り合い状態にあった場合の前記第一支持体の一般化座標を前記第一支持体の一般化座標の原点とし、前記三体振動系全体が釣り合い状態にあった場合の前記第二支持体の一般化座標を前記第二支持体の一般化座標の原点とする、下記(式5)で表される一般化外力関数FIV(t0+t')である、
請求項9に記載の軌道制御装置.
ただし、Δtは前記操作時間であり、
前記二体連成振動系の二つの固有角振動数のうち、大きい固有角振動数をω+=(2p+1)π/Δt、小さい固有角振動数をω-=π/Δt、pを自然数とする.
また、前記第二支持体基準一般化座標をxin、前記第二支持体基準一般化速度をvin、前記第一支持体基準一般化座標をXin、前記第一支持体基準一般化速度をVinとし、前記第二支持体目標一般化座標をxen、前記第二支持体目標一般化速度をvenとする.
また(式5)は、前記固有周期を2π、前記第二支持体の一般化質量を代表質量とした無次元化関数であり、t'=0〜Δtの範囲において成り立つ.さらにαpは(式2)を満たす任意の実数である.
The target function is that the generalized coordinates of the first support when the entire three-body vibration system is in a balanced state is the origin of the generalized coordinates of the first support, and the entire three-body vibration system is balanced. The generalized external force function F IV (t 0 + t) expressed by the following (Equation 5), where the generalized coordinates of the second support in the state are the origin of the generalized coordinates of the second support. ')
The trajectory control device according to claim 9.
However, Δt is the operation time,
Of the two natural angular frequencies of the two-body coupled vibration system, a large natural angular frequency is ω + = (2p + 1) π / Δt, a small natural angular frequency is ω = π / Δt, and p is a natural number. Do it.
Further, the second support reference generalized coordinate is x in , the second support reference generalized speed is v in , the first support reference generalized coordinate is X in , and the first support reference generalized speed is Is V in , the second support target generalized coordinate is x en , and the second support target generalized speed is v en .
Further, (Equation 5) is a dimensionless function in which the natural period is 2π and the generalized mass of the second support is a representative mass, and is established in the range of t ′ = 0 to Δt. Α p is any real number that satisfies (Equation 2).
請求項6に記載の軌道制御装置であって、
導電体と一体となった前記第一支持体と、前記第一支持体の周囲に取り付けられた磁場発生手段と、前記磁場発生手段の磁場を制御できる磁場制御装置と、前記基準時刻の前記第二支持体と前記第一支持体の該振動方向の位置と速度とを取得可能な前記基準情報取得手段と、導電体から電気を外部に伝える送電手段と、を備え、
前記第二支持体には、外界の力によって、振動が励起されるように工夫されており、
前記導電体は、前記第一支持体の振動方向と垂直方向に通電できるように配置されており、
前記磁場発生手段は、前記振動方向と通電方向の両方に垂直に磁場を与えられるように配置されており、
前記第一支持体と一体になって振動する、前記導電体に流れる電流に対して働くローレンツ力が、
前記第二支持体と前記第一支持体の該振動方向の位置と速度に基づいて、振動する前記第二支持体の位置および速度を減少させるように、定められた一般化外力関数FIIp(t0+t')と、
等しくなるように、前記磁場発生手段の磁場を制御することにより、
前記第二支持体の振動を抑制し、かつ、
前記導電体に、速度起電力による電圧発生させて、送電電圧を増加させることができる、
前記第二支持体の振動エネルギーを、前記導電体を流れる電気エネルギーに変換する、軌道制御装置.
The trajectory control device according to claim 6,
The first support integrated with the conductor, the magnetic field generating means attached around the first support, the magnetic field control device capable of controlling the magnetic field of the magnetic field generating means, and the first at the reference time The reference information acquisition means capable of acquiring the position and speed of the vibration direction of the two support bodies and the first support body, and a power transmission means for transmitting electricity from the conductor to the outside,
The second support is devised so that vibrations are excited by external forces,
The conductor is arranged so that it can be energized in a direction perpendicular to the vibration direction of the first support,
The magnetic field generating means is arranged to be able to apply a magnetic field perpendicular to both the vibration direction and the energization direction,
Lorentz force acting on the current flowing in the conductor, which vibrates integrally with the first support,
Based on the position and speed of the second support and the first support in the vibration direction, a generalized external force function F IIp (determined to reduce the position and speed of the second support that vibrates is reduced. t 0 + t '),
By controlling the magnetic field of the magnetic field generating means to be equal,
Suppressing vibration of the second support, and
The electric conductor can generate a voltage by a speed electromotive force to increase a transmission voltage.
A trajectory control device that converts vibration energy of the second support into electrical energy flowing through the conductor.
請求項8に記載の軌道制御装置であって、
導電体と一体となった前記第二支持体と、前記第二支持体の周囲に取り付けられた磁場発生手段と、前記磁場発生手段の磁場を制御できる磁場制御装置と、前記基準時刻の前記第二支持体の該振動方向の位置と速度とを取得可能な前記基準情報取得手段と、導電体から電気を外部に伝える送電手段と、を備え、
前記第二支持体には、外界の力によって、振動が励起されるように工夫されており、
前記導電体は、前記第二支持体の振動方向と垂直方向に通電できるように配置されており、
前記磁場発生手段は、前記振動方向と通電方向の両方に垂直に磁場を与えられるように配置されており、
前記第二支持体と一体になって振動する、前記導電体に流れる電流に対して働くローレンツ力が、
前記第二支持体の該振動方向の位置と速度に基づいて、振動する前記第二支持体の位置および速度を減少させるように、定められた一般化外力関数FIII(t0+t')と、
等しくなるように、前記磁場発生手段の磁場を制御することにより、
前記第二支持体の振動を抑制し、かつ、
前記導電体に、速度起電力による電圧発生させて、送電電圧を増加させることができる、
前記第二支持体の振動エネルギーを、前記導電体を流れる電気エネルギーに変換する、軌道制御装置.
The trajectory control device according to claim 8,
The second support integrated with the conductor, the magnetic field generating means attached around the second support, the magnetic field control device capable of controlling the magnetic field of the magnetic field generating means, and the first at the reference time The reference information acquisition means capable of acquiring the position and speed of the two support bodies in the vibration direction, and power transmission means for transmitting electricity from the conductor to the outside,
The second support is devised so that vibrations are excited by external forces,
The conductor is arranged so that it can be energized in a direction perpendicular to the vibration direction of the second support,
The magnetic field generating means is arranged to be able to apply a magnetic field perpendicular to both the vibration direction and the energization direction,
Lorentz force acting on the current flowing in the conductor, which vibrates integrally with the second support,
A generalized external force function F III (t 0 + t ′) defined to reduce the position and speed of the vibrating second support based on the position and speed of the second support in the vibration direction. When,
By controlling the magnetic field of the magnetic field generating means to be equal,
Suppressing vibration of the second support, and
The electric conductor can generate a voltage by a speed electromotive force to increase a transmission voltage.
A trajectory control device that converts vibration energy of the second support into electrical energy flowing through the conductor.
JP2014167884A 2014-08-20 2014-08-20 Orbit control device Active JP6550654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167884A JP6550654B2 (en) 2014-08-20 2014-08-20 Orbit control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167884A JP6550654B2 (en) 2014-08-20 2014-08-20 Orbit control device

Publications (3)

Publication Number Publication Date
JP2016045595A JP2016045595A (en) 2016-04-04
JP2016045595A5 true JP2016045595A5 (en) 2017-09-21
JP6550654B2 JP6550654B2 (en) 2019-07-31

Family

ID=55636136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167884A Active JP6550654B2 (en) 2014-08-20 2014-08-20 Orbit control device

Country Status (1)

Country Link
JP (1) JP6550654B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381351A (en) * 2017-07-21 2017-11-24 无锡市湖昌机械制造有限公司 The loop wheel machine special cart of secondary spring hooking device is installed
JP7436977B2 (en) 2019-10-24 2024-02-22 国立大学法人 筑波大学 Contact state maintenance method, contact state maintenance device, pantograph for railway vehicle and train equipped with the same
JP7049729B2 (en) * 2020-03-30 2022-04-07 国立大学法人東海国立大学機構 Cutting equipment and cutting method
CN114776535A (en) * 2022-06-16 2022-07-22 深圳市信润富联数字科技有限公司 Method and device for monitoring shaking of fan tower, storage medium and electronic equipment
CN115307855B (en) * 2022-07-21 2023-07-04 南京航空航天大学 Rotor blade high-cycle fatigue test method and device considering centrifugal force effect
CN114932560B (en) * 2022-07-25 2022-11-22 山东贞元汽车车轮有限公司 Automatic control method and system for grabbing hub by mechanical arm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224334A (en) * 1990-12-25 1992-08-13 Ishikawajima Harima Heavy Ind Co Ltd Control of active type dynamic vibration damper and device thereof
JP2013145120A (en) * 2012-01-13 2013-07-25 Mie Univ Tapping mode afm including multiple cantilever for afm and scan method of the same
JP6195047B2 (en) * 2012-11-29 2017-09-13 茂夫 小竹 Impact machine that enables steady collision

Similar Documents

Publication Publication Date Title
JP2016045595A5 (en)
Halim et al. An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion
EP2792299B1 (en) Movable capsule device
Pillatsch et al. Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters
JP2016533149A5 (en)
Ashraf et al. Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies
JP6126047B2 (en) Acceleration generator
Wang et al. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms
WO2010148312A3 (en) Increased frequency power generation using low-frequency ambient vibrations
GB201121879D0 (en) Generation of charged particle vortex waves
JP2015505663A (en) Energy harvesting method and apparatus using intrinsic voltage difference between metal joints
Ab Rahman et al. Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism
KR101885024B1 (en) Pendulum movement type energy harvesting apparatus using triboelectrification
KR101714368B1 (en) Hybrid Energy Harvesting Apparatus Using Smart Materials for Heat and Vibration
Ooi et al. Switching damping for a frequency-tunable electromagnetic energy harvester
JP2009290977A (en) Method for converting magnetic field of stationary permanent magnet into magnetic field of magnetic flux vibration, and taking out mechanical energy and electric energy
JP6602650B2 (en) Simulated force generation device
Ali et al. Investigation of hybrid energy harvesting circuits using piezoelectric and electromagnetic mechanisms
JP2012148223A (en) Vibration generator
Kato et al. Optimization of asymmetric acceleration waveform for haptic device driven by two-degree-of-freedom oscillatory actuator
Halim et al. Optimization of a human-limb driven, frequency up-converting electromagnetic energy harvester for power enhancement
JP2010088253A (en) Method of applying motion to stationary electric charge by stationary magnetic field of plural permanent magnet
Yaguchi et al. A new type of magnetic actuator capable of wall-climbing movement using inertia force
Zhu et al. Numerical analysis of an electromagnetic energy harvester driven by multiple magnetic forces under pulse excitation
Zhang et al. Energy harvesting from vehicle tyres using stochastic resonance